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AFIT/GA/ENY/OlM-02 

Abstract 

This thesis investigates several linear and nonlinear feedback control methods for 

satellite formation reconfigurations and compares them to a near optimal open loop, 

discrete-time, impulsive maneuver. The reconfigurations are done in terms of a set of 

relative parameters that define an orbit about the leader satellite (or center reference po- 

sition if a leader satellite does not exist at the center of the formation). The purpose of 

the study is two-fold, to compare the control usage of continuous feedback control meth- 

ods versus a discrete burn method and to determine if nonlinear control techniques offer 

significant improvement over more conventional linear control laws. Linear Quadratic Reg- 

ulators (LQR), LQR with linearizing feedback, State Dependent Riccati Equation (SDRE) 

and sliding mode controllers are considered. Simulations showed that reconfigurations for 

small relative orbits were adequately controlled using linear techniques. 

xvm 



A STUDY OF LINEAR VS. NONLINEAR CONTROL TECHNIQUES FOR THE 

RECONFIGURATION OF SATELLITE FORMATIONS 

I.   Introduction 

The use of satellite formations to do the work of larger more costly single satellites has 

become a topic of great interest both for the Air Force and NASA. The potential benefits 

of using formations are numerous. Smaller, cheaper satellites lead to reduced launch and 

life cycle costs. Individual satellites can be replaced giving the formation the ability to 

upgrade without a manned mission to the satellite. Similarly, spare satellites can replace 

formation components as they fail. This creates added reliability and lifetime to a mission. 

From a military standpoint, a formation has a greater survivability than a single satellite 

as multiple satellites are often harder to destroy than a single one. Most pertinent to this 

thesis is the ability of a formation to reconfigure its relative geometry in order to meet 

changes in operational needs, adapt to the failure of a component, or allow for multi- 

mission capability. For example, a formation of satellites performing a mapping mission 

using synthetic aperture radar (SAR) could change its ground resolution by changing 

its relative positions (14). Although satellite formations are a relatively new concept, 

several applications have been offered. The Air Force is exploring formations for use in 

surveillance, passive radiometry, terrain mapping, navigation, communications, and ground 

target identification (22). In the civilian sector, satellite formations have been proposed as 

a way to provide users with remote sensing data in the visible and near infrared spectral 

bands (2) and to achieve high precision localization of beacon positions (8). Throughout 

this thesis the reference point by which relative motion is measured is called the "leader 

satellite" or simply "leader". Satellites occupying relative orbits about the leader satellite 

are referred to as "follower satellites" or "follower". 

From a dynamics viewpoint, two of the larger obstacles to functioning satellite for- 

mations are the ability to keep each satellite in precise relative orbits (stationkeeping) and, 

if the need arises, to change those relative orbits (reconfiguration). Both of these problems 



require accurate relative position and velocity data and control methods that use an ac- 

ceptable amount of fuel. To produce relative position and velocity data, a formation could 

utilize a sensor on board the leader satellite (i.e. bouncing photons off follower satellites), 

or use a differential global positioning system (GPS) method. The filtering of this raw- 

data for use in a control architecture is still the focus of intense research and will not be 

examined in this thesis. The control method will take the relative position and velocity 

data provided by the estimation technique, compare it to the desired relative orbit, and 

use that error to calculate the needed thrust inputs for stationkeeping and reconfigura- 

tion. This leads to the question: How will desired orbits of follower satellites be specified? 

Mission planners will most likely want to think about cluster configurations in terms of 

relative orbits about a leader as opposed to individually specified inertial orbits about the 

Earth. In this work, relative orbits will be defined in terms of a set of unique parameters 

that are discussed later. Whatever the desired relative orbit, the follower satellite must 

also be in a Keplarian orbit in the absence of control forces and perturbations. To keep a 

satellite in a non-Keplarian orbit requires continuous use of fuel, an unacceptable situation 

for a satellite. It is therefore important to find relative orbits that not only fulfill desired 

mission needs but also follow a Keplarian orbit. Only orbits that follow both a closed 

path inertial orbit about the Earth and a closed path relative orbit about the leader in 

the absence of control forces and perturbations will be examined here. The stationkeeping 

controller maintaining the relative orbit will most likely be separate from the reconfigura- 

tion controller and has been investigated by other researchers [(4),(27)]. Therefore, this 

thesis will concentrate on linear and nonlinear reconfiguration controllers with total fuel 

usage (proportional to AV) and settling time as the key parameters for comparison. 

1.1    Background 

The basic concepts behind relative satellite motion were developed in the 1960's 

by W.H. Clohessy and R.S. Wiltshire who were working on methods of rendezvous for 

orbital construction (6). Although developed specifically for rendezvous, these relative 

equations of motion work well in the design of useful relative orbits. The nonlinear form 

of the Clohessy-Whiltshire equations (henceforth known as CW equations) assumes that 



the leader satellite exists in a circular orbit. A linear form of the CW equations can be 

derived if the additional assumption is made that the distance between the leader and 

follower satellite is small in comparison to their orbital radii. These are not limiting 

factors to most applications of satellite formations. One notable exception is the use of 

highly eccentric orbits commonly used to spend more time over a certain hemisphere for 

communications purposes (i.e. Molniya orbits (14)). This type of orbit obviously violates 

the first assumption and invalidates the CW equations. 

Although the framework for developing satellite formations has been around since 

the 1960's, only recently has this problem gained widespread attention within the research 

community. Early research tackled the estimation problem. The Air Force sponsored work 

that determined the ability of an on-board U-D covariance Kaiman filter algorithm based 

on the CW equations to estimate relative position to within 25 meters (about one quarter of 

a radar wavelength) for a ten satellite orbital formation. Results showed the position error 

well within the accuracy requirement (28). This research was expanded to include the use 

of additional measurement data from other satellites in the formation during the update 

cycle which produced a higher degree of accuracy in the relative position estimation (7). 

A later Air Force Institute of Technology (AFIT) thesis treated the Earth as an imperfect 

sphere as opposed to a point mass and thus developed a better truth model which included 

the J2 term of the Earth's geopotential (17). The estimator used the same multiple satellite 

data and Kaiman filter as used in (7). Independent investigation of an on-board relative 

position estimator, using a least-squares error analysis of short range satellite-to-satellite 

tracking between formation members was examined in (25). 

Air Force interest in satellite formations is apparent in the TechSat 21 program 

which was created to explore the basic technologies required to create a viable satellite 

formation mission (15). The TechSat 21 program supports research into collaborative 

behavior of satellites, micro-propulsion, micro-satellite design, micro-electro-mechanical 

systems, smart mechanisms, multifunctional structures, and lightweight solar arrays (22). 

Some researchers have investigated the parameterization of the linearized version of the 

CW equations (more commonly known as Hill's equations) and used this parameterization 

to characterize the shapes of the relative orbits (31). Hill's equations have also been used to 



design linear controllers to solve the stationkeeping problem (24). The Air Force Research 

Laboratory (AFRL) has supported research that more elegantly defines a perceptive frame 

which supports decentralized feedback (each satellite controls its own relative position 

error) based on real-time sensor data (11). This concept is expanded and used with an LQR 

controller on several simple reconfigurations (23). The research into satellite formations has 

matured to the point that realistic designs of the intersatellite links have been proposed. 

These are the communication links by which follower satellites would talk to the leader 

satellite and, if need be, each other (9). More recent attempts to define the problem have 

concentrated on finding equations of motion that are not constrained to circular leader 

orbits (30). Similar attempts have been made towards the estimation of relative position 

in elliptical orbits using Kaiman filters (10). Although it is desirable to be able to generalize 

the satellite formation problem to handle elliptical (and thus more nonlinear) leader orbits, 

there are a myriad of applications for the constrained case which is, of course, much simpler 

to solve. This thesis will therefore concentrate on the constrained case. One final note 

about satellite formations; the European Space Agency (ESA) attempted to launch the 

"Cluster" series of four identical satellites aboard the maiden flight of the Ariane 5 as 

part of the Inter-Agency Solar Terrestrial Physics program (IASTP). These satellites were 

designed to take three-dimensional field and plasma measurements of the magnetosphere; 

however, the launch ended in failure with the four satellites destroyed in June 1996. Plans 

have been underway since November 1996 to build three new satellites to add to the 

preexisting ground spare (3). The new "Cluster" satellites were launched by two Russian 

Soyuz rockets (two satellites per rocket) on 16 July and 9 August 2000 from the Baikonur 

Cosmodrome in Kazakhstan. Their science mission commenced on 7 Feburary 2001 after 

an extensive checkout (1). 

1.2    Objectives 

This thesis will expand on previous works in two ways. First, it will compare recon- 

figuration simulations using both linear and nonlinear control techniques as applied to the 

constrained case in which the leader is in a circular orbit. It is important to determine if 

nonlinear control techniques provide enough of a benefit (i.e. lower fuel usage and recon- 



figuration times versus linear techniques) to make their use attractive on an operational 

satellite. If not, a case for the simpler linear techniques will be made. These continuous 

control techniques will also be compared against a near optimal, open loop, discrete-time, 

impulsive maneuver (OLDTIM) which will be described in detail later. Second, this the- 

sis will employ the use of relative parameters (from the parameterization of the linear 

equations of motion) to define the relative orbit. This is important from an operational 

standpoint, as users of satellite formations will most likely want to think in terms of relative 

orbits rather than Keplarian (Earth centered) orbits. Therefore, relative parameters are 

used to define the initial and final relative orbits of the follower about the leader satellite. 



II.   Relative Satellite Dynamics 

The relative equations of motion are based on the inertial orbit equation (Derivation is in 

Appendix A) 

d=^; + vc + vp (1) 

where \i is the gravitational parameter (for Earth n = 398601^-), d is the position 

vector of the satellite, vc is a vector of control forces per unit mass, and vp is a vector 

of perturbation accelerations (oblate Earth effects, air drag, solar pressure, etc.). For 

now, assume that the satellite operates in a perturbations free environment (vp = 0). In 

"Terminal Guidance System for Satellite Rendezvous", (6) Clohessy and Wiltwhire used 

the inertial orbit equation to derive the equations of motion of a follower satellite about a 

leader satellite. These equations are the foundation upon which the control laws developed 

here are based; they are set up as follows: assume a moving reference frame centered on the 

leader satellite which is in a circular orbit about the Earth. The Radial, Cross Track, Out 

of Plane (RCO) coordinate frame is formed by the position vector of the leader satellite 

in inertial space [R], the velocity vector [C] (which for a circular orbit will always be 

perpendicular to the position vector), and the cross product of R and C which points 

out of the orbit plane [Ö] (same direction as the angular momentum vector of the leader 

satellite) as shown in Figure 1.   In the RCO frame, the follower's relative equations of 

Leader Satellite 
Orbit 

(Circular) 

Figure 1     The RCO Frame 



motion are [(6),(23)] (Derivation is in Appendix C): 

r — 2u)b — ur{k0 + r) 1- _*L 
[(fc0+r)2+c2+o2]2 

- vCr = 0 

c + 2UJT — u>2c *L 1 a r   -vCc=0 
[(fc0+r)2+c2+o2]3j 

(2) 

0 + U)zO 
k* 

[(fc0+r)2+c2+o2]S 
- vCo = 0 

where r is the relative position in the radial direction, c is the relative position in the cross 

track direction, and o is out of the leader orbit plane. The remaining two variables are 

properties of the leader orbit: u is the angular frequency (or mean motion) of the leader 

orbit and k0 is the radius of the leader orbit where the relationship between the two is 

based on Kepler's third law (29): U = \H (3) 
V Ko 

Equations 2 are used in the development of nonlinear controllers, but can be linearized to 

facilitate the use of linear control methods. When the distance between the follower and 

leader is small compared to the radii of their orbits, linearization yeilds (Derivation is in 

Appendix D): 

r — 2UJC — Zurr — vCr = 0 

c + 2uir — vCc = 0 

ö + ußo — vCo = 0 

(4) 

This is the more familiar form of the Clohessy-Wiltshire results commonly known as Hill's 

equations. If the control vector vc is set to zero, the homogeneous form of Hill's equations 

can be parameterized as (31) (Derivation is in Appendix E): 

r = p sin(u;£ + 6) + a 

c = 2pcos(ut + 6)- ^fat + b 

o = mpsm(ujt + 6) + 2npcos(ujt + 6) 

(5) 



where 

a = 4^£Ä (6) _ 2c„+4urn 

ft _ QJCQ-2fQ ,y\ 

p=^(r0-ay+(t±f (8) 

m — ö0ro-o0ü;2(a-r0) /Q\ 
m ~    rl+J(a-r0)'> (9) 

n ~   2{rl+J{a-r0)H (10) 

9 = arctan u{r0—a) 
To (11) 

which fall out of the derivation of Equations 5 (Note that the subscript o denotes initial 

conditions). In the simulations run for this thesis, a, b, and p are defined in kilometers, 9 

in degrees, and m and n in terms of a unitless slope (Appendix E.l). What we first notice 

about the parameterization is that the second equation has a term that grows linearly with 

time. Since u will never be zero, it is easy to see that a must always equal zero or else the 

relative orbit will not follow a closed path. Thus there is an initial condition constraint 

that c0 = —2ujr0. Further analysis of the follower orbit can be found in Section 2.1. Taking 

the derivatives of Equations 5 to find the relative velocity yields: 

r = pu cos(o;i + 0) 

c = -2puj sin(wi + 6) - ^a (12) 

ö = mpu cos(u;t + 9) — 2npu sin(a;i + 9) 

Equations 5 and 12 can be used to convert desired relative orbits (in terms of relative 

parameters) into inertial position and velocity at a given time. First the RCO frame 

relationship to the inertial frame (UK) is needed to find the transformation matrix 

/-iFrameA—2—FrameB 

IJKVector = CRC02IJK *RCO Vector (13) 

CRC02IJK = [R\C\0] (14) 



where R, C, and Ö are the unit vectors for each direction expressed in the UK frame. Note 

that in the UK system, I is in the direction of the first point of Aires, J is perpendicular 

to I in the Earth's equatorial plane and K = I x J (29). If the leader satellite's inertial 

position and velocity are IJKL and IJKL respectively and the follower's inertial position 

and velocity are IJKM and IJKM, all expressed in the UK frame, then the radial unit 

direction is simply the unit vector of the leader's position 

IJK\ 
R = 

P*L| 
(15) 

If the leader is in a circular orbit (which is an assumption of the CW equations) then the 

velocity vector of the satellite will always be perpendicular to the position vector in the 

orbit plane thus 

\IJKL\ 

and the out of plane direction is obtained via the cross product of the two 

(16) 

0 = RxC (17) 

To find the inertial position of the follower in the UK frame, the relative position vector 

is transformed to UK and added to the leader's position 

IJKM = cRC02IJK 
+■ 

UK I (18) 

To find the inertial velocity we need to take the inertial derivative of the position vector. 

IJKM = i- 
at 

C RC02IJK 

r 

c 

o 

+IJKL (19) 



To take the inertial derivative of a vector in a noninertial frame (like the RCO frame) we 

will use the following form 

j? _RCO "'{X)       jyRCO-wrt-Inertial x j£ 

dt 
(20) 

where iV is the angular velocity of the RCO frame with respect to the inertial frame, in 

this case ]SfRCO-wrt-inertial _ Oä+OC+üX) where u is the angular frequency of the leader 

satellite's orbit and is found via Equation 3. Thus 

/ r \ f ( r \ 

QRCOIIJK c _ QRCOIIJK 
C + IJKU x QRCOIIJK c 

V 0 ) 
6 \ 

0 1 

d_ 
dt 

where angular frequency in the UK frame is 

IJKU _ QRCOIIJK 

0 

0 

U) 

(21) 

(22) 

Pulling out the common transformation matrix 

d_ 
It C RC02IJK 

"rl\ 
c 

.°\) 

QRCOIIJK ( 
f 

0 r    \ 

c + 0 X c 

\ ö u 0    ) 

(23) 

and combining terms 

dt 
-iRCOIIJK 

T \ 

C 

0 ) 

= c RC02IJK 

r — ojj 

c + ru 

Ö 

(24) 
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thus the inertial velocity of the follower satellite becomes 

IJKM = cRC02IJK 

r — cu! 

c + rui 

ö 

+ UK I (25) 

Going from the inertial to the relative frame is a simple manipulation of the above equations 

and is shown in Appendix F. 

2.1    The Relative Orbit 

A manipulation of Equations 5 yields better insight into what path the follower will 

take about the leader and what each parameter represents. If a is set to zero, squaring the 

first two equations, adding them together, and using the trigonometric identity sin(r)2 + 

cos(r)2 = 1 yields 

r2 + ^-^- = p2[sin(ü,t + e))2 + p2[cos{ujt + 9)]2 = p2 (26) 

Dividing both sides by p2 

^      (c - bf 
o2 Ap2 = 1 (27) 

Substituting r = psm{ut + 6) and (c — b) = 2pcos{u>t + 6) into the third equation 

o = mr + n(c — b) (28) 

Equation 27 shows that the path of the follower satellite in the radial/cross-track plane will 

be an ellipse with a semi minor axis equal to p and a semi major axis equal to 2p. Thus p 

defines the size the relative orbit. The b term defines an offset in the cross-track direction 

and shows that a closed path relative orbit can exist without the leader satellite located at 

the center of the ellipse. In fact, the center of the relative orbit can exist anywhere along 

the velocity direction of the leader provided it is not so far from the leader as to render 

Hill's equations invalid. The m and n terms in Equation 28 define the slope of the orbit 

of the radial/out-of-plane and cross-track/out-of-plane planes respectively. The 9 term is 
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the initial angle with respect to the cross track direction and t is time. Figure 2 gives a 

graphical representation of Equation 27. The two foci of the ellipse fall on the major axis 

Follower 
WO.c(0] 

I In the Direction 
of the Leader 

*\   Satellite's Velocity 

Towards the 
Earth 

Figure 2     Path of Follower in R/C Plane 

a distance / from the center of the ellipse where / is found via (13) 

f2 = (Major Axis)2 - (Minor Axis)2 

Thus 

The eccentricity of an ellipse is found with the following relationship (13). 

/ pV3     Vs 
e = 

Major Axis       2p 

(29) 

(30) 

(31) 

Thus the eccentricity of the elliptical path in the R/C plane will always be ^. If m is set 

to zero, the follower track in the C/O plane will be a line of slope n. Likewise, if n is set 

to zero, the follower track in the R/O plane will be a line of slope m. 

Other than the constraints on a (to prevent relative orbit drift), b, and p (to maintain 

the validity of the linear equations) a satellite formation mission planner is free to chose any 

set of parameters needed to create the relative orbit required by the mission. By choosing 

12 



a unique set of relative parameters, the user is choosing a unique set of initial conditions. 

The tradeoff for the ease of relative parameters is that the command signal is now based 

on the linear relative equations of motion, thus even at steady state conditions (i.e. no 

reconfiguration), there will always be error between the inertially propagated system and 

the commanded input. This error is quantified and discussed in the following section. 

2.2   Error Using Linear vs. Nonlinear Equations 

Linearizing the CW equations requires the assumption that the magnitude of the 

relative position vector is small compared to the radius of the leader orbit. In order to 

make valid conclusions about reconfigurations using a linear based command signal, it is 

important to quantify the error produced by using the linear equations as opposed to the 

nonlinear. The simulation shown in Figure 3 is used to quantify that error. The simulation 

Relative 
Parameters 
(varying p) 

Initial 
Conditions 

Nonlinear EOMs 

r-2oi-a?(k„+r) 1 

c+lter-arc 1 

'6+afc 

=0 

[(.k,+rf+c2+e"fi 
--0 

[(k„+rf+c2+(?f2 

Linear EOMs 

r-2ae-3a)2r = 0 

c+2wr = 0 

ö+w2o = 0 

e> Error 

Figure 3     Error Analysis Simulation Setup 

was run for various values of p (which defines the size of the relative orbit) and leader orbit 

radii. Relative parameters were used to determine initial conditions for both the linear and 

nonlinear equations of motion (EOMs) via Equations 5 and 12. These initial conditions 

are then used in both sets of equations (2 and 4) and propagated through two complete 

relative orbits. The error is the absolute value of the difference in the magnitude of the 
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position vectors. The relative parameters for each simulation are shown in Table 1. There 

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5 Sim 6 Sim 7 Sim 8 Sim 9 Sim 10 

P (km) 0.1 0.2 0.3 0.5 0.8 1 1.4 1.8 2.4 3 
a (km) 0 0 0 0 0 0 0 0 0 0 
0 (deg) 45 45 45 45 45 45 45 45 45 45 
b (km) 0 0 0 0 0 0 0 0 0 0 

m (unitless) 1 1 1 1 1 1 1 1 1 1 
n (unitless) 0 0 0 0 0 0 0 0 0 0 

Table 1     Absolute Error Simulation Relative Parameters 

were three leader orbit radii used; a low Earth orbit (semi major axis = 6800 km), a 

geosynchronus orbit (semi major axis = 42241 km), and an orbit in between (semi major 

axis = 17720 km). For each orbit radius, p was varied from 0.1 to 3 km. The R and O 

directions showed periodic error patterns as shown in Figures 4 and 5 respectively where 

each line corresponds to a specific p and the error increases as p increases.    The error in 

Radius of Leader Orbit = 6800 (km) 

20    40 60    80    100   120   140   160   180   200 
Time (min) 

Figure 4     R Direction Absolute Position Error 

the C direction has a secular growth element and is shown in Figure 6. Note that the cross 

track error is an order of magnitude greater than in the other two directions. The presence 

of this secular growth indicates that setting a = 0 (via c0 = —2ur0), does not eliminate all 

secular terms in the cross track direction (at least for the nonlinear equations). It is this 
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Radius of Leader Orbit = 6600 (km) 

E, 

UJ 

O 

1 i 

^Increasing p 

40    60    80    100    120   140   160   180   200 
Time (min) 

Figure 5     Ö Direction Absolute Position Error 

80 

50 ■ 

20- 

Radius of Leader Orbit = 6800 (km) 
I 

i i 

i 

Increasing p 

0 20 40 60 80 100 120 140 160 180 200 
Time (min) 

Figure 6     C Direction Absolute Position Error 
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growth in the error of the C direction that is the greatest concern. For one thing, creating 

initial conditions based solely on the relative parameters will not guarantee a stable relative 

orbit (that is an orbit that does not drift over time). From a classical orbital elements 

standpoint, this means that the follower and leader satellites have a different semi-major 

axis and thus different periods translating to a drift in their relative position. This is 

much more of a factor for stationkeeping controllers than reconfigurations since the former 

occurs over long time periods thus allowing cross track error to build up. Depending 

on the settling time of the controller, the cross track error during reconfiguration may- 

be acceptable. Looking at the maximum error (peak of each absolute error curve) as a 

function of p produces Figures 7, 8, and 9.   As expected, the larger the leader satellite orbit 

Figure 7     R Direction Max Error 

and/or p, the smaller the max error between the linear and nonlinear equations. Note that 

in the R and Ö directions, the max error graph is valid for any number of relative orbits 

but in the C direction the graph would be shifted upwards for subsequent revolutions due 

to the growth term. In any case, the C direction error will be the determining factor in 

deciding how large p can be. 
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Leader Radius = 6800 (km) 
Leader Radius = 17720 (km) 
Leader Radius = 42241 (km) 

1.5 
p(km) 

Figure 8     C Direction Max Error 

Leader Radius = 6800 (km) 
Leader Radius = 17720 (km) 
Leader Radius = 42241 (km) 

0.5 1.5 
p(km) 

2.5 

Figure 9     Ö Direction Max Error 
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2.3   Simulation Outline 

The reconfiguration simulation used to obtain results for this thesis is setup according 

to Figure 10. Equations 5 and 12 are used to convert relative parameters and current time 

■*o 
Commanded Input 

(Using Relative 
Parameters and time) 

Relative 
Frame 

Inertial 
Frame 

Linear or 
Nonlinear 
Controller 

Conversion of Control 
Input from RCO 

to the UK Frame 

r- 

i 

. j 

<FI 
Conversion of Relative 
Position and Velocity 

from UK to the 
RCO Frame 

Nonlinear Follower 
Satellite Dynamics 

Nonlinear Leader 
Satellite Dynamics 

Figure 10     Reconfiguration Simulation Diagram 

into a relative position and velocity (in the RCO frame). This is the command by which 

the relative measurement data is subtracted in order to produce an error signal. It is 

assumed that relative position and velocity data is available (i.e. full state feedback). The 

error signal is multiplied by the controller gain to find the control inputs. These inputs 

(vc) are converted to the UK frame and used in the inertial orbit equation 

>     —ad 
a = —=;—(- vc + vv w (32) 

where d is the position of the satellite with respect to the Earth in the inertial frame and vp 

is the perturbation acceleration. The orbits of both the leader and follower are propagated 

via Equation 32 (note that for the leader vc = 0) to find a new inertial position and velocity 

vector for the leader and follower which are differenced and transformed to the RCO frame 

(Appendix F explains the process). This is the measurement data compared against the 

command closing the loop. Although it may not be realistic to expect real time position and 

velocity data, the purpose of this research is to compare controller designs, not estimators. 
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Future work will include estimators that effectively deal with noise and propagate states 

between measurements. The results from each controller will also be compared against 

the near optimal open loop, discrete-time impulsive maneuver (OLDTIM) (Section 3.1). 

No claim is made that the discrete burn method used is optimal, only that it represents a 

recognized, efficient maneuver for orbit transfer. 

The inertial orbit equation is propagated via the Dormand-Prince pair (an explicit 

Runge-Kutta formula). Since both follower and leader orbits are either circular or near 

circular, there is little need for a variable step solver. A fixed time step method was chosen 

to give the simulation user more control over the run time of the simulation. A time step 

of 15 seconds was selected for this thesis based on analysis of the integration error as a 

function of time step and because it provided reasonable run times. The simulation used 

to propagate the leader and follower inertial states was initialized for a circular orbit and 

run for one revolution. The position error is the maximum error between the magnitude 

of the position vector and the semi major axis of the circular orbit (used to find initial 

conditions) and is shown in Figure 11. The error simulation shows that for a 15 second 

. x10 

E2.5- 

0.5- 

I 

 D a D a n n f 
30 

Time Step (s) 
45 50 

Figure 11     Integration Error vs. Time Step (Position) 

time step, the error in the magnitude of the position vector is under 1 x 1CT6. The velocity 

error is the maximum error between the magnitude of the velocity vector and the expected 
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speed of the satellite based on the equation 

V=J± (33) 

where k0 is the orbital radius (semi major axis). The velocity error is shown in Figure 12. 

The error simulation shows that for a 15 second time step, the error in the magnitude of 

£•3- 

1 

 A~l LA""ft1 t 

20 25 30 35 
Time Step (s) 

Figure 12     Integration Error vs. Time Step (Velocity) 

the velocity vector is under 2 x 10~9. 

The rest of the Simulink simulation (Appendices K, L, M, and N) involves converting 

the data into relative parameters, classical orbital elements, and error signals. 
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III.   Reconfiguration Control Laws 

This chapter describes each of the four control techniques used to develop controllers for 

the relative orbit reconfiguration problem. The control techniques used for this thesis 

are the linear quadratic regulator (LQR), a nonlinear LQR technique using linearizing 

feedback, state dependent riccati equations (SDRE), and sliding mode control. The first 

section explains the assumptions and derives the equations used to calculate the OLDTIM 

maneuver AV and settling time. This is the open loop maneuver that will be used as a 

comparison point for the continuous feedback methods. 

3.1    The Open Loop, Discrete-Time, Impulsive Maneuver 

The open loop, discrete-time, impulsive maneuver (OLDTIM) consists of four sepa- 

rate burns. Experience with several simulation runs shows that all of the follower satellites' 

classical orbital elements (COEs) change during the reconfiguration except for the semi 

major axis. As discussed before, changes in the semi major axis would cause the relative 

orbit to drift as it would affect the period of the follower satellites' inertial orbit. True 

anomaly is not considered as it describes the position of a satellite within an orbit, not the 

size, shape, or attitude of the orbit. The change in eccentricity can be performed using a 

Hohmann transfer which is an optimal two burn maneuver for a circular to circular orbit 

transfer and near optimal for eccentric orbits. The inclination and longitude of the ascend- 

ing node can be changed with a single burn given certain assumptions presented later. The 

final parameter, argument of perigee is changed with a single burn as well. The author 

is aware that other more optimal methods for discrete burns are available, however, this 

method allows for the fewest assumptions and is significantly easier to calculate. Given 

the fact that the OLDTIM maneuver is only a comparison point and not meant to bound 

an optimal transfer, the tradeoff is acceptable. 

3.1.1 The Hohmann Maneuver (Eccentricity Change). The Hohmann maneuver 

will perform the eccentricity change. To calculate the necessary AV, consider Figure 13 

where ra is the radius of apogee of the larger orbit and rp is the radius of perigee of the 
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Orbit One 

Transfer 
Orbit 
(TO) 

Orbit Two 

Figure 13     Hohmann Maneuver Setup 

smaller orbit. These values are related to the semi major axis (A) and eccentricity (e) (29) 

Ai = A2 = A 

ra = A2(l + e2) = A(l + e2) 

rp = Ai(l-ei)=^(l-ei) 

(34) 

(35) 

(36) 

The total AV for the Hohmann maneuver will be 

&VHohmann = AVX + AVY (37) 

To calculate the difference in orbital velocity at points X and Y, we need to find the velocity 

of the satellite at each point in its orbit (29) 

v = \U 
d~A 

(38) 

22 



where, /i is the gravitational constant and d is the magnitude of the position vector at the 

point of interest. Thus at point X 

AVX = VTOx - Vlx = 
\ 

M 
2_ 1 

ATO i v 
i_ 
A 

where 

ATO = 
ra + rp 

The change in velocity at point Y is found the same way 

AVY = V2Y - Vroy /M 
_2_ 

ra 

1_ 
A ~\ P ra     ATO 

Thus the AV for the Hohmann maneuver is 

AVHC ohmann 
= ^ 

M 
'2         1 

rp     ATo_ ^ 
/* 

"2    1" 

^ 
■1/ 

V 
"2       1" 

To      4. -v V- 
"2         1   " 

(39) 

(40) 

(41) 

(42) 

Since this maneuver requires a burn at apogee and perigee, the "settling time" for the 

Hohmann is one half the period of the transfer orbit (29) 

b-L Hohmann — "K\ 
IATO

3 

P 
(43) 

3.1.2 The Inclination/LAN Maneuver (Plane Change). The second maneuver 

will change the inclination and longitude of the ascending node through a plane change. 

Consider Figure 14 in which we assume that both the initial and final orbits are circular 

with the same radius. This is a good assumption as long as the relative orbit is small thus 

requiring a small eccentricity for the follower satellite. All possible orbits for a certain 

orbital radius exist on the surface of a sphere. In Figure 14, \& represents the angle 

between the planes of the two orbits, Q is the longitude of the ascending node, and i is the 
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Orbit One 

Equator 

y— üj-n,—i 

Figure 14     Inclination/Longitude of the Ascending Node Maneuver Setup 

inclination. With spherical trigonometry (5) 

^ = arccos[cos(ii) cos(z2) + sin(ii) sin(i2) cos(f22 — ^l)] (44) 

With the angle between the two planes known, the AV can be calculated. Consider Figure 

15 where Vo is the speed of the satellite (constant for all points on the surface of the 

Figure 15     Inclination-LAN AV Calculation 

sphere) and the dotted line bisects the angle *. The speed of a satellite in a circular orbit 
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is found via (5) 

Vo = \h 
_2__ J_ (45) 

where k0 is the radius of the circular orbit. Using the trigonometric formula for the sine 

of an angle (Figure 15) 
/vi/\       Ml/;...  

Solving for AV 

Sm,2j= Vo 

&VInc/LAN = 2Vo sin (|) = 2^/Jsin (|) (47) 

Since this is a single instantaneous burn and will happen between the initial and final 

burns of the Hohmann, the settling time is zero. 

3.1.3    The AP Maneuver (Orientation Change).        The final discrete burn will 

change the angle of the line of perigee and is set up in Figure 16. Since only the argument 

Figure 16     AP Maneuver Setup 

25 



of perigee (AP) changes, all other orbital elements will remain the same, thus 

ei = e2 = e (48) 

Ax = A2 = A (49) 

Since the semilatus rectum (p) is a function of e and A 

Pi=P2 = P = A(l- e2) (50) 

Zooming in on Figure 16 the following relationships can be seen (Figure 17) 

Focus 

Perigee 

Figure 17     AP Maneuver Setup Zoom 

a = ß2-ßi 

v2 = -^r- 

(51) 

(52) 

(53) 

where ß is the angle between the position and velocity vectors of each orbit and v is the 

angle between the line of perigee and the position vector (also known as true anomaly). 
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Taking the cosine of both sides of Equations 52 and 53 (26) 

/   N                (n       AAP\ ,n N       /AAP\      . ,n .  .   /AAP\ cos(^i)    =   cos I 2-K — I = cos(27r) COS I —-— I + sin(27r) sin I —-— I 

fAAP\ 
= cos I —-— I 

V    2 

Thus 

,   ^ f^AP\ 
cos(^2) = cos I —— I 

cos(i'i) = cos(z/2) 

AAP 
V\ = V2 = V = —-— 

Finally, looking at how ß is constructed in Figure 18 we can say that 

(54) 

(55) 

(56) 

(57) 

„Focus 

Figure 18     ß Relationships 

A = f-7i 

/% = f + 72 

(58) 

(59) 

where 7 is the flight path angle and is defined as 

7 = arccos 
VN 

V 
(60) 

27 



where Vjv is the velocity normal to the position vector (VR is the velocity parallel to the 

position vector). Substituting Equations 58 and 59 into Equation 51 

a = (I + 72J ~ (2 ~7l) = 72 + 7l (61) 

All the angle relationships are now in place to solve for the AV of the AP change. Note 

on Figure 16 that at the maneuver point, the two orbits share a common position vector. 

Relating the position vector to conic section geometry (29) 

A(l - e2) P 
\di\ = \d2\ =d= —- T-r = — ^r 11 1 + e cos(iz)      1 + e cos(i/) 

(62) 

Equation 38 shows that the magnitude of the velocity is a function of the magnitude of 

the position vector and the semi major axis, both of which are identical for orbit one and 

two. Solving for V and substituting in Equations 50 and 62 

\V1\ = \V2\ = V = xhi 
d     A 

l + 2ecos(^) + e2 

IH- 
P 

(63) 

Taking the cross product of the two position vectors with their respective velocity vectors 

yields the angular momentum 

|(fix?i|    =    \H1\ = dVsm(ß1) = dVsm(^-^ 

= dV sin (- j cos(71) - cos f - J sin(7i) 

\d2xV2\   =    \H2\ = dVsm(ß2) = dVsm(^+<y2} 

sin f - J cos(72) + cos ( - J sin(72) = dV 

The magnitude angular momentum (H) is (5) 

dFcos(7i) (64) 

= dVcos(i2) (65) 

\H\ HP (66) 
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Since p\ = P2 

\Hi\ = m 

dVcos(7i) = dVcos(72) 

7i = 72 = 7 

(67) 

(68) 

(69) 

By Equation 60 this means that 

Vm = VN2 = VN (70) 

Substituting 7 into Equation 61 

and relating 7 to angular momentum 

a = 27 (71) 

dVcos^) = \H\ = y/JIp 

cos(7) = W 

Substituting Equation 60 for cos(7) 

V 

HP 

dV 

Cancelling the V and substituting Equation 62 for d 

,r         1—l + ecos(i/)        [fir , M 
VN = v'MP — = J-il + ecos(i/)] 

(72) 

(73) 

(74) 

(75) 

Taking the cosine of Equation 71 and employing the double angle cosine trigonometric 

identity (26) 

cos(a) = cos(27) = 2[cos(7)]2 - 1 (76) 

Substituting Equation 60 for 7 

cos(a) = 2 cos I arccos \VN] y. )] 
2 
-1 = 2 y\ 

l2 

-1 = 
2VN

2 - V2 

V2 (77) 
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Now that we have a, Vi, and V2 the law of cosines states that 

AVAp
2 = V{ + Vi - 2VXV2 cos(a) = 2V2(1 - cos(a)) (78) 

Substituting for cos(cc) (Equation 76) 

AVAP
2 = 2V2 

2_T/2 
1- 

2VN
Z - V 
V2 4V2-4VN" 

Expanding this with the values of V and V/v via Equations 63 and 75 

1 + 2e cos(u) + e2     fi 
AVAP

Z = 4 M- 
P 

-qi + ecos(i/)V 
p 

Adding the fractions, expanding the squared term, and simplifying 

AVAP
2
 = AIJL 

e2(l - [cos(^)]2) 

P 

4/ie2[sin(i/)]2 

P 

(79) 

(80) 

(81) 

Finally, taking the square root of both sides and substituting ^j^ for v (per Equation 57) 

^■^(^r) (82) 

or in terms of classical orbital elements 

^"-^MT^^T-) (83) 

3.I.4    Total AV and Settling Time.      Adding Equations 42, 47, and 83 to get the 

total AV for the OLDTIM 

AVoLDTIM = AVHohmann + ^Inc/LAN + AV^P (84) 

To determine the total maneuver time (or settling time) visualize the following sequence. 

The first burn will place the spacecraft on the Hohmann transfer orbit and occurs at 

apogee of the initial orbit. There are two opportunities to do the Inclination/LAN burn 

located 180 degrees apart, therefore one opportunity will occur between apogee and perigee 
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and will not affect the maneuver time. The third burn occurs at perigee and places the 

spacecraft onto the final orbit. The fourth and final burn changes the argument of perigee. 

Figure 16 shows that the spacecraft either travels an angle of ^y^ from the third burn at 

perigee till the fourth burn or the fourth burn occurs before the final Hohmann burn. In 

the form case, the following relationship calculates the travel time (29) 

STAP = At [E-esm(E)] 

where E is the eccentric anomaly and is equal to (29) 

(85) 

E = 2 arctan 
tan(f) 

(86) 

where v = Nf-. Thus the "settling time" of the OLDTIM maneuver is 

SToLDTIM = STnohmann + STAP (87) 

SToLDTIM    = 
ATO

s     n   A
3 

TT\ h 2\ — arctan V   n       y n 

tan (£££) 

L  y/i 
l+e2 

-e2 

A3 

e2\ — sin | 2arctan 
V  /* 

tan (^) 

L      V !-e2 

(88) 

3.2   Linear Quadratic Regulator 

The Linear Quadratic Regulator (LQR) is based on linear, time-invarient systems of 

the form 

x = Ax + Bu (89) 

where a; is a vector of states and u is a vector of control inputs.   LQR minimizes the 

quadratic performance index 

J =- I (xTQx + uTRuj dt (90) 
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where Q is the state weighting matrix and R is the control weighting matrix. For the 

relative orbit reconfiguration problem, the states represent the relative position and velocity 

in the RCO frame and thus all states are weighed equally giving Q a diagonal form in which 

each diagonal element is the same magnitude. Likewise, excess control usage is equally 

bad in all three directions thus R has a diagonal form in which each diagonal element is 

the same magnitude. High values of the elements in the state weighting matrix result in 

faster movement from initial to desired states. High values of the elements in the control 

weighting matrix result in lower control usage. For the purposes of this simulation, Q is 

set to the identity matrix and the elements of R will be varied. Placing Hill's equations 

(4) in the form of Equation 89 yields 

r 

r 

c 

c 

ö 

ö 

( ° 3u2 
2CJ 0 0 0 

1 0 0 0 0 0 

-2w 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 0 -a,2 

0 0 0 0 1 0 

\ r 

r 

c 

c 

ö 

o 

+ 

' 1   0   0 N 

0   0   0 p        1 

0   1   0 
vr 

0   0   0 
Vc 

0   0   1 
Vo 

^ 0   0   0 ) 

(91) 

With A, B, Q, and R an algebraic Riccati equation is solved to find S 

SA + A'S + Q- SBR-'B1 5 = 0 (92) 

The static gain controller matrix is then 

K = R~1BTS (93) 
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The control inputs will therefore be (18) 

v0 

= -K 

T Tcom 

T Tcom 

c ccom 

C Ccom 

0 °com 

° 0com 

(94) 

where the subscript com represents the commanded states. 

3.3   Linear Quadratic Regulator With Linearizing Feedback 

In order to use a linear technique such as LQR without losing the nonlinear aspects 

of the dynamics, we can use linearizing feedback (LF). This technique is useful only if the 

nonlinear equations can be split into linear and nonlinear parts. Standard linear techniques 

can then be applied to that part of the problem while nonlinear terms are added in after 

control is calculated. Starting with the nonlinear CW equations (2), assume the control 

inputs (vrc, vCc, v0c) have the form 

Vc*. = -u2(k0 + r) 

vCc = -ore 

_*L 

1- 

[(fc0+r)2+c2+o2]2 

fc2 

VCo = -0J2O 

[(fe0+r)2+c2+02]3j 

[(fc0+7-)2+C2+02]2 

+ 3u2r + v'r 

+ v'c 

+ v'0 

Substituting Equations 95 into Equations 2 produces Hill's equations (4) 

(95) 

r - 2UJC - ZuPr - v'r = 0 

c + 2ur -v'c = 0 

ö + u>2o — v'0 = 0 

(96) 
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The static gain controller matrix is found using the same LQR process as outlined in 

Section 3.2 but now the linearizing feedback must be added to the output of the controller 

to find the control signal 

uCr 

Co 

-uj2(k0 + r) 1- _*L 

—UJ2C 1- 

[(fc0+r)2+c2+o2]2 

_*2 „ 

+ 3cj2r 

—u)2o 

[(fc0+r)2+c2+o212 

_*L 
[(fc0+r)2+c2+o2]2. 

K 

T rcom 

f fcom 

C Ccom 

C ccom 

O °com 

O — Ocom 

(97) 

where the subscript com represents the commanded states. 

3-4    State Dependent Riccati Equations 

The State Dependent Riccati Equation (SDRE) technique uses the nonlinear CW 

equations. 

r = 2coc + uj2(k0 + r) 

c = —2uif + urc 

k* + v, 
[(fco+r)2+c2+o2]Sj 

+ VCc 

Cr 

-*L 

Ö = — ÜJ20 

po+r)2+c2+o2]2 

k" +V, 
.[(fe0+r)2+c2+o2]5 Co 

(98) 

Assume the following simplification 

On = *J_ 
[(fc0+r)2+c2+o2]2 

ac = 1 — a0 

(99) 

(100) 

(101) 

Substituting these equations into Equations 98 yields 

r = 2uc + u2arr + v ^ 

c = —2ujr + oj2acc + vCr (102) 
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ö = -ujza0o + vCo 

In matrix form 

r (    0 9 
UJ   <7r 2üJ 0 0 0      \ r ' 1   0   0 N 

r 1 0 0 0 0 0 r 0   0   0 r                -] 

c 

c 
= 

-2u> 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

c 

c 
+ 

0   1   0 

0   0   0 

VCr 

ö 0 0 0 0 0 -ußa0 ö 0   0   1 . Vc°. 

ö {    ° 0 0 0 1 
0      J 0 \ 0   0   0 ) 

(103) 

Since ar, ac, and a0 change at each time step, the SDRE technique continuously updates 

Equation 103 and finds a new controller gain matrix via the Riccati equation discussed in 

Section 3.2 and uses the new gain to find the control signal. 

Vcr 

CC 

V, Co 

-K 

-i 

r — rcom 

r — Tcom 

c — Ccom 

c — ccom 

Ö — °com 

o — °com 

(104) 

where the subscript com represents the commanded states. 

For LQR, LQR with linearizing feedback, and SDRE, the control weight (R) will be 

varied for each simulation run. Trial runs show that a range of about 109 to 1013 produce 

acceptable results. Lower than 109 results in unacceptably high control usage while larger 

than 1013 translates to unacceptable settling times. The specifics can be found in Chapter 

IV. 

3.5   Sliding Mode Control 

Sliding mode control (SMC) is a nonlinear control technique for imprecise systems. 

Since the commanded input is based on linear equations (creating an imprecise system) 
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this type of controller is a candidate. SMC is derived by defining a time varying surface 

upon which the system has some desired dynamics (21) and is defined as 

,(«.!)= (| +A) 
n-1 

X (105) 

where x is the tracking error 

x = 

r farm 

c ccom 

c ccom 

0 °com 

O — Ocom 

(106) 

where the subscript com represents the commanded states, n is the order of the system 

(in this case n = 2) and A are the real poles that determine the system dynamics on the 

surface s(x,t). Since the system order in this case is two, Equation 105 reduces to 

s = x + Xx (107) 

The goal of SMC is to drive s to zero 

s = x + Xx = 0 (108) 

The sliding mode function from the Nonlinear Synthesis toolbox from Optimal Synthesis 

Inc was used to implement sliding mode control for this simulation. The function required 

a pole (A) for each direction, a parameter r\ which designates the rates at which the system 

will converge to the sliding surface, and e which designates the boundary layer of the sliding 

surface (16). Within the boundary layer defined by e, no control is used. 

Trial runs using sliding mode control on the nonlinear CW equations showed the best 

r\ and e are 

?y = 10 -5.8 

36 



e = 10~6 

Instead of varying the control weight (R) as in LQR and SDRE techniques, the pole 

locations are varied for each sliding mode run. Trial runs showed that the poles should 

exist no farther from the j(J axis than -0.003 for acceptable control usage and settling time 

results. 

The Nonlinear Synthesis toolbox requires a formulation of the problem such that the 

states are driven to zero; therefore the states need to be modified so that they are equal 

to the error signal instead of the relative position and velocity of the follower satellite. 

Starting with the nonlinear CW equations 

r = 2uc + u2(k0 + r) 1 _*L 

c = —2u>f + u c 1- 

[(fco+r)2+c2+02]2" 
+ V, Cr 

o = —(JO 

[(fc0+r)2+c2+o2]2 

+ VCo 

+ V, Cc 

k3 

.[(feo+r)2+c2+o2]2 

(109) 

The modified states and their derivative are 

x = 

Tcom T 

rcom f 

Ccom C 

ccom c 

Ocom ° 

°com ° 

X = 

rcom r 

fcom f 

ccom c 

ccom c 

°com ° 

°com ° 

(110) 

Making the same simplifications-as in the SDRE derivation 

o-o = M 3" 
[(feo+r)2+c2+o2]5 

ac = 1 — a0 

or = (*?• + l) oc 

(111) 

(112) 

(113) 
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yields 

r = 2uc + u2arr + v, Or 

c = —2ujf + uj2acc + vc 

ö = -ußa0o + vCo 

(114) 

Substituting the commanded and actual states in Equations 109 (note that vCcom = 0) 

ream -r   =   [2wccom + uj2arcomrcorn] - [2uc + u?crTr + v^] 

=   2u(ccom - c) + u>2(arcomrcom - arr) - v^ (115) 

Ccom-c   =    [-2tjfccm + u2aCcomcCOm]-[-2u;f + u2acc + Vcc] 

=   -2u(rcom -f)+ uj2(aCcomccom - acc) - vCc (116) 

o   = -U2VocornOCom] ~ [~uj2a0o + v0c] 

=    -u? (a0com ocom -a06)- v, Oc (117) 

The Nonlinear Synthesis toolbox requires a function file that passes the derivative of the 

state (x) given the current state (x) and a vector of controls (vc), thus this function would 

pass back the following vector 

x 

Team f 

rcom T 

ccom c 

Ccom c 

°com O 

°com ° 

2u(ccom - c) + w2(crrcomrcom - arr) 

x(l) 

-2uj(rcom - r) + uj2(aCcomccom - acc) 

x(3) 

-U2{o-Ocom°com - 0-00) 

X{5) 

ucc 

UC0 

(118) 
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IV.   Results 

The following chapter presents a comparison of the different control techniques for sev- 

eral different types of reconfigurations. Important information about how well each con- 

troller performs the reconfiguration can also be found by examining the control usage and 

state/COE time histories as well as other data produced during each simulation. For 

this reason, each control technique has an appendix where the complex parameter change 

reconfiguration (Section 4.4) is presented and discussed in more detail. 

• LQR in Appendix G 

• LQR with linearizing feedback in Appendix H 

• SDRE in Appendix I 

• Sliding Mode in Appendix J 

The settling time for each maneuver is measured from the start of the reconfiguration 

not t = 0, likewise, the AV listed for each reconfiguration is the total AV measured at 

the settling time minus the total AV measured at the reconfiguration start time. This 

means the AV does not include any of the steady state control energy used to correct the 

error between the linear and nonlinear equations before or after the reconfiguration. Of 

course due to the linear command signal there will always be additional error that the 

controller is forced to deal with as shown in Section 2.2. The first section of this chapter 

will characterize this error and discuss its effects on AV for each controller. 

4.1    The Impact of Using Linear vs. Nonlinear Equations on AV 

In the reconfiguration simulation, the command signal is based on the parameterized 

Hill's equations (linear EOMs) while the orbits are propagated inertially (nonlinear EOMs). 

This causes an error between the commanded and the actual relative positions even without 

a reconfiguration and requires control usage. It is this control usage (and subsequent AV 

costs) that is of particular interest and must be quantified. Running the reconfiguration 

simulation without a change in the commanded relative parameters is used to examine 

the AV costs of the indicated errors.  Using the relative parameters listed in Table 2, a 
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Simulation was run using a time step of 15 seconds.  The slope for each compensator is 

p(km) 0.5 
a (km) 0 
9 (deg) 45 
b (km) 0 

m (unitless) 1 
n (unitless) 0 

Table 2     A^ Error Simulation Relative Parameters 

determined via a least squares line fit and is listed in Table 3. The use of AV to null out 

the command error is fairly linear for all values of control weight. For the LQR and SDRE 

techniques, smaller values of R (which translate to higher control usage) resulted in higher 

slopes while the reverse was true for LQR with LF (Figure 19). The converse was true for 

larger values of R (Figure 20).    Experience shows that the total AV expended during a 

it 10"* Time History of Delta V for R=1 e+009 [Rho =0.5 (km)] 

0   LQR 
D   LQRWLF 
A   SDRE 

^ > < 

^ i 
0.04 0.06 

Time (days) 
0.08 0.12 

Figure 19     Gain Methods Steady State AV Costs R = 109 

reconfiguration using LQR, LQR with LF, or SDRE is several orders of magnitude greater 

than the AT^ used to correct for the linear command. For this reason and the fact that 

these three compensators have similar slopes, the excess AT^ usage will be accepted. The 

sliding mode steady state costs are much more significant. Using the parameters in Table 

2, the slopes for sliding mode are listed in Table 4.  It is obvious that the sliding mode 
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x10 Time History of Delta V for R=1e+013 [Rho=0.5 (km)] 

0.12 

Figure 20     Gain Method Steady State AT/ Costs R = 10 13 

AV Usage (™ per day) LQR LQR with LF SDRE 
Ä=109 0.0049646 0.0046246 0.0049634 
R = 1010 0.0062665 0.0054137 0.0062631 
R = 1011 0.0061623 0.0054478 0.0061552 
R = 1012 0.0049441 0.0054484 0.004938 
R = 1013 0.0031391 0.0054485 0.0031386 

Table 3     Steady State AV Slopes (Gain Methods) 

controller is using a large amount of control energy during steady state conditions. This 

is due to excess chatter on the sliding mode surface; a known problem with sliding mode 

control. The negative effects of this chatter will become obvious in the example simulations 

and is the main reason that the sliding mode technique requires higher AVs than LQR, 

LQR with LF, and SDRE. The slopes seem to increase as the sliding mode pole moves 

away from the ju axis. Figures 21 and 22 show the steady state AV cost for the highest 

(P=-0.003) and lowest (P=-0.0006) SMC slopes respectively. 
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Time History of Delta V for Pole=-0.003 [Rho=0.5 (km)] 

0.04 0.06 0.08 
Time (days) 

Figure 21     Pole Method Steady State A^ Costs (P = -0.003) 

45 

40 

Time History of Delta V for Pole= -0.0006 [Rho=0.5 (km)] 

I o NS SMC | 

30 

l" > 

15 

10 

5 

0.02 0.04                 0.06 0.08 0.1 0.12 
Time (days) 

Figure 22     Pole Method Steady State A^ Costs (P = -0.0006) 
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AV Usage (™ per day) LQR 
Pole=-0.0006 358.9385 
Pole=-0.0012 361.1704 
Pole=-0.0018 363.4057 
Pole=-0.0024 364.9747 
Pole=-0.003 365.577 

Table 4     Steady State AV Slopes (Pole Method) 

4-2   Simple p Reconfiguration (Small Relative Orbit) 

This reconfiguration changed only the parameter p thereby changing the semi ma- 

jor/minor axes of the relative orbit. The choice of the initial and final p are small enough 

that the linear Hill's equations are very close to the nonlinear CW equations. From the 

error analysis done in Section 2.2 , we expect no more than a 1 meter error in the R and 

Ö directions and up to 10 meters in the C direction (depending on settling time) for a 

10,000 km leader orbit. The initial and final relative parameters are given in Table 5. 

The simulation uses a 15 second time step with the leader in a circular orbit with classi- 

cal orbital elements (COEs) listed in Table 6.    The AV results for controllers in which 

Initial Final 
p(km) 0.5 1.5 
a (km) 0 0 
9 (deg) 45 45 
6 (km) 0 0 

m (slope) 1 1 
n (slope) 0 0 

Table 5     Small Orbit p Simulation Initial and Final Parameters 

Semi-Major Axis 10000 km 
Eccentricity 0 
Inclination 10 deg 

Argument of Perigee Odeg 
Longitude of the Ascending Node 0 deg 

Initial True Anomaly 10 deg 

Table 6     Small Orbit p Simulation Leader COEs 

control weight was varied are listed in Table 7.  The results show that for higher values 

of R, the two nonlinear methods do provide a lower AV as compared to LQR, however, 
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AV (m/s) OLDTIM LQR LQR With LF SDRE 
Ä=109 0.632092 13.8110215 13.8110284 13.8110049 
R = 1010 0.632092 7.8518765 7.8519592 7.8518429 
R = 1011 0.632092 4.2552826 4.2552369 4.2551942 

R = 1012 0.632092 2.3860346 2.3855585 2.3859874 
R = 1013 0.632092 1.7847727 1.7842614 1.7847499 

Table 7     Small Orbit p Simulation AV^ Results (Control Weight Methods) 

this improvement is on the order of 10~6 and thus negligible.  The A^ results for slid- 

ing mode control (which varied pole placement) are listed in Table 8. The sliding mode 

AV (m/s) OLDTIM SMC 
Pole=-0.0006 
Pole=-0.0012 
Pole=-0.0018 
Pole=-0.0024 
Pole=-0.003 

0.632092 
0.632092 
0.632092 
0.632092 
0.632092 

36.5888133 
19.9482038 
15.3333261 
14.2883201 
13.8828796 

Table 8     Small Orbit p Simulation AV Results (Pole Method) 

method shows a significant increase in control energy as opposed to the gain techniques. 

Section 4.1 shows that compared to the gain techniques, sliding mode control expends a 

large amount of control energy even during steady state conditions due to the chattering 

effect. The controller is required to expand even more energy on top of this to do the 

reconfiguration and thus at a disadvantage compared to the gain techniques. 

The OLDTIM AV can be broken out into its three separate discrete burn maneuvers 

and is shown in Table 9. The changes in the COEs of the follower satellite upon which 

the OLDTIM maneuver is based are listed in Table 10.    The OLDTIM break out shows 

Hohmann AV 
Inc/LAN AV 

KP AV 

0.000417502 (m/s) 
0.631353 (m/s) 

0.000320607 (m/s) 
Total 0.632092 (m/s) 

Table 9     Small Orbit p Simulation OLDTIM AV 

that a majority of the control energy in the discrete burn is used to change the inclination 

and longitude of the ascending node even though they are relatively small angle changes. 

Plane changes are usually more AV intensive than coplanar maneuvers. 
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Initial Final A 
Semi-Major Axis (km) 10000 10000 N/A 

Eccentricity 0.0000499951 0.000149973 0.0000999777 
Inclination (deg) 10.0023 10.007 0.00469583 

Argument of Perigee (deg) 304.987 304.929 0.0581968 
Longitude of the Ascending Node (deg) -0.00945911 -0.0283561 0.018897 

Table 10     Small Orbit p Simulation Follower COEs Changes 

The settling time results are listed in Tables 11 and 12. The criteria for settling time 

is that the position error for each direction in the RCO frame falls and remains within 

+/- 10 meters. It is assumed that at this point a stationkeeping controller will take over 

and reduce or maintain the error to required levels.     As expected after seeing the AV 

Settling Time (min) OLDTIM LQR LQR With LF SDRE 
Ä=109 82.933410 20.00 20.00 20.00 
R = 1010 82.933410 36.50 36.50 36.50 
R = 1011 82.933410 62.00 62.00 62.00 
R = 1012 82.933410 107.50 107.25 107.50 
R = 1013 82.933410 287.75 288.00 287.75 

Table 11     Small Orbit p Simulation Settling Time Results (Control Weight Methods) 

Settling Time (min) OLDTIM SMC 
Pole=-0.0006 82.933410 146.00 
Pole=-0.0012 82.933410 82.25 
Pole=-0.0018 82.933410 65.25 
Pole=-0.0024 82.933410 65.00 
Pole=-0.003 82.933410 69.00 

Table 12     Small Orbit p Simulation Settling Time Results (Pole Method) 

costs, the linear and nonlinear gain controllers continue to perform virtually identically. 

To see a few other trends, this data is presented graphically in Figures 23 and 24 for AV 

and Figures 25 and 26 for settling time. Notice that for the control weight methods, the 

total AV for the reconfiguration approaches the OLDTIM AV nearly asymptotically as 

R increases. Also note that as AV decreases, settling time increases (a normal tradeoff in 

designing controllers). This is not the case for sliding mode control where AV and settling 

time decrease as the poles move from the origin to around -0.002 on the real axis. Since the 

steady state AV usage of sliding mode is so high, the quicker it settles to the commanded 
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orbit, the less AV it requires. The large amount of energy expended by the sliding mode 

controller during steady state is overwhelming its ability to control the follower satellite 

at a reasonable AV cost.        To compare all the methods together and determine their 

10 
R (Control Weight) 

Figure 23     Small Orbit p Simulation AV (Control Weight Methods) 

40 
Pole Methods 

-*- OLDTIM 
-$- NS SMC 

30 

25 

^    N > < 

5 

•— ■■ I—*  i * 1 , *  i * 
2 -1.5 

Real Pole Location 
-0.5 

X10"3 

Figure 24     Small Orbit p Simulation AV (Pole Method) 

best operating point (R or pole location), each method is graphed via AV versus settling 

time (Figure 27). Note that the closer the curve comes to the origin, the better the overall 

performance of the method. Once a specific method is determined, a designer can find the 
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Figure 25     Small Orbit p Simulation Settling Time (Control Weight Methods) 
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Figure 26     Small Orbit p Simulation Settling Time (Pole Method) 
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Figure 27     Small Orbit p Simulation Method Comparison 

point at which the tradeoff between AV and settling time is acceptable based on mission 

parameters (on board fuel, acceptable offline times, frequency of reconfigurations, etc.). 

For this reconfiguration in which p is changed and the relative orbit is small compared 

to the radius of the leader orbit, LQR, LQR with linearizing feedback, and SDRE work 

significantly better than sliding mode control (again, mostly due to chatter problems). 

Each of these three methods produces virtually identical results, thus there is no advantage 

to using nonlinear techniques over linear ones in this case. This is not a surprising result 

as the relative orbit is small enough that the linear equations of motion are a very good 

approximation. 

4-3   Simple p Reconfiguration (Large Relative Orbit) 

The next relative orbit reconfiguration changed the parameter p by the same amount 

as in the first simulation, however, in this case the initial and final p are much larger 

thus creating more error between the linear and nonlinear EOMs. For this larger p, error 

analysis shows that we can expect an almost 1200 meter error in the R and O directions 

and up to 14,000 meters in the C direction (depending on settling time) for a 10,000 km 

leader orbit. The initial and final relative parameters are given in Table 13. The simulation 

uses a 15 second time step with the leader in a circular orbit with classical orbital elements 
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(COEs) listed in Table 14.    The AV results for controllers in which control weight was 

Initial Final 
p(km) 40.5 41.5 
a (km) 0 0 
9 (deg) 45 45 
6 (km) 0 0 

m (slope) 1 1 
n (slope) 0 0 

Table 13     Large Orbit p Simulation Initial and Final Parameters 

Semi-Major Axis 10000 km 
Eccentricity 0 
Inclination 10 deg 

Argument of Perigee Odeg 
Longitude of the Ascending Node 0 deg 

Initial True Anomaly 10 deg 

Table 14     Large Orbit p Simulation Leader COEs 

varied are listed in Table 15. The control usage in this simulation is much different than in 

AV (m/s) OLDTIM LQR LQR With LF SDRE 
£=10y 1.260372 15.6921806 13.6182920 15.6912682 
R = 1010 1.260372 11.4366934 7.7630169 11.4385323 
R = 1011 1.260372 9.3192450 4.7136968 9.3163821 
R = 1012 1.260372 9.0168279 3.9794505 9.0305245 
R = 1013 1.260372 10.1362775 8.1898422 10.1407846 

Table 15     Large Orbit p Simulation AV Results (Control Weight Methods) 

the near linear case of the first simulation. The LQR and SDRE controllers showed near 

identical AVs, but LQR with LF proved to use significantly less total control energy. The 

AV results for sliding mode control (which varied pole placement) are listed in Table 16. 

As before, sliding mode control shows a significant increase in expended control energy as 

compared to the gain techniques due to the chattering effect discussed in Section 4.1. 

The AV for each of the OLDTIM maneuvers is shown in Table 17. The changes in 

the COEs of the follower satellite upon which the OLDTIM maneuver is based are listed 

in Table 18. The OLDTIM breakout is significantly different than the first simulation. 

Both the Hohmann and AP maneuvers require two orders of magnitude more control 
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AV (m/s) OLDTIM SMC 
Pole=-0.0006 1.260372 38.8888040 
Pole=-0.0012 1.260372 19.6637421 
Pole=-0.0018 1.260372 16.1290137 
Pole=-0.0024 1.260372 14.7930510 
Pole=-0.003 1.260372 14.3854720 

Table 16     Large Orbit p Simulation AV Results (Pole Method) 

Hohmann AV 
Inc/LAN AV 

AP AV 

0.182102 (m/s) 
0.667614 (m/s) 
0.410657 (m/s) 

Total 1.260372 (m/s) 

Table 17     Large Orbit p Simulation OLDTIM AV 

energy while the plane change AV only marginally increased. Note that their is more 

error associated with the initial and final COEs as they too are a calculated from the 

linear command signal. Thus the OLDTIM AV calculation has a larger margin of error 

as well. 

The settling time results are listed in Tables 19 and 20. The criteria for settling time 

is that the position error for each direction in the RCO frame falls and remains within 

+/- 10 meters after which a stationkeeping controller will take over and reduce the error 

to required levels. An analysis of the position error history shows that only LQR with 

LF and sliding mode control are able to reduce the position error to the prescribed +/- 10 

meters. The error plots of LQR and SDRE show that the error will oscillate with a fixed 

amplitude (Figure 28) about the zero axis with no apparent dampening. The settling times 

of LQR and SDRE are consequently approximately equal to the simulation run time and 

meaningless. Analysis of the position error at different gains indicates that the amplitude is 

a function of the control weight R. Lower values of R (less restrictive on control usage) will 

allow both controllers to keep error within +/- 10 meters but at unacceptable AV costs. 

To see the trends in AV and settling time, this data is presented graphically in Figures 29 

and 30 for AV and Figures 31 and 32 for settling time. The inability of LQR and SDRE 

to damp the position and velocity state error means that AV will not approach OLDTIM 

value. LQR with LF also does not approach OLDTIM asymptotically and instead appears 

to have a local minimum at around R = 1012. As before, the settling time increases as R 
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Initial Final A 
Semi-Major Axis (km) 10000 10000 N/A 

Eccentricity- 0.00401814 0.0041296 0.000111458 
Inclination (deg) 10.1916 10.1968 0.00517635 

Argument of Perigee (deg) 303.981 303.054 0.927511 
Longitude of the Ascending Node (deg) -0.743455 -0.761246 0.0177914 

Table 18     Large Orbit p Simulation OLDTIM AV 

Settling Time (min) OLDTIM LQR LQR With LF SDRE 
Ä=109 82.946683 90.50 20.00 90.50 
R = 1010 82.946683 158.25 36.50 158.25 
R = 1011 82.946683 216.00 62.00 216.00 
R = 1012 82.946683 331.00 107.25 331.00 
R = 1013 82.946683 576.00 288.00 576.00 

Table 19     Large Orbit p Simulation Settling Time Results (Control Weight Methods) 

Settling Time (min) OLDTIM SMC 
Pole=-0.0006 82.946683 152.25 
Pole=-0.0012 82.946683 79.75 
Pole=-0.0018 82.946683 68.50 
Pole=-0.0024 82.946683 66.75 
Pole=-0.003 82.946683 70.75 

Table 20     Large Orbit p Simulation Settling Time Results (Pole Method) 
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Figure 28     LQR Position Error for the Large Orbit p Simulation (R = 10   ) 
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increases. Sliding mode also damps out the error signal to zero but at a AV cost an order 

of magnitude above LQR with LF and appears to asymptotically approach a minimum 

AV value as the pole moves from the origin. Unlike LQR with LF, the AV decreases 

with shorter settling times due to the high steady state AV^ cost discussed in Section 4.1. 

Graphing all of the methods together for comparison and optimal point determination 

Gain Methods 

10 
R (Control Weight) 

Figure 29     Large Orbit p Simulation AV (Control Weight Methods) 
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Figure 30     Large Orbit p Simulation AV (Pole Method) 

yields Figure 33. Note that the closer the curve comes to the origin, the better the overall 
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R (Control Weight) 

Figure 31     Large Orbit p Simulation Settling Time (Control Weight Methods) 

Real Pole Location 

Figure 32     Large Orbit p Simulation Settling Time (Pole Method) 
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Method Comparison 

200 300 400 
Settling Time (Minutes) 

Figure 33     Large Orbit p Simulation Method Comparison 

performance of the method. 

Although the change in relative parameters for this simulation is identical to the first 

simulation, it is clear that using linear techniques will not be adequate. The command 

signal is based on the linear EOMs and thus the expended control energy will increase as 

the relative orbit size becomes a significant percentage of the orbit radius. Only LQR with 

LF and sliding mode were able to perform the reconfiguration to within the specified error 

tolerance and of these two, LQR with LF did the maneuver with significantly less AV and 

in an acceptable settling time. 

4-4    Complex Parameter Reconfiguration 

This simulation presents a more general relative orbit reconfiguration in which all 

parameters change except for a and b (thus leaving the leader satellite at the center of the 

formation). Like the first simulation, the choice of initial and final p is small enough that 

the linear Hill's equations are a very close approximation of the nonlinear CW equations. 

The small relative position magnitude means that we expect no more than a 1 meter error 

in the R and Ö directions and 10 meters in the C direction for a 10,000 km orbit. The 

initial and final relative parameters are given in Table 21. The simulation uses a 15 second 

time step with the leader in a circular orbit with classical orbital elements (COEs) listed 
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in Table 22.   The AV results for controllers in which control weight was varied are listed 

Initial Final 
p(km) 0.5 1.5 
a (km) 0 0 
9 (deg) 45 60 
b (km) 0 0 

m (slope) 1 1.5 
n (slope) 0 1 

Table 21     Complex Simulation Initial and Final Parameters 

Semi-Major Axis 
Eccentricity- 
Inclination 

10000 km 
0 

10 deg 
Argument of Perigee 

Longitude of the Ascending Node 
Initial True Anomaly 

Odeg 
0 deg 
10 deg 

Table 22     Complex Simulation Leader COEs 

in Table 23.   The results show once again that the gain techniques are nearly equal in 

AV (m/s) OLDTIM LQR LQR With LF SDRE 
Ä = 109 2.351894 31.4307824 31.4307616 31.4307437 
R = 1010 2.351894 17.2212144 17.2213265 17.2211453 
Ä=10n 2.351894 9.2636521 9.2637386 9.2635397 
R = 1012 2.351894 5.2854682 5.2845003 5.2854414 
R = 1013 2.351894 4.2184381 4.2181246 4.2185121 

Table 23      Complex Simulation AV Results (Control Weight Methods) 

their reconfiguration performance and no one method stands out. The AV results for 

sliding mode control (which varied pole placement) are listed in Table 24. The sliding 

mode method once again requires a much greater Ay expenditure as compared to the 

gain methods due to the chattering and steady state problems discussed earlier. 

The OLDTIM AV breakout is shown in Table 25. The changes in the COEs of the 

follower satellite upon which the OLDTIM maneuver is based are listed in Table 26. The 

OLDTIM shows that as in the first simulation, the majority of the discrete burn AV is 

going towards the plane change with the other two maneuvers several orders of magnitude 

smaller. 
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AF (m/s) OLDTIM SMC 
Pole=-0.0006 
Pole=-0.0012 
Pole=-0.0018 
Pole=-0.0024 
Pole=-0.003 

2.351894 
2.351894 
2.351894 
2.351894 
2.351894 

40.4172759 
24.1352993 
20.6293084 
21.2748060 
23.4297615 

Table 24     Complex Simulation AV Results (Pole Method) 

Hohmann AV 
Inc/LAN AV 

AP AV 

0.00055705 (m/s) 
2.26933 (m/s) 

0.0820091 (m/s) 
Total 2.351894 (m/s) 

Table 25     Complex Simulation OLDTIM AV 

The settling time results are listed in Tables 27 and 28. The criteria for settling time 

is that the position error for each direction in the RCO frame falls and remains within 

+/- 10 meters after which a stationkeeping controller will take over and reduce the error 

to required levels. As with the AV costs, the linear and nonlinear gain controller settling 

times are virtually identically. To see the trends, the data is graphed in Figures 34 and 

35 for AV and Figures 36 and 37 for settling time. Similar to the simple p parameter 

change, the gain techniques appear to asymptotically approach the OLDTIM maneuver 

as control usage is tightened and settling time increases. The sliding mode method has 

a local minimum for both AV and settling time at about P=-0.0018 on the real axis. 

All methods are compared against each other and the OLDTIM maneuver in Figure 38. 

Note that the closer the curve comes to the origin, the better the overall performance of 

the method. Once a specific method is determined, a designer can find the point at which 

the tradeoff between AV and settling time is acceptable based on mission parameters 

(on board fuel, acceptable off line times, frequency of reconfigurations, etc.). For the 

complex reconfiguration, the gain methods worked significantly better than the sliding 

mode method. Between the three gain methods, there was no clear advantage to using the 

nonlinear techniques. 

56 



Initial Final A 

Semi-Major Axis (km) 10000 10000 0.0017649 
Eccentricity 0.0000499951 0.000149848 0.0000998524 

Inclination (deg) 10.0023 9.99514 0.00721041 
Argument of Perigee (deg) 304.987 319.916 14.9285 

Longitude of the Ascending Node (deg) -0.00945911 -0.120565 0.111106 

Table 26     Complex Simulation Follower COEs Changes 

Settling Time (min) OLDTIM LQR LQR With LF SDRE 
Ä=10y 82.933415 21.25 21.25 21.25 
R = 1010 82.933415 37.50 37.50 37.50 
R = 1011 82.933415 86.50 86.50 86.50 
R = 1012 82.933415 152.50 152.50 152.50 
R = 1013 82.933415 407.25 407.75 407.25 

Table 27     Complex Simulation Settling Time Results (Control Weight Methods) 

Settling Time (min) OLDTIM SMC 
Pole=-0.0006 82.933415 166.00 
Pole=-0.0012 82.933415 107.75 
Pole=-0.0018 82.933415 99.00 
Pole=-0.0024 82.933415 107.00 
Pole=-0.003 82.933415 123.00 

Table 28     Complex Simulation Settling Time Results (Pole Method) 

10 
R (Control Weight) 

Figure 34     Complex Simulation AV (Control Weight Methods) 
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Figure 35     Complex Simulation AV (Pole Method) 
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Figure 36     Complex Simulation Settling Time (Control Weight Methods) 
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Figure 37     Complex Simulation Settling Time (Pole Method) 
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Figure 38     Complex Simulation Method Comparison 
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4-5   Simple 9 Reconfiguration 

The final relative orbit reconfiguration changed only the parameter 6. The 6 param- 

eter defines the angle that the follower satellite's position vector makes with C at t = 0. 

Changing 8 does not change the size, shape, or orientation of the relative orbit only the 

follower satellites' starting position within the relative orbit. If the formation included 

multiple follower satellites, changing 9 would change that follower's position relative to the 

other satellites in the formation. The choice of the initial and final p are small enough that 

the linear Hill's equations are a very close approximation of the nonlinear CW equations. 

Prom the error analysis done in Section 2.2, we expect no more than a 1 meter error in 

the R and Ö directions and 10 meters in the C direction for a 10,000 km leader orbit. 

The initial and final relative parameters are given in Table 29. The simulation uses a 15 

second time step with the leader in a circular orbit with classical orbital elements (COEs) 

listed in Table 30.   The AV results for controllers in which control weight was varied are 

Initial Final 
P (km) 0.5 0.5 
a (km) 0 0 
9 (deg) 30 60 
b (km) 0 0 

m (slope) 1 1 
n (slope) 0 0 

Table 29     9 Simulation Initial and Final Parameters 

Semi-Major Axis 10000 km 
Eccentricity 0 
Inclination 10 deg 

Argument of Perigee 0 deg 
Longitude of the Ascending Node Odeg 

Initial True Anomaly 10 deg 

Table 30     9 Simulation Leader COEs 

listed in Table 31. The results once again show only the slightest of performance increases 

by using the nonlinear gain techniques over LQR (on the order of 10-6). The AV results 

for sliding mode control (which varied pole placement) are listed in Table 32. The slid- 

ing mode results are an order of magnitude higher than the gain method controllers with 
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AV (m/s) OLDTIM LQR LQR With LF SDRE 
Ä=109 0.326750 3.6062904 3.6062857 3.6062818 
R = 1010 0.326750 2.1439774 2.1439539 2.1439696 
R = 1011 0.326750 1.3546992 1.3546386 1.3547005 
R = 1012 0.326750 0.8592822 0.8591845 0.8592881 
R = 1013 0.326750 0.5046080 0.5044617 0.5045870 

Table 31     9 Simulation AV Results (Control Weight Methods) 

AV (m/s) OLDTIM SMC 
Pole=-0.0006 0.326750 22.9683408 
Pole=-0.0012 0.326750 11.6012523 
Pole=-0.0018 0.326750 7.8489131 
Pole=-0.0024 0.326750 6.3261655 
Pole=-0.003 0.326750 5.2428135 

Table 32     9 Simulation AV Results (Pole Method) 

no decrease in settling time. The chatter and steady state problems associated with the 

sliding mode controller drive up total AV costs once again. 

Each of the OLDTIM maneuvers is shown in Table 33. The changes in the COEs of 

the follower satellite upon which the OLDTIM maneuver is based are listed in Table 34. 

Hohmann AV 
Inc/LAN AV 

AP AV 

0.00000576885 (m/s) 
0.163404 (m/s) 
0.16334 (m/s) 

Total 0.326750 (m/s) 

Table 33     9 Simulation OLDTIM AV 

In this case the OLDTIM break out shows a nearly even split in control energy between 

the plane change (inclination and LAN) and orientation change (AP). 

The settling time results are listed in Tables 35 and 36. The criteria for settling 

time is that the position error for each direction in the RCO frame falls and remains 

within +/- 10 meters. It is assumed that at this point a stationkeeping controller will 

take over and reduce the error to required levels. As with previous examples, the linear 

and nonlinear gain controller settling times are virtually identically. Finally, the data is 

presented graphically in Figures 39 and 40 for AV and Figures 41 and 42 for settling 

time.   Similar to the p parameter change, the gain techniques appear to asymptotically 
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Initial Final A 
Semi-Major Axis (km) 

Eccentricity 
10000 

0.0000499945 
10000 

0.0000499943 
0.0000182746 

2.56005 xlO-10 

Inclination (deg) 10.0027 10.0018 0.000850248 
Argument of Perigee (deg) 

Longitude of the Ascending Node (deg) 
289.986 

-0.00563948 
319.977 

-0.0126345 
29.9911 

0.00699506 

Table 34     6 Simulation Follower COEs 

Settling Time (min) OLDTIM LQR LQR With LF SDRE 
Ä=109 82.933394 15.75 15.75 15.75 
R = 1010 82.933394 28.75 28.75 28.75 
Ä=10n 82.933394 48.75 48.75 48.75 
R = 1012 82.933394 83.25 83.25 83.25 
R = 1013 82.933394 180.25 180.25 180.25 

Table 35     6 Simulation Settling Time Results (Control Weight Methods) 

Settling Time (min) OLDTIM SMC 
Pole=-0.0006 82.933394 91.50 
Pole=-0.0012 82.933394 46.00 
Pole=-0.0018 82.933394 32.00 
Pole=-0.0024 82.933394 26.00 
Pole=-0.003 82.933394 22.50 

Table 36     9 Simulation Settling Time Results (Pole Method) 
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approach the OLDTIM maneuver as control usage is tightened and settling time increases. 

The sliding mode method appears to approach asymptotically as the poles on the real axis 

move farther from the origin but a much slower rate than the gain methods.       Figure 

10" 
R (Control Weight) 

Figure 39     9 Simulation AV (Control Weight Methods) 

  I— 
-*- OLDTIM 
-0- NS SMC 

20 

10 

n ——^^—^^^ i It 1 i * 1 i * 1 i * 

-2 -1.5 
Real Pole Location 

Figure 40     9 Simulation AV (Pole Method) 

43 shows each method graphed with AV versus settling time. Note that the closer the 

curve comes to the origin, the better the overall performance of the method. Using this 

criteria to compare methods, it is easy to see that for the 9 change simulation LQR, LQR 
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Figure 42     0 Simulation Settling Time (Pole Method) 
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Method Comparison 
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Figure 43     9 Simulation Method Comparison 

with linearizing feedback, and SDRE work significantly better than sliding mode control 

(which once again must deal with chattering and steady state problems). Much like the 

first simulation, each of these three methods produces virtually identical results, thus there 

is no advantage to using nonlinear techniques over linear ones. 

4-6    The Effect of Ji on Reconfiguration 

The results presented assume the ideal orbit model; the Earth is a point source and 

no other forms of perturbations exist (drag, third body effects, solar wind, etc.). There are 

two ways to approach the perturbations problem in the relative dynamics frame. The first 

is to have both the leader and follower correct for perturbations while still maintaining 

the proper relative alignment. The second is to accept drift due to perturbations and have 

the follower satellite only correct for the difference in the perturbations between the two 

satellites. With either, the equations of motion used to derive the controller must include 

the perturbations model. Effects caused by the Earth being an oblate sphere as opposed to 

a point mass are the strongest of the perturbations encountered by operational satellites. 
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Its derivation can be found in Appendix B and in the UK frame is 

nJ2R
2

e 

15z2x 
d7     ' 

3x 

15z2y -9 
15z3 

IT 
9z 

(119) 

where Re is the radius of the Earth, J2 is a constant coefficient found through observation 

of satellite orbits and is equal to 0.0010826 (unitless), and the coordinates of the satellite 

are x, y, and z measured in the inertial UK frame (\d\ = d = \/x2 + y2 + z2). Thus the 

equation of motion for a satellite in inertial space with only J2 is 

d = 
fid       fl^Re 

d3 

15z2x 

z2 

IT 
15z3 

3a; 

15z2y _ 3y 

Qz 

+ VC (120) 

These modified equations of motion are not incorporated into the development of the 

controllers used in this thesis (Chapter III), however simulations were run with J2 included 

into the inertial propagation of both leader and follower to show its effect. Two cases are 

presented here; both are LQR controllers at two different control weights (R = 109 and 

R = 1013) for a simple p change reconfiguration (p = 0.5 —> 1.5). Both controllers were 

able to deal with J2 to varying degrees of success. The R = 109 brought the error within 

10 meters and the R = 1013 to within 15 meters. The J2 perturbation creates a drift 

in the argument of perigee (AP) and longitude of the ascending node (LAN) (5). The 

controllers were able to transform the AP drift to a periodic oscillation but did little to 

correct the LAN drift. As with making linear assumptions for the CW equations, accepting 

this drift term is an engineering tradeoff for reducing the complexity of the system. Given 

the relatively short period of time that reconfigurations occur over and the fact that only 

the difference in the J2 effect between the leader and follower has to be incorporated into 

the controller, there is not an enormous need to include J2 into the relative model. Not 

surprisingly, the J2 effect prevents the controller from dampening the error to zero and 

creates a periodic error with an amplitude of approximately 1.2 meters for R = 109 and 

25 meters for R = 1013. The small abnormalities can best be seen by looking at the COE 
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time history in Figures 44 and 45  Note the scale for each graph and that the oscillations 
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Figure 44     COE Time History with J2 (LQR R = 109) 

while present are not very large.   Both controllers still do the job of controlling to the 

commanded relative parameters as seen in Figures 46 and 47 
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V.   Conclusions and Recommendations 

Several conclusions can be made from the data produced by this thesis. The first is 

that continuous feedback control will burn considerably more fuel than the discrete burn 

method described in Section III. Although it must be stated again that the discrete 

method used in this thesis is not an optimal method, the comparison of it to the continuous 

feedback AVs seems to indicate that there are more optimal ways to reconfigure relative 

orbits. The feedback controllers do offer some advantages; namely the ability to control 

relative position error to a leader or another follower within the formation. The biggest 

problem with continuous feedback controllers is that the controller output is proportional 

to the error without regard for the best place in the orbit to do a burn. For example, to 

change the size of an orbit via the Hohmann method (an optimal method for same plane 

circular to circular orbits), thrusting occurs at apogee and perigee. A continuous feedback 

controller would continue to thrust throughout the transfer orbit until the desired size 

change was attained, burning much more fuel in the process. Truly optimal controllers 

will need to take into account not only the magnitude of the error to be corrected but 

also the best time within an orbit to make that correction. Further, if continuous methods 

are used for small relative orbits, nonlinear control techniques currently offer no clear 

advantage to standard linear controllers, and may in fact produce inferior results. This 

comes as no surprise given that with smaller relative orbits, the linear Hill's equations 

are a very good approximation of the nonlinear CW equations. The only time nonlinear 

controllers prove superior is when the relative orbit is large enough to create large errors 

between the linear and nonlinear EOMs. As p becomes larger (creating a larger relative 

orbit), LQR with LF becomes increasingly more efficient as compared to the linear LQR 

technique. Since the command signal is based on the linear EOMs, this simulation, as 

implemented, is ideally suited for small relative orbit reconfigurations. For those small 

orbit reconfigurations, LQR (a linear method) is as good as or better than the nonlinear 

methods tested here as well as significantly simpler to implement. Of course, this thesis did 

not exhaust the numerous nonlinear control techniques applicable to this problem. These 

controllers should be explored before nonlinear techniques are completely discarded. Also, 

in order to model more realistic conditions, measurement noise should be added and/or 
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an estimator used instead of assuming full state feedback. Finally, there is great research 

potential in exploring the nonlinear EOMs in order to develop command signals that are 

valid for larger relative orbits. Perhaps a Keplerian type formulation of the nonlinear 

EOMs based on an elliptical orbit. If nothing else, techniques need to be developed to 

choose appropriate initial conditions such that the secular drift term in the C direction is 

nulled out. 
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Appendix A.   The Two Body Problem 

To find the acceleration of a satellite relative to a much larger primary body due to the 

force of gravity, consider Figure 48 where d\ and di are position vectors in inertial space. 

Figure 48     Two Body Problem 

By Newton's second law (19) 

mass * ace 

Fg + fc + fp = mass * ace 

(121) 

(122) 

where Fg is the force due to gravity, fc is a vector of control forces, and fp is a vector of 

perturbative forces. Gravitational forces follow an inverse square law (19). Using Figure 

48 
Massi * Mass2 

\Fg\* W 
(123) 

To make this an equality the universal constant of gravitation G is used (G = 6.672 x 10 nN
k
T2 ) 

G * Massi * Mass2 
\F9\ = 

\d]> 
(124) 

72 



Subbing into Equation 122 for both masses 

G * Mass\ * Mass2 

W 
G * Massi * Massz 

U + fa + fpi = Massi * di 

W 
(-U) + fa + fP2 = Mass2 * d2 (125) 

where Ü is a unit vector parallel to d and gives the sealer force of gravity a direction. 

Making the following substitution 

(126) ü = i 
\d\ 

yields 

G * Massi * Mass2 

\d? 
G * Massi * Mass2 

w 

d - 
* -=• + /ci + /pi = Massi * di 

\d\ 

* -^ + fc2 + fP2 = Mass2 * d2 
\d\ 

(127) 

Combining terms and dividing through by the masses to isolate the acceleration 

dx = 
G * Mass2 

\d? 
—G * Massi 

w 

* d + 

*d-\- 

fcl       .      fpl + 
Massi  '  Massi 

fc2 fp2 
Mass2     Massi 

(128) 

Since d = d2 — d\, taking the derivative twice yields 

d = c?2 — d\ (129) 

Subbing Equations 128 into the above equation 

d = 
—G * Mass\ 

\d? 

Combining terms 

*i+-ß-+- fa 
Mass2     Mass2 

G * Mass2 

w 
*d- 

fcl fpl 
Massi     Massi 

(130) 

j_ -GjMassi + Mass2)d _     fcX fpl fc2 fP2 

\d\* Massi     Massi     Mass2     Mass2 
(131) 
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If first body is the Earth and the second body a satellite orbiting the Earth then Massi = 

Mass Earth, MüSS2 = Mass Sat, fcl = fEarthCcmtrol, fcl = fSatControl, fpl = fEarthPert, and 

fp2 = fSatPert 

"t   _     —G(MasSEarth + MaSSSatjd _ fEarthCcmtrol _   fEarthPert 

~ \d\3 MasSEarth MasSEarth 
—* —# 

.   JSatControl   ,    JSatPert /i o<y\ 

Masssat      Masssat 

Since Massßarth > Masssat we can say that MassEarth + Masssat ~ MasSEarth, further, 

if the Earth is being used as the inertial reference frame for the satellite then fEarthCcmtrol = 

0 and fEarthPert = 0. 

"j      -G * MasSEarth * d       fsatControl   .    fSatPert ,. QQ\ 

\d\3 Mass sat      Mass sat 

If we define the constant /x 

fi = G * MasSEarth = 6.672 x KT11^ x 5.974236 x 1024kg 

H = 3.98601 x 1014^ = 398601^ (134) 

and define the specific forces 

-.        JSatControl 
Vc =   

Masssat 

fSatPert 

Masssat 

(135) 

$p =   JfoiPert (136) 

Then the equation of motion for a satellite about the Earth with control input of vc and 

a perturbative acceleration of vp is 

"d=^ + vc + vp (137) 
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Appendix B.   The J2 Perturbation 

Because gravity is a conservative force, it can be derived from the gradient of a scalar 

potential function (20). Looking at Equation 137 without any control inputs 

>    — ud 
d = —s—h vv 

\d\*       P 
(138) 

Expanding in the inertial reference frame shown in Figure 48 and noting that \d\ = d — 

y/x2 + y2 + z2 where x, y, and z are the position of the satellite in the inertial frame UK 

d   = 
-fix 

+ 

[x2 + y2 + z2] 2 

—piz 

+ vPl 1 + -m 
_ [x2 + y2 + z2] 2 

+ vpj 

[x2 + y2 + z2]2 
+ VpK K (139) 

Noting that 

±(£ 
dx \\d\ 
I   ± + B ^/x2 + y2 + z2 * (0) - tx[l/2(Vx2 + y2 + z2)-l'2]2x 

x2 + y2 + z2 

—\ix 

+ vpJ 

[x2 + y2 + z2] 2 

where B is a potential function such that 

+ vpi (140) 

VB = vv (141) 

Similarly 

—\iz 

+ vpJ 

+ VPK 
[x2 + y2 + z2] 2 

Therefore the inertial acceleration is the gradient of the potential function % + B 

(142) 

(143) 

(144) 

75 



The B term comes about by modeling the Earth not as a point mass but as an oblate body 

with nonhomogeneous mass distribution (Figure 49) and is the sum on the infinite series 

Greenwich 
Meridian 

— —1-" 

A                          Satellite 

\\    d/ 

X )<t> '.VNJ 

K^>^k 
Equator 

(OJ. 

Figure 49     Oblate Earth Coordinate Frame 

*-=? E 
<n=2 

-^ J   JnP„(sin 0) + ^2 l-r)   (Cnm cos </> + Snm sin </?)Pnm(sin (/>) 
' m=l ^      ' 

(1 

if = m\ + u>ete 

45) 

(146) 

where Re is the mean equatorial radius of the Earth, 4> is the geocentric latitude of the 

satellite (measured from the equator), A is the geographical longitude (measured from the 

prime meridian), d is the satellite position vector magnitude, ue is the rotation rate of the 

Earth, te is the time since the / direction lined up with the Greenwich meridian, Jn is the 

zonal harmonic coefficients of order 0, Pn is a Legendre polynomial of degree n and order 

0, Pnm is a Legendre polynomial of degree n and order m, Cnm is the tesseral harmonic 

coefficient for n^ m, and Snm is the sectorical harmonic coefficents for n = m. 

Measurements of the zonal, tesseral and sectorial coefficients (Jn, Cnm, and Snm) 

reveal that the J<i term is at least 400 times larger than the next most significant term. 

Thus for applications such as satellite reconfigurations which occur over relatively short 

time periods all higher terms can be ignored. Using this assumption, Equation 145 reduces 
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to 

B-^£[(%)'W**) = T(T> J^<8in« 
where J2 = 0.0010826 and the 2nd Legendre polynomial has the form (12) 

(147) 

P2(X) = ^(3X2-1) 

Using this Legendre polynomial in Equation 147 

rearranging terms in B 

By geometry in Figure 49 

o      J2RI (-V. 3(sin<£)2-l 

sin<^> = 

which means 

B = J2R
2

e tiJ2R
2

e (-Zz2 + (fs 

2      I        d5 

Now that B is in cartesian coordinates, vp is found by taking the gradient of B 

d5(2df)-(-3z2+d2)5d4§ 

$p = VB = 
mB 

ikB nJ2R
2

e rf5(2rf%)-(-3z2+ri2)5d4% 
d™ 

d5(-6z+2df)-(-3z2+d2)5d4; 
d™ ' 

Simplifying 

lihRl 

15z2x 3x 
d* 

15z2y _ 3y 
if 1 7ß 

15z3 

IT 
9z 
d? 

(148) 

(149) 

(150) 

(151) 

(152) 

(153) 

(154) 
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Appendix C.   Clohessy-Wiltshire Derivation 

Assume the relationship between the leader and follower satellite shown in Figure 50 and 

that the leader satellite is in a circular orbit about the Earth (Section 1.1). In the RCO 

'Follower 

Figure 50     Clohessy-Wiltshire Setup 

frame (Figure 1) the position vectors are: 

L = koR + 0C + 0O (155) 

P = rR + cC + oO (156) 

M = L + P = (ko + r)R + cC + 06 (157) 

where k0 is the orbit radius of the leader satellite.   To take the inertial derivative of a 

vector: 
■£? _RCO d\-X-)       jyRCO-wrt-Inertial x y (\f\R\ 

dt 

where N is the angular velocity of the RCO frame with respect to the inertial frame, in 

this case j^RCO-wrt-inertial _ QR+QC+uÖ where u is the angular frequency of the leader 

satellite's orbit and is found via Equation 3. Taking the inertial derivative of Equation 157 

yields the velocity: 

Ü =RCO Ü + (wO) x M (159) 

where RCOM is the derivative of M in the RCO frame. 

RCOÜ = fR + cC + öÖ (160) 
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(wO) x M = 

Adding these together yields: 

R C 0 

0 0 Ul = 

k0 + r c o 

—ucR 

uj{k0 + r)C 

00 

M=(r- üJC)R +[c + uj(k0 + r)]C + öÖ 

(161) 

(162) 

Taking the inertial derivative of Equation 162 yields the acceleration: 

M =RCO M + {ioO) x M (163) 

where RCOM is the derivative of M in the RCO frame. 

(uO) x M = 

Adding these together yields: 

RCOfifc _ (f -LJC)R+{C + wr )C + öO (164) 

R               CO [-(jc-üJ2(k0 + r)]R 

0                  0              CJ = (ur — üßc)C (165) 

r — uc   c + uj(k0 + r)    b OÖ 

M=[r- 2uc - uj2(k0 + r)]R + (c + 2wr - CJ
2
C)C + öÖ (166) 

is 

Prom Appendix A we know that acceleration due to gravity and control (no perturbations) 

(167) 
\M\" 

where \i is the gravitational constant and vc is the control acceleration. By Kepler's third 

law (29) 

(168) M 
"=«/§«=* A* = "2*o 
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Expanding the magnitude of the position vector 

 13 
\M( = \l% + r) 2 + c2 + 02 = '(fc0 + r)2 + c2 + 0

2] (169) 

and using these equalities in Equation 167, we find that 

p0 + r)2 + c2 + o2]5 

Equating 166 and 170 

[r - 2uic - u2(k0 + r)]R 

(c + 2ur - u2c)C 

ÖÖ 

-oo2k*0 

p0 + r)2 + c2 + o2]2 

(k0 + r)R vCrR 

cC + Vcß 

oÖ Vc0Ö _ 

Equating scalar terms and simplifying yields the CW equations: 

(170) 

(171) 

r — 2uc — uj2(k0 + r) 

c + 2uf — u2c 

ö + u2o 

k* 

[(fc0+r)2+c2+o2]3 

*2 

- vCr = 0 

[(fco+r)2+C2+02]2 
- vc  = 0 

_*L 
[(fc0+r)2+c2+o2]5 

^c0 = 0 

(172) 
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Appendix D.   Linear Clohessy-Wiltshire Derivation (Hill's Equations) 

Starting with the CW Equations from Appendix C 

f — 2u>c — u>2{k0 + r) 1- _*L 

c + 2u>r — u2c 

0 + U)20 

1- 

[(fco+r)2+c2+02]2 
VC=Q 

[(fc0+r)2+c2+o2]5j 

-V. 

^cc=0 

JL 
[(fc0+r)2+c2+o2]2 

Co 

(173) 

The nonlinear part of these equations is 

2  ,   Ji  ,  „2l ATL = p0 + rf + c2 + o2]2 = [k2
0 + 2k0r + r2 + c2 + </]5 (174) 

Factoring out an k2 

NL = 2 /       2r     r2      c2      o2' 

\ K0 1^0 ^o "'o, 

f_   3/       2r      r-2      c2      o2\f 

— K0 I 1 + —     h —£ + TU + , 2  I 
V Ko       AC0       K0       K0 y 

(175) 

Using binomial expansion (13), this becomes 

NL = kl 
3 (2r     r2      c2      o2 

l + 2\Y + Y2 + V2 + Y2 +H-°-T 
z \ «,0      ft.0      /t0      «,0 y 

(176) 

Neglecting higher order terms (H.O.T) and assuming that r, c, and o are appropriately- 

small compared to the radius of the leader orbit (Chapter 1.1) such that 

r2      c2      o2 

1.2 ~ 1.2 ~ hi ~ U 
rco ^o "'o 

(177) 

With this assumption, the nonlinear term becomes 

NL = kl [ 1 + f- ] = fc0 
3r\ _ fc3 /fc0 + 3r 
K0 y        v   K0 

(178) 

Subbing into Equations 173 

r-2ujc-u2(k0 + r) [l fc0+3r -v*.=0 
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c + 2uf-u2c l-T&ä; -vcc = 0 

ö + ui'o k0+Zr -Vco=0 

(179) 

With some algebra 

r — 2u!c — ui2(k0 + r) 

c + 2uif — ußc 

3r 
fe0+3r ^=0 

Zr 
k„+3r VC=0 

ö + u^o KQ 

k0+3r VCo = 0 

(180) 

Assuming that r is appropriately small such that 

k0 + r « k0 

K0 -J- OT ~ K0 

(181) 

(182) 

yeilds 

r - 2UJC - uj2k0 [g] -Vcr=0 

c + 2uf-u2[^] -vCc=0 

ö + ußo -vCn=Q 

(183) 

Assuming that r and c are appropriately small such that 

cr 
K0 

Yeilds the linearized version of the CW equations 

(184) 

r — 2uic — 3uj2r — u~„ = 0 Cr 

c + 2u)f — v~ = 0 

ö + u2o - vc„ = 0 

(185) 
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Appendix E.   Parametrization of Hill's Equations 

Starting with the homogeneous Hill's equations from Appendix D 

r - 2uc - Züßr = 0 

c + 2u>r = 0 

ö + u2o = 0 

(186) 

Taking the Laplace transform 

[s2R{s) - sr0 - r0] - 2u[sC(s) - c0) - 3UJ
2
R(S) = 0 

[s2C(s) - sc0 - do] + 2u[sR{s) -ro] = 0 

[s20(s) - so0 - d0] + u20(s) = 0 

(187) 

where r0 and r0 are the position and velocity initial conditions (ICs) in the radial direction, 

c0 and c0 are the position and velocity ICs in the cross track direction, and o0 and d0 are 

the position and velocity ICs in the out of plane direction. Collecting terms and placing 

the equations in matrix form 

s2 - Zu2 

2U!S 

0 

0 

0 

0       s2 + u2 

-2us 

o2 

R(s) 

C(s) 

0(8) 

Finding the inverse and solving for R(s), C(s), O(s) 

R(s) 

C(s) 

0(3) 

-2tJ 

0 

2a; 

s2-3ui2 

0 

0 

0 

s-l+u>-! 

sr0 + f0 - 2uc0 

sc0 + c0 + 2uir0 

so0 + d0 

sr0 + r0 — 2uic0 

sc0 + c0 + 2ur0 

so0 + d0 

(188) 

(189) 
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Multiplying this out 

R(a) 

C(s) 

0(s) 

sr„+r'„-2wc„   , A*        + 2oj(sc0+Co+2wr0) 
s(s2+u>2) 

-2w(sr0+r0-2ojc0)   ,   (s2-3u>2)(sc0+c0+2w0) 
s(s2+u2) h s2{s2+u)2) 

S
°Q-\-°S 

S2+bJ2 

(190) 

Performing partial fraction expansion 

R(s) 

C(s) 

0(B) 

sr„+r„—2wc„   ,   2i*j2cn—2scn—4su}r„   i   2cr,+Auir0 1 
S2+W2 ' üj(s2+üJ2) ' ui s 

4scr,4-4co+8u;7-o   i   — 2<J1rn+2sr'n—Ascnu   i   — 3c„— 6u>rn   ,   wc„—2r„ 1 
S
2

+UJ
2 ' w(s2+w2) ' s2 u       s 

SOo+Op 
S2+UJ2 

(191) 

Collecting terms 

R(s) 

C(s) 

0(8) 

s2+o;2 '   s2+w2   ' w        s 
2(fr),       2(2chyr )„,       3aj2e.o+4[<;7,ol        „Cn-2r„l 
s2+u/2 ~l s2+u2 2 u>        s7 ~r       w       s 

-4^ + ^K 

(192) 

Taking the inverse Laplace transform 

r(t) 

c(t) 

o(t) 

[to-2* +4OT0 cos(u;i + 0) + £ sin(u;i + 0) + ^J^ 

2 (£) cos(a;t + 0) + 2 [2<^+fjr" - r0] sm(ut + 0) - ^ (2c'"+4a,rp) + <*^ 

o0 COS(CJ£ + 6») + ^ sin(a;i + 6») 
(193) 

where 0 is an initial angle at t = 0.   Since the ICs and u; do not vary with time, two 

constants can be defined 

a = 
2c0 + 4ur0 

ui 

uc0 - 2r0 

(194) 

(195) 

which simplifies Equation 193 to 

r(t) = (r0 — a) cos(ut + 0) + — sin(o;i + 6) + a (196) 
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c(t) = — cos(ut + 9) + 2(a - r0) sin(wt + 0) — + b 

o(t) = o0 cos(ut + 9) + — sin(u>£ + 9) 

(197) 

(198) 

For simplicity, r = r(i), c = c(t), o = o(t). Isolating the sinusodal terms in the first two 

equations. 

r — a = (r0 — a) cos(u;£ + 9) + — sin(wi + 9) 

i   3uiat _v ■ 

-±—2  = - cos(u;i + 9) + (a - r0) sin{ujt + 9) 
2 u) 

(199) 

(200) 

Squaring both sides 

[r - a}2 = (r0 - a)2 cos2(ut + 9)+ C£\  sin2(ut + 9) 

Zwat      LI2 [c+zfz-b] 

+ 2{r0 -a)— cos(ut + 9) sin(wt + 9) (201) 
u 

= (^)  cos2{LJt + 9) + (-l)2(r0-a)2sm2{ut + 9) 

+ 2(-l)(r0 - a)— cos(üüt + 9) sm{ut + 9) (202) 

Adding these equations together 

V ~ a]2 + 1 L 

"(£)a+(r--fl)s 

cos2(wi + 0) + 

sin2(u;i + 0) (203) 

Pulling out the common coefficient and using the identity cos2(r) + sin2(r) = 1 

rc_|_ 3uat _ M2 /„• \ 2 

■■—r+-      ;    61- = (r,-^ + (g (204) 

The right side of this equation has no time varying terms, thus define the constant p 

2 

^-(•••->'+(£)' (205) 
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Subsisting and dividing by p2 yields 

fr-al2 .  [c+^-b]2 

+ v = 1 (206) 

This is the standard equation for an ellipse, thus the follower satellite will follow an elliptical 

path about the leader satellite in the R/C plane (Figure 51). Note that for a stable orbit 

Follower 
in.t),c(t)] 

I In the Direction 
of the Leader 

Satellite's Velocity 

-►/? 

Towards the 
Earth 

Figure 51     General Follower Orbit in the R/C Plane 

(i.e.   one that does not drift over time) about the leader satellite, a must equal zero. 

Ellipses can be parameterized in the general form 

x — h = Asm.(a) 

y — k = Bcos(a) 

where A is the semi major or minor axes in the x direction, B is the semi major or minor 

axes in the y direction, and the center of the ellipse is located at (h,k). Placing Equation 

206 in this form 

r(t) -a = p sm(ut + 6) (207) 

. ,     Suat . .. 
c(t) + — b = 2pcos(ut + 6) (208) 
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and solving for r(t) and c(t) 

r(t) = p sin(ut + 9) + a (209) 

c{t) = 2p cos(ut + 9)- ^ + b (210) 

If we visualize the elliptical orbit from Figure 51 rotating about the major or minor axes, 

it is easy to see it will trace a line in R/O plane (if rotated about the major axis) and the 

R/C plane (if rotated about the minor axis). Using the equation of a line and adding the 

effects of a rotation about both major and minor axes 

o(t) = m]r(t) — a] + n 
.,.     Zujat 

(211) 

where m and n are the slopes of the lines formed by the rotation about the minor and 

major axes respectively. Subbing Equations 207 and 208 into the above equation yields: 

o(t) = mp sin(o;t + 9) + 2np cos(u;t + 9) (212) 

This is the correct form expected from the inverse Laplace transform found in Equation 

198 , an oscillatory function with a constant amplitude and a period of cot. 

Of the six constants required to define a relative orbit about a leader satellite, only 

three have been defined so far (a, b, and p). The other three need to be developed in terms 

of initial conditions. Using Equation 207 and the derivative of Equation 209 (at t = 0) 

r0-a = psin(Ö) (213) 

r0 = pu cos(0) «*•*£ = pcos(9) (214) 

and inserting them into Equation 212 and it's derivative (again at t = 0) 

o0 = mpsm(9)+ 2npcos(9) (215) 

d0 = mpu) cos(0) — 2npu sin(ö) (216) 
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yields 

o0 = m(r0 -a) + n (2^) 

60 = mr'o — n[2ui(r0 — a)] 

(217) 

(218) 

In matrix form 

Oo 

60 

r„-a 2r„ 
w 

-2uj(r0 — a) 

m 

n 

Solving for m and n by multiplying both sides by the matrix inverse 

m 

n 

 -o)2(a-r0)  fa  
Lj2r%-2roW2a+LJ2a2+f0'

2 w1r'2-2rw2aJrw2a2+rö1 

 \f0u   \(a-r0)w 
(x>2r2—2r0ü

2a,+u>2a2+f0
2 aj2r2—2roU>2a+u>2a2+r0

2 

Oo 

Öo 

Multiplying through and simplifying 

m = 

n 

ö0r0 - o0u
2{a - r0) 

r0
2 + u2(a-r0)2 

o0r'0uj + d0uj(a - r0) 

2[f0
2 + u2(a-r0)2} 

Finally, to find 6 divide Equation 213 by Equation 214 

r0-a 
= tan(0) 

and solving for 9 

6 = arctan 
u(r0 - a) 

(219) 

(220) 

(221) 

(222) 

(223) 

(224) 

All parameters can be solved given the relative position and velocity except for 9, so to 

find 9 at any given time, divide Equation 207 by its derivative f = pu cos(otf + 9) 

r — a 
= tan(wt + 6) (225) 



using the tan addition identity to expand the right side of the equation (26) 

r — a       tan(w£) + tan(0) 
(226) 

t 1 - tan(w<) tan(0) 

With some algebra 

u(r -a)-f tan(wi) = tan(0)[w(r - a) tan(wt) + r] (227) 

and solving for 9 

6 = arctan 

which at t = 0 reduces to Equation 224. 

ui{r — a) — r tan(cji) 
oj(r — a) tan(wi) + r 

(228) 

E. 1    Unit Analysis 

Since the initial and final relative orbits are defined in terms of the relative parameters 

derived above, it is important to understand the proper units for each one. The variables 

r, c, and o are positions and are defined in terms of length. Likewise, r, c, and ö are 

velocities and are expressed as ^f*. Finally, u is the angular frequency of the orbit and 

is expressed in ^, 

lenath + -J^ienath      len3th 
time    T timfi'0"»1'" time time    '   time       "           time 

1 —       1 
time time 

a = _^ ^ = ^me_ = length (229) 

-L.]pr)nth - length       length 

b = timelenQ™ tjme_ = Jim_ = length (230) 

time time 

/ length \ ^ 

m = 

n = 

P=A (length - length)2 + j -^- )   = yjlength2 + length2 = length (231) 
\| \  time / 

^^ ~ length {^f [length - length) _ (^f - ^ff 
= unitless 

(^mf)   + (ak)   length - length)2 (%£)   - ^ 
(232) 

^*^db + ^t^ßength - length) =    ^g - ^g£    = ^.^ 

(233) 

89 



6 = arctan 
^(length - length) 

length 
time 

time 
-time = arctan 

length 
time 

length 
time J 

= degrees      (234) 

In the simulations run for this thesis, a, b, and p are defined in kilometers, 6 in degrees, 

and m and n in terms of a unitless slope. 
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Appendix F.   Inertial to Relative Position and Velocity Transformation 

The transformation matrix from the inertial frame to the relative frame is simply the 

transpose of Equation 14. Let IJKL, IJKL and IJKM, IJKM be the position and velocity 

of the leader and follower satellites respectively expressed in the UK frame. 

-,RC02UK = [R\c\ö] (235) 

where 

R = 

C = 

\"KL\ 

UK? 

\'JKL\ 

6 = RxC 

(236) 

(237) 

(238) 

taking the transpose to get the transformation from UK to RCO 

IJK2RCO _ \riRC02IJKT,T = [C = [R\c\o]q (239) 

Note that for orthonormal frames CIJK2RCO*CRC02IJK equals the identity matrix. Equa- 

tion 18 can then be solved for the relative position 

r 

c 

o 

= C IJK2RCO [UK TTJ-     UK [UKM-IJKL] 

Solving Equation 25 for relative velocity (u> is calculated with Equation 3) 

(240) 

r 

c 

ö 

= C <IJK2RCO\IJKTCf     UK [1JKM-1JKL] 

—cw 

ru 

0 

(241) 
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Appendix G.   LQR Controller Simulation Plots 

This appendix presents more detailed data from the simulation discussed in Section 4.4 

for an LQR controller. For convenience, Table 37 lists the initial and final relative param- 

eters. The reconfiguration is commanded at 0.05 days (72 minutes) from the start of the 

simulation. The control weight was varied in order to produce different responses for the 

LQR controller. High control weight translates to less control usage and lower AV with a 

higher settling time and the reverse for smaller control weights. To show contrast, the low 

(R = 109) and the high (R = 1013) runs are presented. 

Initial Final 
p(km) 0.5 1.5 
a (km) 0 0 
0 (deg) 45 60 
6 (km) 0 0 

m (slope) 1 1.5 
n (slope) 0 1 

Table 37     Complex Simulation Initial and Final Parameters 

G.l   LQRR = 109 

For the complex simulation, the LQR controller with a gain of R = 109 required 

31.4307824 m/s of Ay and settled to within +/- 10 meters in each axis after 21.25 minutes. 

The motion of the follower satellite in the leader centered RCO frame is shown in Figure 

52 where the follower starts on the inner ellipse and is commanded onto the outer ellipse. 

This change in relative parameters translates to a change in the inertial COEs (Figure 53) 

Changes in each of the COEs is listed in Table 26. The control usage profile necessary to 

guide the follower onto the desired orbit is displayed in Figure 54. Note that the control 

inputs are shown in the inertial UK frame. The absolute value of the control inputs are 

integrated in order to get the total AV expended; their time history is shown in Figure 55 

The position error which represents half of the error signal (the other half is the velocity 

error) and upon which the settling time is based is shown in Figure 56. Finally, the relative 

parameters (upon which the command signal is based) are shown as a function of time in 

Figure 57. 
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G.2   LQRR=1013 

For the complex simulation, the LQR controller with a gain of R = 1013 required 

4.2184381 m/s oiAV and settled to within +/-10 meters in each axis after 407.25 minutes. 

The motion of the follower satellite in the leader centered RCO frame is shown in Figure 

58 where the follower starts on the inner ellipse and is commanded onto the outer ellipse. 
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Figure 58     Path of Follower Satellite in RCO Frame (LQR R = 1013) 

This change in relative parameters translates to a change in the inertial COEs (Figure 59) 

Changes in each of the COEs is listed in Table 26. The control usage profile necessary to 

guide the follower onto the desired orbit is displayed in Figure 60. Note that the control 

inputs are shown in the inertial UK frame. The absolute value of the control inputs are 

integrated in order to get the total AV expended; their time history is shown in Figure 61 

The position error which represents half of the error signal (the other half is the velocity 

error) and upon which the settling time is based is shown in Figure 62. Finally, the relative 

parameters (upon which the command signal is based) are shown as a function of time in 

Figure 63. 
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Appendix H.   LQR with LF Controller Simulation Plots 

This appendix presents more detailed data from the simulation discussed in Section 4.4 

for an LQR with linearizing feedback (LF) controller. For convenience, Table 38 lists 

the initial and final relative parameters. The reconfiguration is commanded at 0.05 days 

(72 minutes) from the start of the simulation. The control weight was varied in order to 

produce different responses for the LQR with LF controller. High control weight translates 

to less control usage and lower AV with a higher settling time and the reverse for smaller 

control weights. To show contrast, the low (R = 109) and the high (R = 1013) runs are 

presented. 

Initial Final 
p(km) 0.5 1.5 
a (km) 0 0 
0 (deg) 45 60 
b (km) 0 0 

m (slope) 1 1.5 
n (slope) 0 1 

Table 38     Complex Simulation Initial and Final Parameters 

H.l   LQR with LF R = 109 

For the complex simulation, the LQR with LF controller with a gain of R = 109 

required 31.4307616 m/s of A^ and settled to within +/- 10 meters in each axis after 

21.25 minutes. The motion of the follower satellite in the leader centered RCO frame is 

shown in Figure 64 where the follower starts on the inner ellipse and is commanded onto 

the outer ellipse. This change in relative parameters translates to a change in the inertial 

COEs (Figure 65) Changes in each of the COEs is listed in Table 26. The control usage 

profile necessary to guide the follower onto the desired orbit is displayed in Figure 66. Note 

that the control inputs are shown in the inertial UK frame. The absolute value of the 

control inputs are integrated in order to get the total AV expended; their time history is 

shown in Figure 67 The position error which represents half of the error signal (the other 

half is the velocity error) and upon which the settling time is based is shown in Figure 68. 

Finally, the relative parameters (upon which the command signal is based) are shown as a 
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H.2   LQR with LF R= 1013 

For the complex simulation, the LQR with LF controller with a gain of R = 1013 

required 4.2181246 m/s of AV and settled to within +/- 10 meters in each axis after 

407.75 minutes. The motion of the follower satellite in the leader centered RCO frame is 

shown in Figure 70 where the follower starts on the inner ellipse and is commanded onto 

the outer ellipse. This change in relative parameters translates to a change in the inertial 

COEs (Figure 71) Changes in each of the COEs is listed in Table 26. The control usage 

profile necessary to guide the follower onto the desired orbit is displayed in Figure 72. Note 

that the control inputs are shown in the inertial UK frame. The absolute value of the 

control inputs are integrated in order to get the total AV expended; their time history is 

shown in Figure 73 The position error which represents half of the error signal (the other 

half is the velocity error) and upon which the settling time is based is shown in Figure 74. 

Finally, the relative parameters (upon which the command signal is based) are shown as a 

function of time in Figure 75. 
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Appendix I.   SDRE Controller Simulation Plots 

This appendix presents more detailed data from the simulation discussed in Section 4.4 for 

the State Dependent Riccati Equations (SDRE) controller. For convenience, Table 39 lists 

the initial and final relative parameters. The reconfiguration is commanded at 0.05 days 

(72 minutes) from the start of the simulation. The control weight was varied in order to 

produce different responses for the SDRE controller. High control weight translates to less 

control usage and lower AV with a higher settling time and the reverse for smaller control 

weights. To show contrast, the low (R = 109) and the high (R = 1013) runs are presented. 

Initial Final 
p(km) 0.5 1.5 
a (km) 0 0 
9 (deg) 45 60 
b (km) 0 0 

m (slope) 1 1.5 
n (slope) 0 1 

Table 39     Complex Simulation Initial and Final Parameters 

1.1    SDRER=10g 

For the complex simulation, the SDRE controller with a gain of R = 109 required 

31.4307437 m/s of AV and settled to within +/- 10 meters in each axis after 21.25 minutes. 

The motion of the follower satellite in the leader centered RCO frame is shown in Figure 

76 where the follower starts on the inner ellipse and is commanded onto the outer ellipse. 

This change in relative parameters translates to a change in the inertial COEs (Figure 77) 

Changes in each of the COEs is listed in Table 26. The control usage profile necessary to 

guide the follower onto the desired orbit is displayed in Figure 78. Note that the control 

inputs are shown in the inertial UK frame. The absolute value of the control inputs are 

integrated in order to get the total AV expended; their time history is shown in Figure 79 

The position error which represents half of the error signal (the other half is the velocity 

error) and upon which the settling time is based is shown in Figure 80. Finally, the relative 
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Motion of Follower Satellite wrt Leader Sat (SDRE R=1e+009) 
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Figure 76     Path of Follower Satellite in RCO Frame (SDRE R = 109) 
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parameters (upon which the command signal is based) are shown as a function of time in 

Figure 81. 
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1.2   SDRER=1013 

For the complex simulation, the SDRE controller with a gain of R = 1013 required 

4.2185121 m/s of AV and settled to within +/-10 meters in each axis after 407.25 minutes. 

The motion of the follower satellite in the leader centered RCO frame is shown in Figure 

82 where the follower starts on the inner ellipse and is commanded onto the outer ellipse. 

This change in relative parameters translates to a change in the inertial COEs (Figure 83) 

Changes in each of the COEs is listed in Table 26. The control usage profile necessary to 

guide the follower onto the desired orbit is displayed in Figure 84. Note that the control 

inputs are shown in the inertial UK frame. The absolute value of the control inputs are 

integrated in order to get the total AV expended; their time history is shown in Figure 85 

The position error which represents half of the error signal (the other half is the velocity 

error) and upon which the settling time is based is shown in Figure 86. Finally, the relative 

parameters (upon which the command signal is based) are shown as a function of time in 

Figure 87. 
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Appendix J.   SMC Controller Simulation Plots 

This appendix presents more detailed data from the simulation discussed in Section 4.4 

for the sliding mode controller. For convenience, Table 40 lists the initial and final relative 

parameters. The reconfiguration is commanded at 0.05 days (72 minutes) from the start 

of the simulation. The pole position was varied in order to produce different responses for 

the sliding mode controller. Poles farther from the ju axis translate to more control usage 

and higher AV with a lower settling time and the reverse for smaller control weights. To 

show contrast, the P = —0.0006 and P = —0.0018 runs are presented. 

Initial Final 
p(km) 0.5 1.5 
a (km) 0 0 
0 (deg) 45 60 
6 (km) 0 0 

m (slope) 1 1.5 
n (slope) 0 1 

Table 40     Complex Simulation Initial and Final Parameters 

J.l    SMC P = -0.0006 

For the complex simulation, the SMC controller with a gain of P = —0.0006 required 

40.4172759 m/s of AV and settled to within +/- 10 meters in each axis after 166 minutes. 

The motion of the follower satellite in the leader centered RCO frame is shown in Figure 

88 where the follower starts on the inner ellipse and is commanded onto the outer ellipse. 

This change in relative parameters translates to a change in the inertial COEs (Figure 89) 

Changes in each of the COEs is listed in Table 26. The control usage profile necessary to 

guide the follower onto the desired orbit is displayed in Figure 90. Note that the control 

inputs are shown in the inertial UK frame. The absolute value of the control inputs are 

integrated in order to get the total AV expended; their time history is shown in Figure 91 

The position error which represents half of the error signal (the other half is the velocity 

error) and upon which the settling time is based is shown in Figure 92. Finally, the relative 

parameters (upon which the command signal is based) are shown as a function of time in 

Figure 93. 
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3.2   SMC P = -0.0018 

For the complex simulation, the SDRE controller with a gain of P = —0.0018 required 

20.6293084 m/s of AV and settled to within +/- 10 meters in each axis after 99 minutes. 

The motion of the follower satellite in the leader centered RCO frame is shown in Figure 

94 where the follower starts on the inner ellipse and is commanded onto the outer ellipse. 
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Figure 94     Path of Follower Satellite in RCO Frame (SMC P = -0.0018) 

This change in relative parameters translates to a change in the inertial COEs (Figure 95) 

Changes in each of the COEs is listed in Table 26. The control usage profile necessary to 

guide the follower onto the desired orbit is displayed in Figure 96. Note that the control 

inputs are shown in the inertial I3K frame. The absolute value of the control inputs are 

integrated in order to get the total AV expended; their time history is shown in Figure 97 

The position error which represents half of the error signal (the other half is the velocity 

error) and upon which the settling time is based is shown in Figure 98. Finally, the relative 

parameters (upon which the command signal is based) are shown as a function of time in 

Figure 99. 
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Appendix K.   LQR Simulink Diagram 
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Figure 100     LQR Simulink Diagram 
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Appendix L.  LQR With Linearizing Feedback Simulink Diagram 
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Appendix M.   State Dependent Riccati Equations Simulink Diagram 
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Appendix N.   Sliding Mode Control Simulink Diagram 
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