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Abstract 

This research investigates current practices in test and evaluation of classification 

algorithms, and recommends improvements. We scrutinize the evaluation of automatic 

target recognition algorithms and rationalize the potential for improvements in the 

accepted methodology. We propose improvements through the use of an experimental 

design approach to testing. We demonstrate the benefits of improvements by simulating 

algorithm performance data and using both methodologies to generate evaluation results. 

The simulated data is varied to test the sensitivity of the benefits to a broad set of 

outcomes. 

The opportunities for improvement are threefold. First, the current practice of 

"one-at-a-time" factor variation (only one factor is varied in each test condition) fails to 

capture the effect of multiple factors. Next, the coarse characterization of data misses the 

opportunity to reduce the estimate of noise in test through the observation of uncontrolled 

factors. Finally, the lack of advanced data reduction and analysis tools renders analysis 

and reporting tedious and inefficient. This research addresses these shortcomings and 

recommends specific remedies through factorial testing, detailed data characterization, 

and logistic regression. We show how these innovations improve the accuracy and 

efficiency of automatic target recognition performance evaluation. 
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UTILITY OF EXPERIMENTAL DESIGN IN 

AUTOMATIC TARGET RECOGNITION 

PERFORMANCE EVALUATION 

1. INTRODUCTION. 

The focus of this research is the application of existing statistical techniques to 

improve the test methodology for a military organization. We review current practices in 

the field of automatic target recognition (ATR) performance evaluation and present 

recommendations for improvement. We support our recommendations by explaining 

each improvement and simulating the impact. Our primary objective is demonstrating 

the potential for improvement in test results using our recommended methodology. 

1.1.      Automatic Target Recognition 

ATR is the field of using computer programs to automatically recognize objects 

of military interest. The military relies on electronic sensors to recognize objects on the 

ground and in the air for the purpose of targeting and mission planning. These sensors 

collect images of objects of interest using a variety of different media. Some sensors 

collect electro-optical images, others collect radio frequency (RF) or infrared (IR) 
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images. Objects within these images are classified by computer algorithms and the 

classification performance results are evaluated. 

1.1.1. Automatic Target Recognition Algorithms. 

Algorithms are designed to locate unique features within an image and associate 

those features with specific military systems (one avenue of classification could be: 

Vehicle, tank, T-72). The field of ATR algorithm development has been advanced 

extensively and hundreds of algorithms exist that use a variety of techniques to recognize 

potential military targets [15; 20]. Different algorithms exist that accept images in the 

same medium and are intended to perform the same task. It is in the best interest of the 

military, therefore, to select an algorithm whose classification performance exceeds that 

of others in the same class. 

1.1.2. Automatic Target Recognition Algorithm Performance. 

Algorithm performance is measured by an algorithm's success in correctly 

classifying objects in an image database. The output of an algorithm (in ATR, 

classification of specific military systems) is analyzed by counting the number of 

successes it realizes in detecting a target and dividing this number by the number of 

targets of the same type (in an image database). This yields an estimate of the probability 

of detection. Performance can also be measured by counting the number of declarations 

of a target when the target is not present (false alarm) and dividing false alarms by the 

number of objects that could potentially be confused with the target (confusors). This 

yields an estimate of the probability of a false alarm. Other measures are the probability 

of correct identification (given a successful detection), or the false alarm rate per unit of 
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area (given a confusor density in the area). Using such measures, algorithm performance 

can be compared to a baseline or some other algorithm for the purpose of evaluation. 

1.1.3.   A utomatic Target Recogn ition A Igorithm Performance Evaluations. 

There are organizations devoted to the purpose of evaluating competing 

classification algorithms. In evaluating ATR algorithms, an algorithm is commonly 

treated as a black box and the analyst evaluates the ability of an algorithm to accomplish 

its intended purpose (detection, location, classification, identification) [13] by measuring 

the program's output. Here, we focus on performance evaluations that compare two 

algorithms. 

1.2.      Test and Evaluation 

Air Force guidance for test and evaluation [9; 10] prescribes the scientific method 

to conduct government testing. Within this framework, we identify the three phases of 

testing that address the test methodology (see Figure 1.1). The three phases are below. 

• Phase 1: Test Design 

• Phase 2: Data Collection 

• Phase 3: Data Analysis 

The statistical techniques we use in these phases determine the methodology for a test. 

For ATR, we identify the tasks performed in each of these phases. Techniques that 

determine how we accomplish these tasks are the components of our total methodology. 
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Figure 1.1 
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Hypothesize, 
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Refine 
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NO /    Results 
.Acceptable?. 

Terminate 

The Scientific Method and the Phases of Test and Evaluation 

1.2.1. Phase 1: Test Design. 

In the design phase of testing, we determine the conditions that we must collect to 

answer test objectives. Techniques or approaches that address the method for generating 

test condition matrices are the test design components of our methodology. This phase is 

complete when we have a set of conditions for which we will collect data for analysis. 

1.2.2. Phase 2: Data Collection. 

The data collection phase involves the accumulation of data under each of the 

conditions identified in phase 1. The data collection components of our methodology are 

the schemes and techniques we use to determine what information is gathered and how it 

is gathered, given a condition matrix. This phase is complete when we have collected the 

desired information for each of our test conditions. 
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1.2.3.   Phase 3: Data Analysis. 

In the final phase, we use the information we collect in phase 2 to answer our test 

objectives. Data analysis components of our methodology are the statistical techniques 

we use to reduce, analyze, and hypothesize about our data. This phase is complete when 

we have sufficient understanding of test phenomena to answer the objectives. 

The combination of all the methodology components from each phase makes up 

our total test methodology (see Figure 1.2). The numerous techniques available to us in 

each phase imply that there are many methodologies which can be used to answer the 

same objectives. In our research, we find that current methods in ATR performance 

evaluations can be improved. 

Phase 1: 
Test Design 

Techniques in 
Test Design 

EL5J3 

D = 
Individual 
methodology 
component 

Phase 2: 
Data Collection 

Techniques in 
Data Collection 

PPJ 

Phase 3: 
Data Analysis 

Techniques ir 
Data Analysis 

I J 

Figure 1.2 Composition of a Test Methodology 
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1.3. Potential for Improvement in Performance Evaluations 

In each of the phases of testing we describe and critique the current evaluation 

practices in the ATR field. These practices (components) comprise the current 

methodology, and for each component, we recommend a different technique if it yields 

the potential for improved accuracy, precision, or efficiency. The recommended 

techniques are the components of our improved methodology. We believe the field of 

ATR performance evaluations is an excellent candidate for standard OR tools and 

statistical techniques such as factorial test design, iterative data collection, and logistic 

regression. In ATR performance evaluations, our challenge is to demonstrate the utility 

of these components of an experimental design approach, or, paradigm. 

1.4. Research Objective 

Our research objective is to show the utility of using experimental design (our 

improved methodology) in ATR performance evaluations without implementing the 

improvements in a real test scenario. Instead, we demonstrate the potential for improved 

results by devising a simplified, yet representative ATR evaluation scenario and 

estimating the impact of not using experimental design. By applying the concepts of 

experimental design, we can identify specific improvements for each phase of testing; our 

recommendations are listed below. 

• Test Design Phase: Use factorial design to generate test conditions and use 

fractionation to manage (reduce) the test condition matrix. 

• Data Collection Phase: Employ an iterative collection scheme and increase the 

detail of image characterization. 
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•    Data Analysis Phase: Use logistic regression to reduce and analyze test data, and 

utilize hypothesis testing to answer test objectives. 

The experimental design paradigm can be used to identify many more potential 

improvements, but the recommendations above address the most critical deficiencies in 

the current methodology. The improved methodology, which is based on the 

experimental design approach to testing, improves our ability to compare algorithms. In 

addition, there are advantages for other test objectives such as evaluating the possibility 

of transition to the field (a major undertaking [7; 8]) which requires the broadest set of 

operating conditions against which to evaluate an algorithm [17; 23]. Now we turn to the 

compass of our research. 

1.5.     Research Scope 

There are potentially other phases in testing that need development, other 

potential improvements, and more complex experimental design concepts. In this 

research, we only investigate the three phases of testing we have identified, we only 

implement the recommendations listed above, and experimental design is only explained 

in the detail required to justify our recommendations. Our scope is limited first by these 

factors. We perform our research in this framework and develop an approach to achieve 

our test objective. 

1.5.1.   Ideal Scope of Research. 

The ideal approach for demonstrating the utility of experimental design is to 

collect new data using both experimental design and the current method, then compare 

the results from each experiment. If we perform this comparison many times, under 
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many real test scenarios (with different results) we can eventually establish the superior 

methodology. Unfortunately, there are many obstacles to this approach. 

1.5.2. Actual Scope of Research. 

Since the opportunity to collect new data is not available, we use theoretical data 

that is representative of the phenomena encountered in ATR evaluations. Even after 

comparing the current methodology to our improved methodology, our task is not 

complete. We still must demonstrate the results of the comparison hold in the face of 

different datasets. We can accomplish this by comparing the current and improved 

methodologies against a series of data sets that span the spectrum of possible outcomes 

for our scenario. This is a formidable task, so we simplify the comparison to make the 

benefits easily apparent while using an example test scenario that reflects the same issues 

and objectives faced in real testing. 

1.5.3. Outline of Research Approach. 

Here we identify our basic approach and introduce a few methodology concepts. 

The main chapters of our research and the issues covered in each are listed below. 

• Chapter 2, review of ATR performance evaluations. In this chapter we briefly 

describe ATR evaluation methodology and introduce our recommended 

improvements. We also review research in the fields of ATR and statistics that is 

relevant to our recommendations. 

• Chapter 3, current practices in the evaluation cycle and proposed improvements. 

Here we describe the components of the current methodology, identify key 

deficiencies, and explain our recommended improvements for each of the three 
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phases of testing. We give detail to the current and improved methodologies and 

rationalize the potential for improvement. 

• Chapter 4, utility of experimental design: An example. This chapter presents our 

simulated data upon which we employ both the current and improved 

methodologies. We demonstrate the benefits of individual methodology 

components thereby demonstrating the potential for improvement. 

• Chapter 5, sensitivity of benefits to variance in performance data. Since the 

benefits of each methodology depend on the nature of the simulated data, we vary 

our hypothetical data set and observe the change in the benefits. This approach 

verifies the robustness of the benefits of our improved methodology. 

• Chapter 6, conclusions and recommendations. In the last chapter, we review our 

approach, summarize the results, theorize on the impact of improvements, and 

make general recommendations for the implementation of the improved 

methodology and further research in this area. 

We meet our research objective by demonstrating a potential for improvement, presenting 

a sample of the impact of our improved methodology, and confirming the robustness of 

the improved method with respect to potential observed data sets. Figure 1.3 illustrates 

how these components are linked to the phases of testing. 
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Figure 1.3 Relationship Between Methodology Components and Test Phases 

Figure 1.3 shows four methodology components and their location in the test process 

with respect to the three phases. The tree diagram shows possible decisions faced by a 

test analyst when choosing a methodology. For instance, under the current methodology, 

we do not use any of the four components in the figure, but if we follow a series of 

decisions to implement these components (as we move upward, against the flow of the 

test phases) we arrive at an improved methodology. This methodology is ideal with 

respect to the methodology components (our recommended improvements). We use this 

decision structure to develop intermediate methodologies in chapter 5. In the next 

chapter, we describe automatic target recognition performance evaluation in greater 

detail. 
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2. REVIEW OF AUTOMATIC TARGET RECOGNITION 
PERFORMANCE EVALUATIONS. 

In this chapter, we review processes pertinent to the field of ATR performance 

evaluation. We review these processes to explain, justify, and exhibit the feasibility of 

our recommendations. The topics covered in this chapter are below. 

• Experimental design paradigm: A comprehensive methodology that encompasses 

techniques in all three test phases. 

• Experiment building: The process and techniques of ATR test design. 

• Image data: The object of our data collection effort. 

• Measuring and reporting performance: Basic ATR performance measures 

common to all our methodologies. 

• Analysis of proportion data: Techniques for analyzing our common performance 

measures. 

We present support for our recommendations, but we do not address specifics until 

chapter 3. We begin our review with a discussion of experimental design. 

2.1.      Experimental Design Paradigm 

We review the basic concepts of experimental design within each phase of testing. 

We do not address our recommended improvements until we have described current 

practices in ATR evaluation. 
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2.1.1. Test Design. 

The experimental design paradigm has application to the design phase of testing 

for ATR evaluations. Using this paradigm, we identify factors that potentially have a 

significant effect on our performance, we control the factors that we can, and observe any 

uncontrollable factors. Using our control factors, we identify levels for each factor and 

construct a full factorial design (each condition is a unique set of factor levels where we 

have one condition for every possible combination of factors and levels, this is illustrated 

later). We detach a fraction of the design (using techniques called aliasing and blocking) 

so that we only collect the data we need to address test objectives. The resulting 

condition matrix is passed on to the next phase of testing. 

2.1.2. Data Collection. 

In data collection, we begin with a broad test design (a design where factors have 

few levels and the levels are near the extremes of the factor's possible settings) and 

collect the desired information for each condition in random order. The results are 

analyzed and we may return several times to the design phase to refine or add to our 

original design and repeat the collection phase. This design-collect-analyze cycle is 

known as iteration [6] (also part of the scientific method, see Figure 1.1). We remain in 

this cycle until we are satisfied that there is no sufficient benefit to continue data 

collection. In iteration, we maximize the efficiency of our data collection by first 

screening our factors to identify those that affect performance, then characterizing the 

effect of each significant factor, and finally, confirming the answers to our test objectives. 

Each of the latter two stages of iteration relies on the analysis results from the preceding 

stage. 
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2.1.3.   Data Analysis. 

After data collection, we typically use a technique called analysis of variance 

which uses the test factors as predictors and builds a model of performance. We use this 

technique to identify those factors and interactions between factors that explain the most 

variance in the performance measures. 

This brief description of experimental design captures the types of 

recommendations we make in our research. The sections below describe some of the 

current practices in ATR evaluation and present our recommended improvements. 

2.2.      ATR Experiment Building (Part of Test Design) 

The COMPASE Center at AFRL/SN defines experiment design as the binning 

and sequestration of previously collected images (for specific categories of evaluations) 

[8]. In contrast, experimental design (as recognized in the academic community) dictates 

the manner in which data is collected and analyzed, as well as the method of organization 

[6]. The current and improved design concepts we discuss here are one-at-a-time test 

design and factorial test design. 

2.2.1.   One-at-a-time Design Concept. 

Air Force standard guidance for test and evaluation does not specify a specific 

method for test design with regard to experimental design [9; 10], (i.e., there is no 

handbook that dictates a method for producing test conditions in a design sense) and the 

ATR working group (ATRWG) data collection guidelines [3] do not explicitly address 

experiment design (though designed experimentation is recommended as a general 

approach in an earlier ATRWG document [4]). Test conditions in a typical data 
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collection effort are driven by the types of targets an algorithm of interest is designed to 

recognize and the context in which it should recognize them (environment, terrain, 

operational configuration, etc.). According to Ross [21], a common practice is one-at-a- 

time test condition variation. This practice involves beginning with a baseline condition 

(i.e., T-72 tank, on grass, turret forward) and collecting images at various aspect angles. 

Next, a single factor is altered (e.g.., turret rotated 30 degrees) and data is collected again. 

In the one-at-a-time method, the turret would be returned to the baseline position before 

any other factors are varied. The result is that complex combinations of test factors are 

seldom, if ever, tested. 

2.2.2.   Factorial Design Concept. 

Factorial experimentation, or testing all possible combinations of a given set of 

controlled variables with finite levels, is useful in experimental design for estimating the 

nature of the effect of multiple variables on a response measure. A common complaint 

about factorial experimentation is that when many variables are involved, it is too costly 

or too complicated to test all combinations, and a one-at-a-time approach is preferred. 

However, in a technical report dated 1990 [4], the ATR working group (ATRWG) asserts 

that a factorial approach is a more efficient and effective means of experimentation than 

the latter option especially when data points are costly and many. Furthermore, factorial 

experimentation can be modified to accommodate resource limitations. Some examples 

are fractional factorial designs, blocking, and simple designs (e.g.: 2 levels per variable). 
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2.3.     ATR Image Data Characterization (Part of Data Collection) 

A sensor image is an electronic snapshot of an object of potential military interest. 

The image type is determined by the characteristics of the sensor used to collect the 

image. Image types can be radio frequency (RF), infrared (IR), or electro-optical (EO) in 

multiple bandwidths, creating the possibility for a wide variety of image types with 

characteristics in multiple electro-magnetic spectra. Algorithms are designed to take 

advantage of the unique characteristics (in a particular medium) of military targets and 

use the information (within an image containing an object of interest) to select a likely 

military system, based on a comparison to a known image database or on a model of 

target parameters. We do not address the specific media, hardware, or software used to 

collect images, rather we focus on the method used to collect images. 

2.3.1.   Image Data A ccuracy. 

Given that we have image data, to analyze the performance of a classification 

algorithm we need to know the truth about the imagery (i.e., to evaluate whether an 

algorithm has correctly recognized an object, we need to know with certainty what the 

object is). Accurate characterization of image data is essential to correct evaluation of 

algorithm performance since inaccuracies in truth data (true identification and location 

information to which algorithm results will be compared) bias evaluation results. 

Detailed image characterization presents a tedious task because much of the data must be 

hand-inspected to ensure quality truth data. Sims [22] points out that although much 

attention has been paid to evaluating algorithms, only a coarse characterization has been 

performed on the vast archives of image data. Due to the overwhelming difficulty of 
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characterizing existing data, information is often limited to target type, target state, and 

general environment data. 

2.3.2.   Image Data Coarseness. 

Another difficulty is the coarseness of image characteristics data [11]. Target 

type must be known in order to evaluate whether correct identification has occurred. 

Location information is necessary in case several targets appear in one image. Other 

parameters such as target configuration, azimuth, aspect angle, and environment are 

desirable to explain more of the variance in an algorithm's performance. Additional 

characteristics exist that are not currently measured that could be used to further explain 

performance variance. Weszka [24] introduces several texture measures for classifying 

terrain. Target resolution can be measured directly by including the number of pixels in 

an image located directly on the target. Sims [22] demonstrates that the signal to clutter 

ratio provides a good indication of how an ATR algorithm will perform. If even a rough 

estimate of the signal to noise ratio could be included with an image, the potential exists 

to more precisely predict performance. Power [19] asserts that image quality can be a 

major determining factor in ATR performance and recommends (in addition to signal to 

noise ratio) human vision data to measure image quality. Due to the growing size of 

image data repositories and the need for accurate truth data, much work has been done to 

develop methods and software for quality assessment. Michel [16] et. al. recommend a 

statistical model for the automation of image quality assessment. 

The point of this discussion is to show that the potential for improved image 

characterization exists and is well documented. Our review of images supports our 
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recommendation to increase the detail of image characterization by demonstrating the 

feasibility of our recommendation. 

2.4.      ATR Algorithm Performance Measurement and Reporting 

We discuss the measurement and reporting of algorithm performance to 

familiarize the reader with the basic elements of an evaluation (dependent variables). 

Estimates of probability of detection, probability of identification given a detection, and 

probability of a false alarm are the primary measures of algorithm performance. 

Reporting performance is accomplished through various transformations of these 

measures. Confusion matrices are tables in which the target systems are listed along the 

horizontal and vertical axes, and the data in the table is the estimated probability of 

classifying a system as system A when the true identity is system B. Table 2.1 is a 

simplified example of a confusion matrix. 

Table 2.1 Example Confusion Matrix for Two Systems 

Percent Reported (%) 
Identification System A System B Other 

Truth 
System A 90 05 05 
System B 10 85 05 

Other 00 05 95 

Confidence intervals about the mean probability of detection, identification, or false 

alarm are usually constructed assuming a binomial distribution for the number of 

occurrences of each event [2]. For example, let p represent the estimated probability for 

an event, and let n represent the number of opportunities for an event to occur, then 
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p±Z, p(\-p) 
(1-f)1 (2.1) 

is a (l-oc)% confidence interval about the mean probability of the event, where the value 

Z   „  is a statistic that is used to generate intervals that would include the true 
(i 2) 

probability with roughly a 95% success rate for a = .05, assuming a normal 

approximation for the binomial distribution. For comparing the performance estimates 

from two algorithms, it is useful to estimate the difference between probabilities 

(p2 -px)and construct a confidence interval about the difference: 

(2.2) 

where nx and n2 are the sample sizes (number of instances in which a positive 

identification, detection, or false alarm could have occurred) for each evaluation. If there 

exists a background variable (e.g.: azimuth from target to sensor) then the interval can be 

improved by pairing like angles and taking the difference between measures to generate a 

data set of paired differences. A new confidence interval for the difference between the 

probabilities becomes: 
n 

i=l ■ ±z 
n (i-f ̂  

where, 

s = —-s n-\ ^ iPii-Pu)- 

( " 

1=1 
-Pu ) 

)- 

n 

V 

(2.3) 

(2.4) 
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The sample size is assumed to be equal for both populations and s is an estimate of the 

standard deviation of the paired differences. These confidence intervals can be used to 

perform simple hypothesis tests for the performance of two algorithms. The calculation 

in Equation 2.1 can be used to test the following hypothesis: 

H0:p<Pa 

Ha:p>Pa 

(where pa is a constant standard to which performance will be compared) by calculating 

the one-sided tolerance limit for p : 

P + Z0-a)^ "  (2.5) 

If the tolerance limit is greater than pa, we reject the hypothesis that p < pa and 

conclude that p>pa (the value a in Equation 2.5 identifies our estimated probability of 

making an incorrect conclusion). Similar hypothesis tests can be constructed for the 

difference (or paired difference) between probabilities. 

As identified in the confusion matrix (Table 2.1), there is both a probability for 

success and a probability for a false alarm for any system. We can estimate the change in 

detection probability as false alarm probability varies. A receiver operating characteristic 

(ROC) curve is used as a means to communicate the relationship between the probability 

of detection and the probability of false alarm. Given that algorithm performance is 

described by the example ROC curve in Figure 2.1, moving along the plotted line is a 

result of varying detection thresholds in the algorithm or varying degrees of clutter in the 

image data. For a review of the above techniques, see Alsing [1] or ATRWG 86-001 [5]. 
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Figure 2.1 Example Receiver Operating Characteristic Curve for Probability of Detection 

2.5.      Analysis of Proportion Data (Part of Data Analysis) 

We discuss the current analysis techniques and improved techniques in general 

and demonstrate the improved techniques are statistically valid and the current techniques 

imply many assumptions (e.g., we assume no interaction between factors). The topics we 

cover here are the standard performance model and the logistic response model. It is 

appropriate to treat the outcome of an attempt to detect, classify, or identify a target as a 

Bernoulli random variable since we classify an outcome as either a success or failure. 

There are many statistical methods focused on the analysis of rates and proportions (for 

examples, see Fliess [12]); for designed experiments, we will consider logistic regression 

(for a detailed explanation, see Neter, et. al. [18]). 
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2.5.1.   Standard Model. 

It is desirable to treat binary data as a special case for regression since two 

assumptions of the standard normal error regression model are necessarily violated. The 

standard regression model is: 

Yt=ßn+ßx-Xl+el (2.6) 

where Y; is the ith outcome of i = 1 to n Bernoulli trials (in which only two outcomes are 

possible, 0 or 1), the ß terms are the regression coefficients (chosen mathematically using 

a technique called maximum likelihood estimation), X; is the setting of a prediction 

variable, and e; is our error, or naturally occurring randomness. The violations are: 

1. Normality of error terms: Since each error term can only take on two values, 

e.=l-ß0-ßxXi when Yt=\, and e, = -ß0 -ßxXt when Yt = 0, the 

assumption that the ej are normally distributed is not appropriate. 

2. Constant error variance: Since Yj is a Bernoulli random variable with 

parameter ni (representing the probability of observing a 1 in the Y variable), the 

variance for Yj is ^.(1-^,). Also, because e. = Yt -it{, where 7ti is a constant, 

we see the variance of e, is the same as the variance of Yt. Substituting 

Ks = E[Yi] = ß0 +ßlXi (read: Ki is the expected value of Y) shows that £,. is a 

function of X{ (see normality of error terms) hence the error variance depends on 

X; and will differ for different levels of X. 
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In addition to assumption violations, another problem with binary data is the constraint it 

places upon the response function. Since the response function represents a probability, 

inferences about the mean response should be constrained by 0 and 1. A normal linear 

response function does not necessarily meet this constraint. Having pointed out these 

deficiencies, we propose the logistic regression technique as an alternative method 

without the same criticisms. 

2.5.2.   Logistic Model. 

The basis of logistic regression is the Bernoulli probability mass function, which 

has the form: 

f(x) = nY (\-n)l-Y (2.7) 

where Ye {0,1}. The logistic response function is of the form: 

Em=   exp(/?0 + /?,X) 
l + exp(/?0+ /?,*) (2.8) 

The estimates of the parameters /?0,/?,,..., /?, are determined using maximum likelihood 

estimation, but instead of the normal equations, we use the log of the logistic likelihood 

function: 

1=1 1=1 

The values for the coefficients that maximize this function can be found through 

numerical search procedures, available in some statistical software packages (in our 

research, we use JMP IN statistics, version 3.2.6, SAS Institute, Inc.). The use of the 

logistic response function relaxes the assumptions of normality and equal variance of the 

error terms and transforms the response to meet the boundary constraints, 0 and 1. 
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Because we do not violate the assumptions of our model, we believe that the logistic 

regression technique is more appropriate for our data than the current techniques. 

Chapter 2 presents a general review of ATR evaluation. We briefly describe 

current test techniques and our recommended improvements. We also present support 

information to give the reader a clear picture of the ATR performance evaluation process. 

In chapter 3, we observe closely the specifics of current practices and clarify our 

recommendations within each test phase. 
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3. CURRENT PRACTICES IN THE EVALUATION CYCLE AND 
PROPOSED IMPROVEMENTS. 

In this chapter, we scrutinize the current methodology and point out areas for 

potential improvement. The recommended improvements are explained in greater detail 

with simple examples. The chapter is organized into three sections (one for each test 

phase) and each section addresses the four issues below. 

• Current methodology in ATR performance evaluations 

• Potential areas for improvement in evaluation methodology 

• Recommended improvements to evaluation methodology 

• Potential benefits of improved methodology 

These issues are addressed for each phase of testing, and the collection of 

recommendations comprises an improved methodology. 

3.1.      Phase 1: Test Design 

The first phase of testing, test design, is critical because mistakes or poor 

decisions in this stage are usually irrecoverable. Selecting a design with which to collect 

data requires consideration of the test objectives, economical use of resources, and the 

multitude of conditions an operational system may face. The last consideration is 

included because our choice of test conditions, or rather, our decision not to include other 

conditions implies an underlying assumption that phenomena under the omitted 

conditions do not affect our ultimate test decision. 
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3.1.1.   Current Design Methodology: One-at-a-time testing. 

To illustrate the importance of test design, consider an example in which only 

three target factors are considered: turret articulation, camouflage, and revetments (target 

partially obscured by manmade objects). A one-at-a-time approach to test design results 

in at least four test conditions: a nominal case in which no factors are varied, and the 

three cases in which one of each of the three factors is varied. It is also possible that we 

wish to test different levels of each factor, such as 10, 30, and 45 degrees for turret 

articulation, or different types of camouflage. If we treat all cases when the same factor 

is being varied as one condition (e.g., 0 degrees of turret articulation falls under condition 

one, and 10, 30, or 45 degrees of articulation falls under condition two), the resulting 

matrix is shown in Table 3.1. 

Table 3.1 One-at-a-time Test Conditions for Three Factors 

Condition Turret 
Articulation 

Camouflage Revetments 

1 No No No 
2 Yes No No 
3 No Yes No 
4 No No Yes 

3.1.2.   Areas for Improvement in Test Design Methodology. 

One might assume the design in Table 3.1 is most efficient for collecting 

information about the effect these variables have on ATR performance. The first 

criticism of this design is that it fails to capture information about ATR performance 

when two or more factors are varied simultaneously. Second, for any factor we have 
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three observations of performance when one factor is not varied, but only one observation 

when the factor is varied, resulting in imbalanced data. Imbalanced data becomes a 

problem when we wish to compute confidence intervals or perform hypothesis testing, as 

we will demonstrate. For these reasons, the design may frequently fall short of our 

objective to provide accurate results. 

3.1.3.   Recommended Improvements: Factorial Testing and Fractionation. 

We recommend factorial design and fractionation to improve our test 

methodology. We would like to minimize uncertainty in our test, but the one-at-a-time 

design provides no knowledge of the four possibilities in which more than one factor is 

varied simultaneously, which we will refer to as two and three-factor interaction effects. 

Table 3.2 shows the full matrix of possible conditions in which for every level of one 

factor, we collect data on all levels of the other factors, also known as a factorial design. 

We should recall here that within each condition, the factor being varied can take on 

multiple levels. If we are interested in a detailed characterization of performance across 

the multiple levels, the conditions in the design in Table 3.2 increase. An obvious 

objection to factorial testing is that with many test factors, collecting all of the 

combinations may be infeasible. For example, if there are seven factors being 

considered, even with only two levels (varied and not varied) there are 27 = 128 possible 

test conditions. In this case it is tempting to adopt the one-at-a-time approach which 

requires only 8 conditions, allowing us to consider expanding the design to include more 

levels per factor. 
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Table 3.2 Full Factorial Conditions for Three Factors 

Condition Turret 
Articulation 

Camouflage Revetments 

1 No No No 
2 Yes No No 
3 No Yes No 

4* Yes Yes No 
5 No No Yes 

6* Yes No Yes 
7* No Yes Yes 

g** Yes Yes Yes 
Note: * two-factor interaction, ** three-factor interaction 

Fortunately, it is not necessary collect all 128 conditions for the full design. The full 

design allows us to estimate the effect of every combination of multiple factors 

(including the effect of varying all seven factors at once). We do not expect all these 

effects to each be significant. In fact, since our response is bounded, once we have 

degraded performance effectively to zero, varying more factors cannot significantly 

degrade performance. To take advantage of this knowledge we utilize the concept of 

fractionation. 

Consider again the original example with only three factors. If we are limited to 

only four test conditions, we can choose those conditions that allow us to extract the 

maximum information about the entire set of possible conditions. The information in 

Table 3.3 represents a half-fraction of the full collection design. If we only collect those 

runs that are not shaded, we can still estimate the effects of single factors. 
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3.1.4.   Potential Benefits of Factorial Design and Fractionation. 

By designing factorial experiments, we ensure that we will be able to estimate our 

performance under every possible combination of these factors. Another benefit is that 

for each factor, we collect four observations for every level. 

Table 3.3 Half-fraction of Full Factorial Conditions for Three Factors 

Condition Turret 
Articulation 

Camouflage Revetments 

SOC No No No 
Yes No No 
No Yes No 

Turret & Camo Yes Yes No 
No No Yes 

Turret & Revet Yes No Yes 
Camo & Revet No Yes Yes 

Yes Yes Yes 

Finally, all factors are orthogonal in the design matrix (i.e., for each factor, we collect 

observations at both levels for every combination of the other factors). Figure 3.1 

illustrates these characteristics. 

There are twice as many conditions for the factorial experiment so we fractionate 

to manage the test design. The benefit of fractionating our factorial designs is that we 

can reduce our condition matrix, and as we increase the number of factors we want to 

estimate, we also increase the number of estimable interactions. Figure 3.2 shows the full 

factorial and fractional factorial designs. The three factor design may not be the best case 

for demonstrating the utility of fractionating designs. 
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One-at-a-time Design 

Three observations   One observation 
without revetments   with revetments 

Factorial Design 

Same conditions collected with revetments 
as collected without revetments 

Figure 3.1 Comparison of One-at-a-time and Factorial Conditions in Three Factors 

Consider a test in which we want to collect performance data on seven factors. Recall 

that with seven factors, each with two levels, there are 128 possible combinations. If we 

select conditions using a technique called fractionation (resulting in some higher order 

multiple effects becoming "aliased" with other effects, and inestimable), we can elect to 

run only 16 of the 128 total conditions (a l/8th fraction) and still estimate the effects of all 

seven factors and their two-factor interactions. By using fractional designs we give up 

the ability to distinguish between many lower and higher order factor effects. We accept 

this loss because we do not expect complex high order interactions to have a significant 

effect on performance. With this in mind, we fractionate large designs to either reduce 

the size of infeasible condition matrices, or gather more information in the same number 

of collected conditions. 
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Full Factorial Design 

All possible conditions with three 
factors and two levels per factor 

Fractional Factorial Design 

Only half the full factorial 
conditions selected for collection 

4 
Revqtment 

Figure 3.2 Comparison of Full and Fractional Factorial Conditions in Three Factors 

3.2.      Phase 2: Data Collection 

Oversights in the second phase of testing, data collection, are less serious, but 

recovery is often prohibitively difficult. Efficient data collection includes measuring any 

factors (controlled or otherwise) that may affect our dependent variable, and allowing our 

overall test design to react to unforeseen phenomena in the data. Coarse measurement of 

background factors and inflexible design imply an assumption that our current knowledge 

of the test outcome is sufficient to reject the possibility of phenomena more complex than 

our results can be used to estimate. 

3.2.1.   Current Collection Methodology: Coarse Data and One Shot Collection. 

Coarse data characterization, as we identified in chapter 2, is a fact in ATR 

performance evaluations. Another practice is waiting until all the data has been collected 
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before performing any analysis. Recall, in Figure 1.1 the scientific method includes a 

provision to return to the design phase and refine the focus of our data collection. 

Without planning this recursion into our test (even if we do reserve some resources to 

explore in our experiment) our test collection methodology is effectively a one shot 

effort. By delaying (or not developing the capability to analyze data in a short enough 

time frame), we sacrifice many opportunities. 

3.2.2. Potential for Improvement in Data Collection Methodology. 

Before collecting any data, it is important to consider what level of detail we want 

to describe our data. If the only information we record during collection is a basic 

description of the scenario, we lose the ability to enter other factors into our analysis. 

The cost of not knowing the state of factors that effect our performance is an inflated 

estimate of our background variance, which limits the power of hypothesis tests for the 

significance of our analyzed factors. Suppose the collected data contains anomalies that 

should be further explored, or some data is corrupted and cannot be used; these incidents 

might not be addressed in time to take action unless the data is examined immediately. 

These are examples of how coarse characterization and one shot collection can cost us 

opportunities to make our experiment more accurate and efficient. 

3.2.3. Recommended Improvements: Iteration and Detailed Characterization. 

We recommend a more detailed characterization of image data. In our example, 

we identify eight conditions which are determined by three variables. Recall that for 

each condition we collect images at different angles, (one for every nine degrees of 

azimuth in our example). If we record the exact azimuth we can enter this factor as 
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another variable in our analysis. Some factors may be too costly or difficult (dielectric 

coefficient for each square foot of background area) or insignificant (wind velocity), yet 

many relevant factors would be recorded if we identified them ahead of time as 

potentially important variables. 

We also recommend an iterative approach to data collection. Assume we have the 

ability to assess algorithm performance immediately after the collection of each 

successive sensor image. We can let our recent estimates of performance influence the 

collection of new data (to maximize our knowledge of the total space of interesting 

conditions). We can either expand or narrow the scope of our collection as appropriate to 

best answer our test objectives. 

3.2.4.   Potential Benefits of Iteration and Detailed Characterization. 

The benefit of iteration lies in the potential to preserve our resources for exploring 

the most significant test phenomena. If we discover that we have consistent performance 

in one condition, we can focus on test conditions where performance varies widely. If we 

find that a factor does not affect our performance, we can neglect to vary that factor in the 

remaining collection effort. An iterative collection sequence is a fundamental component 

of DOE [6] and it empowers us to focus our collection where it gains us the most 

knowledge. We use screening, characterization, and confirmation as the basic steps in an 

iterative approach. In the screening stage of testing, we can use our half fraction design 

to determine which factors (if any) have a significant effect on our performance. In the 

characterization stage, we use a better design (perhaps with more levels per factor or 

several repetitions) with the remaining factors to estimate multiple factor effects. In the 
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confirmation stage, we augment our design, for instance, to add confidence to conditions 

where we observe inconsistent performance. 

The benefit of detailed data characterization is evident if we recall the impact of 

not gathering information on a factor that affects performance. If an underlying factor 

causes performance to either improve or degrade as it varies, these fluctuations in our 

performance measures go unexplained. Unexplained variance becomes our estimate of 

noise in the data. When our noise estimate is inflated due to unmeasured factors, the 

result is lower confidence in our results, or less precision in our confidence intervals. 

3.3.      Phase 3: Data Analysis 

Our data analysis methodology has no direct impact on design or collection, but 

there is still the possibility of making poor decisions with good data by implementing 

ineffective analysis techniques. A good analysis technique should lead us to understand 

those relationships among our test variables that are relevant to our test objective. An 

appropriate technique should be selected for its effectiveness in identifying answers to 

objectives and the appropriateness of the technique assumptions. 

3.3.1.   Current Analysis Methodology: Brute Force and Normal Error. 

If we generate tables, statistics of location and scale, and scatterplots of data to 

answer test objectives, we are performing analysis solely by brute force (as opposed to 

using advanced analysis techniques to explore the data, and only plotting relationships 

that we know will be interesting). All methods for investigation can be classified as 

analysis, but with brute force, we fail to avail ourselves of efficient techniques to reduce 

our data and identify key relationships. Also, recall that in chapter 2 we revealed that our 
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interval estimation was accomplished using a standard normal model, or a normal 

approximation to the binomial distribution which is inaccurate for binary data. 

3.3.2. Potential for Improvement in Data Analysis Methodology. 

Analysis by brute force is cumbersome and is not guaranteed to reveal important 

relationships in the data. The multitude of possible graphs and tables an analyst must 

peruse to discover complex relationships is overwhelming. Time constraints, abundance 

of data, or even ignorance of its existence may cause us to overlook information that is 

relevant to our test objectives. In addition, the use of a standard normal regression model 

(the assumptions of which are necessarily violated with performance data) renders our 

confidence intervals suspect and potentially invalid. We may generate intervals that are 

unrealistically small and even fail to cover the true performance parameter we wish to 

estimate. An analysis methodology should guide us to relevant results and the 

assumptions should be appropriate for our data. 

3.3.3. Recommended Improvement: Logistic Regression. 

Logistic regression accepts our test factors and performance measures as inputs 

and produces coefficients that are used to construct a model of performance. Unlike 

linear regression, the coefficients (ß's) in logistic regression do not represent the change 

in the response for a unit increase in a predictor. Since the variance of our response 

depends on the level of the predictors, the magnitude of the effect of a predictor also 

depends on the location of the mean probability. To interpret a logistic regression 

coefficient (ß), we define the odds of detection for a given condition, with detection 

probability/?, tobe: 
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odds =  ,,1A 
\-p (3-!) 

The odds for a condition are multiplied by eß for every unit increase in the factor 

associated with ß (for multiple factors, the odds are multiplied sequentially by eßj for 

each unit increase in x„ for i=l to p, where p is the number of factors). For example, if 

our detection probability is 0.50 when factor l = 0, then the odds of detection are l.O, or a 

l in 2 chance of detection. If ß=l.l, then eß = 3 and the odds increase from l.O to 3.0 (3 

in 4 chance of detection), which is associated with a detection probability of 0.75. In 

other words, the increase in factor l triples our odds of detection. Note that if our initial 

detection probability is 0.10, the odds are 0.11 (0.11 in l.l l) and factor l triples the odd 

to 0.33 (0.33 in 1.33) or a 0.25 detection probability, so the increase depends on the 

starting point. Also, since we code our factor levels as -l and l for low and high settings 

in experimental design, a change from one level to the next is actually two units in our 

coded scale. The impact of this convention is that to estimate our factor effects from the 

coefficients, we need to double the increase in the odds. 

To make inferences about the coefficients, mean performance estimates and new 

predicted observations, we must estimate the variance-covariance matrix of the predictor 

variables. The matrix is formed by first generating the Hessian matrix from the log- 

likelihood function [18]. The entry in the i, jth cell is the second derivative of the log 

likelihood function with respect to ßi, ßj. The variance-covariance matrix is the inverse 

of the negative Hessian matrix (taking the negative of all entries). The variance- 

covariance matrix is represented by s2(b), where b is a matrix containing the parameters 

we estimate with the ß's. To calculate confidence intervals about the value of the k 

coefficient we use: 

3-12 



bk±z{i-y2)s(b)k,k 
(3-2) 

To calculate simultaneous intervals for g coefficients, for each coefficient use: 

bk±B-s(b)kk (3.3) 

where B = z{\.-a/2g). Hypothesis testing for specific effects can be accomplished by 

evaluating whether the interval contains zero. To estimate the intervals about the mean 

response at one setting of the predictor variables, let Xh be the vector of values for the 

setting of interest, then use: 

___^ 1  

l + exp(-ß'Xh+z{l-y2)^X'hS
2(b)Xh) (3.4) 

Predicted observations at a setting of a predictor variable are simply generated by 

evaluating the mean response against a classification rule (e.g., if the expected response 

at a condition is 0.6, then a " > 0.5 " classification rule would result in a prediction of 

"1", or, "success" for this case). 

Hypothesis tests for entire models, goodness of fit, and residuals can also be 

accomplished using various techniques. One hypothesis test is derived from a statistic 

called the model deviance (DEV). The deviance of a regression model is defined to be 

the difference between the log-likelihood functions using the regression coefficients in 

place of the ß's for the first function, and Y; in place of ß'X in the second function. To 

test whether two models are equivalent, we can calculate the deviance for each and the 

difference follows a chi-square distribution with p-q degrees of freedom (p predictors in 

the full model, q predictors in the reduced model). The hypothesis test goes as follows: 
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H0:ß„ßM,ßM,-ßj=0 

Ha : Not \fß = 0 

(where the ß's in H0 correspond to those omitted from the reduced model), and: 

If DEVreduced - DEVfull > x1 (l_&> P ~ <l) men reJect Ho ■ This procedure is called a 

partial deviance test. To test for goodness of fit, evaluate DEVreduced > j2(l-«,«-#) ; if 

this inequality is true, conclude the model is a good fit. Other tests are derived from the 

chi-squared distribution, and F distribution. All these techniques are complicated 

compared to brute force investigation, but the benefits make the effort worthwhile. 

3.3.4.   Potential Benefits of Logistic Regression. 

As we have demonstrated, the logistic response function is intended to estimate a 

binary response (such as detect/no detect). The assumptions previously violated are met 

with logistic regression and our approach has statistical rigor. Also, the regression 

technique is flexible and powerful, leading the analyst directly to key relationships in the 

data through coefficient magnitude and significance. The impact of not using such an 

elegant technique is potentially incomplete or misleading results, and tedious data 

investigation, effecting poor or late decisions. 

We believe our assessment of the current methodology and our recommended 

improvements are compelling, but need to be demonstrated. We assert that the potential 

for improvement exists, and in the next chapter, develop a scenario that demonstrates this 

potential. 
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4. UTILITY OF DESIGNED EXPERIMENTS: AN EXAMPLE. 

In this chapter, we use a simulated dataset to quantify the benefits of an improved 

methodology for one possible set of data. The dataset is simulated so that we can know 

the underlying population parameters and contrast the results from two methodologies. 

This discussion is organized in the following manner. 

• General discussion of approach 

• Method of data simulation 

• Application of methodologies in test phases 

Our intent in this chapter is to establish that our potential for improvement can be 

realized in a simplified scenario that is typical of an ATR evaluation. 

4.1.      Approach 

Our basic approach is to build our improved methodology by sequentially adding 

recommended improvements (methodology components) one at a time, beginning with 

the simplest improvements. Improvements in the analysis phase of testing are the easiest, 

then collection, and finally the most difficult improvements occur in the test design 

phase. 

We assert here that if we have the capability to implement difficult changes to our 

methodology, it makes sense to also implement simpler changes. This is because our 

changes in later phases of test design take advantage of changes in earlier phases. For 

example, if we design a factorial experiment for data collection, we also use an advanced 

analysis technique (like analysis of variance or regression) to analyze the data. For this 
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reason, we do not implement improvements in the design and collection phase without 

also improving the analysis phase. Similarly, we do not implement design improvements 

without collection improvements. The result is that our component-wise addition of 

recommended improvements moves backwards in the evaluation process. This approach 

has the advantage of demonstrating how our benefits increase as we improve our 

methodology further back in the test process. We identify four main improvements in 

this section that are used to develop five distinct methodologies. Figure 4.1 illustrates the 

relationship between the methodologies, methodology components, phases of testing and 

timeline. 

Time 

Test    J 
Design     | 

Data _T 
Collection     |^ 

Data    . 
Analysis 

^-^ Ideal "-"-x 
^Methodology--^    Fun Factorial 

Design? 

Factorial 
Design? 

Background 

Yariance?   /Methodology 
Logistic /       components 

Regression?^ ^ employed 

Figure 4.1 Relationship Between Test Timeline and Improved Methodologies 

4.2.      Simulating Performance Data 

Suppose we wish to collect data to evaluate the effect of turret articulation, 

camouflage and revetments on the performance of two competing ATR algorithms. 

Recall, there are eight possible conditions (see Figure 3.1 and Table 3.2) in these three 
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variables when we treat any variation in a factor as a high level and no variation as a low 

level. Suppose also that we can know with certainty the precise probability of detection 

of our target in each of these eight configurations, with adjustments for different values 

of background factors. If we use a logistic response model for performance, we have a 

mean response (determined in regression by the intercept term) and an effect for each 

factor. 

4.2.1.   Factor Effect Coefficients (the Truth Model). 

The effect of a factor on performance is denoted by an effect coefficient that is an 

input to the logistic response function. If we let (-1) denote a condition where factor A is 

not varied and (1) denote a condition where factor A is varied, then Figure 4.2 illustrates 

the relationship between factor levels, effect coefficients, and performance using a 

logistic response model. In this form, a set of coefficients (an intercept coefficient and 

one additional coefficient per factor) determines the performance for every condition. 

Since noise exists in our observed performance (denoted by curves in the figure), we 

expect our performance estimates to converge to the known performance parameters, 

based on our model. Two hypothetical sets of coefficients for competing algorithms are 

shown in Table 4.1. We use these coefficients to generate simulated data. 
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Effect coefficient (ß) multiplied 
by coded factor levels 

ß-(l) ß-(0) ß-(-l) 

Performance = 
1 

1 + exp(-/? • factorlevel) 

Factor 
effect 
▼ 

Mean 
response 

No factor 
effect 

T 

Probability of Detection (%) 
100 

Figure 4.2 Relationship Between Coefficients and Response in Logistic Regression 

Table 4.1 Hypothetical Factor Effect Coefficients for a Logistic Response 

Coefficients 
Mean 

Response 
Turret Camouflage Revetments 

Algorithm 1 1.2 -0.5 -0.6 -0.7 
Algorithm 2 0.5 -0.3 -0.4 -0.5 

In addition, we include coefficients that further perturb performance by creating an effect 

for an unknown background factor and all multiple factor effects. If two factors interact, 

the effect of one factor depends on the level of the other factor. Including multiple 

effects allows the degrade due to two factors to have a magnitude greater than the sum of 

the degrades due to each individual factor. The coefficients for each additional factor are 

in Table 4.2. 
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Table 4.2 Hypothetical Multiple Factor Effect Coefficients for a Logistic Response 

Coefficients 
Unknown 

Background 
Factor 

Turret/ 
Camo 
Effect 

Turret/ 
Revetment 

Effect 

Camo/ 
Revetment 

Effect 

Turret/ 
Camo/ 

Revetment 

Algorithm 1 -0.01 -0.1 -0.2 -0.3 0 

Algorithm 2 -0.01 0 -0.05 -0.05 0.1 

4.2.2.   Performance Calculations (Simulating Observations). 

Using coefficients as inputs to the logistic response function (for each algorithm), 

we can calculate performance by varying the factor level settings (Equation 2.8). Table 

4.3 contains the results from these calculations. These probabilities are our known 

parameters that we estimate in ATR performance evaluations. 

Table 4.3 Calculated Detection Probabilities Using Hypothetical Effect Coefficients 

Factor Level Probability of Detection 
Turret Camouflage Revetments Algorithm 1 Algorithm 2 

-1 -1 -1 0.90 0.78 
-1 -1 0.85 0.73 

-1 1 -1 0.85 0.68 
1 -1 0.85 0.66 

-1 -1 0.73 0.52 
-1 0.64 0.44 

-1 1 0.54 0.40 
1 0.19 0.28 

We use our known parameters to generate random data for each condition, and across all 

levels of our background factor. Error is introduced into the dataset by generating 

random observations from several Bernoulli random variables with the same parameters 

as our known population (see Law et. al. [14]). To generate a random observation from a 
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Bernoulli distribution with parameter p, we first generate a random uniform number 

between 0 and 1. If the random number is less than or equal to our parameter p, our 

observation is classified as a success (detection), otherwise it is a failure. 

4.3.     Results Using Current Methodology 

Recall that if we use a one-at-a-time approach, our design matrix is shown in 

Table 3.1. With four test conditions, we collect images from all aspect angles (one image 

every nine degrees) around the target of interest. This yields 40 images per condition, a 

total of 160 images for algorithm evaluation. After data collection, we have one 

observation (either detected or not detected) for each image and algorithm (320 total 

observations). Using our simulated data set, there are many tables and graphs we can 

generate to explore the performance of the two algorithms. Table 4.4 shows the mean 

performance for each condition (translated into a degrade from the baseline condition). 

Table 4.4 Mean Detection Probabilities Using Simulated Data (One-at-a-time Conditions) 

Algorithm Probability of Detection (%) 
Performance Algorithm 1 Algorithm 2 

soc 0.98 0.85 
Turret -0.10 (.88) -0.00 (.85) 

Camouflage -0.18 (.80) -0.10 (.75) 
Revetment -0.20 (.78) -0.15 (.70) 

Notes: SOC = Standard Operating Condition 
Last three rows represent delta percent off SOC 

These performance estimates do not match exactly the known performance parameters 

due to the randomness we have inserted in the data. We see algorithm 1 performs better 

than algorithm 2 in all conditions. Furthermore, we see that including revetments induces 
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the greatest degrade in our detection capability. Using the confidence intervals defined in 

Equation 2.1, we generate confidence intervals about the mean probability of detection 

for each of the two algorithms, as shown in Figure 4.3. 

Algorithm Performance Comparison (SOC) 

1.0 

0.98 
0.85 

1     ■-■ 

t 
5=-13 

0.8 i 

Probability  0.6 
>f Detection Q 4 

0.2 

0.0 - 

1 2 

Algorithm 

Figure 4.3 Confidence Intervals for Algorithm Performance, (Standard Operating Condition) 

Using this method, the overlap of the two intervals indicates there may be insufficient 

statistical evidence to conclude the mean probability of detection for algorithm 1 exceeds 

the mean for algorithm 2. Figure 4.4 shows confidence intervals for the three single 

factor conditions. 

The following discussion addresses three concerns with this methodology. The 

first two are minor issues of statistical rigor, and the last is a concern of efficiency. First, 

the method for generating confidence intervals leaves open the possibility of intervals 

that exceed the [0, 1] boundaries of our response measure, as shown in Table 4.5. 
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Algorithm Performance Comparison (Variables) 
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12 12 12 

Algorithm 

Figure 4.4 Confidence Intervals for Algorithm Performance, Single Factor Conditions 

Table 4.5 Upper and Lower Confidence Limits for One-at-a-time Conditions 

Confidence Algorithm 1 Algorithm 2 

Intervals lower confidence upper confidence lower confidence upper confidence 

SOC 0.93 1.02 0.74 0.96 

Turret 0.77 0.98 0.74 0.96 

Camouflage 0.68 0.92 0.62 0.88 
Revetment 0.65 0.90 0.56 0.84 

Traditionally, when the intervals exceed their boundaries, the analyst truncates the 

interval so that it stops at 0 or 1, as appropriate. Second, the lack of any hypothesis test 

omits the possibility of answering test objectives directly. For example, if the objective 

is: "Determine which algorithm performs better in the SOC case", an indirect answer 

might be: "The mean of algorithm 1 is greater than algorithm 2 for this sample data", 

caveated with: "there is overlap in the 95% confidence intervals". A direct (and 

therefore more desirable) answer is: "We are 95% confident that the mean of algorithm 

one is greater than algorithm two by at least '8' percentage points", where 8 can be 

specified beforehand. The only mathematical difference between these two answers is 
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that the second relies on paired differences (see Equation 2.3) but this slightly modified 

approach allows more powerful statements. Our concerns regarding interval boundaries 

and hypotheses are easily remedied by taking advantage of the fact that we know our data 

comes from the binomial class of distributions, and using the logistic response function. 

The last concern is over the cumbersome task of relying on exploration of graphs 

to identify important relationships in the data. Our example only includes one target, 

three factors, two algorithms, and assumes we are not interested in confusors (false 

targets), environment, background, etc. If we are tasked with comparing several 

algorithms across 20 targets, 50 factors, and multiple backgrounds and environments 

including confusors, we need to observe hundreds of tables and graphs just to make 

simple conclusions. Even in our simple example, we could make dozens of other 

comparisons and draw more conclusions. It is more convenient to use a tool that can help 

us identify interesting phenomena in a more efficient manner (and guarantee that the rest 

of the data contains no interesting information). 

4.4.      Implementation of Improvements in Phase 3: Data Analysis 

Here, we will apply both the standard and proposed analysis methodologies to a 

simulated data set and observe the differences between the two sets of results. We will 

demonstrate that logistic regression and hypothesis testing is a preferable analysis 

approach even with a simple, small test. 

4.4.1.   Results Using Logistic Regression 

We have already described the technique called logistic regression at length, so 

we now provide results from performing a logistic regression on the data analyzed 
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previously by brute force. Figure 4.5 illustrates the basic process in logistic regression 

and shows that the output becomes the input for the logistic response function. 

X,: X?: Y: 
-1 -1 1 

-1 
-1 1 0 

1 0 

• • • 
rv 

Logistic 
Regression 

T(XI=-1,X2=1) = 
exp[/?0+ #•(-!) +& ■(!)] 

l-exp[/?0 + # •(-!) + ß2 •(!)] 

Figure 4.5 Logistic Regression Process for Binomial Response Data 

Given our inputs, (independent variables and binary dependent variable) the technique 

provides us with coefficients that allow us to estimate the probability of observing a "1" 

in the response variable, given the settings of the predictor variables. Using the three 

factors as predictors in a logistic regression model (coded appropriately) results in Table 

4.6. The values in the estimate column are the ß's in our model, analogous to linear 

regression coefficients in that we multiply them by the coded variables, but the mean 

response is calculated via the logistic response function (Equation 2.8). We are also 

provided with the standard error of the ß coefficients so that we can perform hypothesis 

tests on the significance of factor effects (p-value columns). 
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Table 4.6 Logistic Regression Output, Three Factors, One-at-a-time Design 

Logistic 
Regression 

Results 

A qorithm One A gorithm Two 

Estimate 
Standard 

Error 
p-value 
(5C2 test) 

Estimate 
Standard 

Error 
p-value 
(%2 test) 

Intercept 0.453 0.623 0.468 0.973 0.401 0.015 
Turret -0.859 0.560 0.125 0.000 0.313 1.000 

Camouflage -1.139 0.544 0.036 -0.318 0.287 0.268 
Revetment -1.213 0.541 0.025 -0.444 0.281 0.114 

Note: If p-va ue < 0.05, we reject the null hypothesis (b = 0) and accept the 
value in the estimate column as a significant effect. 

The standard error column is the standard deviation of the value in the estimate column. 

The p-value is the probability of obtaining the value in the estimate column (or greater) 

when the true value we are estimating is actually zero, based on a Wald chi-squared test. 

At a glance, only camouflage and revetments under algorithm 1 and the intercept term 

under algorithm 2 are greater than two standard errors from 0. Not coincidentally, if we 

had used a threshold of "<5%" to identify which effects were certainly not zero based on 

the p-value, we would select the same effects we selected before. If we use the logistic 

response function (Figure 4.5) with the coefficients in Table 4.6, we obtain the 

performance estimates in Table 4.7. 

Table 4.7 Estimated Performance Using Logistic Response (One-at-a-time Conditions) 

Algorithm Probability of Detection (%) 
Performance Algorithm 1 Algorithm 2 

SOC 0.98 0.85 
Turret 0.88 0.85 

Camouflage 0.80 0.75 
Revetment 0.78 0.70 

Notes: SOC = Standard Operating Condition 
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It is interesting that our calculations of the mean response at each of the four conditions 

match the averages from Table 4.4. In our evaluation, we wish to test the algorithm 

effect, or whether preferring one algorithm over the other affects our performance. We 

can add an algorithm factor to the analysis by including another dummy variable to 

represent algorithm 1 and 2. We code the algorithm factor [-1,1]. Traditionally, we 

code dummy variables [0,1]; here, the p-values for the algorithm factor and the algorithm 

interactions do not differ for the two coding schemes. The results of this regression are in 

Table 4.8. 

Table 4.8 Logistic Regression Output (p-values only), Three Factors Plus Algorithm Effect 

Effect p-value 
Turret 0.181 

Camouflage 0.018 
Revetment 0.007 

Algorithm 0.483 
TurrefAlgorithm 0.181 
Camo*Algorithm 0.182 
Revet* Algorithm 0.206 

In this regression, we include three additional inputs whose values are the product of the 

coded values of each original factor and the algorithm factor. Including these as separate 

factors allows us to test whether an interaction exists between the two factors (we say the 

variables interact if the effect of each factor depends on the setting of the other factor). 

Based on the p-values in Table 4.8, we have evidence to conclude that the camouflage 

and revetment effects are not zero and are therefore statistically significant. If we trust 

this technique, we believe it is acceptable to graph these effects and ignore the rest since 

they are statistically insignificant. Figure 4.6 shows the percent degrade in performance 
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when each of our significant factors is varied (with confidence intervals based on 

Equation 2.2). 

Percent Degrade in Performance 
(from SOC) 

1.0 

0.8 
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Degrade 0.4 n 17 0.21 

0.2 

0.0 

Camo Revet 
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Figure 4.6 Performance Degrade from SOC (Due to Camouflage and Revetments) 

To illustrate why no other effects are significant, consider the algorithm effect and its 

related interactions. If we break the camouflage and revetment effects up into algorithm 

one and two, we see similar results for both algorithms (see Figure 4.7). 

0.98 
1.0 
0.8 

Probability 0.6 
of Detection 0.4 

0.2 
0.0 

Algorithm Performance 

O80    0.78     °J^     0.75 0.70 

Algorithm 1 Algorithm 2 

SOC   Camo Revet   SOC   Camo Revet 

Factor 

Figure 4.7 Performance Degrade Due to Camouflage and Revetments (Algorithms Separated) 
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Not only is there overlap for like conditions, but since the interactions are insignificant, 

the trend in each graph is the same. Figure 4.8 shows the effects with both algorithms 

combined. 
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Figure 4.8 Performance Degrade Due to Camouflage and Revetments (Algorithms Combined) 

Comparing Figures 4.7 and 4.8 shows that displaying results for both algorithms yields 

little additional information than a graph which combines the results, as we expected. 

Using the effect test to identify the types of graphs or tables that are most interesting is an 

efficient and effective means to analyze data. 

4.4.2.   Results Using Improved Confidence Intervals. 

In all our graphs, we are using the normal approximation to the binomial 

distribution to generate confidence intervals and we have not stated how we might use 

hypothesis testing to answer test objectives. If we use the intervals defined in Equation 

2.10 (replacing Z(\-ai2) with Z(\-aJ2z) where g is the number of intervals we are generating), 
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then the Table 4.9 contains the new confidence intervals for the same conditions in 

Table 4.5. 

Table 4.9 Confidence Intervals and Mean Response Using Logistic Regression 

Logistic Algorithm 1 Algorithm 2 
Response C.l.'s Lower Mean Upper Lower Mean Upper 

SOC 0.71 0.98 1.00 0.63 0.85 0.95 

Turrel 0.66 0.88 0.96 0.63 0.85 0.95 

Camouflage 0.58 0.80 0.92 0.53 0.75 0.89 

Revetments 0.55 0.78 0.91 0.48 0.70 0.86 

The intervals in Table 4.9 are wider than the intervals generated using the normal 

approximation because we have actually calculated Bonferroni simultaneous intervals (so 

that we have 95% total confidence in the results of the table above). The total confidence 

in Table 4.5 is less than 67% due to the compounding of the error probability inherent to 

calculating multiple intervals. If we calculate 95% confidence intervals for the same 

conditions as Table 4.5, but using the logistic response, then Figure 4.9 shows the result. 

Algorithm Performance (Logistic Response) 
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Figure 4.9 Confidence Intervals Using Logistic Regression By Algorithm 
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To illustrate that these intervals are more representative of the data we are estimating, 

consider that the sum of the Bernoulli observations has a binomial distribution so the 

parameter we are estimating (probability of detection) also has a binomial distribution 

(divided by the number of repeat samples). By generating intervals with the logistic 

response (with coefficients based upon a Bernoulli distribution) we obtain the correct 

confidence. The former method is only an approximation of our confidence for the 

intervals generated. Also, note that the logistic response function intervals are bound 

between 0 and 1. 

4.4.3.   Results Using Hypothesis Testing. 

Suppose we wish to test the hypothesis that a reduced model is sufficient to 

explain the variance in the data. Recall that the logistic regression results in only two 

significant parameters: camouflage and revetments. We can re-estimate our regression 

coefficients using only these two predictors and evaluate the difference between the 

deviance statistics of the original (full) model and our new (reduced) model. The 

deviance for the full model is 123.2 (a measure of our prediction error using this model) 

and the deviance for the reduced model is 125.9. Since the test statistic, 

DEVredllced -DEVfulI = 2.7 is less than ^2 (.05, p -q) = 11.07 (where there are p 

predictors in the full model and q predictors in the reduced model), we accept H0 and 

conclude the reduced model is sufficient. To test for goodness of fit, we use the reduced 

model deviance; since 125.9 is less than j2 (.05,n-q) = 359.5, we accept H0 and 

conclude the model is a good fit. To test whether the effect of the algorithm type is 

significant, we use the full model and hypothesize: 
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using the statistic, z* = baigorithm/s(baigorithm) = .7 we see that |z*| < z(l-a/2) = 1.96 so we 

accept Ho and conclude that no evidence of a difference between algorithms exists. 

4.4.4.   Benefits of Improved Methodology. 

In summary, the main improvement is the use of logistic regression. We use 

logistic regression to efficiently identify significant relationships in the data, construct 

appropriate confidence intervals, and perform hypothesis tests. For our simulated data, 

the regression technique leads us directly to the most significant results, that the 

camouflage and revetment factors degrade performance and the algorithms perform 

nearly the same. Also, we construct intervals that are based on our data distribution and 

cannot exceed our data boundaries. Finally, we use hypothesis testing to verify that our 

reduced model (performance based on camouflage and revetments) is sufficient and the 

two algorithms are not statistically different. We realize these benefits without changing 

the method of data collection. 

4.5.      Implementation of Improvements in Phase 2: Data Collection 

In this section, we explore the potential benefits of an iterative data collection 

scheme as well as detailed data characterization. We increase the detail of our 

characterization of data and demonstrate that the benefits are realized in the analysis 

phase. We retain the improvements made in the analysis phase, so our updated 

methodology has improvements in both the collection and analysis phases. Our 

simulated data is relatively small and does not lend itself well to demonstrating iterative 
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techniques. We will take an excursion from our example to illustrate the technique, but 

we will return for the remainder of our research to the simplified problem (three factors 

with two levels each). When we evaluate our results using a detailed data 

characterization, we assume that all recommendations from the analysis phase are 

implemented. 

4.5.1.   Results Using Iteration. 

Recall that the steps we identified in an iterative scheme are screening, 

characterization, and confirmation. Rather than generate new data to illustrate these 

steps, consider the following: We return to the example in which we have 7 factors of 

interest. Our first objective should be to identify any factors that do not affect 

performance and neglect to vary them for the remainder of testing. To accomplish this 

we do not need a detailed characterization of every factor, instead we will select two 

levels for each factor (preferably near its extreme settings) and build a simple 

fractionated design that will allow us to estimate the single effect of each factor and 

possibly some (but not all) of the multiple factor effects. 

One possible approach would be to generate a l/8th fractional design with only 16 

conditions total. Using these runs we can estimate the single factor effects and the two- 

factor effects. Suppose three of the factors have negligible effects on performance 

(including their interaction with other variables and each other), then the results from this 

experiment might drive us to omit those three factors from further consideration. In the 

characterization step we could generate a more powerful design for the remaining four 

factors allowing us to estimate all interactions (a full factorial experiment). This design 

consists of 24 = 16 conditions plus any additional conditions (like repetitions and center 
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points); with four center points and two repetitions we have 2 -16 + 4 = 36 conditions. 

Having characterized the variable space, we may suspect that one or two variables have a 

complex relationship. We might generate a design with two factors but more levels to 

focus on the nature of their effects. A possible design could be a 52 design, or a factorial 

experiment with two factors and five levels per factor, yielding 25 conditions. Better yet, 

we could use more advanced designs, like a central composite design which tests five 

levels in fewer runs (about 11 in total for two factors). 

To test every combination of seven factors with five levels would require over 

78,000 collected conditions. In the example above we use 16 + 36 + 11 = 63 conditions 

to identify factors that do not affect performance, estimate the effects of significant 

factors, and characterize the nature of non-linear effects. This example can not capture 

the numerous possible scenarios encountered in ATR performance evaluations, but an 

experienced analyst can use iteration in this manner to improve the efficiency of testing. 

4.5.2.   Results Us ing Detailed Data Characterization. 

Recall, our improved results from the analysis phase using simulated data were 

generated using turret, camouflage, revetments, and an algorithm factor as the four 

predictor variables in a logistic regression. If we record the azimuth for each image 

collected, we could include this factor as a predictor in the regression. Experience from 

past tests reveals that performance tends to degrade as our aspect angle approaches one of 

the diagonal axes of the target. To include azimuth in such a way that a regression 

coefficient will make sense, consider this recoding of the azimuth variable: Let the value 

of the azimuth variable be equal to the absolute value of the smaller angle between the 
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aspect angle and either the longitudinal or lateral axes of the target. Figure 4.10 

illustrates this recoding. 

—. Ssv            "^N  Perceiver 

Lateral 

e s ̂  
Axis 5 Revised Azimuth 

Longitudinal 
Axis 

Figure 4.10 Shorter Angle From Target Axes (Revised Azimuth Measure) 

We can now regenerate our logistic regression table including both algorithm and 

azimuth as prediction variables. Table 4.10 shows the results of a logistic regression 

including all five variables. We see that azimuth does not seem to have much of an effect 

on the detection probability, even so, we will show that our results improve when we 

include azimuth in the analysis. 

Table 4.10 Logistic Regression Output, Three Factors Plus Algorithm and Azimuth 

Logistic 
Regression 

Results 

All data combined 

Estimate 
Standard 

Error 
p-value 
(X2 test) 

Intercept 1.084 0.409 0.008 
Turret -0.256 0.257 0.319 

Camouflage -0.559 0.240 0.020 
Revetment -0.662 0.236 0.005 

Algorithm -0.246 0.151 0.104 
Azimuth -0.008 0.011 0.456 
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In order to demonstrate improvement, consider again the table containing confidence 

intervals for each of the collected conditions. If we have included azimuth in the 

regression, then we can generate a confidence band about the function that represents 

performance versus azimuth or generate confidence intervals at specific azimuth settings. 

The graphs in Figure 4.11 show the performance versus azimuth with confidence bands. 

Algorithm 1 Performance Algorithm 2 Performance 

15    20    25 

Azimuth 

35    40    45 0      5     10    15    20    25    30    35    40    45 

Azimuth 

Figure 4.11 Algorithm Performance Versus Azimuth (SOC) 

We see in the graph above that Algorithm 1 performs better on average across our four 

conditions, but we also see that performance degrades slightly in both cases as our 

recoded azimuth increases. We also have 95% Confidence Bands above and below the 

mean performance line. In addition to this added information, we are no longer restricted 

to making inferences that are averaged across azimuth. We can make stronger inferences 

by estimating performance at any collected azimuth. For instance, Table 4.11 has 

confidence intervals for mean performance at the highest azimuth setting. From Table 

4.11, we can make inferences about performance at each condition for our worst case 

(azimuth = 45 degrees) and thus establish a lower bound for detection probabilities. We 
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could also calculate intervals for the best case (azimuth = 0 degrees) or even for some 

intermediate case. 

Table 4.11 Confidence Intervals Using Logistic Response At 45 Degrees Azimuth 

Logistic Algorithm 1 Algorithm 2 
Response C.l.'s Lower Mean Upper Lower Mean Upper 

SOC 0.80 0.96 0.99 0.68 0.86 0.95 
Turret 0.69 0.87 0.95 0.62 0.81 0.92 

Camouflage 0.51 0.71 0.86 0.57 0.77 0.89 
Revetments 0.48 0.68 0.83 0.52 0.72 0.86 

If we compare these intervals to the intervals in Table 4.5 (azimuth not included), we see 

now that our former intervals are wider than our new intervals. This is due to the fact 

that we have explained some of the variance in the data using the azimuth variable and 

reduced our estimate of noise. If the magnitude of the effect of azimuth on performance 

is greater, the improvement is more dramatic. 

Based on these results, we can postulate that with a reduced estimate of variance, 

we can detect effects with greater accuracy and make stronger assertions with our 

hypothesis tests. For example, we could construct a test to determine whether the 

coefficient associated with the algorithm effect is different from zero (hence, concluding 

that one algorithm outperforms the other). This test has the form: 

•"0 • /^Algorithm = ^ 

"a • /^Algorithm ^ " 

using the statistic, z* = ßAigorithm/s(ßAigorithm) = 1-63 we see that |z*| < z(l-a/2) = 1.96 so 

we fail to reject H0 and continue to conclude that the two algorithms perform identically, 

however, note the following. In our first hypothesis test using ß Algorithm, our test statistic 

is 0.7 (equivalent to a 24.2% probability that our test statistic could occur when ß is 
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actually 0). In our recent trial, our test statistic of 1.63 is associated with only a 5.2% 

probability that we could observe 1.63 when ß= 0. If we are willing to accept a 12% 

probability of error (two sided test), we would conclude that /?Algorithm * 0. If the effect of 

algorithm were greater, we could reject the null hypothesis with our preferred error 

probability of 5%. The point of this exercise is simply to demonstrate that explaining 

part of our random variance through background factors can increase our knowledge of 

the factor-space without collecting additional data. 

4.5.3.   Benefits of Improved Methodology. 

The main improvement in this phase is detailed data characterization. We discuss 

iteration, but do not generate separate data to calculate results using iteration. We find 

that with a more detailed characterization of data, we have the potential to reduce our 

estimate of noise, improve the efficiency of confidence intervals (as a result of noise 

reduction), and we improve our capacity to detect significant effects. In our simulated 

data, the azimuth effect is relatively small. We believe this scenario is near worst case 

(no azimuth effect) for a methodology that sets out to collect detailed image information. 

In a more realistic scenario, there may be multiple, currently unmeasured factors that 

have large effects on performance. To gain the benefits of these improvements, we 

expend additional resources to gather detailed information, but we still have not increased 

or changed the conditions we collect. The most effective means to reduce noise in the 

test is to collect repetitions of each test condition. Currently, images collected for the 

same condition, but at different azimuth angles are counted as repetitions. We 

recommend repeating collection of conditions to obtain repetitions at each azimuth as 

well. Planning to collect repetitions would occur in the design phase. 
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4.6.     Implementation of Improvements in Phase 1: Test Design 

In this section, we demonstrate the benefit of estimating interactions among our 

variables by including observations from conditions not collected under the one-at-a-time 

methodology. We use the coefficients from Tables 4.1 and 4.2 to generate random data 

for the four conditions in our full factorial design not included in the one-at-a-time design 

(Tables 3.1 and 3.2). First, we compare the results from a full factorial experiment to the 

results from a one-at-a-time experiment (implementing all techniques from the two 

previous sections). Then, we compare the results from a fractional factorial experiment 

with the one-at-a-time experiment so that we are comparing methodologies under equal 

circumstances (same number of data points). Recall that for our factorial experiment 

there are eight conditions (see Table 3.2). If we fail to collect data at the conditions that 

involve two or more factors being varied, our only estimate of performance at these 

conditions can be constructed using an additive model. To estimate performance at any 

multiple factor condition, we first calculate the degrade in performance for each of the 

single effects present in the new condition and add the degrade factors to get a new, 

estimated degrade factor. For example, the performance at the SOC condition 

(algorithm 1) is 98% detection, and the performance estimates when turret and 

camouflage are varied in turn are 88% and 70%, respectively. To estimate the effect of 

varying turret and camouflage simultaneously, we observe that the degrade factors due to 

each variable are 10 and 18 percentage points, then we add the factors to get a 28 

percentage point degrade. This results in an estimate of 62% probability of detection for 

this case. Table 4.8 shows the degrade factors and hypothesized performance estimates 

for all conditions. If the conditions associated with the latter four effects in Table 4.11 
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are never collected, we have no means to test our hypothesis that the effects are additive. 

Given the data above, we are in the uncomfortable situation of estimating that 

algorithm 1 outperforms algorithm 2 in the first four conditions and guessing that 

algorithm 2 outperforms algorithm 1 in the latter four conditions. 

Table 4.12 Performance Degrade Using an Additive Model for Multiple Effects 

Additive Model 
Degrade in Performance 

(Performance estimate %) 

Algorithm 1 Algorithm 2 
SOC 0 (.98) 0 (.85) 

Turret -.10 (.88) 0 (.85) 
Camo -.18 (.80) -.10 (.75) 
Revet -.20 (.78) -.15 (.70) 

Turret + Camo -.28 (.70) -.10 (.75) 
Turret + Revet -.30 (.68) -.15 (.70) 
Revet + Camo -.38 (.60) -.25 (.60) 

All Three -.48 (.50) -.25 (.60) 

At this point, it is not clear which algorithm is superior. Before completing our 

recommendations, we will consider a design in which we collect data for all conditions. 

This is our ideal methodology, the final step is to fractionate our full factorial design and 

complete our improved methodology. 

4.6.1.   Results Using a Full Factorial Design. 

In our simulated data set, we intentionally cause variables to interact to illustrate 

the potential loss of information inherent to one-at-a-time experimentation. Table 4.12 

contains the results from additional observations collected from the multi-factor 

conditions. It appears from Table 4.13 that algorithm 1 outperforms algorithm 2 in all 
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but the last condition. If we desire an algorithm that will perform well in most 

conditions, we might prefer algorithm 1, if we want an algorithm that does not perform 

worse than 33% detection (three-way interaction), we might prefer algorithm 2. 

Table 4.13 Performance Degrade Using Collected Data (Full Factorial Design) 

Collected Data 
Degrade in Performance 

(Performance estimate %) 
Algorithm 1 Algorithm 2 

SOC 0 (.98) 0 (.85) 
Turret -.10 (.88) 0 (.85) 
Camo -.18 (.80) -.10 (.75) 
Revel -.20 (.78) -.15 (.70) 

Turret + Camo -.25 (.73) -.37 (.48) 
Turret + Revet -.30 (.68) -.47 (.38) 
Revet + Camo -.50 (.48) -.42 (.43) 

All Three -.85 (.13) -.53 (.33) 

Figures 4.12 and 4.13 contrast the results from both methodologies; confidence intervals 

are generated using the normal approximation for the one-at-a-time data (additive model) 

and logistic regression for the factorial data (logistic response model). From the graphs, 

we see that the additive model is nearly sufficient (with the exception for the three factor 

effect) for algorithm 1, but grossly overestimates performance for algorithm 2. In both 

cases, our intervals based on collected data (factorial data) cover the true mean. 
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Figure 4.12 Confidence Intervals for Multiple Factor Conditions Using Additive Model and 
Collected Data (Algorithm 1) 
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Figure 4.13 Confidence Intervals for Multiple Factor Conditions Using Additive Model and 
Collected Data (Algorithm 2) 

4.6.2.   Results Using a Fractional Factorial Design. 

In the previous section, we compared factorial data to one-at-a-time data and 

found that collected estimates are preferable to an additive model. This comparison is 

biased since we have the benefit of twice as much data for the factorial design. Suppose 
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we are constrained from collecting all eight conditions. To compare methodologies 

under similar circumstances, we analyze only a half-fraction of the designed data and 

compare the analysis with the standard results. If we use only the data from the runs 

identified in Table 3.3 as a fractional design, we can use the results from a logistic 

regression to estimate performance for all eight conditions. The graphs in Figures 4.14 

and 4.15 show the performance estimates for all eight conditions, compared with the 

known means. We see in these two graphs that we can successfully capture the true 

means for all cases without expending more resources, by selecting a more effective and 

efficient design. 
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Figure 4.14 Logistic Response Confidence Intervals Using Fractional Design (Algorithm 1) 
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Figure 4.15 Logistic Response Confidence Intervals Using Fractional Design (Algorithm 2) 

Again, to be sure the comparisons are fair, we can use the logistic regression technique 

with the one-at-a-time data to determine whether we cover the true means. The results 

are in Figures 4.16 and 4.17. 
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Figure 4.16 Logistic Response Confidence Intervals Using One-at-a-time Design (Algorithm 1) 
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Figure 4.17 Logistic Response Confidence Intervals Using One-at-a-time Design (Algorithm 2) 

Using logistic regression, we have improved our intervals to cover the true means 

(again, demonstrating the superiority of logistic response confidence intervals), but our 

intervals are still much wider than with our fractional design and our estimates of the 

means are far from the known values. We can see the improvement in our estimates and 

inferences (confidence intervals), but the benefits of using designed data are also 

manifested in hypothesis testing. Recall that the statistic for testing whether the 

coefficient for the algorithm effect is significant has the form: z = ßAigorithm/s(ßAigorithm) , 

where we compare the statistic to z(l-a/2) = 1.96. With the one-at-a-time data, our 

statistic is approximately 0.7, leaving us inconclusive as to whether one algorithm is 

better than another (across all conditions). The statistic using the fractional data is 3.26 

(which is much greater than our critical value of 1.96) and we can now conclude, with 

95% confidence, that algorithm 1 outperforms algorithm 2 on average. Using the logistic 

regression coefficient for the algorithm effect (-0.56), we estimate that the resultant 
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degrade in the odds of detection for any condition due to selecting algorithm 2 instead of 

algorithm 1 is approximately 57% (exp(-.56) = .57). This means that if algorithm 1 

detects with 90% accuracy (odds = 9 in 10 chance), we estimate that algorithm 2 would 

detect with about 75% accuracy for the same condition (odds = 9-(.57) = 2.9 in 3.9 

chance). To verify this, we set the azimuth to 5 degrees, and find that our estimate using 

the regression coefficients for algorithm 1 performance is 90% (for the camouflage only 

condition). Our estimate for algorithm 2 is 76%, very close to 75%, as we estimated 

from Figure 4.11. The tests we can perform and inferences we can make about the true 

performance are flexible and numerous; reporting results in this manner is statistically 

more rigorous than making assertions based on graphs and tables. 

4.6.3.   Benefits of Improved Methodology. 

We conclude the implementation of our recommendations by modifying our data 

design in two ways. First, we consider a factorial design in which we select levels for 

each factor and construct conditions that cover the entire spectrum of possible factor 

combinations. Next, we fractionate our design to reduce the number of conditions 

necessary to gather the information we need. Finally, we show that the intervals from our 

fractional factorial design cover our known parameters whereas an additive model of 

performance may not. By using our methodologies with simulated data, we demonstrate 

that the potential for improvement does exist. This potential is manifested in the benefits 

realized for our simulated data, which only represents one possible set of outcomes for 

our test scenario. It is possible that the benefits are not evident with another set of 

outcomes. We show in chapter 5 that the benefits of the improved methodology persist 

under a variety of outcomes for our ATR evaluation scenario. 
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5. SENSITIVITY OF BENEFITS TO VARIANCE IN 
PERFORMANCE DATA. 

In this chapter, we vary the parameters of our truth model and simulate a wide 

range of possible outcomes for our test scenario. We implement our current and 

improved methodologies and estimate the change in the benefits of our recommendations 

due to variance in the truth model. The chapter is organized as follows. 

• Variation in performance data 

• Simulation of variation 

• Characterization of a methodology 

• Measurement of the benefits of a methodology 

• Sensitivity analysis 

• Results summary 

Our objective is to demonstrate that for a variety of data, the benefits of our improved 

methodology persist. 

5.1.      Variation in Performance Data 

We have established that for one set of data, the benefits of our improved 

methodology exist. For our test scenario (3 factors, 2 levels per factor plus a background 

factor), there are endless possible outcomes in the data. Recall that our simulated data 

was built by generating observations from a Bernoulli random variable, with parameters 

determined by our known coefficients (truth model). Suppose our known parameters can 

vary. If we change the values that are the coefficients for our truth model, the 

performance for each condition changes and we generate random observations from a 
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different set of distributions. Furthermore, we can vary the coefficient for the azimuth 

factor and vary the magnitude of the azimuth effect. We can also vary the difference 

between algorithms, even simulating a range of possible differences between algorithm 

performance levels. Recall that in chapter 4 we simulate data using two distinct truth 

models (one for each algorithm) which allows us to have different detection probabilities 

for each algorithm. In this chapter we use one model with an algorithm factor. 

5.2.      Simulating Variation in Performance Data 

Here we discuss the method by which we generate multiple data sets that span the 

possible outcomes of our test scenario. In general, we take the following steps. 

• Identify key coefficients to vary and construct a prototype truth model 

• Select levels for each coefficient and build a full factorial design using 

coefficients as factors 

• Fractionate the design and generate random observations from each unique truth 

model (sensitivity design points) 

In order to encompass the broadest set of possibilities within our resources, we utilize an 

experimental design approach. 

5.2.1.   Key Coefficients for Variation. 

When we vary the value of a coefficient in a logistic response function (our 

prototype truth model), we are not varying the level of the factor (e.g., changing the 

coefficient for turret does not mean the level of articulation changes from zero to 10 

degrees). Rather, it changes the effect on performance due to the factor associated with 

the coefficient. In other words, we can force the degrade in performance due to our 
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factors (turret, camouflage, revetments, and azimuth) to increase or decrease. If the 

coefficient for a factor is near zero, changing the level of the factor does not affect 

performance. As the coefficient decreases from zero, the factor degrades performance. 

The entities that we vary in our sensitivity analysis are the coefficients for our original 

factors (turret, camouflage, revetments, and azimuth). Also, we include coefficients for 

the mean response (the intercept term in a standard regression), two and three-factor 

interactions, an algorithm effect, and interactions between the algorithm factor and two- 

factor interactions. Based on these entities, we have identified 13 coefficients that we can 

vary in our truth model. 

5.2.2.   Coefficient Variation Levels. 

We only select levels for our coefficients that induce a degrade in the detection 

probability. We select levels such that a given factor or interaction will effect either a 

very small degrade in performance or a very large degrade. Table 5.1 shows our 

coefficients and levels. 

Table 5.1 Logistic Response Function Coefficients Varied in Sensitivity Analysis 

Coefficient Varied Low level High level 
Mean Response 0 (50% detection) 4 (98% detection) 

Turret 

-0.1 
(20% approximate reduction in 

detection odds) 

-1.1 
(90% approximate reduction 

in detection odds) 

Camouflage 
Revetment 
Two-way Interactions 
Three-way Interaction 
Algorithm 
Algorithm/Turret/Camo 
Algorithm/Turret/Revetment 
Algorithm/Camo/Revetment 

Azimuth 
-0.009 

(1% approximate reduction in 
detection odds per degree) 

-0.120 
(10% approximate reduction 
in detection odds per degree) 
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Varying the mean response coefficient changes the average performance across all 

conditions, the location of the mean probability. Varying single factor coefficients 

changes the effect of those factors. Changing interaction coefficients induces complex 

relationships between the factors involved in that interaction. Using these 13 coefficients 

and levels, there are 213 = 8192 unique combinations. Each combination is a set of 

coefficient values that can be input to the logistic response function to form a unique 

truth model. We use fractionation to reduce this number to a manageable size. 

5.2.3.   Truth Model Set. 

We select a 1/256 fractional design for sensitivity analysis. The result is 32 

coefficient sets that represent a broad cross section of the numerous possibilities 

(resolution IV). For each design point (a set of coefficients) we use our prototype truth 

model to generate 32 separate data sets of random observations. Each data set consists of 

40 observations per original test condition (Figure 4.3). With 8 test conditions and 40 

observations per condition (and two algorithms), we have 8 -40 -2 = 640 observations for 

each truth model. Figure 5.1 illustrates the data set generation process. Once we 

generate these data sets, we can construct an experiment to compare methodologies. 

5.3.      Characterization of Methodologies 

In order to demonstrate the gradual improvement in results that come from the 

stepwise implementation of our recommendations, we select five methodologies total for 

comparison (see Figure 4.1). 
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Figure 5.1 Process for Generating Multiple Random Data Sets from Varying Truth Model 

• Method 1: A standard methodology that does not include a formal statistical 

analysis of data, does not include background variance (azimuth) as a prediction 

variable, and only utilizes data from the conditions collected under a one-at-a- 

time experiment. Estimates are based on averaging and the use of an additive 

model for conditions not collected. Intervals are generated using the normal 

approximation to the binomial distribution. 

• Method 2: An improvement on the above method that is identical except logistic 

regression is used to analyze data, make estimations, and generate confidence 

intervals. 

• Method 3: A further improvement that includes azimuth as an additional 

prediction variable. 
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• Method 4: The revised methodology from chapter 4 that adopts an experimental 

design approach to selecting conditions for collection. The data used for this 

methodology are from the half-fraction experiment in Table 3.3. 

• Method 5: The revised methodology using a full factorial design for collection 

(data from all eight conditions are used). This method is the ideal approach with 

theses improvements, without regard to resources. 

Each of these methodologies uses a portion or all of the simulated data sets to calculate 

performance results. Rather than perform the detailed analysis from chapter 4, we 

identify a few simple calculations to measure the benefit of using a methodology. 

5.4.      Measuring the Benefits of a Methodology 

In order to compare methodologies, we need a means to measure the merit of a 

methodology. First, we define the quality of results: The quality of the results of an 

evaluation is a consequence of our success in minimizing, accurately estimating, and 

clearly communicating uncertainty. We provide justification for addressing uncertainty 

in this manner and introduce three calculations that measure the quality of our results, as 

we have defined it above. 

5.4.1.   Addressing Uncertainty. 

When we use a model to explain the variance in a test, some of the variance is due 

to the test factors we vary, and the rest we attribute to random error. We minimize this 

random error by including background factors in the analysis, using orthogonal data 

designs, and collecting more data. The result is increased confidence in our results. The 
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easiest means of illustrating this is with confidence intervals. If we use some method to 

decrease our error estimate, the result is smaller confidence intervals. 

Estimates of uncertainty are based on the assumptions of a statistical model or 

statistical test. Violating an assumption degrades the accuracy of our error estimates. 

Gross violations render our estimates meaningless. We ensure accurate estimates of 

uncertainty by checking our assumptions and accounting for gross violations. 

Results are unclear if the communication of uncertainty does not add to our 

understanding of the nature of the data (or actually detracts from our understanding). 

Inaccurate estimates of uncertainty or large overall uncertainty lead to unclear results. By 

ensuring the two former issues are resolved, we are not hindered in clearly 

communicating uncertainty. 

5.4.2.   Measure 1: Estimation Error. 

For convenience, we choose measures that are readily available to us but still 

address the objectives above. The first measure is built upon the distance from the true 

(known) performance parameter and our estimate based upon collected data (Figure 5.2). 

In each methodology we build a model of performance and estimate detection for each of 

the eight conditions. The average distance from the true parameter across all conditions 

will be our first performance estimate. Given a table of numbers that estimate the 

average detection probabilities for each of the eight conditions (and for both algorithms), 

like Table 4.8, and given a matching set of known parameters for each condition, our 

measure (average error) is calculated with the following equation: 

8 

Average Error = 2^ |tf(. — p\ 
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where 7tj is the known detection probability for condition i and/?i is the estimated 

detection probability for test condition i. 
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Figure 5.2 Illustration of Estimation Error Measure 

5.4.3.   Measure 2: Parameter Coverage. 

The second measure is based upon whether or not confidence intervals 

constructed according to the techniques in a given methodology successfully cover the 

known detection probabilities. Clearly, we believe that there will be some correlation 

between this measure and the first measure since methodologies that result in smaller 

estimation error should also result in a higher likelihood of covering the true mean in a 

confidence interval. We justify this second measure by pointing out that two 

methodologies that result in similar estimates of the mean response can be differentiated 

by testing whether one or both failed to cover the true mean. Furthermore, we point out 

that it is even possible for one method to result a smaller estimation error than another, 

but actually fail to cover the true mean in an interval while the other method succeeds. 
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The measure is calculated by summing the number of successes in covering the true 

response across the eight conditions (Figure 5.3), as shown by the following equation: 
8 

Coverage = YJCi (5.2) 
;=i 

where, 

This measure is bounded by 0 and 8. 

C,= 
1    if ni is covered by confidence intervals 

0 otherwise 
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Figure 5.3 Illustration of Parameter Coverage Measure 

5.4.4.   Measure 3: Interval Efficiency. 

We recognize a further need to analyze confidence intervals since one objective is 

to minimize uncertainty. Two methodologies may have similar estimation error and both 

capture the true parameter, but it is more desirable that a method generates intervals only 

large enough to capture the target performance probability. We therefore desire smaller 

confidence intervals (this is achieved by reducing our estimate of noise). Rather than 

measure only the width of the interval, we calculate the average number of true 

parameters we cover per 10 percentage points of interval width (Figure 5.4). This 
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measure has the effect of rewarding methodologies that capture our true parameters with 

small intervals but penalizing methods that miss the true parameters or generate 

unnecessarily large intervals. The equation below shows the method for calculating this 

measure: 

Efficiency = - ;=i 

5>,-/,)-io (5.3) 

;=i 

:th where i = 0 or 1 depending on whether the confidence interval associated with the i 

condition captures the true parameter, and Uj and lj are the values of the upper and lower 

confidence interval limits respectively. 
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Figure 5.4 Illustration of Interval Efficiency Measure 

With these measures, we can quickly analyze the difference between the results from 

separate methodologies, without accomplishing the burdensome calculations necessary to 

perform the tests in chapter 4. There are many other measures we could have 

constructed, but these measures address our basic objectives in choosing a methodology: 

minimization and accurate characterization of uncertainty. Other calculations that 
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measure our achievement of these objectives will necessarily be correlated with our three 

chosen measures. 

5.5.     Results of Sensitivity Analysis 

Using the measures identified in the previous section, we can use standard 

regression to test the effect of all of our potential prediction variables (coefficients and 

components). Specifically, we can test what the average effect is of varying the 

magnitude of coefficients and see how different test results affect our ability to estimate 

results, without regard to methodology. Also, we can test how the different components 

of our methodologies (regression, background variance estimation, and experimental 

design, both fractional and full factorial) affect the quality of our results. Finally, we can 

analyze how the different test results (due to magnitude of factor effects) affect the 

difference between methodologies. 

• Sensitivity analysis approach 

• Impact of varying coefficients 

• Impact of varying methodology components 

Using the results from these steps, we can identify the most significant relationships in 

our sensitivity dataset. 

5.5.1.   Method of Analysis. 

We use standard normal regression to analyze the data generated by our three 

measures (since the measures are not binary). The prediction variables for our regression 

are the methodology components and the coefficient levels. To include the methodology 

components, we use variables coded [0,1] for each component, as shown in Table 5.2. 
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Table 5.2 Coding Scheme for Methodology Component Variables 

Methodology Components 

Methodology 
Logistic 

Regression 
Background 

Variance 
Factorial 
Design 

Full Factorial 
Design 

Current 0 0 0 0 
Intermediate 1 1 0 0 0 
Intermediate 2 1 1 0 0 

Improved 1 1 1 0 
Ideal 1 1 1 1 

The coefficient variables are coded [-1,1] for the low and high levels. Since we must 

implement each of our five methodologies on all 32 data sets, there are 5 -32 =160 

conditions for which we generate data with our new measures. We perform a standard 

regression with the 4 component variables and 13 coefficient variables using our 3 

measures as dependent variables. 

5.5.2.   Impact of Varying Coefficients. 

Before comparing methodologies, it may be useful to understand which of the 

coefficients cause variance in our measures across all methodologies. Using standard 

regression with our measures as responses and coefficients as predictors we generate the 

results in Table 5.3. We see the estimation error grows as we increase the magnitude of 

several of our effects. As the mean response moves away from the center (0.50), we 

estimate the mean detection probability with less accuracy. Increasing the degrade due to 

two-factor effects also increases estimation error for one of the three elements. 

Increasing the degrade due to the three factor interaction degrades estimation accuracy, 

and so does increasing the degrade due to azimuth. 
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Table 5.3 Coefficient Effects, all Methodologies, Response: Estimation Error 

Regression Results Coefficient 
Standard 

Error 
t* statistic 

Probability 
t > lt*l 

Intercept 0.052 0.011 4.620 <.0001 

Mean response 0.056 0.006 9.390 <.0001 
Turret effect 0.001 0.006 0.090 0.929 

Camo effect -0.005 0.006 -0.840 0.399 

Tur/Camo Effect 0.017 0.006 2.770 0.006 
Revetment effect 0.004 0.006 0.650 0.516 

Turr/Revet effect 0.002 0.006 0.360 0.718 

Camo/Revet effect 0.004 0.006 0.600 0.551 

Tur/Cam/Rev effect 0.012 0.006 1.980 0.048 
Algorithm shift 0.002 0.006 0.410 0.684 

Tur/Cam/Alg effect -0.010 0.006 -1.610 0.108 
Tur/Rev/Alg effect -0.010 0.006 -1.670 0.096 
Cam/Rev/Alg effect 0.016 0.006 2.730 0.007 

Azimuth effect -0.031 0.006 -5.150 <.0001 

Legend:    -1* is the students' t-test statistic 
- Probability t > lt*l is the probability of obtaining a statistic 
greater than t from a t-distribution 

Table 5.4 shows that no effects seem to affect our ability to cover the known 

parameter with our intervals. In Table 5.5, we see that the only elements that affect the 

interval efficiency are the location of the mean response, and the difference in one of the 

two-factor effects across algorithms. We seem to have better success when our mean 

response is centered. The negative coefficient for the mean response effect magnitude 

means the intervals are less efficient as they move away from the center. This makes 

sense because our error estimate is largest at 0.50 and our intervals are wider, thus 

increasing our chance of covering the parameter. 
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Table 5.4 Coefficient Effects, all Methodologies, Response: Parameter Coverage 

Regression Results Coefficient 
Standard 

Error 
t* statistic 

Probability 
t > lt*l 

Intercept 7.225 0.325 22.210 <.0001 

Mean response -0.213 0.174 -1.220 0.223 
Turret effect -0.075 0.174 -0.430 0.667 
Camo effect -0.025 0.174 -0.140 0.886 

Tur/Camo Effect -0.288 0.174 -1.650 0.099 
Revetment effect 0.013 0.174 0.070 0.943 
Turr/Revet effect -0.238 0.174 -1.370 0.173 

Camo/Revet effect -0.138 0.174 -0.790 0.430 

Tur/Cam/Rev effect -0.250 0.174 -1.440 0.152 

Algorithm shift 0.175 0.174 1.010 0.315 
Tur/Cam/Alg effect 0.038 0.174 0.220 0.829 
Tur/Rev/Alg effect -0.188 0.174 -1.080 0.282 
Cam/Rev/Alg effect -0.163 0.174 -0.930 0.351 

Azimuth effect 0.175 0.174 1.010 0.315 

Legend:    -1* is the students' t-test statistic 
- Probability t > lt*l is the probability of obtaining a statistic 
greater than t from a t-distribution 

Table 5.5 Coefficient Effects, all Methodologies, Response: Interval Efficiency 

Regression Results Coefficient 
Standard 

Error t* statistic 
Probability 

t > lt*l 

Intercept 0.387 0.034 11.340 <.0001 
Mean response -0.070 0.018 -3.820 0.000 

Turret effect 0.006 0.018 0.330 0.745 
Camo effect -0.019 0.018 -1.060 0.288 

Tur/Camo Effect -0.018 0.018 -0.990 0.323 
Revetment effect -0.028 0.018 -1.520 0.131 
Turr/Revet effect -0.012 0.018 -0.660 0.509 

Camo/Revet effect -0.012 0.018 -0.650 0.518 
Tur/Cam/Rev effect -0.010 0.018 -0.540 0.591 

Algorithm shift -0.016 0.018 -0.860 0.391 
Tur/Cam/Aig effect -0.008 0.018 -0.420 0.674 
Tur/Rev/Alg effect 0.037 0.018 2.000 0.046 
Cam/Rev/Alg effect -0.003 0.018 -0.190 0.851 

Azimuth effect 0.007 0.018 0.380 0.704 

Legend:    -1* is the students' t-test statistic 
- Probability t > lt*l is the probability of obtaining a statistic 

greater than t from a t-distribution 
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5.5.3.   Impact of Varying Methodology Components. 

Another useful step in our analysis is to view the average effect of our 

methodology components without regard to where the effects manifest themselves among 

the coefficient effects. For instance, we can view the effect of using logistic regression 

across all sensitivity data sets, though we do not view whether the benefits are linked to a 

particular coefficient effect (like the magnitude of the three-factor interaction). Table 5.6 

shows the regression results using the estimation error. 

Table 5.6 Component Effects, all Coefficients, Response: Estimation Error 

Regression 
Results 

Coefficient 
Standard 

Error 
t* statistic 

Probability 
t* > Itl 

Intercept 0.098 0.008 11.930 <.0001 

Full factorial -0.045 0.011 -4.250 <.0001 

Designed 
data 

-0.006 0.011 -0.530 0.597 

Background 
variance 

-0.001 0.011 -0.130 0.897 

Logistic 
Regression 

-0.013 0.011 -1.190 0.236 

Legend:    -1* is the students' t-test statistic 
- Probability t > lt*l is the probability of obtaining a statistic 
greater than t from a t-distribution 

In Table 5.6, we see the average distance from the true parameter is about 10 percentage 

points on average. The coefficient for the full factorial component (associated solely 

with the ideal methodology) tells us we increase our estimation error if we do not use a 

full factorial designed experiment but we halve our error if we use a full factorial design. 

The other components do not have a strong effect across all sensitivity data sets, but we 
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may see effects become manifest when we consider underlying conditions (coefficient 

effects). Table 5.7 shows regression results for our second measure. 

Table 5.7 Component Effects, all Coefficients, Response: Parameter Coverage 

Regression 
Results 

Coefficient 
Standard 

Error 
t* statistic 

Probability 
t* > Itl 

Intercept 5.156 0.170 30.300 <.0001 

Full factorial 0.469 0.220 2.130 0.034 

Designed 
data 

0.063 0.220 0.280 0.776 

Background 
variance 

0.031 0.220 0.140 0.887 

Logistic 
Regression 2.031 0.220 9.250 <.0001 

Legend:    -1* is the students' t-test statistic 
- Probability t > lt*l is the probability of obtaining a statistic 

greater than t from a t-distribution 

Table 5.7 reveals that the average number of true parameters successfully covered with 

our intervals is approximately 5, with 8 possible. The effect coefficients tell us that we 

gain two parameters for a total of 7 out of 8 (on average) if we use the logistic regression 

technique. Again, there may be effects due to the other components that are not 

observable in this table. Table 5.8 shows results for our last measure. In Table 5.8, we 

see the mean interval efficiency is about 0.40, or approximately 5 parameters captured 

out of 8 and an average interval width of about 15 percentage points (see Figure 5.4). 

The coefficients above reveal that a full factorial design improves the efficiency of our 

intervals, but the logistic regression technique is penalized for inflating our interval width 

in the process of covering more true parameters (see Table 5.7). These results only 

reveal the average effects of methodology components across all sensitivity data sets. 
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Table 5.8 Component Effects, all Coefficients, Response: Interval Efficiency 

Regression 
Results 

Coefficient 
Standard 

Error 
t* statistic 

Probability 
t* > Itl 

Intercept 0.392 0.020 19.350 <.0001 

Full factorial 0.188 0.026 7.170 <.0001 

Designed 
data 

-0.022 0.026 -0.840 0.401 

Background 
variance 

0.005 0.026 0.190 0.853 

Logistic 
Regression 

-0.136 0.026 -5.210 <.0001 

Legend:   -1* is the students' t-test statistic 
- Probability t > lt*l is the probability of obtaining a statistic 
greater than t from a t-distribution 

5.6.      Sensitivity Analysis Results Summary 

In the final stage of sensitivity analysis, we include both the coefficient level 

magnitudes and methodology components as predictors in a standard regression. 

Analysis similar to that performed in the previous section can be used to generate the 

result summary in Table 5.9. 

Table 5.9 Summary of results from sensitivity regression analysis 

Measure Significant Main Effects Significant Interaction Effects 
Estimation 
Error 

Full factorial design component - Designed Experiment component & 
mean response coefficient 
- Logistic regression component & 
Turret/Camouflage coefficient 

Parameter 
Coverage 

Full factorial design component 
Logistic regression component 

Interval 
Efficiency 

Full factorial design component - Designed Experiment component & 
mean response coefficient 
- Logistic regression component & 
Turret/Camouflage coefficient 
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Table 5.9 clarifies that the variance in the estimation error, for instance, can be explained 

by three variables: whether or not a full factorial design is implemented, whether a 

designed experiment is implemented (depending on the location of the mean response), 

and whether logistic regression is used (depending on the magnitude of a two factor 

effect). The utility of generating results in this fashion is that we can now graph these 

relationships and remain confident that we only display the most significant portion of 

the variance in our methodology quality measures. Now we address the summary results 

for each measure, using graphs to illustrate the relationships between our predictors 

(coefficients and components) and our responses (estimation error, parameter coverage, 

and interval efficiency). Even this sensitivity analysis illustrates how regression allows 

us to quickly narrow our attention to the significant test phenomena. 

5.6.1.   Estimation Error Results. 

The graph in Figure 5.5 illustrates the relationships identified in Table 5.9 for our 

first measure. In all following box-plots, each data point represents an observation (using 

one of our three measures) from one of the 32 data sets, after applying a methodology. 

The box represents the inner-quartile range, or, the 25th and 75th percentiles. The upper 

and lower lines are the 10th and 90th percentiles. Figure 5.5 shows that the estimation 

error decreases significantly when a full factorial design is implemented (ideal 

methodology). We have included lines in the graph that show the trend in the data for the 

cases when the three-factor effect (turret, camouflage, and revetments) has a small and 

large magnitude. The effect of the three-factor effect element is small here, but we want 

to illustrate that this element does slightly shift our mean error upward for the cases 

where a full factorial design is not used. 
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Figure 5.5 Effect of Full Factorial Design on Estimation Error 

The box-plot in Figure 5.6 shows that the average effect of using a designed experiment 

(improved and ideal methodologies) decreases the estimation error. This statement is 

insufficient, however, to describe the effect of this component because it interacts with 

the mean response location coefficient. In other words, to provide an accurate estimate of 

the effect of designed experimentation, we have to know the location of the mean 

response. Figure 5.6 shows that the error increases when the location of the mean 

response is far from center and a designed experiment is not used (current and 

intermediate methdologies). This may be due to the fact that our response is bounded by 

0 and 1, thus bounding a degrade between 0 and 0.50 when the response is centered but 

only bounding it between 0 and 0.98 when the response is far from center. 
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Figure 5.6 Effect of Factorial Design on Estimation Error 

The result is that when we have interactions among factors, the magnitude of the degrade 

can be larger for the non-centered response and result in larger errors when an additive 

model is used. Figure 5.7 demonstrates the effect of the logistic regression component. 

The average effect of using logistic regression (which is used in all but the current 

methodology) is also a reduction in estimation error. Again, there is an interaction that 

results in higher estimation error when a two-factor effect is large and regression is not 

used (current methodology). This can be explained by pointing out that the logistic 

regression approach is not based in an additive model but actually uses the binomial 

distribution to postulate the effect of two factor interactions. This extra knowledge about 

our response can actually reduce our estimate of error. 
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Figure 5.7 Effect of Logistic Regression on Estimation Error 

5.6.2.   Parameter Coverage Results. 

The effect of methodology on the number of true parameters covered with 

confidence intervals can be explained easily. The average number of parameters covered 

increases for the ideal methodology where a full factorial design is collected, and 

decreases for the current methodology where a normal approximation is used to generate 

intervals. All other methods have roughly the same performance. Figure 5.8 shows the 

results for the parameter coverage measure in two graphs. The first graph (left) separates 

the coverage data by whether a full factorial design is used or not. The first box-plot 

includes data from all but the ideal method, which are in the second box-plot. The 

second graph (right) separates data by whether logistic regression is used. The first box- 

plot is formed using only data from the current methodology, the second box-plot 

contains data from the remaining methodologies. 
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Figure 5.8 Effects of Full Factorial Design and Logistic Regression on Parameter Coverage 

5.6.3.   Interval Efficiency Results. 

Figure 5.9 shows the average effect of using a full design increases the ratio of 

parameters covered to interval width, essentially rendering our confidence intervals more 

efficient. The lines represent the turret/camouflage effect and are there to demonstrate 

that the two-factor effect coefficient slightly affects the magnitude of the full design 

component effect. Figure 5.10 shows the average effect of using designed experiments is 

zero, but there is an interaction with the location of the mean response. It seems that 

when the mean response is centered (low), the use of designed experiments produces 

slightly less efficient intervals, and when the mean response is far from center, it 

produces more efficient intervals. Figure 5.9 is arranged similar to the first graph in 

Figure 5.8. Figure 5.10 separates data by whether some form of factorial design is used. 

The box-plot on the left contains data from the first three methodologies and the others 

are in the box-plot on the right. 
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Figure 5.10        Effect of Designed Experiments on Interval Efficiency 

In Figure 5.8, there is no effect on parameters captured due to the factorial design 

component, so we may assume that we capture roughly the same number of parameters 

with or without a factorial design. This means that the interval widths are larger near 
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center and smaller off center with the designed experiments component. This may 

actually make sense because the factorial design methods (improved and ideal) capture 

the effects of interactions and increase the confidence widths appropriately while the 

other methods do not. However, when the mean response is far from center, this effect is 

nullified by the upper boundary (1) and there is a slight improvement over the 

intermediate methods. 

Figure 5.11 shows that the average effect of logistic regression degrades the 

efficiency of our intervals. We see that when there is a large two-factor effect present, 

the regression component has no effect. When there is no interaction between main 

effects, however, the regression intervals are less efficient. This can be explained by 

considering that the regression intervals cover more true parameters by increasing the 

interval width which is good when interactions are present, but are less efficient when no 

interaction is present. 
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Figure 5.11 Effect of Logistic Regression on Interval Efficiency 
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5.6.4.   Utility of Experimental Design. 

Having identified and investigated the effects of individual components of our set 

of methodologies, we can combine the components and view the effect of moving from 

one methodology to another. By first analyzing the components, we will know why the 

methodologies perform as the do. Figures 5.12 shows how each methodology performs 

with respect to the estimation error. Recall that estimation error decreases when we use 

logistic regression with a large two-factor interaction coefficient (Figure 5.7), a factorial 

design with an un-centered mean response (Figure 5.6), or a full factorial design under 

any condition (Figure 5.5). Figure 5.12 shows the gradual decrease in error as we utilize 

improved methodologies. As expected, there is a decrease from the current methodology 

to the intermediate 1 methodology and another small decrease from intermediate 2 to the 

improved methodology. Finally, the greatest decrease is realized by utilizing the ideal 

methodology. 
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Figure 5.12        Methodology Performance for Estimation Error Response 

5-25 



In Figure 5.13, we see an increase in parameters covered as we improve our 

methodology. Recall from Figure 5.8 that using a full factorial design or logistic 

regression both increased our coverage of known parameters. Figure 5.13 shows that 

there is a significant improvement by adding logistic regression to our methodology, and 

another improvement by using a full factorial design. 
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Figure 5.13 Methodology Performance for Parameter Coverage Response 

In Figure 5.14, we see the change in interval efficiency due to methodology. Recall in 

Figures 5.9, 5.10 and 5.11, full factorial experimentation improves interval efficiency, 

factorial design has the potential to improve efficiency, and logistic regression potentially 

decreases our efficiency. Figure 5.14 shows that the loss of efficiency due to increasing 

the width of intervals is not countered unless we utilize a full factorial design. 
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Figure 5.14 Methodology Performance for Interval Efficiency Response 

Overall, these graphs demonstrate an improvement in how we address uncertainty 

in performance evaluations. This research and analysis does not prove that the improved 

methodology has benefits for all performance evaluations, nor does this research 

necessarily reflect a realistic quantification of the benefits that can be realized for all 

evaluations. We only show that a potential for improvement can exist, and where it 

exists, the benefits are robust to various test outcomes. In ATR performance evaluations, 

the complexity and breadth of testing makes possible enormous benefits for using the 

improved methodology. We can, therefore, recommend the experimental design 

approach for ATR performance evaluations. Our recommendations are presented in 

chapter 6. 
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6. CONCLUSIONS AND RECOMMENDATIONS. 

In this chapter, we summarize our research objective and assess the results of our 

analysis. We postulate on the impact of the improved methodology and propose 

recommendations for the implementation of improvements. Also, we note the scope of 

our results. 

6.1.     Review of Research 

Recall that our research objective is to show the utility of experimental design in 

automatic target recognition performance evaluations. We accomplish this by showing a 

potential for improvement in the current methodology, proposing improvements, and 

demonstrating the benefits with simulated data. 

6.1.1. Current and Improved Methodologies. 

The current methodology for ATR evaluations consists of a one-at-a-time test 

design without provisions for revision, a coarse characterization of image data, and 

analysis by brute force. We improve this methodology by utilizing a factorial design 

with the possibility of fractionation, we use iteration and detailed data characterization, 

and we use logistic regression for analysis and reporting. 

6.1.2. Improvements and Benefits. 

We use simulated data to demonstrate one possible case where the improved 

methodology generates better results than the current methodology. We find that the 

logistic regression technique has the following benefits: 
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• More efficient identification of significant relationships among variables 

• More accurate and more appropriate model of performance using only significant 

factors 

• More accurate confidence interval estimation 

We find that increasing the detail of our data characterization has benefits as well: 

• More precise prediction of performance 

• More accurate estimate of random error 

• Potential to reduce estimate of random error 

Finally, we list the benefits of using factorial design in our test process: 

• Valid prediction of performance for complex conditions 

• More efficient use of test resources 

Our research shows that the benefits we rationalize in chapter 3 are realized for some data 

in chapter 4. 

6.1.3.   Sensitivity of Benefits. 

We show via sensitivity analysis that even under entirely different test outcomes, 

the average effectiveness of the improved methodology is better than the current 

methodology. Our research does not prove that there are benefits to the improved 

method for all ATR tests. Rather, we show that the potential for improvements exists for 

a simple evaluation, even under different test outcomes. It is our opinion that more 

complex ATR performance data will contain significant interactions among controlled 

factors as well as many significant background factors. Since our improvements are 

intended to account for interactions and take advantage of background factors, we expect 

the benefits will increase in more complex tests. 
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6.2.     Conclusions 

We conclude that the improved methodology has benefits over the current 

methodology for tests where there are interactions between variables and background 

factors that affect performance. We believe the benefits we measure in this research are 

smaller than the potential benefits for real ATR evaluations. Furthermore, we conclude 

that there are benefits for tests where the interactions and background factor effects are 

small or negligible, by merit of this added knowledge and efficiency (i.e.: we know there 

are no interactions and no background effects). We believe these improvements will 

have a positive effect on ATR performance evaluations. The magnitude of the benefits 

for various evaluations (and the cost tradeoff) exceeds the scope of our research. 

6.2.1. Impact on Performance Evaluations. 

The impact of greater accuracy in performance estimation is a higher likelihood of 

successfully answering test objectives. If our test objective is to evaluate the difference 

between algorithms, greater estimation accuracy implies a higher likelihood of detecting 

a difference between the algorithms (if it exists). If the test objective is to characterize 

algorithm performance across multiple conditions, greater accuracy implies higher 

likelihood of identifying significant, complex relationships between test factors and 

performance. In general, we expect an improvement in the ability to distinguish random 

error from interesting results. 

6.2.2. Impact on Test Organization. 

The impact of an improved ability to distinguish error from true results is better 

decisions. Also, increased efficiency in testing can increase the scope of testing or reduce 
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the cost of testing. We expect the test organization will be able to answer broader test 

objectives or minimize the cost of answering objectives. 

6.2.3.   Impact on Automatic Target Recognition Algorithm Acquisition. 

We believe there is a potential impact on algorithm acquisition. If we can expand 

the scope of evaluations we can increase the likelihood of identifying a promising 

algorithm and thereby shorten the transition time for algorithms and improve the 

probability of transitioning a good algorithm to operational use. The impact of our 

improvements cannot guarantee the creation of better algorithms, but we can improve the 

likelihood that a good algorithm is identified. 

6.3.      Recommendations 

We recommend that the experimental design approach be adopted for ATR 

performance evaluations. We recommend implementation of all the improvements that 

are the subject of this research. In this section, we discuss the method for implementing 

recommendations. 

6.3.1.   Recommendations for Implementation of Improvements. 

The benefits of our improved methodology depend upon proper implementation 

of recommendations. We recommend that the transition to an experimental design 

approach be managed by an experimental design practitioner. In our research we do not 

cover the many assumptions of experimental design so we assert that proper 

implementation requires an in-depth knowledge of the techniques and methods for their 

application. 
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We also recommend a study of possible methods to increase image 

characterization and reduce the time for data reduction. Taking these steps better 

facilitates the use of the improved methodology. 

6.3.2.   Recommendations for Further Research. 

In the course of our research, many opportunities for further research have come 

to our attention. The list below contains the most significant research opportunities. 

• A study to research the impact of increased estimation accuracy in true ATR 

evaluations 

• A study to research the cost of utilizing an experimental design approach to 

testing for ATR evaluations 

• A study to research the specific implementation of experimental design with a real 

ATR evaluation (i.e., a test case) 

• A study to research the uncontrolled factors that affect performance in ATR 

evaluations with emphasis on methods to measure those factors 

• A study to research the automation of detailed image characterization 
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