
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2001

A Low Power Application-Specific Integrated Circuit (ASIC) A Low Power Application-Specific Integrated Circuit (ASIC)

Implementation of Wavelet Transform/Inverse Transform Implementation of Wavelet Transform/Inverse Transform

Daniel N. Harvala

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Applied Mathematics Commons, and the Signal Processing Commons

Recommended Citation Recommended Citation
Harvala, Daniel N., "A Low Power Application-Specific Integrated Circuit (ASIC) Implementation of Wavelet
Transform/Inverse Transform" (2001). Theses and Dissertations. 4626.
https://scholar.afit.edu/etd/4626

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholar.afit.edu%2Fetd%2F4626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F4626&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4626?utm_source=scholar.afit.edu%2Fetd%2F4626&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

A LOW POWER

APPLICATION-SPECIFIC INTEGRATED

CIRCUIT (ASIC)

IMPLEMENTATION OF WAVELET

TRANSFORM / INVERSE TRANSFORM

THESIS

Daniel N. Harvala
Captain, USAF

AFIT/GE/ENG/01M-14

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20010706 134

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U. S.
Government.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DATE (DD-MM-YYYY)
7-03-2001

2. REPORT TYPE
Master's Thesis

4. TITLE AND SUBTITLE
A LOW POWER APPLICATION-SPECIFIC INTEGRATED CIRCUIT
(ASIC) IMPLEMENTATION OF WAVELET TRANSFORM / INVERSE
TRANSFORM

DATES COVERED (From - To)
June 2000 - March 2001

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Daniel Nick Harvala, Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
2950 P. Street
WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GE/ENG/01M-14

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Dr. Robert L. Ewing
AFRL/IFTA
Air Force Research Laboratory, Bldg 620, Area B
WPAFB OH 45433
DSN: 785-6653 ext. 3592

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution Unlimited

13. SUPPLEMENTARY NOTES
Major Charles P. Brothers, Jr., Ph.D.
DSN: 785-3636 ext.4618 Email: Charles.Brothers@afit.edu

14. ABSTRACT
A unique ASIC was designed implementing the Haar Wavelet transform for image compression/decompression. ASIC operations
include performing the Haar wavelet transform on a 512 by 512 square pixel image, preparing the image for transmission by
quantizing and thresholding the transformed data, and performing the inverse Haar wavelet transform, returning the original image
with only minor degradation. The ASIC is based on an existing four-chip FPGA implementation. Implementing the design using a
dedicated ASIC enhances the speed, decreases chip count to a single die, and uses significantly less power compared to the FPGA
implementation. A reduction of RAM accesses was realized and a tradeoff between states and duplication of components for
parallel operation were key to the performance gains. Almost half of the external RAM accesses were removed from the FPGA
design by incorporating an internal register file. This reduction reduced the number of states needed to process an image increasing
the image frame rate by 13% and decreased I/O traffic on the bus by 47%. Adding control lines to the ALU components, thus
eliminating unnecessary switching of combination logic blocks, further reduced power requirements. The 22 mm2 ASIC consumes
an estimated 430 mW of power when operating at the maximum frequency of 17 MHz.
15. SUBJECT TERMS
VLSI, Haar Wavelet Transform, Haar Wavelet Inverse Transform, FPGA, VHDL

16. SECURITY CLASSIFICATION OF:
REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES
133

19a. NAME OF RESPONSIBLE PERSON
Charles P. Brothers, Jr., Major, USAF
19b. TELEPHONE NUMBER (Include area code)

937-255-3636 ext.4618

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

AFIT/GE/ENG/OlM-14

A LOW POWER

APPLICATION-SPECIFIC INTEGRATED CIRCUIT (ASIC)

IMPLEMENTATION OF WAVELET

TRANSFORM / INVERSE TRANSFORM

THESIS

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Daniel N. Harvala, B.S.

Captain, USAF

March 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Acknowledgments

I would first like to thank my wife. She took care of our kids, our finances, and

our every day problems so I could spend every waking minute in the VLSI lab. Without

her support, I could not have put forth my best effort.

A special thanks goes out to my partner in crime, 1st Lt. Kirby Watson. Without

his drive and determination, I would not have succeeded. Without his companionship, I

would not have survived the infinite hours spent in the VLSI lab. Having someone to

share in the pain made the whole experience somewhat bearable.

Finally, I would like to thank my advisor, Major Charles P. Brothers, for

providing me with the insight necessary to make this thesis a success. Without his

guidance the results of this work would have been trivial.

Daniel N. Harvala

IV

Table of Contents

Page

Acknowledgments -iv
List of Figures - vii
List of Tables viii
Abstract • ix
I. Introduction... • 1

1.1 Introduction 1
1.2 Problem Statement 2
1.3 Methodology 3
1.4 Constraints and Assumptions 4
1.5 Materials and Equipment 4
1.6 Thesis Overview .; 5

II. Literature Review 7
2.1 Introduction7
2.2 2D Wavelet Transform 7
2.3 Haar Wavelet >. 11
2.4 History of Designs ■:". 12
2.5 Current Research 16
2.6 Summary < 21

HI. Design Overview;...... 23
3.1 Introduction ;■• 23
3.2 Goals '. 23
3.3 Analysis of Original Code t 24
3.4 Quantize and Threshold Rules : .;. 29
3.5 Wavelet Transform/Inverse Transform portions of the code 31
3.6 Converting the Original FPGA Code to Synthesizeable Code . '.. 34
3.7 Optimizations on the Original Code ;-. 36
3.8 Development of the Synthesizeable VHDL Code ;- 37
3.9 Basic Operation of the New VHDL Code 40
3.10 Degradation Due to Shifting, Quantizing, and Thresholding 46
3.11 Summary 47

IV. Design Implementation ..-. 49
4.1 Introduction 49
4.2 Steps Used to Create a Magic Layout of a Component 49
4.3 Using the Synopsys Design Analyzer ., 50
4.4 Components ; 51

4.4.1 Adders/Subtractors .52
4.4.4.2 Incrementers 52
4.4.3 Comparator 53
4.4.4 Multiplexers 54

4.5 Four Parts of Code54
4.6 State Machines 59

4.7 Internal Register File 62
4.8 Column and Row Decode For Register File 65
4.9 Input, Output, Input/Output Pads 69
4.10 Top Level Input, Output, and Bi-directional Pins 69
4.11 Data Buses 69
4.12 Conclusions 71

V. Testing and Timing 73
5.1 Introduction 73
5.2 Testing of VHDL Files 73
5.3 Testing Components 77
5.4 Register File , .: 78
5.5 Testing of the Inverse Transform by Rows Section 81
5.6 Read/Write Logic ." 83
5.7 Conclusion 90

VI. Conclusions and Recommendations: 92
6.1 Conclusions .92
6.2 Recommendations 93

Bibliography 96
Appendix A. State Diagrams 99

, A.1 Transform State Diagram .99
A.2 Row Transform State Diagram 100

; A.3 Column Transform State Diagram . 101
A.4 Inverse Transform State Diagram 102

Appendix B. Savings of Ram Accesses , 105
B.I Original Code Ram Accesses ; 105
B.2 New Code Ram Accesses 106

Appendix C. Total States Required for Transform Half of Both The ASIC Design and
The FPGA Design...... ;107

C.I States for Transform Half of FPGA Design 107
C.2 States for Transform Half of ASIC Design: Ill

Appendix D. Component Listing and Timing.. 113
Appendix E. Sections of Code with the Utilized Components 117
Appendix F. Data Used for Testing 120
Appendix G. Power Calculation of the FPGA Design 122

VI

List of Figures

Page

Figure 1. Wildforce Board (4) ...3
Figure 2. Sub-images : .9
Figure 3. Image Compression/Decompression Flowchart 17
Figure 4. Compression.vhd File Flowchart (4) 19
Figure 5. Decompression.vhd File Flowchart (4) 20
Figure 6. Flowchart Showing Transform Steps of FPGA Behavioral Code .25
Figure 7. Transform Sections of Image , .27
Figure 8. Result of One Transform Iteration.. 27
Figure 9. Quadrant Layout..... . 29
Figure 10. Transform of Image ..32
Figure 11. Quadrants of the Three Transform Passes.... 33
Figure 12. Incorrect Way to Code a Latch 35
Figure 13. Correct Way to Code a Latch 36
Figure 14. Flowchart Showing Steps to Complete the Haar Transform 41
Figure 15. Address Mapping. .42
Figure 16. Placement of Coefficients Relative to Original Pixel Data .42
Figure 17. Flowchart Showing the Steps to Complete the Haar Inverse Transform 45
Figure 18. Row Logic for Transform .55
Figure 19. Column Logic for Transform .56
Figure 20. Column Logic for Inverse Transform 56
Figure 21. Row Logic for Inverse Transform :.. 57
Figure 22. Top Level For Transform Logic 57
Figure 23. Test Bench For Transform Logic... 58
Figure 24. Top Level for Inverse Transform... .58
Figure 25. Test Bench for Inverse Tränsform Logic... .59
Figure 26. Single Register Cell Location 63
Figure 27. Two Cell Register Layout.•; .64
Figure 28. Row Enable Using NAND Gates; 66
Figure 29. Row Enable Using NOR Gates 66
Figure 30. Row Enable Circuitry 68
Figure 31. Register Locations 79
Figure 32. Layout of ASIC Design 82
Figure 33. Read from RAM Timing Diagram 84
Figure 34. Write to Register File Timing Diagram 85
Figure 35. Write to RAM Timing Diagram :.. 86
Figure 36. Read from Register and Write to RAM Timing Diagram 87
Figure 37. Timing Diagram Showing Pulse Created From Control Signals 88
Figure 38. Enable and Strobe Control Circuitry 89

Vll

List of Tables

Page

Table 1. Example of Transform/Inverse Transform 31
Table 2. Total Savings in Ram Accesses 37
Table 3. Example of Loss of Data Due to a Right Shift . 46
Table 4. Example of Loss Due to Integer Shift 46
Table 5. Savings By Reading 4 Pixels For the Transform of Rows Stage .. 61
Table 6. Savings Reading 4 Pixels for Inverse Transform of Rows Stage 61
Table 7. Current and Timing of Some Simple Gates 67
Table 8. Column Decode of Bits 1 andO 69
Table 9. List of Pins and Their Functionality 70
Table 10. List of ALU Components 78
Table 11. Access Times for Register File 80
Table 12. Timing for Read/Write Decode Logic 80

vin

AFIT/GE/ENG/01M-14

Abstract

A unique ASIC was designed implementing the Haar Wavelet transform for

image compression/decompression. ASIC operations include performing the Haar

wavelet transform on a 512 by 512 square pixel image, preparing the image for

transmission by quantizing and thresholding the transformed data, and performing the

inverse Haar wavelet transform, returning the original image with only minor

degradation. The ASIC is based on an existing four-chip FPGA implementation.

Implementing the design using a dedicated ASIC enhances the speed, decreases chip

count to a single die, and uses significantly less power compared to the FPGA

implementation. A reduction of RAM accesses was realized and a tradeoff between

states and duplication of components for parallel operation were key to the performance

gains. Almost half of the external RAM accesses were removed from the FPGA design

by incorporating an internal register file. This reduction reduced the number of states

needed to process an image increasing the image frame rate by 13% and decreased VO

traffic on the bus by 47%. Adding control lines to the ALU components, thus eliminating

unnecessary switching of combination logic blocks, further reduced power requirements.

The 22 mm2 ASIC consumes an estimated 430 mW of power when operating at the

maximum frequency of 17 MHz.

IX

A LOW POWER

APPLICATION-SPECIFIC INTEGRATED CIRCUIT (ASIC)

IMPLEMENTATION OF WAVELET

TRANSFORM / INVERSE TRANSFORM

/. Introduction

1.1 Introduction

This document presents a piece in an overall research effort being conducted by

the Dayton Area Graduation Studies Institutes (DAGSI). Currently, students at Air Force

Institute of Technology (AFIT), University of Cincinnati (UC), University of Dayton

(UD), and Ohio State University (OSU) are involved with the effort of advanced

compression of video and audio communications and large image compression. Wavelet

image compression using Field Programmable Gate Arrays (FPGA) is the focus of the

UD research. This thesis effort expands upon image compression research by

implementing the Haar transform/inverse transform on an Application-Specific Integrated

Circuit (ASIC).

The main effort of this research was to create an ASIC with the same functionality

as the existing Very High Speed Integrated Circuit Hardware Description Language

(VHDL) behavioral description of the FPGA design. Efforts were not made to alter the

specific wavelet chosen for image compression/decompression. Savings in area, speed,

and power are the primary goal. While a mathematical analysis of wavelets was not

explored, a brief discussion of wavelets and their properties accompany this thesis to

provide a theoretical basis.

1.2 Problem Statement

Image processing has always been a slow and difficult task since image resolution

is directly tied to the number of sample points taken. To increase resolution, one has to

increase the number of sample points. As the number of sample points increases, so does

the time necessary to complete the computations (1). By using the 2-D Haar transform, a

speedup is realized since the transform compresses the image information into a minimal

number of coefficients. The quality of the reconstructed image obtained from the Haar

transform is satisfactory for many applications including this research effort. By

quantizing the wavelet coefficients, a greater compression ratio is attained allowing for a

faster transmission rate. Quantizing the wavelet coefficients causes some image

degradation, however, the tradeoff between the speed of transmitting the data and the loss

of image integrity is necessary. Once the compressed image is received the reverse

transform is applied leaving the original image with only a minimal loss of integrity. The

integrity loss is relative to the level of quantization and thresholding performed. For

many applications, the speedup obtained by transforming and quantizing the image

greatly outweighs the minimal loss of the image integrity (2).

The current technology has been mapped on an Annapolis Microsystems

Wildforce board (3). The board consists of 5 Xilinx FPGA 4062XL chips with up to

2Mbytes of SRAM per chip. A PCI interface exists on the board providing several I/O

options. External FIFOs, DMA, and a reconfigurable Crossbar between FPGAs are

among the I/O options.

The Wavelet ASIC research effort replaces the 5 FPGA board with a single ASIC.

Figure 1. Wildforce Board (4)

1.3 Methodology

Converting from the FPGA design to an ASIC design required many iterative

design steps. The first step is to compile and execute the existing VHDL behavioral

code. Understanding how the current implementation operates is the key to translating

and improving the code. Second, optimizations are performed to obtain a performance

speedup, reduced area, and reduced power consumption. Next, a new behavioral VHDL

description is written to reflect the optimizations and tested. The new description is built

with manageable blocks for easier implementation. A 9-bit adder is an example of a

manageable block since it performs one function. Each block undergoes transitions from

a behavioral description to a structural description and then to a physical layout. Each

step is tested and revisited until it satisfies the required speed, area, power, and

functionality criteria. Selected blocks are grouped together and tested for further

verification. The final step is to test all blocks together.

1.4 Constraints and Assumptions

Validation of the FPGA behavioral code is assumed since it has been observed to

produce expected results for sample images. Additionally, the Haar transform

implementation of the code is assumed correct. Mathematical operations performed in

the code were altered only to reduce the time to do the calculations. The final ASIC

design process was verified against the behavioral VHDL code and produced identical

results.

1.5 Materials and Equipment

All of the design tools used to create the layout operate in a UNIX environment.

The first tool was the Synopsys System Simulator, (VHDLAN), (5). It tested the

behavioral, structural, and functional aspects of the design. Another tool used was the

Synopsys Design Analyzer (5), which produces a gate level layout of the behavioral

description. A schematic based design tool, Synopsys Graphical Environment, (SGE),

(5), was used to produce a structural level description of the VHDL code. Netlists are

also produced by SGE, which are used to obtain the final transistor layout. Octools (6)

translated the netlist into a transistor layout. Magic (7), is used to view and edit the

layout produced by Octools, as well as to produce a transistor layout design. The layout

level of the design is tested with two other tools, IRSIM (8), which tested the

functionality of the transistor layout by performing a logic level test and High Accuracy

Simulation Program with Integrated Circuit Emphasis (HSPICE) (9,10,11), which tested

the functionality of the transistor layout with emphasis on accurate timing of the circuit.

1.6 Thesis Overview

This document is organized into 6 chapters. The first chapter provides an

introduction, overview of ASIC design, the steps used in the design process, and the tools

needed to complete the ASIC design.

Chapter II summarizes current research in wavelet/transform technology.

Research in ASIC design is also presented. Background research in FPGA design is also

described.

Chapter El begins by stating the goals of the Wavelet ASIC. The original VHDL

behavioral code is then analyzed. Next, the steps taken to execute the Haar transform and

inverse Haar transform are discussed in detail. Optimizations of the original design are

then presented. The next section discusses the design of the new synthesizeable VHDL

code. The chapter finishes by describing the causes of image degradation.

Chapter IV presents the design at the component level of abstraction. First, the

design steps used to create a component are listed. Each component, as well as each of

the main logic blocks, is described. Next, the different state machines are discussed

along with the design choices made to create them. The custom built internal register file

is described in detail. Next, the top-level signals are listed along with their functionality.

Finally, the system data buses are discussed.

Chapter V focuses on the verification and validation of the design. Tests made to

the original VHDL behavioral code are discussed first. The design cycle is discussed

along with the tests conducted at each step. The testing of the individual component is

also described. Finally, the read/write logic is discussed.

In Chapter VI, research conclusions are presented. Research goals and

accomplishments are discussed. The chapter concludes with suggestions for future work

for both the VHDL level, as well as the component level of research.

II. Literature Review

2.1 Introduction

There is an enormous amount of research in transforms. For over 30 years, Fast

Fourier Transforms have been the topic of many books (12). Wavelet transforms, in

contrast, are relative newcomers but they have spawned many new signal processing

algorithms over the past 10 to 15 years (13). A brief discussion of the 2D Wavelet

Transform is presented along with an introduction to the Haar wavelet. Wavelets

introduce various tradeoffs with respect to power, timing, and chip area. A small number

of wavelets were analyzed for their specific impact in these areas with respect to ASIC

design. Only a few theses were found that involved end-tö-end chip design. Specific

points from these theses are discussed along with their relevance to the Wavelet ASIC

research. The chapter concludes by describing the FPGA design of the Haar Wavelet

transform/inverse transform.

2.2 2D Wavelet Transform

The wavelet transform is popular for use in encoding a signal. After

transformation, the input is separated into two sequences. The average values of the

original input are represented in the first sequence while changes are represented in the

second sequence. In other words, the first sequence describes the general trend of the

input and the other sequence shows departures from that trend (14). There are an infinite

number of wavelet transforms and the particular criteria for choosing one over another is

application specific (14). The 2D wavelet transform is an example of a wavelet

transform that exhibits characteristics useful to image processing (2).

Prior to the transform, an image is digitized and represented as a two-dimensional

matrix of pixels. Each pixel value represents an intensity and color value as sampled at

that point. Normally, there is a high correlation between adjacent pixels. Correlation

between neighboring pixels results in redundancy in image information which is

exploited by the transform. The resulting data is compressed into a compact reversible

transform of the original image. There are two schemes associated with the

transformation of images for encoding. The schemes are either causal or noncausal. In a

broad sense, causal transforms permit a sequential encoding process while noncausal

transforms require solving large systems of simultaneous equations. Noncausal

transforms provide a higher compression ratio but are harder to implement since they do

not use a sequential encoding method (15). For the ASIC design, the causal transform is

used.

The two most interesting characteristics of an image are its edges and texture.

The characteristics are expressed as variations in the intensity and color of the adjacent

pixels and these variations occur on several different scales. Edges of large objects are

observable at low resolutions while edges of smaller objects are visible only at higher

resolutions. At very high resolutions, even the texture of an image is observed as

variations in intensity. While both edges and texture are distorted when applying

transforms, edges are more perceptible to the human eye (15).

Each iteration of the 2D Wavelet transform produces four sub-images. First, a

row decomposition is performed and results in a high pass sub-image and a low pass sub-

image. The two sub-images are then decomposed by columns, which produce a total of

four sub-images (low-low, low-high, high-low, high-high) as shown in Figure 2. The

three high pass sub-images contain the edge information. For example, the 'High, Low'

sub-image contains the horizontal high-pass information and the vertical low-pass

information (2).

Low,Low J High,Low

_i

Low,High j High,High

•

Figure 2. Sub-images

The fourth sub-image (low-pass image) is then transformed again producing four

more sub-images with similar information but with lower resolution. The steps are

repeated for a desired number of iterations. Usually the low-pass image after several

iterations doesn't contain any more desirable information so the iteration is ceased (15).

Multiple passes are performed because image intensity changes may occur

gradually. To localize the change in intensity, a low pass filter is applied to the image

which halves the intensity range. The divided intensity range is then examined for

changes. By performing multiple passes, intensity variations are obtained at different

scales. The multiple step transform allows both gradual changes as well as sharp

transitions to be localized and saved for reconstruction of the image. The process of

obtaining edge information at various scales is called multiscale edge detection and is

very useful for image compression (15).

Wavelet compression is effective because the wavelet transform exploits the

correlations in a signal. ID transforms only exploit correlations in a small segment. 2D

transforms find correlations within a region. The 2D transform, therefore increases the

compression ratio (4). The increased compression ratio is an advantage of the 2D

wavelet compared to other transforms (16).

Another significant advantage of the wavelet transform (4) is that it solves the

synchronization problem between multimedia content streams such as adjacent video

signals. Synchronization is also an issue in wireless LAN and Internet communications.

In order to achieve synchronization, a time-control mechanism is needed. A ID audio

signal can be converted into a 2D signal to form an audio image. By attaching the audio

image to the video image, synchronization is achieved (4).

In this section, the 2D wavelet transform and its application to image processing

was discussed. For a more detailed analysis of wavelets, the interested reader is

encouraged to consult (17).

10

2.3 Haar Wavelet

The wavelet chosen for the ASIC design, the Haar wavelet, is possibly the

simplest of all the wavelets. Computation of the Haar wavelet is accomplished by simply

averaging and differencing the data. These simple calculations are what make the Haar

wavelet suitable for an ASIC implementation. Two types of coefficients are obtained

from the transform. Scaling coefficients are obtained by averaging two adjacent pixels.

These scaling coefficients represent a course approximation of the image. Wavelet

coefficients are obtained from the differencing of two adjacent pixels. Wavelet

coefficients contain the fine details of the image.

The Haar wavelet was chosen for its simplicity and speed of computation.

Computation of the scaling coefficients requires adding two pixel values and dividing by

two. Calculation of the wavelet coefficients requires subtracting two pixel values and

dividing by two. The inverse transform simply requires subtraction and addition. Using

logical shifts to perform division eliminates the need for a complex divide unit.

Furthermore, implementing a logical shift in hardware requires much less power and

space than an arithmetic logic unit (ALU). Given the computational requirements, the

Haar wavelet is a simple and easy to implement transform. Computational simplicity

makes the Haar transform a perfect choice for an initial design implementation. Further

research is being conducted by UD to see if any advantages exist for using different

transforms for their research effort.

11

2.4 History of Designs

Image compression is a required in many applications. One such application is in

digital photography. Storing high-resolution images requires a significant amount of

memory. Better compression results in more images being stored on a given storage

media. One such effort involved designing a VLSI chip for Wavelet Image Compression

(18).

The Joint Photographic Experts Group (JPEG) image compression algorithm is

widely used for reduction of image data. JPEG is a real-time video/image processing

application based on the Discrete Cosine Transform. However, JPEG has some

drawbacks, such as artifacts being produced in the decompressed image. The artifacts are

especially evident at the borders of the 8x8 sub-image and have resulted in exploration of

other methods for image compression. Schwarzenberg's VLSI chip design for wavelet

image compression is based upon wavelet transforms (18). A special Integrated Circuit

(IC) was developed to perform image compression since software implementations of

compressing even one still image requires a very long time. The speed of the

Schwarzenberg's transform chip was obtained by performing certain operations in

parallel (18).

Schwarzenberg uses a separable two-dimensional wavelet-transform. Performing

a one-dimensional transform on the rows and then on the columns produces a separable

2-D transform. Schwarzenberg's design used internal RAM for the one-dimensional

transforms allowing for increased speed since external RAM access was minimized.

Since an ASIC wasn't actually built, valid operation of the design was based on the

12

synthesized code. The synthesized code performed identical to that of the software

version of the wavelet compression (18). The FPGA design uses off-chip RAM to store

intermediate values. The utilization of on chip memory is applied to the Wavelet ASIC

transform design to gain speed.

Another research effort involved implementing a VLSI architecture for 2-D

discrete wavelet transforms (DWT). The architecture was designed to process input

signals in real-time. The VLSI DWT design used three programmable parallel filters, a

storage unit, and a control unit, which minimized the hardware costs. The 2-D DWT

design outperformed the direct approach, which uses the 1-D DWT. The direct approach

only executes the transform in a row like fashion, which exploits correlations in small

segments, not in regions. The direct approach has many shortcomings such as a long

latency time and the requirement for a large memory space. Because of these

shortcomings the 1 -D DWT isn't widely used. The VLSI DWT approach had

performance benefits over a direct approach making it suitable for many real-time

video/image applications (19).

Singh, et al. (20), designed another application using a 2-D discrete wavelet

transform. Parallel computation of the wavelet was proposed. The design is modular

making it scalable to different levels of wavelet decomposition. A prototype architecture

was implemented for an 8 x 8 image. The Singh architecture was synthesized and

verified. Then a layout was designed in Cadence. The Singh design boasts fewer latches

by utilizing control pipelining to generate the control signals. Control pipelining

eliminated the need for latches for the horizontal dimension of the first stage processing

13

elements. The design used 3 stages of wavelet decomposition (20). The Haar wavelet

implemented in the Wavelet ASIC also incorporates a 3-stage wavelet transform.

Zhang, et al. (21), proposed a 3D DWT. The 3-D transform is decomposed into

three steps. Each step is a 1-D transform in the x, y, and z direction. Although the 3-D

DWT outperforms the 2-D DWT by 40-90%, the 2-D and 1-D transforms still have their

uses (21). The number of coefficients is proportional to the accuracy of the transform.

Furthermore, as the number of coefficients increases, so does the time it takes to compute

the transform. The 3-D DWT architecture was implemented with minimal area and

predicts the consumption of less power. Low power was achieved in the 3-D DWT

design by using low power building block cells, using central control design, which

minimizes circuit complexity, eliminating redundant modules, and by constantly

compromising tradeoffs of power, speed, and circuit complexity. The 3-D DWT design

was verified with Synopsys software and is reported to use only 0.5W of power with a

total delay of 91.65 ns while operating at a frequency of 272 MHz (21).

Another architecture was proposed by Lafruit, et al. (22), which greatly reduced

power and memory usage. Lafruit's architecture reads the image data line by line, which

results in a great area savings for on-chip storage. The method of reading line by line

reduces complexity, which in turn reduces power consumption (22). Reading the data

line by line was not used in the Wavelet ASIC design but an attempt to minimize the

number of reads and writes was a goal. The Wavelet ASIC design uses internal registers

to store image pixel values until the computation is completed and the results are written

to memory yielding a speedup over the existing methodology. As with Lafruit, et al.

reduction of power is obtained by minimizing memory access (22).

14

Hunt (23) explored some of the design issues associated with VLSI designs.

Among the issues were the choices for synchronous versus asynchronous timing.

Synchronous timing eliminates race conditions and other potential hazards by reducing or

increasing the clock cycle time. The speed of combinational circuitry is not a concern if

the clock cycle time is adjusted to account for the circuitry's operating speed. Power

consumption of clock circuitry, however, is quite large since the clock is always

switching. Switching is what uses power in CMOS designs. With an asynchronous

design the power and area are reduced. However, with the absence of a clock, extra

control circuitry is needed which sometimes offsets the area savings. With synchronous

circuits, the speed is directly tied to the longest delay. An attempt to equally distribute

the workload across all states should be made. Optimizing portions of a synchronous

design, which are not in slow sections of the code doesn't increase performance^ With

asynchronous circuits the opposite is true. Since the next stage is waiting on the previous

stage, the sooner it is completed the better (23). Aspects of both synchronous and

asynchronous timing are used in the design of ASIC research effort.

Another design choice is deciding between performing operations in parallel by

replicating components or operating in a serial fashion. For example, one can choose to

use a single 32-bit adder and perform consecutive additions or replicate the adder and do

additions in parallel. The former needs less die area but takes a longer time to compute

which decreases throughput. The complexity of a single adder design is also increased.

By replicating the adder, one can achieve faster operation and higher throughput. The

cost is an increase in die area. The control circuitry is decreased in the parallel design but

15

not enough to offset the replication of components (23). Tradeoffs between adding extra

states and parallelism are a major part of the Wavelet ASIC research.

Häuser looked into VLSI concerns, as well as Discrete Fourier Transform (DFT)

implementations and their advantages of being placed on a chip (1). The DFT uses a

finite set of sample points making it suitable for implementation on a digital computer

Again, as the number of sample points grow, the time to compute the transform and the

power needed to perform the computation also increases. Since the DFT uses

multiplications to execute, time and power usage are issues.

Winograd demonstrated a reduction in the number of multiplications required by

the DFT in 1978 (1). The class of algorithms known as the Winograd Fourier Transform

Algorithms (WFTs) is able to compute a DFT with a minimal number of multiplications.

The drawback to the WFT is the size of the algorithm. In other words, the size doesn't

easily map to that of a VLSI chip. Häuser showed by using the Good-Thomas Prime

Factor Algorithm (PFA) in conjunction with the WFT, the size of the algorithm is

reduced and easily maps onto that of a VLSI chip (1). Since the goals of the Wavelet

ASIC are low power and fast computation, the Haar wavelet transform is the best choice

because it requires only addition, subtraction, and shifting to compute it's coefficients.

2.5 Current Research

Research at the University of Dayton implements the Haar wavelet transform

using a Field Programmable Gate Array (FPGA) (Figure 3). An image is captured via a

camera and then transformed, quantized, and encoded creating a compressed image. To

16

retrieve the original image, the process is reversed. The reconstructed image is the

output from the inverse transform step.

Camera and
Frame Grabber Wavelet Compression

i > i
1

i
■>

! i

j i

Transform ► Quantizer —► Encoding

i
i

■ i
! i
1 L

« Compressed Image Data Transmission «

Wavelet De-compression
I
I
I

Decoding ► De-Quantizer ► Inverse Transform _jL
I
•
I
i
i

Figure 3. Image Compression/Decompression Flowchart

The FPGA design starts with a behavioral VHDL code level description. The

VHDL code is used to program the FPGAs to perform the required tasks. The transform

portion of the design is driven by the top level file, Compression.vhd. The

Compression.vhd file uses 5 other VHDL files to perform the transform of the image. As

Figure 4 shows, the image is processed first by rows and then by columns. First, one row

is read in and packed. Next, the Haar transform is applied. After the row has been

transformed it is unpacked. The three-step process is executed on all the rows. Next, the

image is processed in column order. One column is read in and packed. Next, the

17

column is transformed. After the column has been transformed it is unpacked. The three-

step process is executed on all the columns. Three iterations of the row/column process

are executed by the transform portion of the FGPA design. The files used by

Compression.vhd and their functionality are listed below.

Compression.vhd - Implements the 5 VHDL files listed in Figure 4.

Pack4row.vhd, Pack4Column.vhd - Packs four 8-bit pixel values into a

single 32-bit integer. Packing the data speeds up the wavelet transform

4-fold. Pack4row.vhd packs an image pixel row to lA its original size;

Pack4Column.vhd packs an image pixel column.

HaarVideo.vhd - Transforms one row/column of image data into wavelet

coefficients (High Frequency coefficients) and scaling function

coefficients (Low Frequency coefficients)

Unpack4row.vhd, Unpack4Column.vhd - Unpacks four 8-bit pixel values

from a single 32-bit integer. Unpack4row.vhd unpacks pixels in an entire

image pixel row; Unpack4Column.vhd unpacks pixels in an entire image

pixel column.

The inverse transform half of the design is driven by the top level file,

Decompression.vhd. The Decompression.vhd file uses 5 other VHDL files to perform the

transform of the image. As Figure 5 shows, the image is processed first by columns and

then by rows. First, one column is read in and packed. Next, the Inverse Haar transform

is applied. After the column has been inverse transformed it is unpacked. The three-step

process is executed on all the columns. Next, the image is processed in row order. One

row is read in and packed. Next, the row is inverse transformed. After the row has been

18

Compression.vhd

Pack4row.vhd Unpack4row.vhd

HaarVideo.vhd

Pack4Column.vhd Unpack4Column..vhd

Loop Through All Rows Loop Through All Columns

Loop Through Multiresolution Levels

Figure 4. Compression.vhd File Flowchart (4)

inverse transformed it is unpacked. The three-step process is executed on all the rows.

The inverse transform portion of the FPGA design executes three iterations of the

column/row process. The files used by Decompression.vhd and their functionality are

listed below.

Decompression.vhd - Implements the 5 VHDL files listed in Figure 5.

Pack4row.vhd, Pack4Column.vhd - Same as in Compression.vhd.

InvhaarVideo.vhd - Inverse transforms wavelet coefficients (High

Frequency coefficients) and scaling function coefficients (Low Frequency

coefficients) into one row/column of image data.

Unpack4Column.vhd, Unpack4row.vhd - Same as in Compression.vhd.

19

Decompression, vhd

Pack4column.vhd Unpack4column.vhd

InvhaarVideo.vhd

Loop Through All Columns

Pack4row.vhd Unpack4row.vhd

Loop Through All Rows

Loop Through Multiresolution Levels

Figure 5. Decompression.vhd File Flowchart (4)

VHDL files for the main components are synthesized by the Wildforce

system and the results are programmed onto the Wildforce board FPGAs (3). Software

interfaces are used to control the programmed code on the FPGAs. First, the front-end

code, written in C, is used to load an image into memory. The Wildforce FPGA

implementation can handle image sizes of 16 x 16, 32 x 32, 64 x 64, 128 x 128, 256 x

256, 512 x 512, and 1024 x 1024 square pixels. After loading the image, the front-end

code gives control to the Compress.vhd component by granting memory access. The

image data is processed as shown in Figure 4. When the Compress.vhd component

completes, the software takes control and simulates transmission of the compressed

image. After simulated transmission, control is given to the Decompress.vhd (Figure 5)

20

component, which decodes the image data and executes the inverse transform. After the

image has been reconstructed, another program, written in C, is used to display the

image. The image has some degradation but is acceptable for many applications.

Static Random Access Memory (SRAM), which is used to store the image data, is

located on a separate FPGA. The memory access time is two clock cycles from memory

read to valid data on the data lines. A write operation takes one clock cycle. The bus

controller and the memory controller are contained on other FPGAs.

Testing individual pieces as they were converted to FPGA compatible software

was accomplished by running the other components not yet converted with the ones now

on the FPGAs. Functionality of the VHDL code was demonstrated when a recognizable

image appeared on the screen. The FPGA implementation has run at clock speeds up to

20 MHz. Advancements are currently in work to decrease the execution time Of both the

transform and inverse transform (4).

2.6 Summary - ,

This chapter described many past and present research projects. First, the 2-D

wavelet transform was analyzed for its applications relating to image processing. Next,

the Haar wavelet was introduced. The Haar wavelet was chosen for the ASIC

transform/inverse transform because of its simplicity. After introducing the Haar

wavelet, research using other transforms was studied to gain an overall understanding

about their applications relating to image processing. Finally, specific details from

21

different ASIC designs were studied. Many of the lessons learned from the different

ASIC research efforts are applied to the Wavelet ASIC design.

22

III. Design Overview

3.1 Introduction

The behavioral VHDL code used to implement the Haar transform/inverse

transform was obtained from the University of Dayton (UD) (4). Since the supplied

VHDL code was written for FPGAs it wasn't readily synthesizeable and many changes

were needed. The steps taken to translate the FPGA VHDL code to synthesizeable code

are discussed in this chapter. Places to improve the code are described. The design flow

of the synthesizeable VHDL code is explained and the differences between the FPGA

code and the synthesizeable code are highlighted. Finally, degradation due to quantizing,

thresholding, and shifting are discussed along with its impact on the usefulness of the

image.

3.2 Goals

The goals of the ASIC research were directly tied with the current parameters of

Wild Force Board application. Using the maximum operating speed of 20 MHz and the

total number of states needed to transform one image, the FPGA design transforms one

image every 196.609 ms. By increasing the operating speed and/or decreasing the

number of states needed to process an image, the ASIC design will increase the frame

rate. Adding control signals to the ALU components forcing them to switch only when

necessary will minimize power usage. Chip area will be minimized by custom designing

critical portions of the Wavelet ASIC. The FPGA implementation supports image sizes

23

from 16 x 16 to 1024 x 1024. For simplicity, the Wavelet ASIC uses a set image size of

512x512.

3.3 Analysis of Original Code

The analysis process began by compiling and testing the behavioral

VHDL code received from UD. Initial tests were developed to determine the order pixels

were accessed. Next, different operations performed on the pixels were analyzed.

Operations performed on the pixels varied depending on the iteration of the transform

and where in the image the current pixel information was obtained. The code was

analyzed to determine the order of algorithm operations. Figure 6 shows the design flow

of the FPGA code for the transform section. Only the specifics for the row operations are

shown. Column operations occur in the same manner as that of the rows. The only

difference is in the order the pixels are processed. Row operations read in the pixels from

left to right. The column operations read in the pixels from the top to bottom.

The first step in the process is the packing of data. The FPGA implementation

contained no internal storage, requiring intermediate values to be stored in off chip RAM.

To minimize the RAM accesses the data was packed for later retrieval. Since pixel

information only exists in the 8 least significant bits of a 32-bit memory word, the FPGA

implementation reads in four locations and packs them into one 32-bit word. The 32-bits

are then stored back to RAM for later retrieval. Subsequently all memory read accesses

retrieve 4 pixels instead of only one.

24

The next step is the transform, which operates on the packed data. The packed

data is read in, transformed, and written back to RAM. Once the packed data has been

(Initialize J ►(Wait for Grant)

Set variables for
Row operations

Initialize image
variables

Read 4
8-bit
Pixels

Pack into
32-bit
Word

Write Packed
Data to RAM

Yes

Read 2
32-bit
Words

Yes

Calculate
4 Wavelets
and 4 Sealers
(Transform)

Write
Transformed
Data to RAM

Read 2
32-bit
Words

Unpack
into 8 values:
4 Wavelets
and 4 Sealers

Write 8 values
To RAM

Transform
Columns

Done
■X Reading All

.Cols?.

Yes Done
X With three

asses?>

No Reset
All
Variables

Quantize
And
Threshold
The Data

Encode
(not doing
this step)

►T Done J

Figure 6. Flowchart Showing Transform Steps of FPGA Behavioral Code

25

transformed it is read in, unpacked, and stored as 8-bit pixel information within a 32-bit

word. Three transform passes are performed on each image. During each subsequent

pass the image size is decreased by a factor of four. The first pass processes an image

size of 512 by 512 square pixels. The second pass processes an image size of 256 by 256

square pixels. The third and final pass processes an image size of 128 by 128 square

pixels (Figure 7).

During the first pass, the transform processes the original image. Each

subsequent pass operates on the scaling coefficients produced by the previous pass

(Figure 8). Details of the subsequent passes of the wavelet transform are explained in

Section 3.5. Each iteration only alters the original position of the current image i.e. the

memory locations of the 256 by 256 square image are read in. After being calculated, the

coefficients are written out to the same memory locations of the original 256 by 256

square image. After the three passes are performed, the image is quantized, thresholded

and encoded. Details of the quantize and threshold steps are contained in section 3.4.

The encode step is not part of the ASIC research and will not be discussed. After three

passes, the transform is complete. Next, the inverse transform is applied.

The second half of the FPGA design recreates the original image from the wavelet

transformed data file. The first step is to decode the encoded data file. Decoding details

are not addressed, as encoding was not implemented in the ASIC development effort.

The inverse transform process is simply the reverse of the transform process. The Haar

transformed data is read in, packed, and written back out to memory. The packed data is

then later read back in, inverse transformed, and written back out to memory. Finally, the

26

64

128

I 3 I I
---r--| 2 i

3 i 3 i i
 I i l i

2 | 2 I

 i 1

1 I 1

256

512

Figure 7. Transform Sections of Image

256

512

Figure 8. Result of One Transform Iteration

restored packed integer image is read back in, unpacked, and then written back to

memory.

One difference between the transform and inverse transform is how the data is

accessed. During the inverse transform, data is processed first by columns and then by

27

rows, which is opposite to that of the transform process. Another difference is the

operations used to inverse transform the data. Details of the inverse transform operations

are discussed in section 3.5. The order in which the memory locations are accessed is

also different. The transform step operates on adjacent pixels creating coefficients. The

coefficients are written to separate halves of the image. The inverse transform then

operates on the coefficients. In other words, the memory accesses for the inverse

transform are not sequential as in the transform step.

There are still three iterations. After each iteration the image is increased by four.

That is, the first pass processes an image size of 128 by 128 square pixels. The second

pass processes an image size of 256 by 256 square pixels. The third and final pass

processes an image size of 512 by 512 square pixels. The first and second pass produce

coefficients relative to their respective transform operations. The third pass produces the

transform-degraded values of the original pixels. Details of the degradation are explained

in the section 3.10.

The FPGA transform design takes 3,932,176 states to complete a three level

transform and quantization of an image. The time to process one frame is 196.609 ms at

a 20MHz operating speed. Appendix C contains a detailed breakdown of states for the

FPGA design. The frame rate only measures the processing time of an image that already

exists in memory. Associated operations like loading a new image into memory and

transmitting the image would obviously affect the frame rate.

The FPGA code can process images of different sizes. The image width and

height are located in memory locations one and two, respectively. When the FPGA code

reads in the image size information, the internal counters are set to indicate the size of the

28

image being processed. A 512 by 512 square image is the only size image handled in the

ASIC research, therefore, the details of dealing with the different sized images is not

addressed. The details for quantizing and thresholding are discussed next.

3.4 Quantize and Threshold Rules

In the FPGA code, the quantize step is performed after both the row and the

column transforms have been completed for all three iterations. The specific rules for

quantizing and thresholding are presented next. See (24) for the specific, detailed

information On the quantizing and thresholding process and theory. For explanation

purposes, numbers are assigned to each quadrant. The numbering (Figure 9) is used to

illustrate the different quantizing and thresholding rules for each quadrant.

0 ! * ! !

1 I 2 I l
 I I I 5

3 j 4 ■ |
I I

 I 1

5 I 6

Figure 9. Quadrant Layout

In all passes the scaling coefficients are left alone. The reason some quadrants in Figure

9 have the same number is that the rules for processing those quadrants are the same.

29

The values are represented in hardware as 8 bits of data. When speaking of position of

the bits the number is referenced from left to right as bit 7, bit 6, ..., bit 1, bit 0. Bit 0 is

the least significant bit (LSB) and bit 7 is the most significant bit (MSB). The quantize

and threshold steps alter the data which increases the compression ratio. The following

quantization and threshold rules were taken straight from the FPGA code. The steps are

executed in order for each value.

Quadrants 0:
Steps:

1. No altering of the data.

Quadrants 1:
Steps:

1. If number is negative and the LSB is equal to ' 1' then add 2 to the
number.

2. Set the LSB equal to zero. ;

Quadrants 2:
Steps:

1. If number is negative and one or more of the lower two bits are equal to
'1' then add 4 to the number.

2. Set low two bits equal to zero.

Quadrants 3:
Steps:

1. If number is negative and one or more of the lower two bits are equal to
' 1' then add 4 to the number.

2. Set low two bits equal to zero.
3. If value is less than -64 set equal to -64.
4. If value is greater than 64 set equal to 64.

Quadrants 4:
Steps:

1. If number is negative and one or more of the lower three bits are equal
to ' 1' then add 8 to the number.

2. Set low three bits equal to zero.
3. If value is less than -64 set equal to -64.
4. If value is greater than 64 set equal to 64.

30

Quadrants 5:
Steps:

Quadrants 6:
Steps:

1. If number is negative and one or more of the lower three bits are equal
to '1' then add 8 to the number.

2. Set low three bits equal to zero.
3. If value is less than -8 set equal to -8.
4. If value is greater than 8 set equal to 8.

1. If number is negative and one or more of the lower four bits are equal
to '1' then add 16 to the number.

2. Set low four bits equal to zero.
3. If value is less than -8 set equal to -8.
4. If value is greater than 8 set equal to 8.

3.5 Wavelet Transform/Inverse Transform portions of the code

The Haar transform is very simple. The scaling coefficient is the sum of

two pixels divided by two. The wavelet coefficient is the difference of two pixels divided

by two. To retrieve the original pixel values the inverse Haar transform is executed. The

sum of the scaling coefficient and the wavelet coefficient retrieves the first pixel.

Subtracting the wavelet coefficient from the scaling coefficient retrieves the second pixel.

The pixels are recovered with no loss in value. Table 1 depicts this process.

Pixel Value Sealer Wavelet inverse
Pixel 1 5 (5+6)/2 = 5.5 (5-6)/2 = -0.5 5.5 + (-0.5) = 5
Pixel 2 6 5.5 - (-0.5) = 6

Table 1. Example of Transform/Inverse Transform

The image is transformed first by rows and then by columns. When the rows are

transformed the left side of the image space consists of scaling coefficients and the right

side of the image consists of wavelet coefficients (Figure 10. Image B). Next, the image

31

is transformed by columns. When the column transform is complete the image consists

of four quadrants (Figure 10. Image C). Upper left is the scaling coefficients. The upper

right is wavelet coefficients showing the horizontal edges of the image. The lower left is

wavelet coefficients showing the vertical edges of the image. The bottom right quadrant

is wavelet coefficients showing the diagonal edges of the image (2).

B
m G

E E

C C

H

Figure 10. Transform of Image

Figure 10, Image C, shows the first iteration of the transform. The second

iteration would only operate on the upper left quadrant (Figure 10. Image C). It would

produce the same four quadrants as the first iteration but of different resolution levels (2).

The third pass would operate on the upper left quadrant from the second iteration. The

result of three iterations is shown in Figure 10, Image H.

32

Olli I
1 I -> I

1 I 1 I I
 I I I 3

i i J

i i
2 | 2 I .

I I
 i i

3 ! 3

Figure 11. Quadrants of the Three Transform Passes

The inverse transform would operate on the image in reverse order to the

transform process by first processing the columns and then the rows. The first pass

would operate on the squares labeled '0' and 'V in Figure 11. The second pass would

operate on the result of the first and the squares labeled with a '2'. The final pass would

operate on the whole image recovering the original image. Since the calculations are

being performed in hardware, fractional values are lost during integer division, and the

original image isn't perfectly recovered. Other factors such as quantizing and

thresholding the data are the major reason for distortion in the final retrieved image. For

a more detailed description of these distortions, reference Section 3.10. Next, the steps

taken to convert from the FPGA VHDL code to synthesizeable code are discussed.

33

3.6 Converting the Original FPGA Code to Synthesizeable Code

Once the behavioral level VHDL code was working it was necessary to convert it

to a synthesizeable form. Converting the FPGA compatible code to synthesizeable code

was a complex task. The following statement is an example of the coding style used in

the original VHDL behavioral code.

indx 1(18 downto 0) <= indx(18 downto 0) + 10;

Similar types of statements occurred simultaneously in the behavioral VHDL code. The

first problem with above segment of code is the utilization of bit vectors. AFIT synthesis

tools are not compatible with the bit vector construct of the VHDL language. All bit

vectors had to be converted to individual bits, making the code longer and harder to

follow. The '+' signs were also inappropriate. The following analysis assumes that 4

additions occur simultaneously. At least three methods are available to implement

additions. The first method implements four adders that operate simultaneously. The

second method places each addition in a different state, thus solving the problem serially.

The second method takes four times as long to compute but requires only one adder.

Other combinations such as two adders and two states were explored. An analysis of

extra states and replication of components was done to decide what combinations of

states and adders were best. The analysis is explained in section 4.6.

The tradeoffs for multiple additions are as follows:

1. Multiple adders working in parallel increase power usage and increase overall
area.
2. A single adder increases the execution time because extra states are needed.

34

3. A combination of multiple adders and more states provided the best solution
for the ASIC design, allowing for some speedup without the area becoming too
large.

Many of the defined signals were not used in the original behavioral VHDL code.

If two values are added they must be the same size since the '+' operator was used. For

example:

newaddress(18 downto 0) <= address(18 downto 0) + count(18 downto 0)

Even if count only used four bits, count must be 19 bits long in order for the addition

operation to compile in VHDL. As part of generating synthesizeable VHDL, all

unnecessary bits were removed from the code.

Another non-synthesizeable portion of the behavioral VHDL was the code for the

data latches. Changes were required so latches would properly synthesize. Figure 12

shows an example of some code that was changed to synthesize properly. When the reset

line was placed before the clock edge detection line, as it was in the FPGA code, the

component wouldn't synthesize. Figure 13 shows the correct way to program a latch for

synthesis.

if (RESET = T) then
PAKPXV5 <= '0';

elsif ((CLOCK = T) and (CLOCK'event)) then
if(ReadPixel3 = T)then

PAKPXV5<=T;
else -no change

PAKPXV5 <= PAKPXV5;
end if;

end if;

Figure 12. Incorrect Way to Code a Latch

35

if ((CLOCK = '1') and (CLOCK'event)) then
if (RESET = '1') then

PAKPXV5 <= '0';
elsif (ReadPixeB = T) then

PAKPXV5<=T;
else -no change

PAKPXV5 <= PAKPXV5;
end if;

end if;

Figure 13. Correct Way to Code a Latch

The FPGA code used many RAM accesses to process an image. With some

additional logic the RAM accesses were reduced. The details for reducing the Ram

accesses and the savings from the reduction are explained in the following section.

3.7 Optimizations on the Original Code

Analysis of the initial behavioral VHDL code showed that the three stages of

Wavelet transform operations (Pack, Transform, Unpack) could be combined reducing

RAM accesses by 47%. As with most designs, off-chip memory accesses are a

performance bottleneck. Minimizing the number of memory accesses greatly reduces the

overall execution time. The FPGA implementation included no internal data storage

provisions requiring RAM reads/writes of intermediate values to be stored in off-chip

memory. The inclusion of an internal register file eliminated the storing and retrieving of

intermediate values. Pixels were simply read in once, transformed, and written back out

to RAM. Appendix B analyzes the exact savings from combining the three memory

access steps. The additional steps to quantize and threshold the data were also

36

incorporated with the column transform step. In the FPGA code, the quantize step is

performed after both the row transform and the column transform have been completed.

By incorporating the quantize step into the column transform step, one additional

memory access is eliminated. The details to the reductions in RAM accesses are

presented in Appendix B. Combining all the above operations eliminated all the reads

and writes the original code needed to execute the quantize step. For a 512 by 512 square

image the savings were 524,288 memory accesses. Of course, the logic was more

complex and the need for a 256 by 8-bit internal register file utilized more chip area. The

total chip area used by the internal register file and its associated address decode logic is

8,969,114 lambda2. See Appendix B. Savings of Ram Accesses, for detailed Read/Write

access numbers. Table 2 summarizes the total savings for a 512 by 512 image.

Total Ram Accesses by Old System 2,588,672
Total Ram Accesses by New System 1,376,256

Savings over FPGA implementation 47%

Table 2. Total Savings in Ram Accesses

The next section explains the steps taken to develop the new synthesizeable VHDL code.

3.8 Development of the Synthesizeable VHDL Code

To constrain the scope of the research, noncritical portions of the FPGA design

were not implemented. The noncritical portions are explained in this section. The

specifics of the new VHDL behavioral code are also discussed. Detailed differences

between the ASIC and the FPGA design are addressed. Some of the logic used

37

specifically for the FPGA design is incorporated in the synthesizeable VHDL code. The

extra logic, 'artifacts' are listed.

The Encoder/Decoder portions of the original algorithm were not implemented as

part of the Wavelet ASIC design. The encoder simply reduced the transformed data file

for transmission while the decoder expanded the compressed file back to its original size.

Another functionality not implemented was the capability to process a variable size

image. Rather, a constant 512x512 image size was used for the ASIC research.

However, only a few minor design changes would be required to process any size image

smaller than 512 by 512. The memory used by the FPGA started the image data at

location 10. Since no internal storage existed, data relevant to the operation was kept in

locations 0 through 9 and loaded every time it was needed. The same data memory

mapping was retained for the ASIC development. As the design progressed it was found

the data stored in locations 0 through 9 was not needed for the ASIC research. The

impact of the FPGA memory address offset added one state to each of the four state

machines use in the ASIC.

The original VHDL code allowed for a variable input of the number of transform

levels to perform. Based on tests using the FPGA implementation, three transform levels

was determined to be the optimum number of levels to perform (4). Therefore, the ASIC

design used three transform levels for every image. Due to the hardwiring of three levels,

the transform counter was reduced to 2-bits. Another signal, icolumn, was reduced from

19-bits to 10 bits. It was originally 19-bits long to accommodate for the '+' operation

restrictions. Eliminating unnecessary signals made the code more compact and reduced

unnecessary steps later in the design process.

38

Another change to the behavioral VHDL code was to break it into smaller more

manageable files. The original VHDL code for each main section (Transform, Quantize,

etc...) was contained in one file. To properly synthesize the design, smaller files, each

containing less logic, were needed. First, the state machine and the state control signals

were separated out. Next, all of the Arithmetic Logic Unit (ALU) type operations

(Additions, Subtractions, Incrementers, etc..) were removed. Each of the operations was

moved to their own separate file. The signals necessary for the operations were passed as

input and output parameters to each file. Any component that could stand-alone was

more efficiently implemented if synthesized by itself. Typically, design tools are more

efficient when small modules are used. Testing the modules is also much easier and

faster when it contains only a single operation.

Another artifact from the FPGA implementation code is bus arbitration. Bus

arbitration along with the other FPGA's artifacts is implemented in the event the ASIC

design is ever interfaced with the continuing FPGA effort. The ASIC design requires the

assertion of the bus grant signal to a logic zero for the operations to begin. The original

code did not allow for the bus grant signal to be deasserted once it was granted. The bus

grant logic is the same for the ASIC as that of the FPGA design.

Since the FPGA artifacts are not needed by the ASIC design, further work on the

ASIC design may require the removal of all the extra logic, clock cycles, chip area, and

power needed to execute the additional steps.

39

3.9 Basic Operation of the New VHDL Code

The operation of the ASIC design is discussed in this section. The process begins

by resetting the ASIC's states and ends when the image is retrieved. Both the transform

and inverse transform processing steps are explained.

As shown in Figure 14, the process begins by resetting the states in the ASIC.

Once the reset signal is asserted the top-level state machine (Appendix A.l) is initiated.

The first state asserts the bus request. The circuit remains in a bus request state until the

bus grant input is asserted indicating the bus has been given to the Haar ASIC for use.

Once the bus grant is received, the image variables are initialized and processing of the

image begins. First, the image pixel values are read in row by row. The first four pixels

(in locations 0,1,2,3) are read from memory. The image's pixels are numbered 0 to

262,143 starting in the upper left corner as you view the image and proceeding left to

right as shown in Figure 15.

The first row is numbered 0 to 511, the second row is numbered 512 to 1023, and

soon. The image is assumed to reside in memory locations 0 to 262143. The actual

algorithm operates on an image that begins at location 10. The starting address offset is

an artifact from the FPGA implementation. Once the pixel values are read in from

memory the transform is executed producing transform coefficients.

The scaling and wavelet coefficients are calculated from the pixel values. The

two scaling coefficients are written back out to memory as shown in Figure 16

The wavelet coefficients are temporarily written to the internal register file in the

same manner as the scaling coefficients were written out (wavelet coefficient! is written

40

C Initialize J ►(Wait for Grant)

Set variables for
Row operations

Initialize image
variables

Read 4
Pixels

Transform

Write both
Sealer
Coefs to
Ram

Save both
Wavelet
Coefto
Register

Yes

Write all Wavelet
Coefs to RAM

Set variables for
Col operations

Done
Reading All

vRowsTx

Yes

J3o_
Reset
Row
Variables

No

Write
Sealers to
RAM

Lfi Quantize
Sealer
Coef

Yes

Read 4 Pixels Transform
Quantize
Wavelet
Coef

Save both
Wavelet
Coefs to
Register

Write all Wavelet
Coefs to RAM

Done
-X Reading All

Cols?.

Yes

Reset Col
Variables

No

Done
X With three

iasses?>

Yes

Reset
All
Variables

(Done J

Figure 14. Flowchart Showing Steps to Complete the Haar Transform

41

10 ii 520 521

522 523 • • • 1032 1033

262130 262131 262640 262641

262642 262643 • • • 262152 262153

0 1 510 511

512 513 ... 1022 1023

262120 262121 262630 262631

262632 262633 • • • 262142 262143

Actual Address Mapping Address Mapping Used for Explanation

Figure 15. Address Mapping

0 511

Initial Data

Scaling Coefficients Wavelet Coefficients

0 255 256 511

Figure 16. Placement of Coefficients Relative to Original Pixel Data

to register location 0 and the wavelet coefficient2 is written to register location 1). Once

an entire row has been processed the wavelet coefficients are read from the internal

register file and written out to main memory. After the register values are written to

RAM, the scaling coefficients are located on the left half of the current image and the

42

wavelet coefficients are located on the right half of the current image (Figure 10,

image B).

Next, the entire image is processed again but in column order. After initialization,

four pixels are read in from memory starting with the left most column. During the

column operations the scaling and wavelet coefficients are created in the same manner as

in the row operations. After the coefficients are calculated, they are quantized and

thresholded. The rules change for quantizing and thresholding depending on which

iteration of the transform is being executed and on which quadrant the current pixels are

being written. The rules for quantizing and thresholding are discussed in Section 3.4.

Referencing Figure 9, the first pass quantizes and thresholds quadrants '5' and '6'. The

second pass quantizes and thresholds quadrants '3' and '4'. The third pass quantizes and

thresholds quadrants ' 1' and '2'. Once the coefficients have been quantized and

thresholded they are written to RAM or the register file. The wavelet coefficients are

written to the internal register file in the same order as the scaling coefficients were

written out. Once an entire column has been processed the wavelet coefficients are read

from the internal register file and written out to main memory. The scaling coefficients

reside in the top half of the current image and the wavelet coefficients in the bottom half

of the current image. The algorithm continues until all columns have been processed,

resulting in a fully transformed, quantized, and thresholded image (Figure 10, image C).

The row/column operations continue for three passes.

The next step, encoding the image, reduces the size of the data file for

transmission yielding a quicker transmission time. The encoding step was eliminated as

it was out of scope for the ASIC development.

43

The second half of ASIC design process involves the recreation of the image.

Figure 17 summarizes the inverse transform process. As explained in Section 3.10, the

recreated image is not a perfect replica of the original image.

The process of performing the inverse transform is much the same as the

transform process. However, one difference is that the transformed data file is processed

first by columns and then by rows. Bus arbitration is the same as in the transform case.

Three iterations are required, however, the first iteration of the inverse transform is

performed on the 128 square image, the second on the 256 square image and the third

processes the 512 square image. The order in which the memory locations are accessed

is also reversed.

The inverse transform continues until all columns have been read in and

processed. Again each iteration works with a different area of the image. Next, the

entire file is processed again, but in row order. Four pixels are read in from memory.

The order the values are read in and the operations performed are exactly the same as that

of the inverse column operations except the values are read in by rows. All of the rows

are read in and processed.

The column and row inverse transform operations continue for three passes. Each

time the image size is increased by a factor of four. Explicitly stated, the first pass

processes an image size of 128 by 128 square pixels. The second pass processes an

image size of 256 by 256 square pixels. The third and final pass processes an image size

of 512 by 512 square pixels. The first and second pass produce coefficients relative to

their respective transform operations. The third pass produces the full size image with

some degradation. Image degradation is explained in the next section

44

(Initialize J ►HVait for Grant)

Set variables for
Col operations

Initialize image
variables

Read 4
Pixels

Inverse
Transform

Yes

Write four
results to
RAM

Write results in
Reg file to RAM

_Ep

Write four
results to
Register
file

Set variables for
Row operations

Yes

Reset
-H Col

Variables

Read 4 Pixels
Inverse
Transform

Write four
results to
RAM

Write four
results to
Register
file

Write results in
Reg file to RAM

Done
-X Reading All

.Rows?/

Reset Row
Variables

No

Yes / Done
■xC With three

^asses?^

Yes

Reset
All
Variables

(Done J

Figure 17. Flowchart Showing the Steps to Complete the Haar Inverse Transform

45

3.10 Degradation Due to Shifting, Quantizing, and Thresholding

The Haar wavelet transform introduces no degradation. However, in the VLSI

implementation some degradation is introduced. The ASIC implementation uses integers

to represent pixel values. Thus, when a divide is performed the exact quotient is not

obtained and fractional remainders are truncated. Doing a shift on the register holding

the values performs the divide. A single shift to the right is equivalent to a divide by two.

The problem with a shift is the LSB is discarded. When an even number is shifted a zero

gets shifted out resulting in no loss of data. However, when the number is odd there is a

loss associated with the shift.

15,o = 11112

Divide by 2 7.5,0 + III2 = 7,o
Multiply by 2 15,o ± IIIO2 = 14,o

Table 3. Example of Loss of Data Due to a Right Shift

Table 3 illustrates one place that degradation occurs in the ASIC design. Obviously,

when the inverse transform is executed some of the original pixel values may be altered.

Reference Table 4 for example of actual loss to individual pixels. Pixel 2 is recovered

but Pixel 1 is recovered as a four not a five.

Pixel Value Sealer Wavelet inverse
Pixel 1 5 (5+6)/2 = 5 (5-6)/2 = -1 5 + (-l) = 4
Pixel 2 6 5-(-l) = 6

Table 4. Example of Loss Due to Integer Shift

46

Degradation increases when negative numbers are involved. To help mitigate the

impact of the loss an additional step was introduced. Depending on the iteration of the

transform and quadrant being transformed, an offset value is added to negative numbers

allowing for a more accurate recovery of the complete image. Degradation still exists but

is lessened by the offset (4), (24).

Some loss of integrity is a tradeoff for increasing execution speed and reducing

power consumption. Executing a bit-wise shift in hardware requires a simple routing of

the signal lines. Implementing a Divide unit is much more complicated, requires a

significant portion of area, and is much slower to execute than a right shift. The power

used for an integer division operation is much greater than for a right shift operation.

Degradation from the quantization and thresholding of the pixel values limits the overall

accuracy of the reconstructed image. However, to obtain a greater compression ratio

over the original image, required for a faster transmission time, degradation was deemed

necessary.

3.11 Summary

The behavioral level VHDL code simulated operation of the wavelet ASIC

properly when run with a512by512 square image size. Reduction of RAM accesses

reduced the power usage and decreased the time needed to transform an image.

Degradation due to the transform, quantize, and threshold steps was a tradeoff for

improvements to execution speed and compression ratio. For some applications the

47

degradation would be a hindrance. However, for the ASIC research, the degradation is

an acceptable tradeoff.

48

IV. Design Implementation

4.1 Introduction

Detailed design of the Wavelet ASIC is covered in this chapter. Explanation is

from a component level of abstraction. Some components are discussed in great detail.

Others, such as multiplexers, speak for themselves. How the components fit together is

also discussed. Most of the components were generated automatically from a behavioral

description using the Synopsys Design Analyzer Tool (5). Certain blocks of logic, like

the register file and its associated address decode logic, were custom built. Custom built

components are more compact, consume less power, and run faster, but time constraints

don't always allow for a full, custom design. Off chip memory, bus control, and memory

control were not part of the ASIC design. Only the provided code was translated and

implemented.

4.2 Steps Used to Create a Magic Layout of a Component

The steps used to create a component starting with a behavioral description and

finishing with a metal level layout in Magic (7) are as follows.

Step 1. Describe the logic in behavioral VHDL.
Step 2. Write a test bench in VHDL to test the code.
Step 3. Compile and test the code.
Step 4. Input the behavioral VHDL to Design Analyzer for synthesis.
Step 5. Optimize until satisfied with the timing and area usage.
Step 6. Convert output of Design Analyzer to input for Synopsys Graphical

Environment (SGE) tool.
Step 7. Using SGE, hand place and route any D Flip Flops.

49

Step 8. Create structural VHDL of the logic using SGE.
Step 9. Compile and test the structural level code.
Step 10. Create a netlist of the logic using SGE.
Step 11. Convert netlist to Schematic Driven Layout (SDL) file format used by

Octools.
Step 12. Verify the SDL file by comparing to netlist.
Step 13. Add commands to SDL forcing the ordering of the input and output

signals.
Step 14. Use Octools to produce a Magic Layout of the logic.
Step 15. Use the Magic command 'drc check' to verify the correctness of the

Magic layout.
Step 16. Extract a '.EXT' file from the layout.
Step 17. Convert '.EXT' file to IRSIM file format.
Step 18. Write an IRSIM test bench and test the logic.
Step 19. Convert '.EXT' file to HSPICE file format.
Step 20. Write an HSPICE test bench and test the logic.
Step 21. Connect with other components then test as a larger block.

The above steps are listed to help clarify when certain steps occur relative to each other.

4.3 Using the Synopsys Design Analyzer

The "increment by 10" component is used to illustrate how the design analyzer

was used to design the ASIC Wavelet chip. Synopsys Design Analyzer takes behavioral

VHDL code as input and creates a gate level layout of the logic. Design Analyzer can

optimize the design for minimal area or minimal execution time. In the incrementer

example, the first step is to describe the incrementer in behavioral VHDL. After the

VHDL file is compiled and tested, the VHDL is used as input to the Design Analyzer.

During the ASIC development effort, the initial iteration of the design analyzer is set to

optimize the logic for a minimal amount of area. After the component is laid out it

usually is necessary to optimize it based on the critical path. Subsequent optimization

usually reduces the critical path time considerably as compared with the initial synthesis.

50

It has been proven with the Wavelet ASIC research and with past projects from the AFIT

VLSI EENG 695 course, that iterating more that two times isn't necessary. The area of

the component continues to expand yielding only a minimal increase in speed. The rule

of only optimizing twice was proven with adders, subtractors, incrementers, and

multiplexers. For the ASIC effort, components were, at most, optimized twice. The

optimization steps for the incrementer are as follows:

1) Optimize on minimal area : Worst case timing = 13.71ns
2) Optimize on critical path : Worst case timing = 2.81ns

The critical path timing was reduced by 79%. As stated above with an additional

iteration the timing is only reduced by small increments and the area continues to expand.

The area does expand for the second iteration but trading area for a 79% speed up is a

valid exchange.

4.4 Components

A complete list of components and their general description is listed in

Appendix D. Many of the components are used more than once in the design. During

some states, simultaneous additions and increments are executing. Adding additional

states could have eliminated multiple operations occurring in a single state. A tradeoff

was made with the number of states and the number of times to replicate components.

Since incrementers use less area and power than adders, they were used whenever

possible. Another tradeoff was in the control of each of the ALU type components. Each

component had a control line associated with it. The control line caused the component

to only switch when it was supposed to. Without the control line, the component would

51

switch whenever any of the input lines fluctuated. Incorporating the component level

control added extra logic and area to the design but offered a savings in power as the

components wouldn't unnecessarily switch. The HSPICE timing of all the components is

contained in Appendix D.

4.4.1 Adders/Subtractors

There are three adders and one subtractor used in the Wavelet ASIC. The 8-bit

adder, 9-bit adder and the 9-bit subtractor are all implemented with ripple carry logic.

The timing from using ripple carry logic was sufficient for the small adders. The other

adder was a 19-bit adder; it was implemented as a carry-select adder. The carry-select is

larger in area but produces a much faster adder than the ripple carry logic (25). The

reason for the custom sizing of the adders/subtractors was because certain states had

multiple additions and subtractions being executed simultaneously. In one state the 8-bit

and 9-bit adders and 9-bit subtractor are all being used. In some cases component reuse

was selected. In one state there was a need for two 8-bit adders. The 9-bit adder was

used for the second adder with the 9th bit not being used. Using the 9-bit adder saved the

building of a second 8-bit adder and the associated area with the component.

4.4.4.2 Incrementers

Several incrementers are required for the Wavelet ASIC. An increment by 10 was

needed to account for the offset of the starting memory location of the input image. The

19-bit adder could have been used but it was already being used in the same state that the

52

increment by 10 is required. Other incrementers were built to accommodate both a 10-bit

input and a 19-bit input. Again, the reason for multiple incrementers was that some states

use more than one incrementer simultaneously. Rather than replicate the 19-bit

incrementer and use it for smaller inputs, the 10-bit incrementer was built saving area and

power.

The incrementers were implemented as ripple-carry adders. Ripple-carry adders

are sufficient since only the LSB is T and all other bits are '0'. The incbylO was also

designed using the ripple-carry adder logic. Hard coding ' 10' as the second input

simplified its design. As explained earlier with further refinements and design choices

the incbylO component could be completely eliminated since the offset by 10 of the

image is an artifact of the FPGA design.

4.4.3 Comparator

A comparator was needed for the code since loops with end conditions needed to be

tested. A comparator module was designed and tested. The following snippet of code

was taken from the original design:

Original line of code:
(jshift(18 downto 0) >= Column(18 downto 0))

The following lines of code show the implementation of compare logic as written in

behavioral VHDL for synthesis. The code segment only shows two of the 19 bits.

RESUL is the output of the logic. If RESUL equals one then JSHBFT is greater than or

equal to COLUMN. If RESUL equals zero then COLUMN is greater than JSHIFT.

53

JRES2 <= ((JSHIFT2 xor COLUMN2) and JSHIFT2);
CRES2 <= ((JSHIFT2 xor COLUMN2) and COLUMN2);
JRES3 <= ((JSHIFT3 xor COLUMN3) and JSHIFT3);
CRES3 <= ((JSHIFT3 xor COLUMN3) and COLUMN3);
if (JRES3 = T or CRES3 = * 1') then

RESUL<=JSHIFT3;
elsif(JRES2 = 'l'or CRES2 = '1') then

RESUL<=JSHIFT2;
else

RESUL<=T;
end if;

4.4.4 Multiplexers

Several multiplexers were used in the Wavelet ASIC. All the multiplexers are

listed in Appendix D. Only the larger multiplexers were optimized during the design

analyzer phase. Explicitly, the 6 x 19 input and the 7 x 19 input multiplexers were

optimized once to reduce the critical path time. As stated in Appendix D, the 6 x 19 input

multiplexer is the slower of the two. However, the propagation time is still minimal at

3.04 ns.

4.5 Four Parts of Code

The behavioral VHDL code was sectioned into four parts. Row transform (Figure

18), Col transform (Figure 19), Col inverse transform (Figure 20), and Row inverse

transform (Figure 21). Quantizing and thresholding was incorporated into the Column

transform section. Each part was tested separately. The transform pieces were tied

together with a higher-level state machine called transform. The transform section was

then tested (Figure 22 and Figure 23). The inverse transform pieces were tied together

54

with a higher-level state machine called inverse transform. The inverse transform section

was then tested (Figure 24 and Figure 25). Since the two top-level pieces, transform and

inverse transform, operate independently it wasn't necessary to test them together.

A high level multiplexer that is controlled by an input signal separates the two

halves. The input signal chooses which half is executed. The other half remains in the

reset state. Two additional signals control which data is routed to the output. The

additional control allows isolation of smaller sections of the chip enabling the verification

of these sections in the event the entire chip does not function correctly.

Each of the four main parts shares base level components: adders, subtracters,

incrementers, and a comparator. Components were duplicated only when necessary to

support simultaneous operation.

J»4
REGADD"2

SA?
♦ ♦ ♦
MUX3B10

RESULT

COMPARE10 I ► DOROWSM

ttt,
■+-*■

■4 ►
■4 ►
■4 ►
■4 ►

-«—4
<*-H
+-+T+
•* '.*

MEMSTROB
MEMWRSEL BY10RS
DONE

K

MEMDIN

CLK

RESET

REOPIX2
REGPIX1
READPIX2
READPIX1
WRITSC2
WRITSC1
WRITEWAV
PIX1A
PIX2A
PIX3A
PIX4A
WAVE1C
WAVE2C
SCAL1C
SCAL2C
COF1AD
COF2AD
REGADD

CALCINDX

1

INCIOCNT

<—*-

tu
-REGADD
-J

^>
ADD19CNT

<—f-

J_i_
-J*4
-J»2

U\tt
I NC19CNT

MUX5 19
INC 19

19
| 1-

PK1A
PLX2A

PIX3A
COF1AD
COF2AD

ADD9CNT

i_
■4 f-

4 *-

SUB9RES

_L_i
MUX2B9

■4 *-

-PLX1V
-PIX3V

LJ
- PIX2V
-PIX4V

Figure 18. Row Logic for Transform

55

ISHIFTB(1'4)
INDEX'2

REGADD*2
INDEX

+ + I*

<-f-

<-^,

MEMSTROE
MEMWRSEL
DONE

K

MEMDIN

CLK

RESET

RESUL J
IROW 8
ROW °

READPIX1
READPIX2
REGPIX1
REGPIX2
WRIT1COF ADD8RES
WRIT2COF
WRITEWAV
PIX1A
PIX2A
PIX3A
PIX4A ADD9f
WAVE1C
WAVE2C
SCAL1C
SCAL2C
COF1AD
COF2AD SUB9R
REGADD

CALCINDX

-INDEX

-GND

1NC10CNT

i_

All
-REGADD
-INDEX
-I

/4m
ADD19CNT

<-/-
■*-*-

mi

TCOL
FCOL

PDC1A
PDC2A
PD(3A
COF1AD
COF2AD

IROW+GND
IROW'4
IROW'2

ADDBCNT

i_

TPINDX ^^

ADD9CNT

i_

SUB9CNT

i_

III

-SCAL1C
-SCAL2C

-PDC2V
-PD(4V
-WVADD+GND

llll
PIXIV
PIX3V
WAVE1C
WAVE2C

Figure 19. Column Logic for Transform

REGADD'2
INDEX

lilt

COMPARE!«

CALCINDX

MEMSTROB
MEMWRSEL
DONE

CLK
RESET

RESULT
IROW
ROW

READPIX1
READPIX2
REG FIX I
REGPIX2
RAMCNTRL
WRIT1PIX
WRIT2PIX
WR1T3PIX
WR1T4PIX
WRITEPIX
PIX1A
PIX2A
PLX3A '
PIX4A
N1PIX
N2PIX
N3PIX
N4PIX
RAMADD !
REGADD

-INDEX

-GND

INCIOCNT

i_

ADD19CNT

HI
-REGADD
-INDEX

www

UHU,

P1X1A
PDC2A
RAMADD
COL
RCOL
SHIFT

DtOW+GND
2'IROW

4'IROW
T1INDX
T2INDX
INDEX+GND

ADDSCNT

i_
I I

-PIX2V
-PDC4V

_L_L
-PKIV
-PIX3V

Figure 20. Column Logic for Inverse Transform

56

MEMSTROB
MEMWRSEL
DONE

K

MEMDIN

CLK

RESET

REGPIX2
REGPIX1
READPIX2
READPIX1
RAMCNTRL
WRIT1PIX
WRIT2PIX
WRIT3PIX
WR1T4PIX
WRITEPIX
PIX1A
PIX2A
PIX3A
PIX4A
N1PIX
N2PIX
N3PIX
N4PIX
RAMADD
REOADD

CALCINDX

I
III

1NCI0CNT

i_

ADD19CNT III
-INDEX
-TilNDX
-T2INDX

-SHIFT
-J'2
-J*4

iJbL
-PIX1A
-PIX2A
-RAMADD

^ ^
ADD8CNT I I

- PIX2V
- PIX4V

-PIXIV
- PIX3V

Figure 21. Row Logic for Inverse Transform

CLK
RESET
MEMBUSOR
K
TOPCURSTATE

TRANSFSM

-*•/- ■**-*■

CLK
TOPCURSTATE
K
RESET
DONE
BUSREQ '
UPDATEK
ROWS
COLS
READY
RESETROW
RESETCOL

CLK
K
ROWDONE
MEMDIN
RESETROW

DOROWS

ROWSTATE

3 M
8 3

TOPSTATE
ROWSTATE
COLSTATE

I I
A i_

CLK
K
COLDONE
MEMDIN
RESETCOL

*VL ►

'0' FOR ALL
BUT STROBE ='1'
ANDWRSEL = 'l'

Figure 22. Top Level For Transform Logic

IlHl

MREADPIX1
MREADPIX2
MREGPIXI
MREGPIX2
MWRITESC1
MWRITESC2
MWRITEWAV
MSCALIC
MSCAL2C
MWAVE1C
MWAVE2C
MP1X1A
MPIX2A
MPIX3A
MPIX4A
MREGADD
MCOF1AD
MCOF2AD

-*■ MEMSTROB
->• MEMWRSEL

57

CLK
RESET

CLK GENERATOR

MEMSTROB
MEMWRITESEL

MEMAOT
MEMDOT

D
CLK

FLIP FLOP

CLK

FLIP FLOP

CLK
RESET

REGEN
REGRW

TREGADD
REGDAT (inoul)

MEMSTROB
MEMWRITESEL
MEMAOT
MEMDOT

STATE
STATECHOICE

MEMBUSGRANT
DONE

READY
BUSREQ

TOPTRANS

2 Cycle Read Delay

Figure 23. Test Bench For Transform Logic

CLK
RESET
MEMBUSGR
K
TOPCURSTATE

-±+-

CLK
TOPCURSTATE
K
RESET
DONE
BUSREQ
UPDATEK
ROWS
COLS
READY
RESETROW
RESETCOL

CLK ;

K
ROWDONE
MEMDIN
RESETROW

UNROWS

UNROWSTATE

AfrL ►

TOPSTATE
UNROWSTATE
UNCOLSTATE

CLK
K
COLDONE
MEMDIN
RESETCOL

UNCOLSTATE

AV- ►

•0' FOR ALL
BUT STROBE = T
ANDWRSEL=T

^—►

Figure 24. Top Level for Inverse Transform

5 5 q a 2 _
S S
AAAA

es

MEMREADPIX1
MEMREADPLX2
MEMREGPIX1
MEMREGPIX2
MEMRAMCNTR
MEMWRITEIPIX
MEMWRITE2PIX
MEMWRITE3PIX
MEMWRITE4PIX
MEMWRITEWAV
MEMN1PIX
MEMN2PIX
MEMN3PIX
MEMN4PIX
MEMPK1A]
MEMPIX2A !
MEMPLX3A
MEMPK4A
MEMRAMADD
REGADD

->• MEMSTROBE
->■ MEMWRSEL

58

CLK
RESET

CLK GENERATOR

REGRW
RGEN

TREGADD
REGDAT

REGDOUT

RAM1
(REGFILE)

z y >
MUX

MEMSTROB
MEMWRITESEL

MEMAOT
MEMDOT

RAM2QUT
RAM2

-*-►
D
CLK

FLIP FLOP

-^> D
CLK

FLIP FLOP

CLK
RESET

REGEN
REGRW

TREGADD
REGDAT (inout)

MEMSTROB
MEMWRITESEL
MEMAOT
MEMDOT

MEMDIN
STATE

STATECHOICE
MEMBUSGRANT

DONE
READY

BUSREQ

TOPINVTR

'-* ►
<±+-

2 Cycle Read Delay

Figure 25. Test Bench for Inverse Transform Logic

4.6 State Machines

A total of six state machines control the operation of the Wavelet ASIC

(Appendix A). The workload is distributed across all the states. Effort was made to have

as few states as possible. A tradeoff was made in the replication of components and the

number of states. In some instances a component was duplicated so two things could

happen in one state. Duplication of a component saves one state in the state machine and

ultimately saves thousands of clock cycles.

59

For example, an extra state in the portion of the state machine that read in the

pixels for the transform part of the design would be executed 128 times for each row,

since each iteration of the state machine reads in 4 pixels. Take 128 and multiple it by

the number of rows, 512. Next, double the result to account for the columns. Finally, do

the same calculations for two more iterations. Total savings for one 512 by 512 square

image is 172,032 clock cycles. Assume a clock cycle of 50 ns or 20 MHz. The total time

saved is 8.6 ms.

(512/4)*512*2= 131,072 --first iteration
(256/4)*256*2= 32,768 -second iteration
(128/4^*128*2= 8,192 --third iteration

172,032 -total for all three iterations

It is obvious that adding an additional state becomes costly very fast. The tradeoff of

adding an extra state is extra area consumed by replicating components to operate in

parallel. Similar design choices are always being made during the ASIC design process.

A minimal comparison was made in effort to reduce the number of states needed

in the state machines. Two pixels are needed in order to execute the Haar transform.

Many methods of reading in the pixels could have been studied. A state machine that

read in two pixels and performed the required operations was created. A state machine

that read in four pixels was also created. The number of cycles necessary to read and

transform four pixels using each method was 35% less when using the state machine that

read in four pixels. Two different sections of the code were analyzed using the two types

of state machines. The number of states listed in Table 5 and Table 6 isn't the total

number of states needed to process the data. Only that portion of the two state machines

that is different was counted. Table 5 shows the savings between the two types of state

60

machines for the row transform stage of the design. Table 6 shows the savings between

the two types of state machines for the inverse row transform stage of the design. In both

cases the state machine that read in 4 pixels outperformed the other state machine. A

state machine that read in 4 pixels was also used in the column and row processing

portions of the design.

Type of State Machine 2 Pixels Per Iteration
Number of States to Read and Process 4 Pixels
Number of States for 1 Row
Number for All Rows first pass
Number for All Rows second pass
Number for All Rows third pass
Total Number for Three Iterations
% savings of 4 Pixel Read
Time savings assuming 20 MHZ clock

4 Pixels Per Iteration
17

(512/4)*17 = 2176
2176*512 = 1114112

(256/4)* 17*256 =278528
(128/4)* 17* 128 =69632

1,462,272

11
(512/4)*11 =1408

1408*512 = 720896
(256/4)* 11 *256 =180224
(128/4)* 11 *128 =45056

946,176
0.352941176

0.0258048

Table 5. Savings By Reading 4 Pixels For the Transform of Rows Stage

Type of State Machine 2 Pixels Per Iteration 4 Pixels Per Iteration
Number of States to Read and Process 4 Pixels 19 13

Number of States for 1 Row (512/4)* 19 = 2432 (512/4)*13 = 1664

Number for All Rows first pass 2432*512 = 1245184 1664*512 = 851968

Number for All Rows second pass (256/4)* 19* 256 =311296 (256/4)* 13* 256 =212992

Number for All Rows third pass (128/4)* 19* 128 =77824 (128/4)* 13* 128 =53248

Total Number for Three Iterations 1,634,30 1,118,20

% savings of 4 Pixel Read 0.315789474

Time savings assuming 20 MHZ clock 0.0258048

Table 6. Savings Reading 4 Pixels for Inverse Transform of Rows Stage

Using an operating speed of 20 MHz and the total number of states needed to

transform one image, the ASIC design transforms one image every 146.5 ms. See

Appendix C for breakdown of states for the ASIC design. The frame rate only accounts

for the processing time of an image that exists in memory. Associated operations like

loading a new image into memory and transmitting the image would obviously affect the

frame rate.

61

As stated, 6 state machines were used in the Wavelet ASIC. It might be possible

to have fewer state machines by having the different parts of the chip use the same state

machine. Reusing state machines is possible by not using any of the control signals

produced by the state machine that are not needed. In other words if a state machine has

10 control lines but you only need 4 of them just use 4 and not connect the others. It is

also possible to only use a subset of the states calculated. For example, if a state machine

produces five state bits and you only need four, just utilize the lower 4 bits.

4.7 Internal Register File

Savings of RAM accesses came by creating a 256 by 8 bit internal register file.

The internal registers required fewer memory accesses as intermediate values were saved

to the register file rather than writing them back out to RAM. The obvious tradeoff is

chip area for speed. The basic register file design, Figure 26, was taken from Weste (26).

The basic cell design did not have inverter number 1 in the design. Inverter ' 1' was

added to correct problems discussed next.

The basic operation of the cell is as follows. WriteEnableColumn and

WriteEnableRow are asserted to a logic T, turning on the n-transistors causing the value

on the WriteData line to feed in to the inverter loop (inverters 2 and 4). The write enable

lines are then brought low and the cell retains the level stored. The feedback inverter

(inverter 4) is sized correctly so it can drive inverter 2 retaining the stored value, but be

overpowered by an n-transistor when a new value is written to the cell. The single n-

transistor would not operate properly in the 0.35 micron technology files no matter what

62

WriteEnableRow .

ReadEnableRow

-j>0-

i—o<5]—'—o<5—'—o<T-

ReadData WriteEn ableColumn

Figure 26. Single Register Cell Location

the sizing of the feedback inverter was. Replacing the n-transistors with T-gates had no

positive effect. Basically, the n-transistors were not large enough to out-drive the

feedback inverter; therefore, the stored value could not be changed. The problem was

fixed by isolating the cell with an inverter. Inverter 1 was added to the design to isolate

the inner loop (inverters 2 and 4) from the n-transistors. Adding inverter 1 eliminated the

problem of sizing of the feedback inverter, i.e. the drive of the feedback inverter wasn't a

factor to the n-transistors. As long as the drive of the inverter feeding the loop was

bigger than the drive of the feedback inverter, the stored value could be changed. With

the addition of inverter 1, it was necessary to add an additional inverter to the output

since the data stored would be inverted upon storage. Therefore, the data had to be

inverted when accessed by a read operation.

A single register cell location was created and tested. The next concern was how

wide to make the ground and Vdd rails of the register cell. A good rule of thumb for rail

thickness is the following. For every milliamp of current there should be 1 micrometer of

63

metal (26). In our design tools 5 lambda = 1 micrometer. Therefore, a metal of width 5

would hold 1 mA of current (26). The single register file was tested.

a. Writing a one required 150.8616 uA of current.
b. Reading a one required 25.0854 u A of current.
c. Writing a zero required 249.4874 u A of current.
d. Reading a zero required 10.7905 uA of current.

The largest current needed for a single cell was 150.8616uA. 8 bits can be written at one

time so the total estimated current is 8 x 150.8616 uA = 1.2069 mA. Therefore, making

the rails 10 lambda would allow for 2 mA of current, providing a significant safety

margin. Actual Vdd rails in the register section were increased to 13 lambda because the

minimum spacing of the p-diffusion and the polysilicon needed a minimum spacing of

13 lambda. Since the n-diffusion for the register cell wasn't as wide as the p-diffusion,

the ground rails were able to be made 10 lambda wide and still satisfy the 13 lambda

spacing requirement. A second register location was then created and butted up against

the first location (Figure 27). The two-cell register was capable of being arrayed in

MAGIC.

Power

Register Location 1

Shared Ground

Register Location 2

Power

Figure 27. Two Cell Register Layout

64

A small register file of 2 rows by 4 columns was arrayed and tested for current usage.

Results were as follows:

a. Maximum current when writing a zero to all 4 locations: 3.1014 uA
b. Maximum current when writing a one to all 4 locations: 606.3709 uA.

Using the single cell current measurements, the storing of 4 ones should have used

603.4464 uA. It was concluded to keep the rail lines at the current designed widths. The

256x8 bit array with the rail widths as specified above was constructed. The actual array

dimensions are 32 bits wide by 64 bits high register file. Next, the Column and Row

decode circuitry was designed.

4.8 Column and Row Decode For Register File

The column and row decode circuitry was built in a similar manner to the register

file construction. The logic for one row select bit was built and then arrayed. Three

decoding parts were needed. One part was needed for the ReadEnableRow control line.

Another part was needed for the WriteEnableRow control line. The third part was for the

WriteEnableColumn control line (See Figure 26).

There are 10 address lines that lead to the register file. The bits are numbered left

to right: 9,8,7,6,5,4,3,2,1,0. Since the register file is 32 bits wide by 64 bits high, the

decode logic went as follows. The first row of the register file is locations 0,1,2, and 3.

The second row is 4,5,6, and 7, etc. Only the top 8 bits of the address line are needed to

decode the rows. The first row is accessed when bits 9-2 are zero. The second row is

accessed when bits 9-3 are zero and bit 2 is a logic ' 1'. The decode circuitry was

designed to handle the first rows access. Each other row could utilize the same circuitry

65

by just selectively inverting the top 8 bits. Two designs for the decode circuitry were

analyzed. One design consisted of only NAND gates and inverters (Figure 28). The

other design consisted of mostly NOR gates, 1 NAND gate and an inverter (Figure 29).

Each design was tested for speed and current usage.

Row Enable

Figure 28. Row Enable Using NAND Gates

Row Enable

Figure 29. Row Enable Using NOR Gates

The analysis was done by testing each of the individual gates and then using those

findings for the analysis of the two designs. The results of the test are shown in Table 7.

66

Component Worst Timing Max Current
Inverter 0.370 ns 132.6154 uA
4 Input NAND 0.515 ns 207.5331 uA
4 Input NOR 0.890 ns 126.6100 uA
2 Input NAND 0.400 ns 171.7821 uA

Table 7. Current and Timing of Some Simple Gates

Analysis for the worst-case path of the NAND configuration:

Timing:
1-4NAND + 2 inverters + 1-2NAND = 0.515 + 0.37 + 0.4 + 0.37 = 1.655ns
Current:
1-4NAND + 2 inverters + 1-2NAND = 2*207.5331uA + l*171.7821uA +

3*132.6145uA =984.6918uA
Approximate Area Used: 16428 lambda2

Analysis for the worst case path for the NOR configuration:

Timing
1-4NOR + 1 inverter + 1-2NAND = 0.89 + 0.4 + 0.37 = 1.66ns
Current
1-4NOR + 1 inverter + 1-2NAND = 2*126.6100uA + l*171.7821uA +

l*132.6145uA = 557.6157uA
Approximate Area Used: 12136 lamda

For the current calculation, the current of all the gates in the configuration was added

together. The area was simply the total area of all gates used for each configuration. The

bottom line is the NOR configuration uses 56% less current and saves 4k lambda of area,

while taking approximately the same time to switch. Thus, the NOR configuration was

selected for implementation in the Wavelet ASIC.

The actual decode logic uses a few more gates than the above diagrams since the

R/W and register enable lines are also required (Figure 30). The additional logic is

identical whether one uses the NAND gate or the NOR gate configuration, so it was left

out of the current and area analysis. The decode logic is the same for the

WriteEnableRow line except the R/W line logic which is driven low to signify writing.

67

Thus the same logic block used for the ReadEnableRow signal is modified with the

addition of two gates for use as the WriteEnableRow control line.

Read Enable Row

Write Enable Row

Figure 30. Row Enable Circuitry

The WriteEnableColumn control line uses NAND logic. A two input NAND gate

with an inverter decodes the columns. Like the row decode the inputs are inverted as

necessary. Since each column enable activates 8 columns the decode circuitry is much

simpler than the row decode circuitry. Each address location of the register is 8 bits long.

So writing to a register location stores 8 bits at a time. A write to the first column

activates register locations 0,4,8,16,20,24, etc. Since so many locations are activated,

only the low two bits are needed to decode the column. Table 8 illustrates the decode

logic for all columns.

Once the row and column decode circuitry was complete it was connected to the

register file, after which the entire module was tested. Timing for the entire register file

is covered in Chapter 6

68

Bit 1 BitO Enable
0 0 Columnl
0 1 Column2
1 0 Column3
1 1 Column4

Table 8. Column Decode of Bits 1 and 0

4.9 Input, Output, Input/Output Pads

Micro Optical Silicon Systems (MOSIS) supplied the input and output pads.

Timing of the pads was not calculated since the pads contained polysilicon 2 for high

voltage transistors, which did not have any SPICE parameters available. A nominal

delay of 1 ns for the input pads and 0.5 ns for the output pads were used in the timing

analysis. Bi-directional pads use the same timing since they aren't enable controlled.

4.10 Top Level Input, Output, and Bi-directional Pins

This section covers the input/output signal pins. The general functionality is

described in Table 9.

4.11 Data Buses

There are four data buses used in the ASIC design.

Memory Address 19 bits
Memory Data 8 bits
Register Address 10 bits
Register Data 8 bits

69

The address bus carries the RAM address off chip. The data bus is bi-directional

moving data to and from the off chip memory. The register bus carries the internal 256-

byte register address. The register data bus is bi-directional moving data to and from the

Signal
Number
of Bits Direction Description

Address 19 Output Address for RAM

Data 8 Bidirectional Data lines for RAM.

Ready (3) 1 Output
Artifact from the FPGA logic. Signal to host telling
hardware is ready (3).

Done 1 Output
When done goes high the transform or inverse
transform is complete.

Busreq 1 Output
Artifact from the FPGA logic. When this signal is
low the bus is being requested for use.

Busgrant 1 Input

Artifact from the FPGA logic. When this signal is
low the bus has been granted and processing can
begin.

StateChoice 2 Input

These two bits choose which state machine will
be seen on the five state output pins. Either the
top level, row logic, or column logic of whichever
half of the design specified by the Trans/Inverse
input pin.

Trans/Inverse 1 Input

This signal chooses which half of the design is
executed. Either the Transform half or the
Inverse Transform half.

Clock 1 Input Clock input that drives the design logic.

Reset 1 Input
When this signal is high all state machines are in
reset state.

Memstrobe 1 Output Signal to RAM that memory is enabled.

Memwrsel 1 Output
Signal to RAM whether want to.read(T) or
write('O').

StateChoice 5 Output

Shows the states of whichever state machine was
chosen by the Statechoice and Trans/Inverse
pins.

Table 9. List of Pins and Their Functionality

internal register file. Since more than one component drives the two address buses the

output drivers must be connected through tristate buffers allowing only one source to

drive the bus at a given time. The data buses are also driven by more than one source and

70

with data flow in different directions. The RAM read/write signal line controls the

direction of the bi-directional pads, which are connected to the data buses. Tristate

buffers control what is placed on the internal register data bus. All output sources of both

data buses are connected to the bus through tristate buffers.

4.12 Conclusions

The edited and synthesizeable behavioral-level VHDL code executed correctly

when applied to a 512 by 512 image size. The structural version of the ASIC VHDL was

tested and the results were equivalent to the results of the behavioral-level VHDL tests.

However, many changes were made to the individual components as they progressed

through the design process.

One significant difference from the synthesizeable VHDL and the physical

components is the absence of any signal connected directly to ground. The CAD tools

did not synthesize the code when signals were connected to ground. Grounded signals

were removed from the VHDL code and hand connected in the layout.

Some sections of code, after being optimized by the design tools, contained

duplicate signals. That is, two different signals were set to the same value in all states.

Since the design tools did not allow for a line to have two names, it was necessary to

delete one of the names. A manual trace of the VHDL code verified the optimizations.

Annotation of the deletions was enough to allow for manual wiring of the signals later in

the design layout.

71

Many of the components that were built with the AFU tools were less than

optimal. The channel routing technique of Octools provides a poor use of area. In some

cases more than 50 percent of the total area is due to the channel routing. Further

development of the Wavelet ASIC should involve more custom layout or channel-less

routing of the individual sections. A rough estimate of removing channels from the

automated layout could result in an area savings of 40 percent.

72

V. Testing and Timing

5.1 Introduction

Testing of the Wavelet ASIC started with the original FPGA VHDL code. The

FPGA VHDL code was run and the results were studied. After the test run results were

noted and understood, incremental design changes and testing began. Small parts of the

FPGA code were transformed into synthesizeable code and retested for correctness. The

synthesizeable pieces were converted into layout level components and tested

individually. After confirming the correct operation of each separate component, the

components were connected together and tested. Components that were custom built

were also tested individually before being connected to the rest of the design. Since the

Wavelet ASIC is composed of four separate engines (Row Transform, Column

Transform, Row Inverse Transform, and Column Inverse Transform), each engine could

be built and tested before moving on to another engine. Once an entire engine was

connected and working correctly, timing for memory accesses was calculated.

5.2 Testing of VHDL Files

The ASIC consists of four main parts: row transform, column transform, column

inverse transform, and row inverse transform. Each part was built and tested separately

before combining and testing with its respective half. For ease of testability and a

reduced execution time, a smaller image, 32 by 32 square pixels, was used until the ASIC

was stable. Once the design was stable, the full 512 by 512 square image was input and

73

tested. The steps taken to translate the FPGA VHDL code into synthesizeable code are

discussed next.

Each of the main parts originated as a large separate file, making it necessary to

break up each file into small scalable components in preparation for the ASIC design.

The small scalable components, once modeled and tested, were combined creating a

structural VHDL version of the ASIC. The steps taken in parsing of each part was

identical. First, the state machine was extracted and all decision paths were executed.

Second, the logic assigning the control signals was extracted. The control signal logic

was first tested alone making sure the appropriate states drove the correct control lines.

The state logic was then integrated with the state machine and the two pieces were tested

together. All paths of the state machine were simulated. During each state, the

appropriate control lines were checked for accuracy.

Next, it was necessary to extract all of the ALU operations. After analysis it was

observed that three adders and two incrementers were needed along with one subtractor

and one comparator. Each component was modeled and tested for correct functionality.

Once the ALU components were individually verified they were integrated with

the rest of the structural VHDL code. Each of the four main parts of the ASIC was again

tested separately using the separate files integrated by VHDL port mapping (27). A list

of each of the four main parts of the structural VHDL code and associated components is

found in Appendix E.

The steps used to test each of the main parts are discussed next. The same steps

were used to test each of the main sections. Each section begins by reading in four pixels

from memory. Wavelet operations are performed on the pixels and the results are either

74

written back to memory or stored in the register file and later written to memory.

Differences between each of the four main parts are which locations are accessed and in

which order. Obviously, different wavelet operations are performed on the data in each

piece. The tests used to verify correct functionality of the structural VHDL version of the

ASIC are discussed next.

The first test was to see if the correct memory locations were being accessed. As

stated earlier, three iterations of the wavelet transform are performed, each on a different

section of the image. Testing verified that the memory addresses were accessed, both for

reads and writes, in the correct order for each of the transform iterations. Once the

correct RAM locations were verified, the addresses used for the internal register file were

tested. Again, the correct locations for reads and writes were accessed for all three

transform iterations. To aid in the testing of memory reads and writes, VHDL

components for modeling the RAM and the internal register file were created and tested.

VHDL components were used by the ASIC design for storing and retrieving of data,

allowing for an accurate simulation of the design at a VHDL behavioral and structural

level.

After verification of the correct data locations access was complete, testing of the

operations performed on the pixel data was verified. Pixel operations are different

depending on which part of the ASIC design is being run. Each transform section was

tested for accurate manipulation of the data. For the row transform, row inverse

transform, and column inverse transform, the operations were simple. As explained

earlier, only additions, subtractions, and shifts are used. Different pixel values were input

75

to the ASIC design. Since pixel values can range from -127 to +127, correct calculations

were verified using both positive and negative pixel values.

The column transform was much more difficult to test because it contained the

steps for quantizing and thresholding of the data. Since the quantize and threshold rules

are different depending upon which iteration and which quadrant of the image you are

currently processing, different tests were run to check each of the situations. For

example, in the lower left quadrant of the first iteration, the output pixel is in the range

-8 ,..., +8. Some of the quadrants allow only the values -8,0, and +8. To illustrate, one

test produced the ending values of: -20, -9, -3, 5, 17. These numbers were the result

before the rules of threshold and quantize were applied. Once the rules were applied the

five values were: -8, -8, 0, 0, 8. The five values are the correct result for the quadrant

being tested. Appendix F contains the input data used to test each quadrant of each

iteration. The 'k' term references the loop variable, which is used to specify which

section of the image is being processed. The pixel values from start to finish are shown

and in the appropriate memory locations. The steps displayed in Appendix F are for the

transform half of the design. The results in parenthesis are the final results output to the

RAM. As shown by the test cases, the range of values for each quadrant was tested. The

test data, Appendix F, was used to test each of the four pieces and again used to test the

two halves, Transform and Inverse Transform, of the design. Since the two halves are

independent, no further combining was appropriate.

When structural VHDL code was complete and verified it was time to start

building and testing the components at the physical layout level.

76

5.3 Testing Components

This section explains the different tests performed on each of the physical

components. Reasons for optimizing certain components are explained. All of the

components were built and tested individually. Timing was more critical for some

components than others.

Testing the components at a layout level involved two types of tests. The first test

checks the component for correct functionality. There is a one-to-one mapping from the

inputs to the outputs of the structural VHDL to the physical layout level of each

component. The mapping allowed reuse of the test vectors, used to test the VHDL files,

to verify functional accuracy. The second type of test checked each component for

timing of the critical path. The critical path is the longest delay through the component

and, therefore, controls the worst-case timing delay of the component.

The critical path of the ASIC research effort occurs in the states that access RAM.

A RAM access time of 35 ns for both reads and writes was used for the design of the

ASIC. The implications of the 35 ns access time are simple. As long as other operations

occurring in non-RAM access states are faster than 35 ns, the RAM access states would

drive the speed of the Wavelet ASIC design.

The slowest component in the ASIC design is the 19-bit adder. A carry-select

methodology was used to create the 19-bit adder and produced a simulated execution

time of 5.62 ns, a breakpoint value for all other components. Since operations were

evenly distributed among the different states of the design and none were done in series,

as long as they were faster than 5.62 ns, no other performance optimizations were

77

are

are

necessary. If multiple additions, for example, are required during a single state, they

performed in parallel by replicating the adders.

As shown in Table 10, the execution times of some of the smaller components

longer than larger components. As stated earlier, once the speed of a component was

analyzed and found to be faster than the 19-bit adder, it was no longer optimized for

speed. The only way further optimizations for speed would enhance the design is if the

speed up came from a reduction in area. However, faster execution time comes with the

tradeoff of having larger die area. A complete listing of all the components and their

execution times is contained in Appendix D. Unless otherwise stated, the timing, referred

to in this chapter and Appendix D, was the result of running HSPICE.

Component Number of Bits Critical Execution Time (ns)
Adder 19 5.62
Adder 9 4.11
Adder 8 2.80
Subtracter 9 2.95
Incrementor 19 2.12
Incrementor 10 3.16
comparator 10 1.85

Table 10. List of ALU Components

5.4 Register File

Most of the components were built using design tools. However, two components

were manually designed and laid out: the register file and the address decode logic for

the register file. First, a one-bit register was designed, laid out, and tested for reading and

writing. Next, two one-bit locations were integrated and again tested for reading and

writing. The two-bit location was replicated into a 4 by 8 bit array, which was tested for

78

reading and writing. Then the entire 2048 locations were designed and tested. The layout

of the 2048-bit register array is shown in Figure 31. The bits for each location are

numbered left to right: 7,6,5,4,3,2,1,0. Various locations were tested and timed for both

reads and writes. Table 11 shows the access times for the locations tested. The

maximum time of 2.57 ns is trivial compared to the access time of the off-chip RAM.

The minimal retrieval time allowed both the reading of the internal register file and the

writing of the value to RAM to occur in the same state. Combining the register read with

the RAM write saved time by eliminating one state. Savings from using fewer states was

explained in Section 4.6.

0 1 2 3

4 5 6 7

124 125 126 127

252 253 254 255

Figure 31. Register Locations

Next, the decode logic was built, tested, and timed. The timing for the decode

circuitry is shown in Table 12. Signal line references (A, B, C, D, E, F, G, H) refer back

to Figure 30. The input signals, labeled A-H, are switched to test the longest delay of the

decode circuitry, both for a low-to-high transition on the output and a high-to-low

79

Timing of 256x8 bit register file
Location Bit Operation Time (ns)

0 7 Write '0' 1.22
0 7 Read '0' 2.52
0 7 Write'1' 1.52
0 7 Read T 2.02
3 0 Write '0' 1.22
3 0 Read 'O' 2.16
3 0 Write'1' 1.52
3 0 ReadT 1.48

124 7 Write '0' 1.22
124 7 Read '0' 2.15
124 7 Write'1' 1.51
124 7 ReadT 1.47
127 0 Write '0' 1.22
127 0 Read '0' 2.57
127 0 Write '1' 1.51
127 0 ReadT 2.00
252 7 Write '0' 1.22
252 7 Read '0' 2.15
252 7 Write'1' 1.51
252 7 ReadT 1.47
255 0 Write '0' 1.22
255 0 Read "0" 2.57
255 0 Write'V 1.51
255 0 Read T 2.00

Max time 2.57

Table 11. Access Times for Register File

Timing of Read Decode Circuitry
Output

0to1 1 toO

All H to L
AIILtoH

ABCGFE are L
DHgoL
AIILtoH

DCBHGF are L
AEgoH

1.71 ns

1.53 ns

1.34 ns

0.457 ns

0.457 ns

Max time 1.71ns 0.457 ns

Timing of Write Decode Circuitry
Output

0to1 1 toO

All H to L 1.70 ns
All L to H 0.453 ns

ABCGFE are L
DHgoL 1.52 ns
All L to H 0.454 ns

DCBHGF are L
AEgoH 1.33 ns

Max time 1.70 ns 0.454 ns

Table 12. Timing for Read/Write Decode Logic

80

transition on the output. As shown, a maximum switching time of 1.71 ns was

calculated.

5.5 Testing of the Inverse Transform by Rows Section

Due to time constraints, only one of the four sections, the inverse row transform,

was completely integrated and tested as a unit. Expected timing for the remaining three

sections should be similar, since the inverse row transform section uses all but one of the

ALU components used in the other sections.

The inverse row transform section was integrated keeping in mind where the other

three sections would be located in the physical layout. See Figure 32 for how the inverse

row transform section is physically integrated and where the other three sections are

placed relative to the inverse row transform section. Once integrated, the inverse row

transform section was tested using ERSIM.

First, data values were read in from RAM. It was checked that the RAM

locations being accessed for the reads were correct and data was accessed in the right

order. Results of the inverse transform performed on the first half of the image are

written to the internal register file. It was checked that the correct register file locations

were being written to and in the correct order. Next, eight different values were input to

the inverse row transform section. It was checked that the correct results from the inverse

transform were obtained. Results were then checked for accuracy and placed on the data

bus for storing into the register file.

81

Once simulations were run successfully with IRSIM, HSPICE was used to get

more accurate timing information. The timing data obtained by using HSPICE was then

used to facilitate the design of the memory strobe for RAM and the register enable for the

internal register file. The timing diagrams for the inverse row transform section are

described next.

Register
o

'5b
o
►J
u

o
'5b
2
B
55

«

19-Bit Adder <=>

n

Figure 32. Layout of ASIC Design

82

5.6 Read/Write Logic

Timing of the control lines used to access RAM is critical and has to abide by

certain rules. As mentioned, a RAM access time of 35 ns is used for the ASIC design.

Once all necessary signals are stable the RAM strobe is asserted and remains asserted for

35 ns, the time needed for the RAM to perform either a read or a write operation.

The inverse row transform section contains four different memory read/write

scenarios. A design margin is incorporated into the timing of the read and write accesses

for both the RAM and the register file. The design margin is in case the other three

sections, not yet connected, require extra time. Other factors, such as variances in

fabrication, pad frame delays and routing to and from the pad frame, add delay time.

When the complete ASIC design is integrated the timing delays will have to be refined.

The first scenario is a read from RAM. Four reads occur sequentially. Figure 33

shows the timing diagram for two sequential reads. Data from the read isn't latched until

two cycles after the request. External circuitry is required to account for the two-cycle

delay and is consistent with the Wildforce board implementation. The memory address is

valid 12 ns after the clock edge. The memory strobe is asserted 2.5 ns later and stays

asserted for 35.4 ns. Data is latched in on the rising edge of a clock. The 7.1 ns specified

in Figure 33 is the time it takes to latch the data through the logic. The actual time the

data needs to be valid is approximately 2 ns before the clock edge until 1 ns after the

clock edge providing a 4.1 ns design margin in the ASIC implementation.

83

CLOCK

MEMSTROBE

MEMADDRESS

14.5 ns 36.4 ns

MEMDATA '

5.3ns->

MEMWRSEL

^
VALID VALID

7.1 ns—>

VALID

H-

X VALID

Figure 33. Read from RAM Timing Diagram

The second scenario is a write to the register file. Four writes occur sequentially

in the operation of the Wavelet ASIC. Figure 34 shows the timing diagram for two

sequential register writes. The data is valid 10.9 ns after the clock edge, while the

register address is asserted 11.1 ns after a clock edge. Then the register enable is asserted

2.4 ns later and stays asserted for 37.0 ns. The actual time it takes for the register file to

store the data is approximately 4.28 ns. The logic that asserts the register enable also

asserts the memory strobe in a different read/write scenario and, therefore needs to hold

the assertion for at least 35 ns. The write to register file state isn't on the critical path

state of the ASIC design so the extra time used by the write to register file state doesn't

slow down the ASIC operation.

84

CLOCK

REGENABLE

REGADDRESS

REGDATA

7.6 ns

REGRW

13.5 its
« »1«

11.1 n

<

10.9 ns

<

37.0 ns,
 H

ALID)

VALID >

<

<

VALID >

VALID }

Figure 34. Write to Register File Timing Diagram

The third scenario is a data write to the RAM. Four writes occur sequentially

during normal operation. Figure 35 shows the timing diagram for two sequential writes.

The data is valid 10.9 ns after the clock edge followed by the memory address, which is

valid 12.0 ns after a clock edge. Then the memory strobe is asserted 1.5 ns later and

stays asserted for 37.0 ns.

The last scenario is a data read from the register file combined with a write to the

RAM. Figure 35 shows one cycle of the read/write scenario. The register address is

asserted 11.1 ns after the clock edge. Then the register enable is asserted 1.93 ns later

and stays asserted for 35.73 ns. The register takes approximately 7 ns to output data

valid. The memory address is asserted and valid 12.0 ns after the clock edge. The

memory strobe is then asserted 20.35 ns after the clock edge and is valid for 35.74 ns.

85

CLOCK

MEMSTROBE

MEM ADDRESS

10.9 ns

MEMDATA

5.3 ns-

M EM WRSEL

13.5 n,s
+ ►+«-

12 ns

<

<

3 7.0 ns,
 H

ALID)

VALID >

<ZI

^

ALID

ALID >

Figure 35. Write to RAM Timing Diagram

For the inverse row transform section, the most complicated and longest state for

reading and writing occurs when the internal register file is accessed for a data read and

the data is then written to RAM. Control lines necessary for the read and write states are

stable long before the memory addresses are stable and therefore are have no impact on

the timing calculations. Worst-case timing of data accesses was used from tests of the

register file to simulate the operation of the register file. The register address is first

decoded in 1.71 ns. Once the address is decoded the location in the register file is

accessed and the results are available on the data lines after 2.57 ns. The data passes

through two multiplexers, 0.42 ns and 0.39 ns, and then through a tristate buffer,

0.396 ns, before being asserted on the RAM data lines. The total time from register

address stable to data stable on RAM data lines is 5.486 ns plus some estimated time for

86

CLOCK

13.03 ns « »N

REGENABLE

REGADDRESS

20.35 ns,

MEMSTROBE

MEMADDRESS

MEMDATA

REGRW

MEMWRSEL

7.6 ns

5.3 ns-

11.1 ns

<

12 ns

i
18.1 ns
*—H

<

35.73 ns
 H

VALID >

35.74 ns
H

VALID >

VALID >

Figure 36. Read from Register and Write to RAM Timing Diagram

routing. Incorporating a design margin of 1.5 ns, a total delay time of 7 ns is used to

simulate the rest of the timing delays.

The state control lines are used to generate the internal register file enable and the

RAM strobe. The state control line is asserted after the clock edge and is used to indicate

to the circuitry which state is active. To create the enable and strobe signals, the control

87

line is first sent through an inverter yielding the inverse of the control signal (control bar).

Both signals are delayed to create a pulse of approximately 35 ns in width (Figure 37).

The width has to be greater than 35ns for the RAM strobe and greater than 4.28 ns for the

register enable. The control circuitry schematic used to generate the pulses is shown in

Figure 38. The control circuitry asserts the enable and strobe signals when both control

CLOCK

CONTROL

CONTROLBAR

CONTROL DELAYED -

CONTROLBAR DELAYED

PULSE SIGNAL FROM ENABLE
AND CONTROL CIRCUITRY —

5.3 ns

|*- 5.5 ns

35.0 ns pulse

r

Figure 37. Timing Diagram Showing Pulse Created From Control Signals

signals, state control and state control bar, are logic '1'. The delay for each of the control

lines and control bar lines is not shown in Figure 38. By delaying the control signals,

they can be used to assert the enable and strobe lines. By delaying the control bar signals

even longer, they can be used to clear the enable and strobe lines. The delay blocks in

Figure 38 make the strobe signal line assert and deassert approximately 7 ns after the

register enable signal asserts and clears. The 7 ns delay is necessary for the register data

to become valid.

ReadPixl
ReadPixlBar

ReadPix2
ReadPix2Bar

RegPixl

RegPixlBar

RegPix2

RegPix2Bar -

WritePix

WritePixBar

WritelPix -
WritelPixBar-

Write2Pix
Write2PixBar-

Write3Pix -

Write3PixBar

Write4Pix •

Write4PixBar-

RAM Strobe

b—{>— Reg Enable

Figure 38. Enable and Strobe Control Circuitry

The critical path, read/write state, limits the speed of the ASIC design. The

memory strobe is cleared 56.09 ns after the clock edge. Adding approximately 2 ns from

the clearing of the memory strobe signal makes the worst-case state timing equal to

58.09 ns. The 2 ns before the next clock edge is a design margin for the ASIC. Further

design optimizations could reduce the buffer time. The 58.09 ns worst-case state time

translates into a maximum operating speed of 17.21 MHz.

89

5.7 Conclusion

The inverse row transform was the only section that was fully integrated and

simulated for timing data. A maximum operating speed of approximately 17.21 MHz is

expected. The other three main sections could affect the speed once they are integrated

into the layout. Other factors that affect execution speed are input/output pad delays and

routing to and from the pads. Design margins incorporated into the timing of the ASIC

should account for extra delays. Using an operating speed of 17.21 MHz and the total

number of states needed to transform one image, the Wavelet ASIC design outputs one

transformed image every 170.2 ms or just under six images per second. See Appendix C

for the complete breakdown of states used for the Wavelet ASIC design. The frame rate

only accounts for the processing time of an image that exists in memory. Associated

operations like loading a new image into memory and transmitting the image could affect

the frame rate if a single port RAM is used.

As shown, the 35 ns RAM access limits the overall speed of ASIC design. A

faster RAM chip could be used but the speed of the ASIC design cannot be increased

without altering the layout, since a 35 ns pulse width is hard-wired into the ASIC design.

Since a RAM read incorporating a two-cycle delay is used as implemented on the

Wildforce board and the FPGA logic, a delay for the read data would need to be buffered

by off chip logic when using a standard RAM chip with a one cycle read access time.

Power needed to operate the Wavelet ASIC is discussed next.

After initialization of the inverse row transform section of the ASIC, the

maximum power used is 220 mW. The maximum power is only for the inverse row

90

transform section. Since the more complicated piece of the design is the column

transform section, it is probable that the maximum power used will increase. Measuring

the individual pieces of the inverse row transform section, it was found that the maximum

power used is 118 mW. Measuring the individual pieces of the column transform

section, it was found that the maximum power used is 212 mW. Using these power

measurements, the estimate of the total maximum power used by the transform row

section is 395 mW. Since the register file was not used in the tests for the inverse row

transform section, the measured power of the register file, 32.1 mW, needs to be added to

the power calculation. Adding the power used by the register file to the power used by

the transform row section yields a maximum estimated power of 427.1 mW.

91

VI. Conclusions and Recommendations

6.1 Conclusions

The steps necessary to take a design from an FPGA implementation to an ASIC

implementation design were discussed. The objective of this research was to first

translate the FPGA VHDL behavioral code to synthesizeable VHDL behavioral code.

Performing the translation uncovered many unnecessary RAM accesses in the FPGA

design. Combining the quantize and threshold steps with the column transform step

saved 47 percent of the RAM accesses.

Another objective was to minimize the power needed by the design. Extra control

circuitry was added to decrease the amount of switching by the transistors. The extra

control circuitry makes the ALU components active only when they are being used. The

decreased amount of switching has a positive impact on the overall power used by the

design. The estimated maximum power used by the ASIC is 427.1 mW. The power

rating is for the first iteration of the Wavelet ASIC and can be used as a benchmark for

future design work. Comparing the estimated power of the ASIC to that of the FPGA,

11.6 W, a 96 % reduction in power usage is achieved.

Minimizing the area of the Wavelet ASIC was another goal. The total die area

used by the ASIC is 22.138 mm2. The core of the ASIC is 16.146 mm2 without the pad

frame. The size of the ASIC is less than 25 % of the 4 FPGA chips utilized in the

original FPGA design.

92

The final goal was speed. The FPGA design runs at 20 MHz. The 20 MHz

operation translates into a 196.609 ms per frame transform rate or 5 frames per second.

Using an operating speed of 17.21 MHz and the total number of states needed to

transform one image, the ASIC design transforms one image every 170.2 ms or 5.8

frames per second, a 13 % improvement over the FPGA design. The image rate

calculation is an estimation based on the inverse row transform timing. Using a faster

RAM chip, 10 ns access time, would significantly improve on the frame rate by

approximately 43%, since the frame transform rate would decrease to 96.95 ms. The

decreased frame rate equates to 10.3 frames per second.

6.2 Recommendations

There are several research possibilities regarding the ASIC design. One obvious

extension is to connect the remaining components and present the design for fabrication.

Improvements on area, speed, and power are still possible.

A significant improvement would be in the area used by the ASIC design. The

use of automatic layout tools added a significant amount of area to each of the

components, since a channel routing algorithm was used. The algorithm also limits its

routing to only two layers of metal. Using a non-channel routing technique, as well as

using metal 3 and metal 4 could realize a savings of 40 percent. This estimate is based on

a visual analysis of the individual blocks. An additional way to decrease area is by

adding data buses to handle all traffic to the ALU components. Currently each of the

four components has separate signal lines that trace to the ALU components. Using

93

buses to combine many of the signals would reduce the number of multiplexers needed

for each of the ALU components. The area used by signal lines running to the ALU

components would be reduced by approximately a factor of two. By removing

approximately three-fourths of the multiplexers and half of the signal lines,

20,630,143 lambda2 and 83,940,000 lambda2 would be saved. For the Wavelet ASIC,

25 lambda2 equates to 1 \im2 in die area. The total savings equates to 0.825 mm and

3.357 mm2, which totals 4.182 mm2 in die area. The cost of using buses would be the

extra area needed to add a tristate buffer on all signals connected to the buses.

Approximately 1200 signal lines require 1200 tristate buffers at 4736 lambda2 for each

buffer, totaling 5,683,200 lambda2. Subtracting the total tristate buffer area from total

area saved from multiplexers and signal lines gives an estimated savings of 3.955 mm in

die area.

Increasing the operating speed of the ASIC is also possible. The first way to

increase speed is by reducing the area. If the area is reduced so is the propagation time of

the signals. Another way to increase the operating speed is to choose a faster RAM.

Choosing a faster RAM would reduce the critical path of the design. For example if a

RAM with a 10 ns read/write access time was used, 25 ns could be shaved off the longest

state causing the design speed to increase from 17.21 MHz to 30.22 MHz. The speed

increase would improve the frame rate by 73 ns, yielding 10.3 frames per second.

Another way to increase the output is by redesigning the state machines. By

simply removing the one state used to calculate the FPGA memory offset and using two

states instead of three to empty the internal register file, 7.1 frames per second would be

94

achieved. Using a 10 ns RAM in conjunction with the reduced number of states yields an

output of 12.5 frames per second.

Finally, power consumption would decrease as a result of the reduced number of

signal lines and the reduced number of multiplexers. The design would be smaller and

faster but extra control circuitry needed for the added tristate buffers would require extra

power. A study would have to be done to see whether or not the above changes would

have a positive or negative affect on the power consumption. Estimating the power saved

by subtracting the power from the added tristate buffers from the power of the removed

multiplexers is possible. However, the estimate isn't very accurate since neither the

multiplexers nor the tristate buffers are switching at the same time.

95

Bibliography

1. Robert S. Häuser, "Design and Implementation of a VLSI Prime Factor Algorithm
Processor" Master's Thesis, AFIT/GCE/ENG/87D-5, School of Engineering, Air
Force Institute of Technology Air University, Wright-Patterson AFB OH,
December 1987.

2. M. Antonini, T. Gaidon, P. Mathieu, and M. Barlaud, "Wavelet Transform and
Image Coding", Advances in Image Communication Wavelets in Image
Communication, Volume 5, M. Barlaud, editor, Elsevier Science B.B., 1994.

3. WildForce Reference Manual, Revision 3.0. Annapolis Micro Systems, Inc.
1997.

4. DAGSI Project SN-AFIT-99-04, "Global Information Compression Methodology
& Implementation for Enhanced Command, Control, Computing,
Communication, Intelligence, Surveillance, Reliability (C4ISR) System
Integration".

5. SYNOPSYS, Version 2000.05, Synopsys, Inc. Mountain View, CA, 2000.

6. OCTOOLS, Distribution 3.0, University of California, Berkeley, 1989.

7. MAGIC, Version 6.5.1, EECS/ERL industrial Liaison Program, University of
California at Berkeley, Berkeley, CA.

8. IRSIM, Version 9.5, Stanford University, CA. 1988-1990.

9. HSPICE User's Manual, Volume 1, Getting Started, Meta-Software, Inc. 1992.

10. HSPICE User's Manual, Volume 2, Elements and Models, Meta-Software, Inc.
1992.

11. HSPICE User's Manual, Volume 3, Analysis and Methods, Meta-Software, Inc.
1992.

12. C. S. Burrur, Notes on the FFT, Department of Electrical and Computer
Engineering, Rice University, Houston, TX, September 29,1997.

13. Mladen Victor Wickerhauser, Adapted Wavelet Analysis form Theory to Software,
Wellesley, MA: A. K. Peters, Ltd., 1994.

14. Don Morgan, "Haar Wavelets?" Online. Internet. 5Feb2001. Available:
http://www.embedded.com/97/sp9712.htm.

96

15. L. Prasad and S. S. Iyengar, Wavelet Analysis With Applications To Image
Processing, Boca Raton, New York: CRC Press, 1997.

16. Larry L. Schumaker and Glenn Webb, Recent Advances in Wavelet Analysis. San
Diego, CA: Academic Press, Inc, 1994.

17. I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics CBMS-NSF Regional ConfA Series in ApplAMath., VolA 61
Philadelphia, PA: 1992.

18. M. Schwarzenberg, M. Traber, M. Scholles, and R. Schuffny. "A VLSI chip for
wavelet image compression," ISCAS'99, Proceedings of the 1999 IEEE
International Symposium on Circuits and Systems VLSI, pp. 271-4 vol. 4.

19. Chu Yu and Sao-Jie Chen. "Design of an efficient VLSI Architecture for 2-D
Discrete Wavelet Transforms," IEEE Transactions of Consumer Electronics, vol.
45,no. 1 p. 135-40.

20. J. Singh, A. Antonio, and D. J. Shpak. "A Distributed Memory and Control
Architecture for 2D Discrete Wavelet Transform," ISCAS'99, Proceedings of the
1999 IEEE International Symposium on Circuits and Systems VLSI, pp. 587-90
vol. 3.

21. Guoqing Zhang, M. Talley, W. Badawy, M. Weeks, and M. Bayoumi. "A Low
Power Prototype for a 3d discrete Wavelet Transform Processor," ISCAS'99,
Proceedings of the 1999 IEEE International Symposium on Circuits and Systems
VLSI, pp. 145-8 vol. 1.

22. G. Lafruit, F. Catthoor, J. P. H. Cornells, and H. J. De Man. "An Efficient VLSI
Architecture for 2-D Wavelet Image Coding with Novel Image Scan," IEEE
Transactions on Very Large Scale Integration Systems, vol. 7, no. 1, pp. 56-68

23. Bruce W. Hunt, "A Single Chip Low Power Implementation of an Asynchronous
FFT Algorithm for Space Applications" Master's Thesis, AFIT/GCS/ENG/97D-
08, School of Engineering, Air Force Institute of Technology Air University,
Wright-Patterson AFB OH, December 1997.

24. Chengjiang Lin, "Time and Space Efficient Wavelet Transform For Real-Time
Applications" Dissertation, The Ohio State University, Oh, 1999.

25. Michael John Sebastian Smith, Application-Specific Integrated Circuits. Addison
Wesley Longman, Inc. 1997

97

26. Neil H. E. Weste and Kamran Eshraghian, Principles of CMOS VLSI Design, A
system Perspective, Second Edition. Addison-Wesley Publishing Company, 1993
by AT&T.

27. Peter J. Ashenden, The Designer's Guide to VHDL, Morgan Kaufmann
Publishers, Inc. 1996.

98

Appendix A. State Diagrams

A.l Transform State Diagram

TRANSFORM STATE MACHINE

99

A.2 Row Transform State Diagram

(ENDSTATE J

DOROW STATE MACHINE

100

A. 3 Column Transform State Diagram

MBNDSTATE J

DOCOL STATE MACHINE

101

A.4 Inverse Transform State Diagram

INVERSE TRANSFORM STATE MACHINE

102

A. 5 Inverse Column Transform State Diagram

UNCOL STATE MACHINE

103

A. 6 Inverse Row Transform State Diagram

MBNDSTATE J

UNROW STATE MACHINE

104

Appendix B. Savings of Ram Accesses

B.l Original Code Ram Accesses

Operation (Original Code) Reads Writes
Read in 4 words, Pack, write out 1 word 512 128
Read in 2 words, Transform, write 2 words 128 128
Read in 2 words, Unpack, write 8 words 128 512
Do these 512 times (512 rows)
Total Ram accesses 393216 393216
Read in 4 words, Pack, write out 1 word 512 128
Read in 2 words, Transform, write 2 words 128 128
Read in 2 words, Unpack, write 8 words 128 512
Do these 512 times (512 cols)
Total Ram accesses 393216 393216
Read in 4 words, Pack, write out 1 word 256 64
Read in 2 words, Transform, write 2 words 64 64
Read in 2 words, Unpack, write 8 words 64 256
Do these 256 times (256 rows)
Total Ram accesses 98304 98304
Read in 4 words, Pack, write out 1 word 256 64
Read in 2 words, Transform, write 2 words 64 64
Read in 2 words, Unpack, write 8 words 64 256
Do these 256 times (256 cols)
Total Ram accesses 98304 98304
Read in 4 words, Pack, write out 1 word 128 32
Read in 2 words, Transform, write 2 words 32 32
Read in 2 words, Unpack, write 8 words 32 128
Do these 128 times (128 rows)
Total Ram accesses 24576 24576
Read in 4 words, Pack, write out 1 word 128 32
Read in 2 words, Transform, write 2 words 32 32
Read in 2 words, Unpack, write 8 words 32 128
Do these 128 times (128 rows)
Total Ram accesses 24576 24576
Total Ram access for transform 1032192 1032192
Quantize/Threshold image 512 512
512 rows
Total Ram accesses 262144 262144

Grand Total Ram access 1294336 1294336

105

B.2 New Code Ram Accesses

Operation (New Code) Reads Writes
Read in 4 words, Transform, write out 4 words 512 512

Do these 512 times (512 rows)
Total Ram accesses 262144 262144
Read in 4 words, Transform, write out 4 words 512 512

Do these 512 times (512 cols)
Total Ram accesses 262144 262144
Read in 4 words, Transform, write out 4 words 256 256

Do these 256 times (256 rows)
Total Ram accesses 65536 65536
Read in 4 words, Transform, write out 4 words 256 256

Do these 256 times (256 cols)
Total Ram accesses 65536 65536
Read in 4 words, Transform, write out 4 words 128 128

Do these 128 times (128 rows)
Total Ram accesses 16384 16384
Read in 4 words, Transform, write out 4 words 128 128

Do these 128 times (128 rows)
Total Ram accesses 16384 16384
Total Ram accesses for transform 688128 688128
QuantizeAThreshold: done during column transform 0 0

Total Ram accesses 0 0

Grand Total Ram access 688128 688128

106

Appendix C. Total States Required for Transform Half of Both The ASIC Design and
The FPGA Design.

C.l States for Transform Half of FPGA Design.

The transform occurs in three iterations. The three iterations are listed with

subtotals for each iteration. A total number of states is listed for the transform step.

Following the three iterations is the quantize step. The total number of states for the

quantize step are listed followed by a total number of states for the transform and

quantization. The totals are not exact. States that occur only a few times are not used in

the totals. Not using the minimal occurring states simplified the counting process. The

minimal number of extra states would not affect the overall number significantly.

107

TRANSFORM Steps
First iteration
Pack4Row
7 states to process 4
pixels 7*128 for one row 896*512 for all rows 458752

Transform
6 States to process 8
pixels 6*64 for one row 384*512 for all rows 196608

Unpack4row
12 States to process 8
pixels 12*64 for one row 768*512 for all rows 393216

Total 1048576

Pack4Col
7 states to read in and
pack 4 pixels 7*128 for one row 896*512 for all rows 458752
Transform
6 States to process 8
pixels 6*64 for one row 384*512 for all rows 196608

Unpack4Col

12 States to unpack
and write out 8 pixels 12*64 for one row 768*512 for all rows 393216

Total 1048576

Subtotal 2097152

108

Second Iteration
Pack4Row
7 states to process 4
pixels 7*64 for one row 448*256 for all rows 114688

Transform
6 States to process 8
pixels 6*32 for one row 192*256 for all rows 49152

Unpack4row
12 States to process 8
pixels 12*32 for one row 384*256 for all rows 98304

Total 262144

Pack4Col
7 states to read in and
pack 4 pixels 7*64 for one row 448*256 for all rows 114688

Transform
6 States to process 8
pixels 6*32 for one row 192*256 for all rows 49152

Unpack4Col

12 States to unpack
and write out 8 pixels 12*32 for one row 384*256 for all rows 98304

Total 262144

Subtotal I 524288

109

Third iteration
Pack4Row
7 states to process 4
pixels 7*32 for one row 224*128 for all rows 28672

Transform
6 States to process 8
pixels 6*16 for one row 96*128 for all rows 12288

Unpack4row
12 States to process 8
pixels 12*16 for one row 192*128 for all rows 24576

Total 65536

Pack4Col
7 states to process 4
pixels 7*32 for one row 224*128 for all rows 28672

Transform
6 States to process 8
pixels 6*16 for one row 96*128 for all rows 12288

Unpack4Col
12 States to process 8
pixels 12*16 for one row 192*128 for all rows 24576

Total 65536

Subtotal 131072

TOTAL 2752512

QUANTIZE Steps
9 states to process 2
coefficients 9*256 for one row 2304*512 for all rows 1179648

GRAND TOTAL 3932160

110

C.2 States for Transform Half of ASIC Design

The transform occurs in three iterations. The three iterations are listed with

subtotals for each iteration. A total number of states is listed for the transform step. The

total is not exact. States that occur only a few times are not used in the totals. Not using

the minimal occurring states simplified the counting process. The minimal number of

extra states would not affect the overall number significantly.

First iteration
Row state
10 states to read in 4
pixels 10*128 for one row 1280*512 for all rows 655360
1+3*256+1+1 states
to write out register 771*512 for all rows 394752

Total 1050112

Col state
12 states to read in 4
pixels 12*128 for one row 1536*512 for all rows 786432
1+3*256+1+1 to write
out register 771*512 for all rows 394752

Total 1181184
Subtotal 2231296

Second interation
Row state
10 states to read in 4 10*64 for one row 640*256 for all rows 163840
1+3*128+1+1 to write
out register 387*256 for all rows 99072

Total 262912

Column State
12 states to read in 4 12*64 for one row 768*256 for all rows 196608
1+3*128+1+1 to write
out register 387*256 for all rows 99072

Total 295680
Subtotal 558592

111

Third interation
Row state
10 states to read in 4
pixels 10*32 for one row 320*128 for all rows 40960
1+3*64+1+1 to write
out register 195*128 for all rows 24960

Total 65920

Column State
12 states to read in 4
pixels 12*32 for one row 384*128 for all rows 49152
1+3*64+1+1 to write
out register 195*128 for all rows 24960

Total 74112
Subtotal 140032

GRAND TOTAL 2929920

112

Appendix D. Component Listing and Timing

Each component built for the ASIC design is listed in this appendix. Each

component went through many changes. Some of the steps were not executed for some

of the components. The steps are as follows:

1. Write Behavioral VHDL (Beh VHDL).
2. Test Behavioral VHDL (Test Beh).
3. Executed Design Analyzer (DA).
4. Number of optimizations performed in Design Analyzer (# Opt).
5. Timing from Design Analyzer (Design Analyzer Timing Parameters).
6. DB2SGE conversion (DP2SGE).
7. Creation of Structural VHDL (Str VHDL).
8. Test Structural VHDL (Test Struct).
9. Timing from Synopsys VHDL analyzer (Timing (ns)).
10. Edit SDL file produced by SGE (Edit SDL).
11. Open component in MAGIC (Mag).
12. Size of component in MAGIC (Magic Size).
13. IRSIM timing result of the component (IRSIM (ns)).
14. HSPICE execution (HSPICE).
15. Timing results from HSPICE (HSPICE Timing (ns)).

The 'X' indicates the component was run through the associated step. A ' ' indicates

the component did not run through the associated step. Information following the

component listing indicates several changes made to the components while they were

being realized into a layout level component. Several signals were removed because they

were either not necessary or they were realized by another signals. Verification of the

unused signals was verified in the VHDL files but not changed. In some cases, buffers

were added to some of the components built using the automated tools.

113

tu
u
E
in
X

c

o
c

E

_l
A

X

to

in

to

CM

•*
CO

to

d
CO

CO

d
CO

CM

CO

in
OJ

CM

O
q
d

CO

to

d
q
d

CD
q
d

in
to
q

CM

q
d CM

CO

1~-

O)
q q

d

a>

d
CO

d
0)
q
d

O)
q
d

CO

d
in

d
at
q
d

CM

d
q

o
1"-;

o
q CD

o
q
CM

at
q

lO
at

CM'

0>
q
d

CM

d

X
A

CM

CD

to

O

CO

CM 't

to
CO

CO

CO

d
CM

q
CM

to
CO

CO
CO q

CM

CO to
CO q

d
to
q q q

o
q

CD

CO

CM

CM

q
CM

lO
q
d

CM

d

CM

q
d

CO

CM

d

O)
CM

d
q
d

to
q
d

q
d

CO

q
d

CD

q
CM CO

CO

q
CM' CM

q
co"

CO

q
to
q

at

d
o>
q
d

tu

in

X

c

E

JE

A

X

CO
CO

CO

CO IT)

to
q 1 to

o
m

CM CO

q
CM

q
CO

; at
r--
d

X
A

IT)
CM

r-'

CO

CO

CO

CO
CM

to

0)
CM

CM

1
o>
to

O)
m

CM CO
q q i CO

q
CM

0

»
o
o
o
s

o
CO

o

X

CD

CO

to

CO

CM

t--
X

CO

CO

o •*
CO
X

to
O)
in

CM

to
X
to
CO

CO

CD
CO
to
X

CO

O)
CM

X

CM

O)
V-
CM

CO

o
"J-

X

t

CO

O)

CD

CO
X
O
CO

CM

CM
X

CO

a>
-t
to

CO

o
CO
X

o
CO

CO

CM

CO

CO
X

o
CO

CO

CO

CO

CO
X

r--
CM

o>

CD
f~

X
CD
CO
■*
T—

o
CM
I--

X
CD
O)
CM
CM

CO

-t

CO

X

o>

CD
CM

CM

CO

CO

X
CM

CO

to

CM

X

o
o

CO
CD
to
X

CO

CO

CO

to
CO
X

CO

CO

o

X

CO

o
to

CM
CD
CO
X

CO
CD
CO

CO

CD

to
X
to

to

CM

in
CO
X

f~
o
CO

CM
Tf
X

CO
CM

CO

o
CM

to
X
r-.
CD
to

r-
X
T-
co
O)

o
o
■*
X

CO

CM

CO

CO

CO

X

to
CO

to

o
CO

to
X
1^
CO

CO

CO
X

to
to
CM

o
CM

to
X

CO

o
o

X
to
o>
to

o

X
to
CO

CD

CM

CM

CO

X
at
in
CM

CM

CO
T—
CO
X

o
CO

o

CM

CO
X

CM
05
CO

CM
CO
CM
X

to
CM

a
CO

E
X

5
tu

_i
D
(0

X

1ö
c

o
c

E
1-

_J
A

X

CO
f-.

CM'

o
CO

CM

CO

d
i CO

q j 1
X
A
■

_l

o

CO

CO O

CO

CM

CO
CM I I J] > ! ! 1 1 j

i
•

CO

q

• 1 ! 1 1 i j j j i
i ; ; :

j i i
'

i
!

o
3

«5

w
tu
1-

3

a>

o
u

X X X X
i i

i
j I j ! J i I J j X

! ! S
• i t

'
1 !

■ •
| J ■ | i i j i

CD

C

o
CD

X

>
X

X
CM

ffl
Q

tu
(3
0)

X

a
c

E
H

ft.
o>
N >
co
c
<
c
o
co
a>
O

»
«5
E
to

CD
0.

r-
r»
d

CO CO

CM

CM

■0;
o
CD

d
i

d

o>
q
d

O)
q
d

CO o
°i
CM

o
q
d

CO
q

CM

CM

CO

■* CM

CO CO

CM

to
CO

o
CO

d
■*
T—

■*
CM CM

to
q

CM

O
q
d

CD

q
>
CO
xz
CD
XI

1
CJI

o
o

TJ
Q.
O

to ffl
TJ

s
CD

E
CD

a.
E

o
'ra
o
_i

CO

q

CD
q
CM

CM

q

CO

X

X

X

>
CO

x:
CD

XI
1

OI
o

TJ
a
o

to
co

TJ

B
a
CD

E
a
Q

E
o
DJ
O
_l

CM

q

to

t
q

Ö

X

X

X

CO

CO

at

O)

to

o
CM

CM

00

to
to
CD

to

D)
c

3
o

Ö

CD

xz

o
c

ffl
CD

m

to

CO to
to
CD

to

CJI
c

3
o

Ö

CD
XZ

o
c

z*
ffl
CD

m

co
q i

CO

r-'

o
CM

CO

o
q
CO

CM

d '•
CM

CM

d

CO

q
d

t--
q
at

CO
CM

o

O)
CM

CO

o>
CO

CM

o
CO

to"

CO

CO

CO

to

CD

o
cd

CO

q
CO

CO

q
CO

i CM

q
to"

i q
d

CO

d
CO

i-~

d

'o
CM CM o '" *" *~ o o o o 1~ o o o o ,~ o 1—

■*"
o T~ o o o o

o
o o o o o o r" y~ CM

ol< X

10 SZ
a>
m

X X X X X i X

0>

m

5
>

X

CD

c
o
c
o
D

E
o
ü

>
CO
x:
CD

XI

Oi

TJ
•o
CO

> ffl
x
CD
XI

CO

TJ
TJ ffl

>
CO
x:
a
XI

o>
TJ
TJ
CO

>
n
x:
CD

XI

o

CD

a
a
E
o
Ü

> ffl
SI
CD
XI

ra
o

Ö
o
o
XI

> ffl
xz

CD

n

ffl
Ö
Ü
o
TJ

> ffl
xz
CO

S3

S3

Ö
Ü
o

TJ

> ffl
xz
ffl
XI

o
Ü
o
TJ

> ffl
xz ffl
XI

TJ

Ö
Ü
O

T>

>
CO
xz
CO
XI

JD

Ö
Ü
O

T>

> ffl
x:
CD

S3

E
_co
o
o
o
TJ

> ra
x:
CD

XI

ra
o

3
o
o

TJ

>
«j
x:

CD
XI

CO

3
o

>
CO
x:
CD
XI

XI

3
o
o

TJ

>
CO

x:
CD

XI

O

3
o

o
TJ

> ffl
xz
CD

XI

TJ

3
o
o
TJ

>
CO

xz
CD
XI

CD

3
o
o
TJ

>
CO

x:
CD

XI

E
(0

3
o
o

TJ

>
CO

xz
CD

XI

O

O
c

> ffl
x:
CD

XI

at

o
c

> ra
X
CD
XI

1
o

>.
XI
Ü
c

> ffl
xz
CD

XI

E
to ffl
>
c

> ffl
x:
CD

XI

cn
o

>
c

> ffl
xz
CD
XI

1
CM
X

E

> ffl
X
CD
XI

CO

XI
CM
X
3

E

>
CO

xz
CD
XI

O)
XI
CM
X

E

> ffl
x:
CD

XI

O

XI
CO
X
3

E

>
n
X
CD
XI

05

XI
CO
X
3

E

>
10
x:
CD
XI

in
XI
CO
X

E

> ffl
x:
CD
XI

at
X3
CO
X

E

>
CO
xz
CD
XI

O

XI
•3-
X

E

> ffl
xz
a
XI

o>

XI
■*
X
Z5

E

>
CO

X

CD

XI

o>
XI
■*
X
r>
E

> ffl
xz
CD

XI

to
X

E

> ffl
xz
CD

XI

at

X3
CO
X
3

E

> ra
X
CD
XI

at

X3
r-
X
3

E

> ffl
sz
0)
XI

o>
XI
3
to

CO

o
o
o
T)
Q.
O

>
CO

xz
CD
XI

ra
o
o

TJ
a.
o

CO 1
o
TJ
a
o

> ffl
X

CD

XI
1 ra

o

T>
a
o

HI
o
0.
co
X

c

o
c

1
1-

_)
A
i

X

o
CO

d

CO

d

CO
CO

d
CD

d d

O
0)

d d

m
m
d

CO

oq
d

CM

d

O) CO CM
in q

CM

CO O

d
■*

CO

in
O
CM

O

CO

d

-

X
A

CO

CO

d

a)
CO

d
co
d

o>
CO

d

CO
CO

d

O)
q

d

CD

CM

d

CM
q
d

CNj

d

in CM CM

m
N
m
c\i

in
q in

CO
CO a>

CM

CO

q
05
CO

d

UJ

If)

X X

>
CO
x:
a>
XI

1
o
sz
o
E
CO

CO

CO

T3 ffl
C ffl
E
CD

a
k

cs
c
x:
o
CO

E
a>
o
o
sz
o ffl
13
CO

>
CO
sz ffl
XI

1
_o

a
o

c
CO

>
CO
sz ffl
XI

1
X3

Q
o
T3
C
CO

CD >
CO
x:
CO
x>

ffl

o
CO

CO

T3 ffl
c ffl
E
CD

a
B

*C7
O
_J

X X X X X X X X X X X X X X X X X X X

c

S
to
EC

_1
A

X

X
A

-j

0)
N

55
O

D

CO

>
sz ffl
S3

1
O
x:
o
E
co

_g

(0
0)

-a
S
c
©

E »
a
E
CD

_C

'sz <>
(IS

£

O

o
x:
o ffl
ffl

CO

>
CO
x:

CD
X}

1

'a
o

T3
c
(0

ffl >
CO

SZ
CO
XI

1
co
c
Q

O

CO

CO

■a ffl
ffl
E ffl
Q

E
o
'oi
o
_1

CO
CO
CO
X
f-
■<t
to

CO

X
0)
l-~

o
CO

o>
X

CO

o
CM

CO

o
o
X
in
in
o
CM

CO

CO
CO
X

CO

5

CO
CO
X

CO

CO

CM
in
CO
X

CM
CO

■t
CO
X

o
o

o

X

0)

t

CM
t
X

CO
CO

CO

CO
o>
CO
X

CO

CO

o

o
o

X

CM
m
CO

CO
in
CM

X
"t
CO

CO

CO

CO

CM
CM
X

CO
CO

■*

CO

o
CO
X

CO
CM

r-

o
CO
CO
X

CO
00
O)

CO
CO

CO

X

CO

CO

CO

00
Tt

X
CO

CM

o
CM
o>

X
■*

■<»•
CO

CO

CO

o
CD
X

CO
CM
l~-

o
to
S

X

-
5
UI

_l

o
10

! ! j i X X X X X X X X X X X X X X X :

c

D
C

E
l-

_l
A
■

X
• 1 !

X
A
i

_l

! ! !
i i

! * * j 1 ; |
! i

1 j i I 1 i

u

35
w
0)
1-

JE

3

o
■o
o
o

a
o
o
II

'a.
o

a
E
<i>

E
II
x
*Q

E
x~
'Q
3
o

II
X
Q
tr

>
CO

x:
<D
X)

1 ffl
CL
O

CO
CO

ffl
E
CO

CO

1 i
! ; ! ! ! j 1 ! ; ; s

! ' 1 1 1 i
a>
c
o
(0

X X X X X X X X X X X X i

1»

53
■D

>
X !

CM ffl
o

111
o
(A

X X

o
o
c
3
II
O
Ü

3
o
c
3
II
3
o

DC

>'
CO
sz
a>
XI

o
x:

E
CO

CO
CO

ffl
E
CO

CO

X X X X X X X X X X X X X X X X X X
!

o
c

B
\-

0)
N >
75
c
<
c
O

»
O
Q

(A
1-
0) *"•
a>
£
a
i_
cs
a

m CO

q 1 r-;
CM

J !
>
CO
x: ffl
XI

a
o

a
o

CO

CO

13 ffl
ffl
E
CD

a.
E

Ol
o
_l

CM
CM

CO

■r-

"m
CO

CO

X

X

X

>
CO
sz ffl
XI

en
o

3
Q.

O

CO

CO

-o ffl
c ffl
E ffl
£1

E
o

*cr
O
_l

CM
CM

CO
q CO

3£
O
O

S3

a
c

3
o

o

ffl
x:

x:

3
T3 ffl
"E ffl
E ffl
a.
E

CO
je
o
o
S3

c

3
o

o

ffl
x:

sz

3
T> ffl
C ffl
E
CD

a
E

m

CO ffl
•*
c

s
o

Ö

ffl
sz

o
c

CO ffl
m

CM
CO

CO
CO ffl

■*

c

o

o

ffl
x:

o

CO
CD

CO

CO
in

CO

CM

CM

CO

CO

CO

m
CO

i i

'o
o o o o o o T— o 1~ T- o o o o ,— o O o o '•

ol< X X X X X X X X X X X X X X X X X X X '•

CD
X X X X X X X X X i i X 1 i i X '•

sz

03

5

>
X X X X X X X X X X X X X X X X X X X \

CO

c
0)
c
o
Q

£
o
O

>
CO
x: ffl
XI

>
'ca
o

> ffl
x: ffl
XI

CO

c
'a.
o

>
CO
si ffl
XI

x>
c
Q
O

>
CO

x: ffl
XI

_o
c
'a
o

o
x:
o
E
CO
c

>
CO

SZ ffl
XI

CO
c
CO

c
o

>
CO
sz
CD

X>

ffl
Q

O

> ffl
sz ffl
XI

XI

£1
O

> ffl
sz
CD
X}

O

Q
O

o

%
E
CO

CO

o
Ü
c
3
Q
O

>
CO
sz ffl
x>

cr
o
o
3
a
o

o
c
3
o
o

> ffl
x: ffl
XI

a
o

3
Q

O

>
CO
sz
CD
X)

E
a:

"v.
c
CC

>
CO
x:
CD

■°
C7

O

CO

c
CC

>
CO
sz ffl
X)

s
c
Ü
c
3

>
CO
x: ffl
S3

a

c
o
c
3

>
CO
sz ffl
XI

S3

"Ö
O
c
3

■>
CO
x:
ID
XI

_o

0
o
c
3

>
CO

x: ffl
XI

c
CJ
c
3

>
a
sz
CD

S3

£
CO

o
o
c
3

>
CO
sz
CD

X>

a
o

S
o
c
3

>
CO
x: ffl
■°
CO

3
o
c
3

>
n
sz ffl
XI

XI

3
o
c
3

>
CO
x:
CD
XI

O

3
o
c
3

> ffl
x: ffl
XI

T>

3
o
c
3

>
CO
x:
CD
XI

E
CO

3
o
c
3

o
3
*3
S3
N

>
CO
x:
at
XI

E
CD

E
o
o
o

T3

o>

XI
CO
X
3

E

CD
XI
CO
X
3

E

CO
XI
CM
X
3

E

CO

ffl
3
XI

ffl
To

in

>
CO
x: ffl
XI

E
CD

E
o
ü
c
3

10
X
3

E

O)
XI
CO
X
3

E

a>
XI
CM
X
3

E

o>
S3
CO
X
3

E

O)
x> •*
X
3

E

CO

ffl
3

x>
ffl
ffl
Ik
in

Component Changes

unrowla: column 1 = shift 0 shift 1 = shift 3

column 3 = shift 2

column 5 = shift 4

column 6 — shift 5

column 8 = shift 7

column 7 = shift 6

column 9 = shift 8

uncolld: 11 buffers use 13 d ff
1 buffer uses 14 dff

uncollb: 4 buffers use 16 dff

uncollc 4 buffers use 11 dff

unrowlb 5 buffers use 13 dff

unrowlc 3 buffers use 13 dff
1 buffers use 15 dff

uncolla shift 0 = 0 shift1=shift3

shift 13 = row 9
shift 8 = row 4

shift 9 = row 5
shift 5 = row 1
shift 6 = row 2
shift 7 = row 3

shift 4 = row 0
shift 10 = row 6
shift 11 = row 7
shift 12 = row 8

docollb behav scal1c7 = tscall c7
scal2c7 = tscal2c7
wave1c7 = twavl1c7
wave1c7 = twavl1c7
scadd3 = wvadd4

docollc: 4 buffers use 14 dff, 1 buffer use 10 dff

docolld: 1 buffer use 10 dff, 1 buffer use 9 dff

docolle: Removed add9res0 from SGE but it is still in VHDL

116

Appendix E. Sections of Code with the Utilized Components.

The list of components contains all the VHDL files used for each of the four main

pieces of the design. The files used to tie each halve together are also listed. It is noted if

the file was implemented or just needed for testing purposes. The list doesn't specify

how many of each component was used. Referencing the block diagrams will show the

number of each component utilized.

Row Transform Description Purpose
dorowla Control logic Implemented
dorowlb Control logic Implemented
dorowlc Control logic Implemented
dorowld Control logic Implemented
dorowle Control logic Implemented
dorowsm State Machine Implemented
comparelO 10 bit comparator Implemented
mux3b10 3 by 10 Bit Multiplexer Implemented
incbylO 19 Bit Increment by 10 Implemented
incIO 10 bit Increment by 1 Implemented
add10 10 Bit Adder Implemented
inc19 19 Bit Adder Implemented
add9 9 Bit Adder Implemented
sub9 9 Bit Subtractor Implemented
mux2 2 by 19 Bit Multiplexer Implemented
mux5 5 by 19 Bit Multiplexer Implemented
mux2b9 2 by 9 Bit Multiplexer Implemented
topdrlog Misc Control Logic Implemented

Column Transform
docolla Control logic Implemented
docollb Control logic Implemented
docollc Control logic Implemented
docolld Control logic Implemented
docolle Control logic Implemented
docolsm State Machine Implemented
mux4b10 4 by 10 Bit Multiplexer Implemented
comparelO 10 bit comparator Implemented
incbylO 19 Bit Increment by 10 Implemented
incIO 10 bit Increment by 1 Implemented
add19 19 Bit Adder Implemented
add8 8 Bit Adder Implemented
add9 9 Bit Adder Implemented
sub9 9 Bit Subtractor Implemented

117

mux3b10 3 by 10 Bit Multiplexer Implemented
mux7b19 7 by 19 Bit Multiplexer Implemented
mux4b19 4 by 19 Bit Multiplexer Implemented
mux2b8 3 by 10 Bit Multiplexer Implemented
mux3b9 3 by 9 Bit Multiplexer Implemented
mux4b9 4 by 9 Bit Multiplexer Implemented
topdclog Misc logic Implemented

Column Inverse Transform
uncolla Control Logic Implemented
uncollb Control Logic Implemented
uncollc Control Logic Implemented
uncolld Control Logic Implemented
uncolsm State Machine Implemented
mux4b10 4 by 10 Bit Multiplexer Implemented
comparelO 10 bit comparator Implemented
incbyl 0 19 Bit Increment by 10 Implemented
inc10 10 bit Increment by 1 Implemented
add19 19 Bit Adder Implemented
add8 8 Bit Adder Implemented
sub9 9 Bit Subtractor Implemented
mux3b10 3 by 10 Bit Multiplexer Implemented
mux6b19 6 by 19 Bit Multiplexer Implemented
mux2b8 2 by 8 Bit Multiplexer Implemented
topuclog Misc logic Implemented

Row Inverse Transform
unrowla Control Logic Implemented
unrowlb Control Logic Implemented
unrowlc Control Logic Implemented
unrowld Control Logic Implemented
unrowsm State Machine Implemented
mux4b10 4 by 10 Bit Multiplexer Implemented
comparelO 10 bit comparator Implemented
incbyl0 19 Bit Increment by 10 Implemented
indO 10 bit Increment by 1 Implemented
add19 19 Bit Adder Implemented
inc19 19 Bit Increment by 10 Implemented
add8 8 Bit Adder Implemented
sub9 9 Bit Subtractor Implemented
mux3b10 3 by 10 Bit Multiplexer Implemented
mux3b19 3 by 19 Bit Multiplexer Implemented
mux2b8 2 by 8 Bit Multiplexer Implemented
topurloq Misc logic Implemented

Transform Half of Code
transfsm State Machine Implemented
translog Control Logic Implemented
toptrla Control Logic Implemented
toptrlb Control Logic Implemented
toptrlc Control Logic Implemented
ttrsmchc State Bit Multiplexer Implemented

118

Inverse Transform Half of
Code
invtrasm State Machine Implemented
invtrlog Control Logic Implemented
topinla Control Logic Implemented
topinlb Control Logic Implemented
topinlc Control Logic Implemented
ttrsmchc State Bit Multiplexer Implemented

Extra Logic for ASIC
mux3b5 Multiplexer Implemented
clock gen Clock and Reset signals Testing only
std logic_vector_to_integer Used for simulated Ram Testing only
memoryl Used for simulated Ram Testing only
ram1 behav Used for simulated Ram Testing only

std logic vector19_to_integer
Used for simulated Register
File Testing only

memory2
Used for simulated Register
File Testing only

ram2 behav
Used for simulated Register
File Testing only

flipflop_behav
Simulates 2 cycle read
delay Testing only

119

Appendix F. Data Used for Testing.

The following data shows the beginning value placed in RAM. It also shows the

intermediate values in the memory locations that are used to compute the ending value

that is subject to the current test. Each location was verified while executing the code.

The final result was verified as well. The result in parenthesis is the actual result written

to RAM. Each quadrant of each iteration was verified. The table shows the steps used

for the Transform half of the code. It was the most complicated as it had many design

rules. The inverse transform half was tested but it wasn't necessary to use the same range

of inputs, as the operations were always the same in each iteration for each quadrant.

Iteration k=Cfc Lower Left Iteration te=1: Lower Lefl Iteration IfeÄ Lower Left

Loc Val Ino Val Loc Val BndVal Loc Val Loc Val Loc Val BrdVal Loc Val Loc Val Loc Val BidVal

10 0 10 0 522 -20 (-8) 10 -82 10 ■«2 266 ■62 (-64) 10 -82 10 -82 138 -82 (-82)

11 0 11 -82 11 -82
42 0 42 40 42 82 42 82 42 82 42 82

43 80 43 82 43 82
74 0 74 0 554 -9 (-8) 74 -65 74 -65 298 -65 (-64) 74 -65 74 -65 170 ■65 (-64)

75 0 75 -65 75 -65

106 0 106 18 106 65 106 65 106 65 106 65

107 36 107 65 107 65

133 0 133 0 586 -3 (°) 138 -21 138 -21 330 -21 (-20) 138 -21 138 -21 202 -21 (-20)

139 0 139 -21 139 -21
170 0 170 6 170 21 170 21 170 21 170 21

171 12 171 21 171 21
202 20 202 10 618 5 (0) 202 20 202 10 362 5 (4) 202 20 202 10 234 5 (4)
203 0 203 0 203 0

234 0 234 0 234 0 234 0 234 0 234 0

235 0 235 0 235 0
266 68 266 34 650 17 (8) 266 101 266 101 394 101 (64)
267 0 267 101
298 0 298 0 298 -101 298 -101
299 0 299 -101

120

Iteration k=0: upper right (sealer) Iteration k=1: upper right (sealer) Iteration k=2: upper right (sealer)

Loc Val Loc Val Loc Val EndVal Loc Val Loc Val Loc Val EndVal Loc Val Loc Val Loc Val EndVal

10 -20 26 -20 26 -20 (-8) 10 -82 18 -82 18 -82 (-64) 10 -82 14 -82 14 -82 (-82)

11 20 11 82 11 82

42 -20 58 -20 42 -82 50 -82 42 -82 46 -82

43 20 43 82 43 82

74 -9 90 -9 58 -9 (-8) 74 -65 82 -65 50 -65 (-64) 74 -65 78 -65 46 -65 (-64)

75 9 75 65 75 65

106 -9 122 -9 106 -65 114 -65 106 -65 110 -65

107 9 107 65 107 65

138 -3 154 -3 90 -3 (°) 138 -21 146 -21 82 -21 (-20) 138 -21 142 -21 78 -21 (-20)

139 3 139 21 139 21

170 -3 186 -3 170 -21 178 -21 170 -21 174 -21

171 3 171 21 171 21

202 20 218 10 122 5 (0) 202 20 210 10 114 5 (4) 202 20 206 10 110 5 (4)
203 0 203 0 203 0

234 0 250 0 234 0 242 0 234 0 238 0

235 0 235 0 235 0

266 17 282 171 154 17 (8) 266 101 274 101 146 101 (64)

267 -17 267 -101
298 17 314 17 298 101 306 101
299 -17 299 -101

■

Iteration k=0: Lower Right Iteration k=1: Lower Right Iteration k=2: Lower Right

Loc Val Loc Val Loc Val EndVal Loc Val Loc Val Loc Val EndVal Loc Val Loc Val Loc Val EndVal

10 0 26 0 538 -24 (-8) 10 -65 18 -65 274 -65 (-64) 10 -65 14 -65 142 -65 (-64)

11 0 11 65 11 65

42 0 58 48 42 65 50 65 42 65 46 65

43 -96 43 -65 43 -65

74 0 90 0 570 -8 (°) 74 -63 82 -63 306 -63 (-56) 74 -63 78 -63 174 -63 (-60)

75 0 75 63 75 63

106 0 122 16 106 63 114 63 106 63 110 63

107 -32 107 -63 107 -63

138 0 154 0 602 -1 (0) 138 -7 146 -7 338 -7 (0) 138 -7 142 -7 206 -7 H)
139 0 139 7 139 7

170 0 186 2 170 7 178 7 170 7 174 7

171 -4 171 -7 171 -7

202 28 218 14 634 7 (°) 202 48 210 24 370 12 (8) 202 48 206 24 238 12 (12)

203 0 203 0 203 0

234 0 250 0 234 0 242 0 234 0 238 0

235 0 235 0 235 0

266 80 282 40 666 20 (8) 266 101 274 101 402 101 (64)
267 0 267 -101
298 0 314 0 298 -101 306 -101
299 0 299 101

121

Appendix G. Power Calculation of the FPGA Design.

Using the WildForce board documentation (3), an estimate of the power usage

was calculated. According to the documentation:

Total Power = Base Power + Memory Power + External VO Power + Total PE Power

Base Power = 3.75 W
Memory Power = 5 W
External I/O Power = OW
Total PE Power = Number of Pe's *PE Power
Number of Pe's = 5 (CPE0.PE1, PE2, PE3, PE4)
PE Power = ((.02 * Frequency) + 0.09) * Activity * Size Factor * 5V
Frequency = 20 MHz
Activity is percent of registers that are switching at same time:

(% utilization of flip-flops) * (% active at any given time)
Activity = .47 * .40
Size Factor for FPGA type 4062XL = 1.23
PE Power = ((.02 * 20) + 0.09) * 0.188 * 1.23 * 5V = 0.567 W
Total PE Power = 5 * 0.567 W = 2.8 W
Total Power = 3.75 + 5 + 0 + 2.8 = 11.6 W

Activity was estimated based on the Behavioral Code and the WildForce

Documentation. A better estimate could have been calculated by analyzing the files

produced by the WildForce loading program (3). However, since the majority of the total

power is based on the memory and base power, the estimate is sufficient for comparison

purposes.

122

	A Low Power Application-Specific Integrated Circuit (ASIC) Implementation of Wavelet Transform/Inverse Transform
	Recommended Citation

	/tardir/tiffs/a391952.tiff

