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Abstract 

A unique ASIC was designed implementing the Haar Wavelet transform for 

image compression/decompression. ASIC operations include performing the Haar 

wavelet transform on a 512 by 512 square pixel image, preparing the image for 

transmission by quantizing and thresholding the transformed data, and performing the 

inverse Haar wavelet transform, returning the original image with only minor 

degradation. The ASIC is based on an existing four-chip FPGA implementation. 

Implementing the design using a dedicated ASIC enhances the speed, decreases chip 

count to a single die, and uses significantly less power compared to the FPGA 

implementation. A reduction of RAM accesses was realized and a tradeoff between 

states and duplication of components for parallel operation were key to the performance 

gains. Almost half of the external RAM accesses were removed from the FPGA design 

by incorporating an internal register file. This reduction reduced the number of states 

needed to process an image increasing the image frame rate by 13% and decreased VO 

traffic on the bus by 47%. Adding control lines to the ALU components, thus eliminating 

unnecessary switching of combination logic blocks, further reduced power requirements. 

The 22 mm2 ASIC consumes an estimated 430 mW of power when operating at the 

maximum frequency of 17 MHz. 
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A LOW POWER 

APPLICATION-SPECIFIC INTEGRATED CIRCUIT (ASIC) 

IMPLEMENTATION OF WAVELET 

TRANSFORM / INVERSE TRANSFORM 

/. Introduction 

1.1 Introduction 

This document presents a piece in an overall research effort being conducted by 

the Dayton Area Graduation Studies Institutes (DAGSI). Currently, students at Air Force 

Institute of Technology (AFIT), University of Cincinnati (UC), University of Dayton 

(UD), and Ohio State University (OSU) are involved with the effort of advanced 

compression of video and audio communications and large image compression. Wavelet 

image compression using Field Programmable Gate Arrays (FPGA) is the focus of the 

UD research. This thesis effort expands upon image compression research by 

implementing the Haar transform/inverse transform on an Application-Specific Integrated 

Circuit (ASIC). 

The main effort of this research was to create an ASIC with the same functionality 

as the existing Very High Speed Integrated Circuit Hardware Description Language 

(VHDL) behavioral description of the FPGA design. Efforts were not made to alter the 



specific wavelet chosen for image compression/decompression. Savings in area, speed, 

and power are the primary goal. While a mathematical analysis of wavelets was not 

explored, a brief discussion of wavelets and their properties accompany this thesis to 

provide a theoretical basis. 

1.2 Problem Statement 

Image processing has always been a slow and difficult task since image resolution 

is directly tied to the number of sample points taken. To increase resolution, one has to 

increase the number of sample points. As the number of sample points increases, so does 

the time necessary to complete the computations (1). By using the 2-D Haar transform, a 

speedup is realized since the transform compresses the image information into a minimal 

number of coefficients. The quality of the reconstructed image obtained from the Haar 

transform is satisfactory for many applications including this research effort. By 

quantizing the wavelet coefficients, a greater compression ratio is attained allowing for a 

faster transmission rate. Quantizing the wavelet coefficients causes some image 

degradation, however, the tradeoff between the speed of transmitting the data and the loss 

of image integrity is necessary. Once the compressed image is received the reverse 

transform is applied leaving the original image with only a minimal loss of integrity. The 

integrity loss is relative to the level of quantization and thresholding performed. For 

many applications, the speedup obtained by transforming and quantizing the image 

greatly outweighs the minimal loss of the image integrity (2). 



The current technology has been mapped on an Annapolis Microsystems 

Wildforce board (3). The board consists of 5 Xilinx FPGA 4062XL chips with up to 

2Mbytes of SRAM per chip. A PCI interface exists on the board providing several I/O 

options. External FIFOs, DMA, and a reconfigurable Crossbar between FPGAs are 

among the I/O options. 

The Wavelet ASIC research effort replaces the 5 FPGA board with a single ASIC. 

Figure 1. Wildforce Board (4) 

1.3 Methodology 

Converting from the FPGA design to an ASIC design required many iterative 

design steps. The first step is to compile and execute the existing VHDL behavioral 

code. Understanding how the current implementation operates is the key to translating 

and improving the code. Second, optimizations are performed to obtain a performance 

speedup, reduced area, and reduced power consumption. Next, a new behavioral VHDL 



description is written to reflect the optimizations and tested. The new description is built 

with manageable blocks for easier implementation. A 9-bit adder is an example of a 

manageable block since it performs one function. Each block undergoes transitions from 

a behavioral description to a structural description and then to a physical layout. Each 

step is tested and revisited until it satisfies the required speed, area, power, and 

functionality criteria. Selected blocks are grouped together and tested for further 

verification. The final step is to test all blocks together. 

1.4 Constraints and Assumptions 

Validation of the FPGA behavioral code is assumed since it has been observed to 

produce expected results for sample images. Additionally, the Haar transform 

implementation of the code is assumed correct. Mathematical operations performed in 

the code were altered only to reduce the time to do the calculations. The final ASIC 

design process was verified against the behavioral VHDL code and produced identical 

results. 

1.5 Materials and Equipment 

All of the design tools used to create the layout operate in a UNIX environment. 

The first tool was the Synopsys System Simulator, (VHDLAN), (5). It tested the 

behavioral, structural, and functional aspects of the design. Another tool used was the 

Synopsys Design Analyzer (5), which produces a gate level layout of the behavioral 

description. A schematic based design tool, Synopsys Graphical Environment, (SGE), 



(5), was used to produce a structural level description of the VHDL code. Netlists are 

also produced by SGE, which are used to obtain the final transistor layout. Octools (6) 

translated the netlist into a transistor layout. Magic (7), is used to view and edit the 

layout produced by Octools, as well as to produce a transistor layout design. The layout 

level of the design is tested with two other tools, IRSIM (8), which tested the 

functionality of the transistor layout by performing a logic level test and High Accuracy 

Simulation Program with Integrated Circuit Emphasis (HSPICE) (9,10,11), which tested 

the functionality of the transistor layout with emphasis on accurate timing of the circuit. 

1.6 Thesis Overview 

This document is organized into 6 chapters. The first chapter provides an 

introduction, overview of ASIC design, the steps used in the design process, and the tools 

needed to complete the ASIC design. 

Chapter II summarizes current research in wavelet/transform technology. 

Research in ASIC design is also presented. Background research in FPGA design is also 

described. 

Chapter El begins by stating the goals of the Wavelet ASIC. The original VHDL 

behavioral code is then analyzed. Next, the steps taken to execute the Haar transform and 

inverse Haar transform are discussed in detail. Optimizations of the original design are 

then presented. The next section discusses the design of the new synthesizeable VHDL 

code. The chapter finishes by describing the causes of image degradation. 



Chapter IV presents the design at the component level of abstraction. First, the 

design steps used to create a component are listed. Each component, as well as each of 

the main logic blocks, is described. Next, the different state machines are discussed 

along with the design choices made to create them. The custom built internal register file 

is described in detail. Next, the top-level signals are listed along with their functionality. 

Finally, the system data buses are discussed. 

Chapter V focuses on the verification and validation of the design. Tests made to 

the original VHDL behavioral code are discussed first. The design cycle is discussed 

along with the tests conducted at each step. The testing of the individual component is 

also described. Finally, the read/write logic is discussed. 

In Chapter VI, research conclusions are presented. Research goals and 

accomplishments are discussed. The chapter concludes with suggestions for future work 

for both the VHDL level, as well as the component level of research. 



II. Literature Review 

2.1 Introduction 

There is an enormous amount of research in transforms. For over 30 years, Fast 

Fourier Transforms have been the topic of many books (12). Wavelet transforms, in 

contrast, are relative newcomers but they have spawned many new signal processing 

algorithms over the past 10 to 15 years (13). A brief discussion of the 2D Wavelet 

Transform is presented along with an introduction to the Haar wavelet. Wavelets 

introduce various tradeoffs with respect to power, timing, and chip area. A small number 

of wavelets were analyzed for their specific impact in these areas with respect to ASIC 

design. Only a few theses were found that involved end-tö-end chip design. Specific 

points from these theses are discussed along with their relevance to the Wavelet ASIC 

research. The chapter concludes by describing the FPGA design of the Haar Wavelet 

transform/inverse transform. 

2.2 2D Wavelet Transform 

The wavelet transform is popular for use in encoding a signal. After 

transformation, the input is separated into two sequences. The average values of the 

original input are represented in the first sequence while changes are represented in the 

second sequence. In other words, the first sequence describes the general trend of the 

input and the other sequence shows departures from that trend (14). There are an infinite 



number of wavelet transforms and the particular criteria for choosing one over another is 

application specific (14). The 2D wavelet transform is an example of a wavelet 

transform that exhibits characteristics useful to image processing (2). 

Prior to the transform, an image is digitized and represented as a two-dimensional 

matrix of pixels. Each pixel value represents an intensity and color value as sampled at 

that point. Normally, there is a high correlation between adjacent pixels. Correlation 

between neighboring pixels results in redundancy in image information which is 

exploited by the transform. The resulting data is compressed into a compact reversible 

transform of the original image. There are two schemes associated with the 

transformation of images for encoding. The schemes are either causal or noncausal. In a 

broad sense, causal transforms permit a sequential encoding process while noncausal 

transforms require solving large systems of simultaneous equations. Noncausal 

transforms provide a higher compression ratio but are harder to implement since they do 

not use a sequential encoding method (15). For the ASIC design, the causal transform is 

used. 

The two most interesting characteristics of an image are its edges and texture. 

The characteristics are expressed as variations in the intensity and color of the adjacent 

pixels and these variations occur on several different scales. Edges of large objects are 

observable at low resolutions while edges of smaller objects are visible only at higher 

resolutions. At very high resolutions, even the texture of an image is observed as 

variations in intensity. While both edges and texture are distorted when applying 

transforms, edges are more perceptible to the human eye (15). 



Each iteration of the 2D Wavelet transform produces four sub-images. First, a 

row decomposition is performed and results in a high pass sub-image and a low pass sub- 

image. The two sub-images are then decomposed by columns, which produce a total of 

four sub-images (low-low, low-high, high-low, high-high) as shown in Figure 2. The 

three high pass sub-images contain the edge information. For example, the 'High, Low' 

sub-image contains the horizontal high-pass information and the vertical low-pass 

information (2). 

Low,Low      J     High,Low 

_i 

Low,High     j     High,High 

• 

Figure 2. Sub-images 

The fourth sub-image (low-pass image) is then transformed again producing four 

more sub-images with similar information but with lower resolution. The steps are 

repeated for a desired number of iterations. Usually the low-pass image after several 

iterations doesn't contain any more desirable information so the iteration is ceased (15). 

Multiple passes are performed because image intensity changes may occur 

gradually. To localize the change in intensity, a low pass filter is applied to the image 



which halves the intensity range. The divided intensity range is then examined for 

changes. By performing multiple passes, intensity variations are obtained at different 

scales. The multiple step transform allows both gradual changes as well as sharp 

transitions to be localized and saved for reconstruction of the image. The process of 

obtaining edge information at various scales is called multiscale edge detection and is 

very useful for image compression (15). 

Wavelet compression is effective because the wavelet transform exploits the 

correlations in a signal. ID transforms only exploit correlations in a small segment. 2D 

transforms find correlations within a region. The 2D transform, therefore increases the 

compression ratio (4). The increased compression ratio is an advantage of the 2D 

wavelet compared to other transforms (16). 

Another significant advantage of the wavelet transform (4) is that it solves the 

synchronization problem between multimedia content streams such as adjacent video 

signals. Synchronization is also an issue in wireless LAN and Internet communications. 

In order to achieve synchronization, a time-control mechanism is needed. A ID audio 

signal can be converted into a 2D signal to form an audio image. By attaching the audio 

image to the video image, synchronization is achieved (4). 

In this section, the 2D wavelet transform and its application to image processing 

was discussed. For a more detailed analysis of wavelets, the interested reader is 

encouraged to consult (17). 

10 



2.3 Haar Wavelet 

The wavelet chosen for the ASIC design, the Haar wavelet, is possibly the 

simplest of all the wavelets. Computation of the Haar wavelet is accomplished by simply 

averaging and differencing the data. These simple calculations are what make the Haar 

wavelet suitable for an ASIC implementation. Two types of coefficients are obtained 

from the transform. Scaling coefficients are obtained by averaging two adjacent pixels. 

These scaling coefficients represent a course approximation of the image. Wavelet 

coefficients are obtained from the differencing of two adjacent pixels. Wavelet 

coefficients contain the fine details of the image. 

The Haar wavelet was chosen for its simplicity and speed of computation. 

Computation of the scaling coefficients requires adding two pixel values and dividing by 

two. Calculation of the wavelet coefficients requires subtracting two pixel values and 

dividing by two. The inverse transform simply requires subtraction and addition. Using 

logical shifts to perform division eliminates the need for a complex divide unit. 

Furthermore, implementing a logical shift in hardware requires much less power and 

space than an arithmetic logic unit (ALU). Given the computational requirements, the 

Haar wavelet is a simple and easy to implement transform. Computational simplicity 

makes the Haar transform a perfect choice for an initial design implementation. Further 

research is being conducted by UD to see if any advantages exist for using different 

transforms for their research effort. 

11 



2.4 History of Designs 

Image compression is a required in many applications. One such application is in 

digital photography. Storing high-resolution images requires a significant amount of 

memory. Better compression results in more images being stored on a given storage 

media.   One such effort involved designing a VLSI chip for Wavelet Image Compression 

(18). 

The Joint Photographic Experts Group (JPEG) image compression algorithm is 

widely used for reduction of image data. JPEG is a real-time video/image processing 

application based on the Discrete Cosine Transform. However, JPEG has some 

drawbacks, such as artifacts being produced in the decompressed image. The artifacts are 

especially evident at the borders of the 8x8 sub-image and have resulted in exploration of 

other methods for image compression. Schwarzenberg's VLSI chip design for wavelet 

image compression is based upon wavelet transforms (18). A special Integrated Circuit 

(IC) was developed to perform image compression since software implementations of 

compressing even one still image requires a very long time. The speed of the 

Schwarzenberg's transform chip was obtained by performing certain operations in 

parallel (18). 

Schwarzenberg uses a separable two-dimensional wavelet-transform. Performing 

a one-dimensional transform on the rows and then on the columns produces a separable 

2-D transform. Schwarzenberg's design used internal RAM for the one-dimensional 

transforms allowing for increased speed since external RAM access was minimized. 

Since an ASIC wasn't actually built, valid operation of the design was based on the 

12 



synthesized code. The synthesized code performed identical to that of the software 

version of the wavelet compression (18). The FPGA design uses off-chip RAM to store 

intermediate values. The utilization of on chip memory is applied to the Wavelet ASIC 

transform design to gain speed. 

Another research effort involved implementing a VLSI architecture for 2-D 

discrete wavelet transforms (DWT). The architecture was designed to process input 

signals in real-time. The VLSI DWT design used three programmable parallel filters, a 

storage unit, and a control unit, which minimized the hardware costs. The 2-D DWT 

design outperformed the direct approach, which uses the 1-D DWT. The direct approach 

only executes the transform in a row like fashion, which exploits correlations in small 

segments, not in regions. The direct approach has many shortcomings such as a long 

latency time and the requirement for a large memory space. Because of these 

shortcomings the 1 -D DWT isn't widely used. The VLSI DWT approach had 

performance benefits over a direct approach making it suitable for many real-time 

video/image applications (19). 

Singh, et al. (20), designed another application using a 2-D discrete wavelet 

transform. Parallel computation of the wavelet was proposed. The design is modular 

making it scalable to different levels of wavelet decomposition. A prototype architecture 

was implemented for an 8 x 8 image. The Singh architecture was synthesized and 

verified. Then a layout was designed in Cadence. The Singh design boasts fewer latches 

by utilizing control pipelining to generate the control signals. Control pipelining 

eliminated the need for latches for the horizontal dimension of the first stage processing 
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elements. The design used 3 stages of wavelet decomposition (20). The Haar wavelet 

implemented in the Wavelet ASIC also incorporates a 3-stage wavelet transform. 

Zhang, et al. (21), proposed a 3D DWT. The 3-D transform is decomposed into 

three steps. Each step is a 1-D transform in the x, y, and z direction. Although the 3-D 

DWT outperforms the 2-D DWT by 40-90%, the 2-D and 1-D transforms still have their 

uses (21). The number of coefficients is proportional to the accuracy of the transform. 

Furthermore, as the number of coefficients increases, so does the time it takes to compute 

the transform. The 3-D DWT architecture was implemented with minimal area and 

predicts the consumption of less power. Low power was achieved in the 3-D DWT 

design by using low power building block cells, using central control design, which 

minimizes circuit complexity, eliminating redundant modules, and by constantly 

compromising tradeoffs of power, speed, and circuit complexity. The 3-D DWT design 

was verified with Synopsys software and is reported to use only 0.5W of power with a 

total delay of 91.65 ns while operating at a frequency of 272 MHz (21). 

Another architecture was proposed by Lafruit, et al. (22), which greatly reduced 

power and memory usage. Lafruit's architecture reads the image data line by line, which 

results in a great area savings for on-chip storage. The method of reading line by line 

reduces complexity, which in turn reduces power consumption (22). Reading the data 

line by line was not used in the Wavelet ASIC design but an attempt to minimize the 

number of reads and writes was a goal. The Wavelet ASIC design uses internal registers 

to store image pixel values until the computation is completed and the results are written 

to memory yielding a speedup over the existing methodology. As with Lafruit, et al. 

reduction of power is obtained by minimizing memory access (22). 
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Hunt (23) explored some of the design issues associated with VLSI designs. 

Among the issues were the choices for synchronous versus asynchronous timing. 

Synchronous timing eliminates race conditions and other potential hazards by reducing or 

increasing the clock cycle time. The speed of combinational circuitry is not a concern if 

the clock cycle time is adjusted to account for the circuitry's operating speed. Power 

consumption of clock circuitry, however, is quite large since the clock is always 

switching. Switching is what uses power in CMOS designs. With an asynchronous 

design the power and area are reduced. However, with the absence of a clock, extra 

control circuitry is needed which sometimes offsets the area savings. With synchronous 

circuits, the speed is directly tied to the longest delay. An attempt to equally distribute 

the workload across all states should be made. Optimizing portions of a synchronous 

design, which are not in slow sections of the code doesn't increase performance^ With 

asynchronous circuits the opposite is true. Since the next stage is waiting on the previous 

stage, the sooner it is completed the better (23). Aspects of both synchronous and 

asynchronous timing are used in the design of ASIC research effort. 

Another design choice is deciding between performing operations in parallel by 

replicating components or operating in a serial fashion. For example, one can choose to 

use a single 32-bit adder and perform consecutive additions or replicate the adder and do 

additions in parallel. The former needs less die area but takes a longer time to compute 

which decreases throughput. The complexity of a single adder design is also increased. 

By replicating the adder, one can achieve faster operation and higher throughput. The 

cost is an increase in die area. The control circuitry is decreased in the parallel design but 
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not enough to offset the replication of components (23). Tradeoffs between adding extra 

states and parallelism are a major part of the Wavelet ASIC research. 

Häuser looked into VLSI concerns, as well as Discrete Fourier Transform (DFT) 

implementations and their advantages of being placed on a chip (1). The DFT uses a 

finite set of sample points making it suitable for implementation on a digital computer 

Again, as the number of sample points grow, the time to compute the transform and the 

power needed to perform the computation also increases. Since the DFT uses 

multiplications to execute, time and power usage are issues. 

Winograd demonstrated a reduction in the number of multiplications required by 

the DFT in 1978 (1). The class of algorithms known as the Winograd Fourier Transform 

Algorithms (WFTs) is able to compute a DFT with a minimal number of multiplications. 

The drawback to the WFT is the size of the algorithm. In other words, the size doesn't 

easily map to that of a VLSI chip. Häuser showed by using the Good-Thomas Prime 

Factor Algorithm (PFA) in conjunction with the WFT, the size of the algorithm is 

reduced and easily maps onto that of a VLSI chip (1). Since the goals of the Wavelet 

ASIC are low power and fast computation, the Haar wavelet transform is the best choice 

because it requires only addition, subtraction, and shifting to compute it's coefficients. 

2.5 Current Research 

Research at the University of Dayton implements the Haar wavelet transform 

using a Field Programmable Gate Array (FPGA) (Figure 3). An image is captured via a 

camera and then transformed, quantized, and encoded creating a compressed image. To 
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retrieve the original image, the process is reversed.   The reconstructed image is the 

output from the inverse transform step. 
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Figure 3. Image Compression/Decompression Flowchart 

The FPGA design starts with a behavioral VHDL code level description. The 

VHDL code is used to program the FPGAs to perform the required tasks. The transform 

portion of the design is driven by the top level file, Compression.vhd. The 

Compression.vhd file uses 5 other VHDL files to perform the transform of the image. As 

Figure 4 shows, the image is processed first by rows and then by columns. First, one row 

is read in and packed. Next, the Haar transform is applied. After the row has been 

transformed it is unpacked. The three-step process is executed on all the rows. Next, the 

image is processed in column order. One column is read in and packed. Next, the 
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column is transformed. After the column has been transformed it is unpacked. The three- 

step process is executed on all the columns. Three iterations of the row/column process 

are executed by the transform portion of the FGPA design. The files used by 

Compression.vhd and their functionality are listed below. 

Compression.vhd - Implements the 5 VHDL files listed in Figure 4. 

Pack4row.vhd, Pack4Column.vhd - Packs four 8-bit pixel values into a 

single 32-bit integer. Packing the data speeds up the wavelet transform 

4-fold. Pack4row.vhd packs an image pixel row to lA its original size; 

Pack4Column.vhd packs an image pixel column. 

HaarVideo.vhd - Transforms one row/column of image data into wavelet 

coefficients (High Frequency coefficients) and scaling function 

coefficients (Low Frequency coefficients) 

Unpack4row.vhd, Unpack4Column.vhd - Unpacks four 8-bit pixel values 

from a single 32-bit integer. Unpack4row.vhd unpacks pixels in an entire 

image pixel row; Unpack4Column.vhd unpacks pixels in an entire image 

pixel column. 

The inverse transform half of the design is driven by the top level file, 

Decompression.vhd. The Decompression.vhd file uses 5 other VHDL files to perform the 

transform of the image. As Figure 5 shows, the image is processed first by columns and 

then by rows. First, one column is read in and packed. Next, the Inverse Haar transform 

is applied. After the column has been inverse transformed it is unpacked. The three-step 

process is executed on all the columns. Next, the image is processed in row order. One 

row is read in and packed. Next, the row is inverse transformed. After the row has been 
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Compression.vhd 

Pack4row.vhd Unpack4row.vhd 

HaarVideo.vhd 

Pack4Column.vhd Unpack4Column..vhd 

Loop Through All Rows Loop Through All Columns 

Loop Through Multiresolution Levels 

Figure 4. Compression.vhd File Flowchart (4) 

inverse transformed it is unpacked. The three-step process is executed on all the rows. 

The inverse transform portion of the FPGA design executes three iterations of the 

column/row process. The files used by Decompression.vhd and their functionality are 

listed below. 

Decompression.vhd - Implements the 5 VHDL files listed in Figure 5. 

Pack4row.vhd, Pack4Column.vhd - Same as in Compression.vhd. 

InvhaarVideo.vhd - Inverse transforms wavelet coefficients (High 

Frequency coefficients) and scaling function coefficients (Low Frequency 

coefficients) into one row/column of image data. 

Unpack4Column.vhd, Unpack4row.vhd - Same as in Compression.vhd. 
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Decompression, vhd 

Pack4column.vhd Unpack4column.vhd 

InvhaarVideo.vhd 

Loop Through All Columns 

Pack4row.vhd Unpack4row.vhd 

Loop Through All Rows 

Loop Through Multiresolution Levels 

Figure 5. Decompression.vhd File Flowchart (4) 

VHDL files for the main components are synthesized by the Wildforce 

system and the results are programmed onto the Wildforce board FPGAs (3). Software 

interfaces are used to control the programmed code on the FPGAs. First, the front-end 

code, written in C, is used to load an image into memory. The Wildforce FPGA 

implementation can handle image sizes of 16 x 16, 32 x 32, 64 x 64, 128 x 128, 256 x 

256, 512 x 512, and 1024 x 1024 square pixels. After loading the image, the front-end 

code gives control to the Compress.vhd component by granting memory access. The 

image data is processed as shown in Figure 4. When the Compress.vhd component 

completes, the software takes control and simulates transmission of the compressed 

image. After simulated transmission, control is given to the Decompress.vhd (Figure 5) 
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component, which decodes the image data and executes the inverse transform. After the 

image has been reconstructed, another program, written in C, is used to display the 

image. The image has some degradation but is acceptable for many applications. 

Static Random Access Memory (SRAM), which is used to store the image data, is 

located on a separate FPGA. The memory access time is two clock cycles from memory 

read to valid data on the data lines. A write operation takes one clock cycle. The bus 

controller and the memory controller are contained on other FPGAs. 

Testing individual pieces as they were converted to FPGA compatible software 

was accomplished by running the other components not yet converted with the ones now 

on the FPGAs. Functionality of the VHDL code was demonstrated when a recognizable 

image appeared on the screen. The FPGA implementation has run at clock speeds up to 

20 MHz. Advancements are currently in work to decrease the execution time Of both the 

transform and inverse transform (4). 

2.6 Summary - , 

This chapter described many past and present research projects. First, the 2-D 

wavelet transform was analyzed for its applications relating to image processing. Next, 

the Haar wavelet was introduced. The Haar wavelet was chosen for the ASIC 

transform/inverse transform because of its simplicity. After introducing the Haar 

wavelet, research using other transforms was studied to gain an overall understanding 

about their applications relating to image processing. Finally, specific details from 
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different ASIC designs were studied. Many of the lessons learned from the different 

ASIC research efforts are applied to the Wavelet ASIC design. 
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III. Design Overview 

3.1 Introduction 

The behavioral VHDL code used to implement the Haar transform/inverse 

transform was obtained from the University of Dayton (UD) (4). Since the supplied 

VHDL code was written for FPGAs it wasn't readily synthesizeable and many changes 

were needed. The steps taken to translate the FPGA VHDL code to synthesizeable code 

are discussed in this chapter. Places to improve the code are described. The design flow 

of the synthesizeable VHDL code is explained and the differences between the FPGA 

code and the synthesizeable code are highlighted. Finally, degradation due to quantizing, 

thresholding, and shifting are discussed along with its impact on the usefulness of the 

image. 

3.2 Goals 

The goals of the ASIC research were directly tied with the current parameters of 

Wild Force Board application. Using the maximum operating speed of 20 MHz and the 

total number of states needed to transform one image, the FPGA design transforms one 

image every 196.609 ms. By increasing the operating speed and/or decreasing the 

number of states needed to process an image, the ASIC design will increase the frame 

rate. Adding control signals to the ALU components forcing them to switch only when 

necessary will minimize power usage. Chip area will be minimized by custom designing 

critical portions of the Wavelet ASIC. The FPGA implementation supports image sizes 
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from 16 x 16 to 1024 x 1024. For simplicity, the Wavelet ASIC uses a set image size of 

512x512. 

3.3 Analysis of Original Code 

The analysis process began by compiling and testing the behavioral 

VHDL code received from UD. Initial tests were developed to determine the order pixels 

were accessed. Next, different operations performed on the pixels were analyzed. 

Operations performed on the pixels varied depending on the iteration of the transform 

and where in the image the current pixel information was obtained. The code was 

analyzed to determine the order of algorithm operations. Figure 6 shows the design flow 

of the FPGA code for the transform section. Only the specifics for the row operations are 

shown. Column operations occur in the same manner as that of the rows. The only 

difference is in the order the pixels are processed. Row operations read in the pixels from 

left to right. The column operations read in the pixels from the top to bottom. 

The first step in the process is the packing of data. The FPGA implementation 

contained no internal storage, requiring intermediate values to be stored in off chip RAM. 

To minimize the RAM accesses the data was packed for later retrieval. Since pixel 

information only exists in the 8 least significant bits of a 32-bit memory word, the FPGA 

implementation reads in four locations and packs them into one 32-bit word. The 32-bits 

are then stored back to RAM for later retrieval. Subsequently all memory read accesses 

retrieve 4 pixels instead of only one. 
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The next step is the transform, which operates on the packed data. The packed 

data is read in, transformed, and written back to RAM. Once the packed data has been 
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Figure 6. Flowchart Showing Transform Steps of FPGA Behavioral Code 
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transformed it is read in, unpacked, and stored as 8-bit pixel information within a 32-bit 

word. Three transform passes are performed on each image. During each subsequent 

pass the image size is decreased by a factor of four. The first pass processes an image 

size of 512 by 512 square pixels. The second pass processes an image size of 256 by 256 

square pixels. The third and final pass processes an image size of 128 by 128 square 

pixels (Figure 7). 

During the first pass, the transform processes the original image. Each 

subsequent pass operates on the scaling coefficients produced by the previous pass 

(Figure 8). Details of the subsequent passes of the wavelet transform are explained in 

Section 3.5. Each iteration only alters the original position of the current image i.e. the 

memory locations of the 256 by 256 square image are read in. After being calculated, the 

coefficients are written out to the same memory locations of the original 256 by 256 

square image. After the three passes are performed, the image is quantized, thresholded 

and encoded. Details of the quantize and threshold steps are contained in section 3.4. 

The encode step is not part of the ASIC research and will not be discussed. After three 

passes, the transform is complete. Next, the inverse transform is applied. 

The second half of the FPGA design recreates the original image from the wavelet 

transformed data file. The first step is to decode the encoded data file. Decoding details 

are not addressed, as encoding was not implemented in the ASIC development effort. 

The inverse transform process is simply the reverse of the transform process. The Haar 

transformed data is read in, packed, and written back out to memory. The packed data is 

then later read back in, inverse transformed, and written back out to memory. Finally, the 
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Figure 8. Result of One Transform Iteration 

restored packed integer image is read back in, unpacked, and then written back to 

memory. 

One difference between the transform and inverse transform is how the data is 

accessed. During the inverse transform, data is processed first by columns and then by 
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rows, which is opposite to that of the transform process. Another difference is the 

operations used to inverse transform the data. Details of the inverse transform operations 

are discussed in section 3.5. The order in which the memory locations are accessed is 

also different. The transform step operates on adjacent pixels creating coefficients. The 

coefficients are written to separate halves of the image. The inverse transform then 

operates on the coefficients. In other words, the memory accesses for the inverse 

transform are not sequential as in the transform step. 

There are still three iterations. After each iteration the image is increased by four. 

That is, the first pass processes an image size of 128 by 128 square pixels. The second 

pass processes an image size of 256 by 256 square pixels. The third and final pass 

processes an image size of 512 by 512 square pixels. The first and second pass produce 

coefficients relative to their respective transform operations. The third pass produces the 

transform-degraded values of the original pixels. Details of the degradation are explained 

in the section 3.10. 

The FPGA transform design takes 3,932,176 states to complete a three level 

transform and quantization of an image. The time to process one frame is 196.609 ms at 

a 20MHz operating speed. Appendix C contains a detailed breakdown of states for the 

FPGA design. The frame rate only measures the processing time of an image that already 

exists in memory. Associated operations like loading a new image into memory and 

transmitting the image would obviously affect the frame rate. 

The FPGA code can process images of different sizes. The image width and 

height are located in memory locations one and two, respectively. When the FPGA code 

reads in the image size information, the internal counters are set to indicate the size of the 
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image being processed. A 512 by 512 square image is the only size image handled in the 

ASIC research, therefore, the details of dealing with the different sized images is not 

addressed. The details for quantizing and thresholding are discussed next. 

3.4 Quantize and Threshold Rules 

In the FPGA code, the quantize step is performed after both the row and the 

column transforms have been completed for all three iterations. The specific rules for 

quantizing and thresholding are presented next. See (24) for the specific, detailed 

information On the quantizing and thresholding process and theory. For explanation 

purposes, numbers are assigned to each quadrant. The numbering (Figure 9) is used to 

illustrate the different quantizing and thresholding rules for each quadrant. 
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Figure 9. Quadrant Layout 

In all passes the scaling coefficients are left alone. The reason some quadrants in Figure 

9 have the same number is that the rules for processing those quadrants are the same. 
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The values are represented in hardware as 8 bits of data. When speaking of position of 

the bits the number is referenced from left to right as bit 7, bit 6, ..., bit 1, bit 0. Bit 0 is 

the least significant bit (LSB) and bit 7 is the most significant bit (MSB). The quantize 

and threshold steps alter the data which increases the compression ratio. The following 

quantization and threshold rules were taken straight from the FPGA code. The steps are 

executed in order for each value. 

Quadrants 0: 
Steps: 

1. No altering of the data. 

Quadrants 1: 
Steps: 

1. If number is negative and the LSB is equal to ' 1' then add 2 to the 
number. 

2. Set the LSB equal to zero.        ; 

Quadrants 2: 
Steps: 

1. If number is negative and one or more of the lower two bits are equal to 
'1' then add 4 to the number. 

2. Set low two bits equal to zero. 

Quadrants 3: 
Steps: 

1. If number is negative and one or more of the lower two bits are equal to 
' 1' then add 4 to the number. 

2. Set low two bits equal to zero. 
3. If value is less than -64 set equal to -64. 
4. If value is greater than 64 set equal to 64. 

Quadrants 4: 
Steps: 

1. If number is negative and one or more of the lower three bits are equal 
to ' 1' then add 8 to the number. 

2. Set low three bits equal to zero. 
3. If value is less than -64 set equal to -64. 
4. If value is greater than 64 set equal to 64. 
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Quadrants 5: 
Steps: 

Quadrants 6: 
Steps: 

1. If number is negative and one or more of the lower three bits are equal 
to '1' then add 8 to the number. 

2. Set low three bits equal to zero. 
3. If value is less than -8 set equal to -8. 
4. If value is greater than 8 set equal to 8. 

1. If number is negative and one or more of the lower four bits are equal 
to '1' then add 16 to the number. 

2. Set low four bits equal to zero. 
3. If value is less than -8 set equal to -8. 
4. If value is greater than 8 set equal to 8. 

3.5 Wavelet Transform/Inverse Transform portions of the code 

The Haar transform is very simple. The scaling coefficient is the sum of 

two pixels divided by two. The wavelet coefficient is the difference of two pixels divided 

by two. To retrieve the original pixel values the inverse Haar transform is executed. The 

sum of the scaling coefficient and the wavelet coefficient retrieves the first pixel. 

Subtracting the wavelet coefficient from the scaling coefficient retrieves the second pixel. 

The pixels are recovered with no loss in value. Table 1 depicts this process. 

Pixel Value Sealer Wavelet inverse 
Pixel 1 5 (5+6)/2 = 5.5 (5-6)/2 = -0.5 5.5 + (-0.5) = 5 
Pixel 2 6 5.5 - (-0.5) = 6 

Table 1. Example of Transform/Inverse Transform 

The image is transformed first by rows and then by columns. When the rows are 

transformed the left side of the image space consists of scaling coefficients and the right 

side of the image consists of wavelet coefficients (Figure 10. Image B). Next, the image 
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is transformed by columns. When the column transform is complete the image consists 

of four quadrants (Figure 10. Image C). Upper left is the scaling coefficients. The upper 

right is wavelet coefficients showing the horizontal edges of the image. The lower left is 

wavelet coefficients showing the vertical edges of the image. The bottom right quadrant 

is wavelet coefficients showing the diagonal edges of the image (2). 
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Figure 10. Transform of Image 

Figure 10, Image C, shows the first iteration of the transform. The second 

iteration would only operate on the upper left quadrant (Figure 10. Image C). It would 

produce the same four quadrants as the first iteration but of different resolution levels (2). 

The third pass would operate on the upper left quadrant from the second iteration. The 

result of three iterations is shown in Figure 10, Image H. 
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Figure 11. Quadrants of the Three Transform Passes 

The inverse transform would operate on the image in reverse order to the 

transform process by first processing the columns and then the rows. The first pass 

would operate on the squares labeled '0' and 'V in Figure 11. The second pass would 

operate on the result of the first and the squares labeled with a '2'. The final pass would 

operate on the whole image recovering the original image. Since the calculations are 

being performed in hardware, fractional values are lost during integer division, and the 

original image isn't perfectly recovered. Other factors such as quantizing and 

thresholding the data are the major reason for distortion in the final retrieved image. For 

a more detailed description of these distortions, reference Section 3.10. Next, the steps 

taken to convert from the FPGA VHDL code to synthesizeable code are discussed. 
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3.6 Converting the Original FPGA Code to Synthesizeable Code 

Once the behavioral level VHDL code was working it was necessary to convert it 

to a synthesizeable form. Converting the FPGA compatible code to synthesizeable code 

was a complex task. The following statement is an example of the coding style used in 

the original VHDL behavioral code. 

indx 1(18 downto 0) <= indx( 18 downto 0) + 10; 

Similar types of statements occurred simultaneously in the behavioral VHDL code. The 

first problem with above segment of code is the utilization of bit vectors. AFIT synthesis 

tools are not compatible with the bit vector construct of the VHDL language. All bit 

vectors had to be converted to individual bits, making the code longer and harder to 

follow. The '+' signs were also inappropriate. The following analysis assumes that 4 

additions occur simultaneously. At least three methods are available to implement 

additions. The first method implements four adders that operate simultaneously. The 

second method places each addition in a different state, thus solving the problem serially. 

The second method takes four times as long to compute but requires only one adder. 

Other combinations such as two adders and two states were explored. An analysis of 

extra states and replication of components was done to decide what combinations of 

states and adders were best. The analysis is explained in section 4.6. 

The tradeoffs for multiple additions are as follows: 

1. Multiple adders working in parallel increase power usage and increase overall 
area. 
2. A single adder increases the execution time because extra states are needed. 
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3. A combination of multiple adders and more states provided the best solution 
for the ASIC design, allowing for some speedup without the area becoming too 
large. 

Many of the defined signals were not used in the original behavioral VHDL code. 

If two values are added they must be the same size since the '+' operator was used. For 

example: 

newaddress(18 downto 0) <= address(18 downto 0) + count(18 downto 0) 

Even if count only used four bits, count must be 19 bits long in order for the addition 

operation to compile in VHDL. As part of generating synthesizeable VHDL, all 

unnecessary bits were removed from the code. 

Another non-synthesizeable portion of the behavioral VHDL was the code for the 

data latches. Changes were required so latches would properly synthesize. Figure 12 

shows an example of some code that was changed to synthesize properly. When the reset 

line was placed before the clock edge detection line, as it was in the FPGA code, the 

component wouldn't synthesize. Figure 13 shows the correct way to program a latch for 

synthesis. 

if (RESET = T) then 
PAKPXV5 <= '0'; 

elsif (( CLOCK = T ) and ( CLOCK'event)) then 
if(ReadPixel3 = T)then 

PAKPXV5<=T; 
else -no change 

PAKPXV5 <= PAKPXV5; 
end if; 

end if; 

Figure 12. Incorrect Way to Code a Latch 
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if (( CLOCK = '1') and ( CLOCK'event)) then 
if (RESET = '1') then 

PAKPXV5 <= '0'; 
elsif (ReadPixeB = T) then 

PAKPXV5<=T; 
else -no change 

PAKPXV5 <= PAKPXV5; 
end if; 

end if; 

Figure 13. Correct Way to Code a Latch 

The FPGA code used many RAM accesses to process an image. With some 

additional logic the RAM accesses were reduced. The details for reducing the Ram 

accesses and the savings from the reduction are explained in the following section. 

3.7 Optimizations on the Original Code 

Analysis of the initial behavioral VHDL code showed that the three stages of 

Wavelet transform operations (Pack, Transform, Unpack) could be combined reducing 

RAM accesses by 47%. As with most designs, off-chip memory accesses are a 

performance bottleneck. Minimizing the number of memory accesses greatly reduces the 

overall execution time. The FPGA implementation included no internal data storage 

provisions requiring RAM reads/writes of intermediate values to be stored in off-chip 

memory. The inclusion of an internal register file eliminated the storing and retrieving of 

intermediate values. Pixels were simply read in once, transformed, and written back out 

to RAM. Appendix B analyzes the exact savings from combining the three memory 

access steps. The additional steps to quantize and threshold the data were also 
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incorporated with the column transform step. In the FPGA code, the quantize step is 

performed after both the row transform and the column transform have been completed. 

By incorporating the quantize step into the column transform step, one additional 

memory access is eliminated. The details to the reductions in RAM accesses are 

presented in Appendix B. Combining all the above operations eliminated all the reads 

and writes the original code needed to execute the quantize step. For a 512 by 512 square 

image the savings were 524,288 memory accesses. Of course, the logic was more 

complex and the need for a 256 by 8-bit internal register file utilized more chip area. The 

total chip area used by the internal register file and its associated address decode logic is 

8,969,114 lambda2. See Appendix B. Savings of Ram Accesses, for detailed Read/Write 

access numbers. Table 2 summarizes the total savings for a 512 by 512 image. 

Total Ram Accesses by Old System 2,588,672 
Total Ram Accesses by New System 1,376,256 

Savings over FPGA implementation 47% 

Table 2. Total Savings in Ram Accesses 

The next section explains the steps taken to develop the new synthesizeable VHDL code. 

3.8 Development of the Synthesizeable VHDL Code 

To constrain the scope of the research, noncritical portions of the FPGA design 

were not implemented. The noncritical portions are explained in this section. The 

specifics of the new VHDL behavioral code are also discussed. Detailed differences 

between the ASIC and the FPGA design are addressed. Some of the logic used 
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specifically for the FPGA design is incorporated in the synthesizeable VHDL code. The 

extra logic, 'artifacts' are listed. 

The Encoder/Decoder portions of the original algorithm were not implemented as 

part of the Wavelet ASIC design. The encoder simply reduced the transformed data file 

for transmission while the decoder expanded the compressed file back to its original size. 

Another functionality not implemented was the capability to process a variable size 

image. Rather, a constant 512x512 image size was used for the ASIC research. 

However, only a few minor design changes would be required to process any size image 

smaller than 512 by 512. The memory used by the FPGA started the image data at 

location 10. Since no internal storage existed, data relevant to the operation was kept in 

locations 0 through 9 and loaded every time it was needed. The same data memory 

mapping was retained for the ASIC development. As the design progressed it was found 

the data stored in locations 0 through 9 was not needed for the ASIC research. The 

impact of the FPGA memory address offset added one state to each of the four state 

machines use in the ASIC. 

The original VHDL code allowed for a variable input of the number of transform 

levels to perform. Based on tests using the FPGA implementation, three transform levels 

was determined to be the optimum number of levels to perform (4). Therefore, the ASIC 

design used three transform levels for every image. Due to the hardwiring of three levels, 

the transform counter was reduced to 2-bits. Another signal, icolumn, was reduced from 

19-bits to 10 bits. It was originally 19-bits long to accommodate for the '+' operation 

restrictions. Eliminating unnecessary signals made the code more compact and reduced 

unnecessary steps later in the design process. 
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Another change to the behavioral VHDL code was to break it into smaller more 

manageable files. The original VHDL code for each main section (Transform, Quantize, 

etc...) was contained in one file. To properly synthesize the design, smaller files, each 

containing less logic, were needed. First, the state machine and the state control signals 

were separated out. Next, all of the Arithmetic Logic Unit (ALU) type operations 

(Additions, Subtractions, Incrementers, etc..) were removed. Each of the operations was 

moved to their own separate file. The signals necessary for the operations were passed as 

input and output parameters to each file. Any component that could stand-alone was 

more efficiently implemented if synthesized by itself. Typically, design tools are more 

efficient when small modules are used. Testing the modules is also much easier and 

faster when it contains only a single operation. 

Another artifact from the FPGA implementation code is bus arbitration. Bus 

arbitration along with the other FPGA's artifacts is implemented in the event the ASIC 

design is ever interfaced with the continuing FPGA effort. The ASIC design requires the 

assertion of the bus grant signal to a logic zero for the operations to begin. The original 

code did not allow for the bus grant signal to be deasserted once it was granted. The bus 

grant logic is the same for the ASIC as that of the FPGA design. 

Since the FPGA artifacts are not needed by the ASIC design, further work on the 

ASIC design may require the removal of all the extra logic, clock cycles, chip area, and 

power needed to execute the additional steps. 
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3.9 Basic Operation of the New VHDL Code 

The operation of the ASIC design is discussed in this section. The process begins 

by resetting the ASIC's states and ends when the image is retrieved. Both the transform 

and inverse transform processing steps are explained. 

As shown in Figure 14, the process begins by resetting the states in the ASIC. 

Once the reset signal is asserted the top-level state machine (Appendix A.l) is initiated. 

The first state asserts the bus request. The circuit remains in a bus request state until the 

bus grant input is asserted indicating the bus has been given to the Haar ASIC for use. 

Once the bus grant is received, the image variables are initialized and processing of the 

image begins. First, the image pixel values are read in row by row. The first four pixels 

(in locations 0,1,2,3) are read from memory. The image's pixels are numbered 0 to 

262,143 starting in the upper left corner as you view the image and proceeding left to 

right as shown in Figure 15. 

The first row is numbered 0 to 511, the second row is numbered 512 to 1023, and 

soon. The image is assumed to reside in memory locations 0 to 262143. The actual 

algorithm operates on an image that begins at location 10. The starting address offset is 

an artifact from the FPGA implementation. Once the pixel values are read in from 

memory the transform is executed producing transform coefficients. 

The scaling and wavelet coefficients are calculated from the pixel values. The 

two scaling coefficients are written back out to memory as shown in Figure 16 

The wavelet coefficients are temporarily written to the internal register file in the 

same manner as the scaling coefficients were written out (wavelet coefficient! is written 
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Figure 16. Placement of Coefficients Relative to Original Pixel Data 

to register location 0 and the wavelet coefficient2 is written to register location 1). Once 

an entire row has been processed the wavelet coefficients are read from the internal 

register file and written out to main memory. After the register values are written to 

RAM, the scaling coefficients are located on the left half of the current image and the 

42 



wavelet coefficients are located on the right half of the current image (Figure 10, 

image B). 

Next, the entire image is processed again but in column order. After initialization, 

four pixels are read in from memory starting with the left most column. During the 

column operations the scaling and wavelet coefficients are created in the same manner as 

in the row operations. After the coefficients are calculated, they are quantized and 

thresholded. The rules change for quantizing and thresholding depending on which 

iteration of the transform is being executed and on which quadrant the current pixels are 

being written. The rules for quantizing and thresholding are discussed in Section 3.4. 

Referencing Figure 9, the first pass quantizes and thresholds quadrants '5' and '6'. The 

second pass quantizes and thresholds quadrants '3' and '4'. The third pass quantizes and 

thresholds quadrants ' 1' and '2'. Once the coefficients have been quantized and 

thresholded they are written to RAM or the register file. The wavelet coefficients are 

written to the internal register file in the same order as the scaling coefficients were 

written out. Once an entire column has been processed the wavelet coefficients are read 

from the internal register file and written out to main memory. The scaling coefficients 

reside in the top half of the current image and the wavelet coefficients in the bottom half 

of the current image. The algorithm continues until all columns have been processed, 

resulting in a fully transformed, quantized, and thresholded image (Figure 10, image C). 

The row/column operations continue for three passes. 

The next step, encoding the image, reduces the size of the data file for 

transmission yielding a quicker transmission time. The encoding step was eliminated as 

it was out of scope for the ASIC development. 
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The second half of ASIC design process involves the recreation of the image. 

Figure 17 summarizes the inverse transform process. As explained in Section 3.10, the 

recreated image is not a perfect replica of the original image. 

The process of performing the inverse transform is much the same as the 

transform process. However, one difference is that the transformed data file is processed 

first by columns and then by rows. Bus arbitration is the same as in the transform case. 

Three iterations are required, however, the first iteration of the inverse transform is 

performed on the 128 square image, the second on the 256 square image and the third 

processes the 512 square image. The order in which the memory locations are accessed 

is also reversed. 

The inverse transform continues until all columns have been read in and 

processed. Again each iteration works with a different area of the image. Next, the 

entire file is processed again, but in row order. Four pixels are read in from memory. 

The order the values are read in and the operations performed are exactly the same as that 

of the inverse column operations except the values are read in by rows. All of the rows 

are read in and processed. 

The column and row inverse transform operations continue for three passes. Each 

time the image size is increased by a factor of four. Explicitly stated, the first pass 

processes an image size of 128 by 128 square pixels. The second pass processes an 

image size of 256 by 256 square pixels. The third and final pass processes an image size 

of 512 by 512 square pixels. The first and second pass produce coefficients relative to 

their respective transform operations. The third pass produces the full size image with 

some degradation. Image degradation is explained in the next section 
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3.10 Degradation Due to Shifting, Quantizing, and Thresholding 

The Haar wavelet transform introduces no degradation. However, in the VLSI 

implementation some degradation is introduced. The ASIC implementation uses integers 

to represent pixel values. Thus, when a divide is performed the exact quotient is not 

obtained and fractional remainders are truncated. Doing a shift on the register holding 

the values performs the divide. A single shift to the right is equivalent to a divide by two. 

The problem with a shift is the LSB is discarded. When an even number is shifted a zero 

gets shifted out resulting in no loss of data. However, when the number is odd there is a 

loss associated with the shift. 

15,o = 11112 

Divide by 2 7.5,0 + III2 = 7,o 
Multiply by 2 15,o ± IIIO2 = 14,o 

Table 3. Example of Loss of Data Due to a Right Shift 

Table 3 illustrates one place that degradation occurs in the ASIC design. Obviously, 

when the inverse transform is executed some of the original pixel values may be altered. 

Reference Table 4 for example of actual loss to individual pixels. Pixel 2 is recovered 

but Pixel 1 is recovered as a four not a five. 

Pixel Value Sealer Wavelet inverse 
Pixel 1 5 (5+6)/2 = 5 (5-6)/2 = -1 5 + (-l) = 4 
Pixel 2 6 5-(-l) = 6 

Table 4. Example of Loss Due to Integer Shift 
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Degradation increases when negative numbers are involved. To help mitigate the 

impact of the loss an additional step was introduced. Depending on the iteration of the 

transform and quadrant being transformed, an offset value is added to negative numbers 

allowing for a more accurate recovery of the complete image. Degradation still exists but 

is lessened by the offset (4), (24). 

Some loss of integrity is a tradeoff for increasing execution speed and reducing 

power consumption. Executing a bit-wise shift in hardware requires a simple routing of 

the signal lines. Implementing a Divide unit is much more complicated, requires a 

significant portion of area, and is much slower to execute than a right shift. The power 

used for an integer division operation is much greater than for a right shift operation. 

Degradation from the quantization and thresholding of the pixel values limits the overall 

accuracy of the reconstructed image. However, to obtain a greater compression ratio 

over the original image, required for a faster transmission time, degradation was deemed 

necessary. 

3.11 Summary 

The behavioral level VHDL code simulated operation of the wavelet ASIC 

properly when run with a512by512 square image size. Reduction of RAM accesses 

reduced the power usage and decreased the time needed to transform an image. 

Degradation due to the transform, quantize, and threshold steps was a tradeoff for 

improvements to execution speed and compression ratio. For some applications the 
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degradation would be a hindrance. However, for the ASIC research, the degradation is 

an acceptable tradeoff. 
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IV. Design Implementation 

4.1 Introduction 

Detailed design of the Wavelet ASIC is covered in this chapter. Explanation is 

from a component level of abstraction. Some components are discussed in great detail. 

Others, such as multiplexers, speak for themselves. How the components fit together is 

also discussed. Most of the components were generated automatically from a behavioral 

description using the Synopsys Design Analyzer Tool (5). Certain blocks of logic, like 

the register file and its associated address decode logic, were custom built. Custom built 

components are more compact, consume less power, and run faster, but time constraints 

don't always allow for a full, custom design. Off chip memory, bus control, and memory 

control were not part of the ASIC design. Only the provided code was translated and 

implemented. 

4.2 Steps Used to Create a Magic Layout of a Component 

The steps used to create a component starting with a behavioral description and 

finishing with a metal level layout in Magic (7) are as follows. 

Step 1. Describe the logic in behavioral VHDL. 
Step 2. Write a test bench in VHDL to test the code. 
Step 3. Compile and test the code. 
Step 4. Input the behavioral VHDL to Design Analyzer for synthesis. 
Step 5. Optimize until satisfied with the timing and area usage. 
Step 6. Convert output of Design Analyzer to input for Synopsys Graphical 

Environment (SGE) tool. 
Step 7. Using SGE, hand place and route any D Flip Flops. 
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Step 8.    Create structural VHDL of the logic using SGE. 
Step 9.   Compile and test the structural level code. 
Step 10. Create a netlist of the logic using SGE. 
Step 11. Convert netlist to Schematic Driven Layout (SDL) file format used by 

Octools. 
Step 12. Verify the SDL file by comparing to netlist. 
Step 13. Add commands to SDL forcing the ordering of the input and output 

signals. 
Step 14. Use Octools to produce a Magic Layout of the logic. 
Step 15. Use the Magic command 'drc check' to verify the correctness of the 

Magic layout. 
Step 16. Extract a '.EXT' file from the layout. 
Step 17. Convert '.EXT' file to IRSIM file format. 
Step 18. Write an IRSIM test bench and test the logic. 
Step 19. Convert '.EXT' file to HSPICE file format. 
Step 20. Write an HSPICE test bench and test the logic. 
Step 21. Connect with other components then test as a larger block. 

The above steps are listed to help clarify when certain steps occur relative to each other. 

4.3 Using the Synopsys Design Analyzer 

The "increment by 10" component is used to illustrate how the design analyzer 

was used to design the ASIC Wavelet chip. Synopsys Design Analyzer takes behavioral 

VHDL code as input and creates a gate level layout of the logic. Design Analyzer can 

optimize the design for minimal area or minimal execution time. In the incrementer 

example, the first step is to describe the incrementer in behavioral VHDL. After the 

VHDL file is compiled and tested, the VHDL is used as input to the Design Analyzer. 

During the ASIC development effort, the initial iteration of the design analyzer is set to 

optimize the logic for a minimal amount of area. After the component is laid out it 

usually is necessary to optimize it based on the critical path. Subsequent optimization 

usually reduces the critical path time considerably as compared with the initial synthesis. 

50 



It has been proven with the Wavelet ASIC research and with past projects from the AFIT 

VLSI EENG 695 course, that iterating more that two times isn't necessary. The area of 

the component continues to expand yielding only a minimal increase in speed. The rule 

of only optimizing twice was proven with adders, subtractors, incrementers, and 

multiplexers. For the ASIC effort, components were, at most, optimized twice. The 

optimization steps for the incrementer are as follows: 

1) Optimize on minimal area : Worst case timing = 13.71ns 
2) Optimize on critical path    : Worst case timing =  2.81ns 

The critical path timing was reduced by 79%. As stated above with an additional 

iteration the timing is only reduced by small increments and the area continues to expand. 

The area does expand for the second iteration but trading area for a 79% speed up is a 

valid exchange. 

4.4 Components 

A complete list of components and their general description is listed in 

Appendix D. Many of the components are used more than once in the design. During 

some states, simultaneous additions and increments are executing. Adding additional 

states could have eliminated multiple operations occurring in a single state. A tradeoff 

was made with the number of states and the number of times to replicate components. 

Since incrementers use less area and power than adders, they were used whenever 

possible. Another tradeoff was in the control of each of the ALU type components. Each 

component had a control line associated with it. The control line caused the component 

to only switch when it was supposed to. Without the control line, the component would 
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switch whenever any of the input lines fluctuated. Incorporating the component level 

control added extra logic and area to the design but offered a savings in power as the 

components wouldn't unnecessarily switch. The HSPICE timing of all the components is 

contained in Appendix D. 

4.4.1 Adders/Subtractors 

There are three adders and one subtractor used in the Wavelet ASIC. The 8-bit 

adder, 9-bit adder and the 9-bit subtractor are all implemented with ripple carry logic. 

The timing from using ripple carry logic was sufficient for the small adders. The other 

adder was a 19-bit adder; it was implemented as a carry-select adder. The carry-select is 

larger in area but produces a much faster adder than the ripple carry logic (25). The 

reason for the custom sizing of the adders/subtractors was because certain states had 

multiple additions and subtractions being executed simultaneously. In one state the 8-bit 

and 9-bit adders and 9-bit subtractor are all being used. In some cases component reuse 

was selected. In one state there was a need for two 8-bit adders. The 9-bit adder was 

used for the second adder with the 9th bit not being used. Using the 9-bit adder saved the 

building of a second 8-bit adder and the associated area with the component. 

4.4.4.2 Incrementers 

Several incrementers are required for the Wavelet ASIC. An increment by 10 was 

needed to account for the offset of the starting memory location of the input image. The 

19-bit adder could have been used but it was already being used in the same state that the 
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increment by 10 is required. Other incrementers were built to accommodate both a 10-bit 

input and a 19-bit input. Again, the reason for multiple incrementers was that some states 

use more than one incrementer simultaneously. Rather than replicate the 19-bit 

incrementer and use it for smaller inputs, the 10-bit incrementer was built saving area and 

power. 

The incrementers were implemented as ripple-carry adders. Ripple-carry adders 

are sufficient since only the LSB is T and all other bits are '0'. The incbylO was also 

designed using the ripple-carry adder logic. Hard coding ' 10' as the second input 

simplified its design. As explained earlier with further refinements and design choices 

the incbylO component could be completely eliminated since the offset by 10 of the 

image is an artifact of the FPGA design. 

4.4.3 Comparator 

A comparator was needed for the code since loops with end conditions needed to be 

tested. A comparator module was designed and tested. The following snippet of code 

was taken from the original design: 

Original line of code: 
(jshift(18 downto 0) >= Column(18 downto 0)) 

The following lines of code show the implementation of compare logic as written in 

behavioral VHDL for synthesis. The code segment only shows two of the 19 bits. 

RESUL is the output of the logic. If RESUL equals one then JSHBFT is greater than or 

equal to COLUMN. If RESUL equals zero then COLUMN is greater than JSHIFT. 
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JRES2 <= ((JSHIFT2 xor COLUMN2) and JSHIFT2); 
CRES2 <= ((JSHIFT2 xor COLUMN2) and COLUMN2); 
JRES3 <= ((JSHIFT3 xor COLUMN3) and JSHIFT3); 
CRES3 <= ((JSHIFT3 xor COLUMN3) and COLUMN3); 
if (JRES3 = T or CRES3 = * 1') then 

RESUL<=JSHIFT3; 
elsif(JRES2 = 'l'or CRES2 = '1') then 

RESUL<=JSHIFT2; 
else 

RESUL<=T; 
end if; 

4.4.4 Multiplexers 

Several multiplexers were used in the Wavelet ASIC. All the multiplexers are 

listed in Appendix D. Only the larger multiplexers were optimized during the design 

analyzer phase. Explicitly, the 6 x 19 input and the 7 x 19 input multiplexers were 

optimized once to reduce the critical path time. As stated in Appendix D, the 6 x 19 input 

multiplexer is the slower of the two. However, the propagation time is still minimal at 

3.04 ns. 

4.5 Four Parts of Code 

The behavioral VHDL code was sectioned into four parts. Row transform (Figure 

18), Col transform (Figure 19), Col inverse transform (Figure 20), and Row inverse 

transform (Figure 21). Quantizing and thresholding was incorporated into the Column 

transform section. Each part was tested separately. The transform pieces were tied 

together with a higher-level state machine called transform. The transform section was 

then tested (Figure 22 and Figure 23). The inverse transform pieces were tied together 

54 



with a higher-level state machine called inverse transform. The inverse transform section 

was then tested (Figure 24 and Figure 25). Since the two top-level pieces, transform and 

inverse transform, operate independently it wasn't necessary to test them together. 

A high level multiplexer that is controlled by an input signal separates the two 

halves. The input signal chooses which half is executed. The other half remains in the 

reset state. Two additional signals control which data is routed to the output. The 

additional control allows isolation of smaller sections of the chip enabling the verification 

of these sections in the event the entire chip does not function correctly. 

Each of the four main parts shares base level components: adders, subtracters, 

incrementers, and a comparator. Components were duplicated only when necessary to 

support simultaneous operation. 
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Figure 25. Test Bench for Inverse Transform Logic 

4.6 State Machines 

A total of six state machines control the operation of the Wavelet ASIC 

(Appendix A). The workload is distributed across all the states. Effort was made to have 

as few states as possible. A tradeoff was made in the replication of components and the 

number of states. In some instances a component was duplicated so two things could 

happen in one state. Duplication of a component saves one state in the state machine and 

ultimately saves thousands of clock cycles. 
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For example, an extra state in the portion of the state machine that read in the 

pixels for the transform part of the design would be executed 128 times for each row, 

since each iteration of the state machine reads in 4 pixels. Take 128 and multiple it by 

the number of rows, 512. Next, double the result to account for the columns. Finally, do 

the same calculations for two more iterations. Total savings for one 512 by 512 square 

image is 172,032 clock cycles. Assume a clock cycle of 50 ns or 20 MHz. The total time 

saved is 8.6 ms. 

(512/4)*512*2= 131,072 --first iteration 
(256/4)*256*2= 32,768 -second iteration 
(128/4^*128*2=   8,192 --third iteration 

172,032 -total for all three iterations 

It is obvious that adding an additional state becomes costly very fast. The tradeoff of 

adding an extra state is extra area consumed by replicating components to operate in 

parallel. Similar design choices are always being made during the ASIC design process. 

A minimal comparison was made in effort to reduce the number of states needed 

in the state machines. Two pixels are needed in order to execute the Haar transform. 

Many methods of reading in the pixels could have been studied. A state machine that 

read in two pixels and performed the required operations was created. A state machine 

that read in four pixels was also created. The number of cycles necessary to read and 

transform four pixels using each method was 35% less when using the state machine that 

read in four pixels. Two different sections of the code were analyzed using the two types 

of state machines. The number of states listed in Table 5 and Table 6 isn't the total 

number of states needed to process the data. Only that portion of the two state machines 

that is different was counted. Table 5 shows the savings between the two types of state 
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machines for the row transform stage of the design. Table 6 shows the savings between 

the two types of state machines for the inverse row transform stage of the design. In both 

cases the state machine that read in 4 pixels outperformed the other state machine. A 

state machine that read in 4 pixels was also used in the column and row processing 

portions of the design. 

Type of State Machine 2 Pixels Per Iteration 
Number of States to Read and Process 4 Pixels 
Number of States for 1 Row  
Number for All Rows first pass 
Number for All Rows second pass 
Number for All Rows third pass 
Total Number for Three Iterations 
% savings of 4 Pixel Read 
Time savings assuming 20 MHZ clock 

4 Pixels Per Iteration 
17 

(512/4 )*17 = 2176 
2176*512 = 1114112 

(256/4)* 17*256 =278528 
(128/4)* 17* 128 =69632 

1,462,272 

11 
(512/4)*11 =1408 

1408*512 = 720896 
(256/4)* 11 *256 =180224 
(128/4)* 11 *128 =45056 

946,176 
0.352941176 

0.0258048 

Table 5. Savings By Reading 4 Pixels For the Transform of Rows Stage 

Type of State Machine 2 Pixels Per Iteration 4 Pixels Per Iteration 
Number of States to Read and Process 4 Pixels 19 13 

Number of States for 1 Row (512/4)* 19 = 2432 (512/4)*13 = 1664 

Number for All Rows first pass 2432*512 = 1245184 1664*512 = 851968 

Number for All Rows second pass (256/4)* 19* 256 =311296 (256/4)* 13* 256 =212992 

Number for All Rows third pass (128/4)* 19* 128 =77824 (128/4)* 13* 128 =53248 

Total Number for Three Iterations 1,634,30 1,118,20 

% savings of 4 Pixel Read 0.315789474 

Time savings assuming 20 MHZ clock 0.0258048 

Table 6. Savings Reading 4 Pixels for Inverse Transform of Rows Stage 

Using an operating speed of 20 MHz and the total number of states needed to 

transform one image, the ASIC design transforms one image every 146.5 ms. See 

Appendix C for breakdown of states for the ASIC design. The frame rate only accounts 

for the processing time of an image that exists in memory. Associated operations like 

loading a new image into memory and transmitting the image would obviously affect the 

frame rate. 
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As stated, 6 state machines were used in the Wavelet ASIC. It might be possible 

to have fewer state machines by having the different parts of the chip use the same state 

machine. Reusing state machines is possible by not using any of the control signals 

produced by the state machine that are not needed. In other words if a state machine has 

10 control lines but you only need 4 of them just use 4 and not connect the others. It is 

also possible to only use a subset of the states calculated. For example, if a state machine 

produces five state bits and you only need four, just utilize the lower 4 bits. 

4.7 Internal Register File 

Savings of RAM accesses came by creating a 256 by 8 bit internal register file. 

The internal registers required fewer memory accesses as intermediate values were saved 

to the register file rather than writing them back out to RAM. The obvious tradeoff is 

chip area for speed. The basic register file design, Figure 26, was taken from Weste (26). 

The basic cell design did not have inverter number 1 in the design. Inverter ' 1' was 

added to correct problems discussed next. 

The basic operation of the cell is as follows. WriteEnableColumn and 

WriteEnableRow are asserted to a logic T, turning on the n-transistors causing the value 

on the WriteData line to feed in to the inverter loop (inverters 2 and 4). The write enable 

lines are then brought low and the cell retains the level stored. The feedback inverter 

(inverter 4) is sized correctly so it can drive inverter 2 retaining the stored value, but be 

overpowered by an n-transistor when a new value is written to the cell. The single n- 

transistor would not operate properly in the 0.35 micron technology files no matter what 
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Figure 26. Single Register Cell Location 

the sizing of the feedback inverter was. Replacing the n-transistors with T-gates had no 

positive effect. Basically, the n-transistors were not large enough to out-drive the 

feedback inverter; therefore, the stored value could not be changed. The problem was 

fixed by isolating the cell with an inverter. Inverter 1 was added to the design to isolate 

the inner loop (inverters 2 and 4) from the n-transistors. Adding inverter 1 eliminated the 

problem of sizing of the feedback inverter, i.e. the drive of the feedback inverter wasn't a 

factor to the n-transistors. As long as the drive of the inverter feeding the loop was 

bigger than the drive of the feedback inverter, the stored value could be changed. With 

the addition of inverter 1, it was necessary to add an additional inverter to the output 

since the data stored would be inverted upon storage. Therefore, the data had to be 

inverted when accessed by a read operation. 

A single register cell location was created and tested. The next concern was how 

wide to make the ground and Vdd rails of the register cell. A good rule of thumb for rail 

thickness is the following. For every milliamp of current there should be 1 micrometer of 
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metal (26). In our design tools 5 lambda = 1 micrometer. Therefore, a metal of width 5 

would hold 1 mA of current (26). The single register file was tested. 

a. Writing a one required 150.8616 uA of current. 
b. Reading a one required 25.0854 u A of current. 
c. Writing a zero required 249.4874 u A of current. 
d. Reading a zero required 10.7905 uA of current. 

The largest current needed for a single cell was 150.8616uA. 8 bits can be written at one 

time so the total estimated current is 8 x 150.8616 uA = 1.2069 mA. Therefore, making 

the rails 10 lambda would allow for 2 mA of current, providing a significant safety 

margin. Actual Vdd rails in the register section were increased to 13 lambda because the 

minimum spacing of the p-diffusion and the polysilicon needed a minimum spacing of 

13 lambda. Since the n-diffusion for the register cell wasn't as wide as the p-diffusion, 

the ground rails were able to be made 10 lambda wide and still satisfy the 13 lambda 

spacing requirement. A second register location was then created and butted up against 

the first location (Figure 27). The two-cell register was capable of being arrayed in 

MAGIC. 

Power 

Register Location 1 

Shared Ground 

Register Location 2 

Power 

Figure 27. Two Cell Register Layout 
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A small register file of 2 rows by 4 columns was arrayed and tested for current usage. 

Results were as follows: 

a. Maximum current when writing a zero to all 4 locations: 3.1014 uA 
b. Maximum current when writing a one to all 4 locations: 606.3709 uA. 

Using the single cell current measurements, the storing of 4 ones should have used 

603.4464 uA. It was concluded to keep the rail lines at the current designed widths. The 

256x8 bit array with the rail widths as specified above was constructed. The actual array 

dimensions are 32 bits wide by 64 bits high register file. Next, the Column and Row 

decode circuitry was designed. 

4.8 Column and Row Decode For Register File 

The column and row decode circuitry was built in a similar manner to the register 

file construction. The logic for one row select bit was built and then arrayed. Three 

decoding parts were needed. One part was needed for the ReadEnableRow control line. 

Another part was needed for the WriteEnableRow control line. The third part was for the 

WriteEnableColumn control line (See Figure 26). 

There are 10 address lines that lead to the register file. The bits are numbered left 

to right: 9,8,7,6,5,4,3,2,1,0. Since the register file is 32 bits wide by 64 bits high, the 

decode logic went as follows. The first row of the register file is locations 0,1,2, and 3. 

The second row is 4,5,6, and 7, etc. Only the top 8 bits of the address line are needed to 

decode the rows. The first row is accessed when bits 9-2 are zero. The second row is 

accessed when bits 9-3 are zero and bit 2 is a logic ' 1'. The decode circuitry was 

designed to handle the first rows access. Each other row could utilize the same circuitry 
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by just selectively inverting the top 8 bits. Two designs for the decode circuitry were 

analyzed. One design consisted of only NAND gates and inverters (Figure 28). The 

other design consisted of mostly NOR gates, 1 NAND gate and an inverter (Figure 29). 

Each design was tested for speed and current usage. 

Row Enable 

Figure 28. Row Enable Using NAND Gates 

Row Enable 

Figure 29. Row Enable Using NOR Gates 

The analysis was done by testing each of the individual gates and then using those 

findings for the analysis of the two designs. The results of the test are shown in Table 7. 
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Component Worst Timing Max Current 
Inverter 0.370 ns 132.6154 uA 
4 Input NAND 0.515 ns 207.5331 uA 
4 Input NOR 0.890 ns 126.6100 uA 
2 Input NAND 0.400 ns 171.7821 uA 

Table 7. Current and Timing of Some Simple Gates 

Analysis for the worst-case path of the NAND configuration: 

Timing: 
1-4NAND + 2 inverters + 1-2NAND = 0.515 + 0.37 + 0.4 + 0.37 = 1.655ns 
Current: 
1-4NAND + 2 inverters + 1-2NAND = 2*207.5331uA + l*171.7821uA + 

3*132.6145uA =984.6918uA 
Approximate Area Used: 16428 lambda2 

Analysis for the worst case path for the NOR configuration: 

Timing 
1-4NOR + 1 inverter + 1-2NAND = 0.89 + 0.4 + 0.37        = 1.66ns 
Current 
1-4NOR + 1 inverter + 1-2NAND = 2*126.6100uA + l*171.7821uA + 

l*132.6145uA = 557.6157uA 
Approximate Area Used: 12136 lamda 

For the current calculation, the current of all the gates in the configuration was added 

together. The area was simply the total area of all gates used for each configuration. The 

bottom line is the NOR configuration uses 56% less current and saves 4k lambda of area, 

while taking approximately the same time to switch. Thus, the NOR configuration was 

selected for implementation in the Wavelet ASIC. 

The actual decode logic uses a few more gates than the above diagrams since the 

R/W and register enable lines are also required (Figure 30). The additional logic is 

identical whether one uses the NAND gate or the NOR gate configuration, so it was left 

out of the current and area analysis. The decode logic is the same for the 

WriteEnableRow line except the R/W line logic which is driven low to signify writing. 
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Thus the same logic block used for the ReadEnableRow signal is modified with the 

addition of two gates for use as the WriteEnableRow control line. 

Read Enable Row 

Write Enable Row 

Figure 30. Row Enable Circuitry 

The WriteEnableColumn control line uses NAND logic. A two input NAND gate 

with an inverter decodes the columns. Like the row decode the inputs are inverted as 

necessary. Since each column enable activates 8 columns the decode circuitry is much 

simpler than the row decode circuitry. Each address location of the register is 8 bits long. 

So writing to a register location stores 8 bits at a time. A write to the first column 

activates register locations 0,4,8,16,20,24, etc. Since so many locations are activated, 

only the low two bits are needed to decode the column. Table 8 illustrates the decode 

logic for all columns. 

Once the row and column decode circuitry was complete it was connected to the 

register file, after which the entire module was tested. Timing for the entire register file 

is covered in Chapter 6 
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Bit 1 BitO Enable 
0 0 Columnl 
0 1 Column2 
1 0 Column3 
1 1 Column4 

Table 8. Column Decode of Bits 1 and 0 

4.9 Input, Output, Input/Output Pads 

Micro Optical Silicon Systems (MOSIS) supplied the input and output pads. 

Timing of the pads was not calculated since the pads contained polysilicon 2 for high 

voltage transistors, which did not have any SPICE parameters available. A nominal 

delay of 1 ns for the input pads and 0.5 ns for the output pads were used in the timing 

analysis. Bi-directional pads use the same timing since they aren't enable controlled. 

4.10 Top Level Input, Output, and Bi-directional Pins 

This section covers the input/output signal pins. The general functionality is 

described in Table 9. 

4.11 Data Buses 

There are four data buses used in the ASIC design. 

Memory Address 19 bits 
Memory Data 8 bits 
Register Address 10 bits 
Register Data 8 bits 
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The address bus carries the RAM address off chip. The data bus is bi-directional 

moving data to and from the off chip memory. The register bus carries the internal 256- 

byte register address. The register data bus is bi-directional moving data to and from the 

Signal 
Number 
of Bits Direction Description 

Address 19 Output Address for RAM 

Data 8 Bidirectional Data lines for RAM. 

Ready (3) 1 Output 
Artifact from the FPGA logic. Signal to host telling 
hardware is ready (3). 

Done 1 Output 
When done goes high the transform or inverse 
transform is complete. 

Busreq 1 Output 
Artifact from the FPGA logic. When this signal is 
low the bus is being requested for use. 

Busgrant 1 Input 

Artifact from the FPGA logic. When this signal is 
low the bus has been granted and processing can 
begin. 

StateChoice 2 Input 

These two bits choose which state machine will 
be seen on the five state output pins. Either the 
top level, row logic, or column logic of whichever 
half of the design specified by the Trans/Inverse 
input pin. 

Trans/Inverse 1 Input 

This signal chooses which half of the design is 
executed. Either the Transform half or the 
Inverse Transform half. 

Clock 1 Input Clock input that drives the design logic. 

Reset 1 Input 
When this signal is high all state machines are in 
reset state. 

Memstrobe 1 Output Signal to RAM that memory is enabled. 

Memwrsel 1 Output 
Signal to RAM whether want to.read(T) or 
write('O'). 

StateChoice 5 Output 

Shows the states of whichever state machine was 
chosen by the Statechoice and Trans/Inverse 
pins. 

Table 9. List of Pins and Their Functionality 

internal register file. Since more than one component drives the two address buses the 

output drivers must be connected through tristate buffers allowing only one source to 

drive the bus at a given time. The data buses are also driven by more than one source and 
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with data flow in different directions. The RAM read/write signal line controls the 

direction of the bi-directional pads, which are connected to the data buses. Tristate 

buffers control what is placed on the internal register data bus. All output sources of both 

data buses are connected to the bus through tristate buffers. 

4.12 Conclusions 

The edited and synthesizeable behavioral-level VHDL code executed correctly 

when applied to a 512 by 512 image size. The structural version of the ASIC VHDL was 

tested and the results were equivalent to the results of the behavioral-level VHDL tests. 

However, many changes were made to the individual components as they progressed 

through the design process. 

One significant difference from the synthesizeable VHDL and the physical 

components is the absence of any signal connected directly to ground. The CAD tools 

did not synthesize the code when signals were connected to ground. Grounded signals 

were removed from the VHDL code and hand connected in the layout. 

Some sections of code, after being optimized by the design tools, contained 

duplicate signals. That is, two different signals were set to the same value in all states. 

Since the design tools did not allow for a line to have two names, it was necessary to 

delete one of the names. A manual trace of the VHDL code verified the optimizations. 

Annotation of the deletions was enough to allow for manual wiring of the signals later in 

the design layout. 
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Many of the components that were built with the AFU tools were less than 

optimal. The channel routing technique of Octools provides a poor use of area. In some 

cases more than 50 percent of the total area is due to the channel routing. Further 

development of the Wavelet ASIC should involve more custom layout or channel-less 

routing of the individual sections. A rough estimate of removing channels from the 

automated layout could result in an area savings of 40 percent. 
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V. Testing and Timing 

5.1 Introduction 

Testing of the Wavelet ASIC started with the original FPGA VHDL code. The 

FPGA VHDL code was run and the results were studied. After the test run results were 

noted and understood, incremental design changes and testing began. Small parts of the 

FPGA code were transformed into synthesizeable code and retested for correctness. The 

synthesizeable pieces were converted into layout level components and tested 

individually. After confirming the correct operation of each separate component, the 

components were connected together and tested. Components that were custom built 

were also tested individually before being connected to the rest of the design. Since the 

Wavelet ASIC is composed of four separate engines (Row Transform, Column 

Transform, Row Inverse Transform, and Column Inverse Transform), each engine could 

be built and tested before moving on to another engine. Once an entire engine was 

connected and working correctly, timing for memory accesses was calculated. 

5.2 Testing of VHDL Files 

The ASIC consists of four main parts: row transform, column transform, column 

inverse transform, and row inverse transform. Each part was built and tested separately 

before combining and testing with its respective half. For ease of testability and a 

reduced execution time, a smaller image, 32 by 32 square pixels, was used until the ASIC 

was stable. Once the design was stable, the full 512 by 512 square image was input and 
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tested. The steps taken to translate the FPGA VHDL code into synthesizeable code are 

discussed next. 

Each of the main parts originated as a large separate file, making it necessary to 

break up each file into small scalable components in preparation for the ASIC design. 

The small scalable components, once modeled and tested, were combined creating a 

structural VHDL version of the ASIC. The steps taken in parsing of each part was 

identical. First, the state machine was extracted and all decision paths were executed. 

Second, the logic assigning the control signals was extracted. The control signal logic 

was first tested alone making sure the appropriate states drove the correct control lines. 

The state logic was then integrated with the state machine and the two pieces were tested 

together. All paths of the state machine were simulated. During each state, the 

appropriate control lines were checked for accuracy. 

Next, it was necessary to extract all of the ALU operations. After analysis it was 

observed that three adders and two incrementers were needed along with one subtractor 

and one comparator. Each component was modeled and tested for correct functionality. 

Once the ALU components were individually verified they were integrated with 

the rest of the structural VHDL code. Each of the four main parts of the ASIC was again 

tested separately using the separate files integrated by VHDL port mapping (27). A list 

of each of the four main parts of the structural VHDL code and associated components is 

found in Appendix E. 

The steps used to test each of the main parts are discussed next. The same steps 

were used to test each of the main sections. Each section begins by reading in four pixels 

from memory. Wavelet operations are performed on the pixels and the results are either 
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written back to memory or stored in the register file and later written to memory. 

Differences between each of the four main parts are which locations are accessed and in 

which order. Obviously, different wavelet operations are performed on the data in each 

piece. The tests used to verify correct functionality of the structural VHDL version of the 

ASIC are discussed next. 

The first test was to see if the correct memory locations were being accessed. As 

stated earlier, three iterations of the wavelet transform are performed, each on a different 

section of the image. Testing verified that the memory addresses were accessed, both for 

reads and writes, in the correct order for each of the transform iterations. Once the 

correct RAM locations were verified, the addresses used for the internal register file were 

tested. Again, the correct locations for reads and writes were accessed for all three 

transform iterations. To aid in the testing of memory reads and writes, VHDL 

components for modeling the RAM and the internal register file were created and tested. 

VHDL components were used by the ASIC design for storing and retrieving of data, 

allowing for an accurate simulation of the design at a VHDL behavioral and structural 

level. 

After verification of the correct data locations access was complete, testing of the 

operations performed on the pixel data was verified. Pixel operations are different 

depending on which part of the ASIC design is being run. Each transform section was 

tested for accurate manipulation of the data. For the row transform, row inverse 

transform, and column inverse transform, the operations were simple. As explained 

earlier, only additions, subtractions, and shifts are used. Different pixel values were input 
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to the ASIC design. Since pixel values can range from -127 to +127, correct calculations 

were verified using both positive and negative pixel values. 

The column transform was much more difficult to test because it contained the 

steps for quantizing and thresholding of the data. Since the quantize and threshold rules 

are different depending upon which iteration and which quadrant of the image you are 

currently processing, different tests were run to check each of the situations. For 

example, in the lower left quadrant of the first iteration, the output pixel is in the range 

-8 ,..., +8. Some of the quadrants allow only the values -8,0, and +8. To illustrate, one 

test produced the ending values of: -20, -9, -3, 5, 17. These numbers were the result 

before the rules of threshold and quantize were applied. Once the rules were applied the 

five values were: -8, -8, 0, 0, 8. The five values are the correct result for the quadrant 

being tested. Appendix F contains the input data used to test each quadrant of each 

iteration. The 'k' term references the loop variable, which is used to specify which 

section of the image is being processed. The pixel values from start to finish are shown 

and in the appropriate memory locations. The steps displayed in Appendix F are for the 

transform half of the design. The results in parenthesis are the final results output to the 

RAM. As shown by the test cases, the range of values for each quadrant was tested. The 

test data, Appendix F, was used to test each of the four pieces and again used to test the 

two halves, Transform and Inverse Transform, of the design. Since the two halves are 

independent, no further combining was appropriate. 

When structural VHDL code was complete and verified it was time to start 

building and testing the components at the physical layout level. 
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5.3 Testing Components 

This section explains the different tests performed on each of the physical 

components. Reasons for optimizing certain components are explained. All of the 

components were built and tested individually. Timing was more critical for some 

components than others. 

Testing the components at a layout level involved two types of tests. The first test 

checks the component for correct functionality. There is a one-to-one mapping from the 

inputs to the outputs of the structural VHDL to the physical layout level of each 

component. The mapping allowed reuse of the test vectors, used to test the VHDL files, 

to verify functional accuracy. The second type of test checked each component for 

timing of the critical path. The critical path is the longest delay through the component 

and, therefore, controls the worst-case timing delay of the component. 

The critical path of the ASIC research effort occurs in the states that access RAM. 

A RAM access time of 35 ns for both reads and writes was used for the design of the 

ASIC. The implications of the 35 ns access time are simple. As long as other operations 

occurring in non-RAM access states are faster than 35 ns, the RAM access states would 

drive the speed of the Wavelet ASIC design. 

The slowest component in the ASIC design is the 19-bit adder. A carry-select 

methodology was used to create the 19-bit adder and produced a simulated execution 

time of 5.62 ns, a breakpoint value for all other components. Since operations were 

evenly distributed among the different states of the design and none were done in series, 

as long as they were faster than 5.62 ns, no other performance optimizations were 
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are 

are 

necessary. If multiple additions, for example, are required during a single state, they 

performed in parallel by replicating the adders. 

As shown in Table 10, the execution times of some of the smaller components 

longer than larger components. As stated earlier, once the speed of a component was 

analyzed and found to be faster than the 19-bit adder, it was no longer optimized for 

speed. The only way further optimizations for speed would enhance the design is if the 

speed up came from a reduction in area. However, faster execution time comes with the 

tradeoff of having larger die area. A complete listing of all the components and their 

execution times is contained in Appendix D. Unless otherwise stated, the timing, referred 

to in this chapter and Appendix D, was the result of running HSPICE. 

Component Number of Bits Critical Execution Time (ns) 
Adder 19 5.62 
Adder 9 4.11 
Adder 8 2.80 
Subtracter 9 2.95 
Incrementor 19 2.12 
Incrementor 10 3.16 
comparator 10 1.85 

Table 10. List of ALU Components 

5.4 Register File 

Most of the components were built using design tools. However, two components 

were manually designed and laid out: the register file and the address decode logic for 

the register file. First, a one-bit register was designed, laid out, and tested for reading and 

writing. Next, two one-bit locations were integrated and again tested for reading and 

writing. The two-bit location was replicated into a 4 by 8 bit array, which was tested for 
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reading and writing. Then the entire 2048 locations were designed and tested. The layout 

of the 2048-bit register array is shown in Figure 31. The bits for each location are 

numbered left to right: 7,6,5,4,3,2,1,0. Various locations were tested and timed for both 

reads and writes. Table 11 shows the access times for the locations tested. The 

maximum time of 2.57 ns is trivial compared to the access time of the off-chip RAM. 

The minimal retrieval time allowed both the reading of the internal register file and the 

writing of the value to RAM to occur in the same state. Combining the register read with 

the RAM write saved time by eliminating one state. Savings from using fewer states was 

explained in Section 4.6. 

0 1 2 3 

4 5 6 7 

124 125 126 127 

252 253 254 255 

Figure 31. Register Locations 

Next, the decode logic was built, tested, and timed. The timing for the decode 

circuitry is shown in Table 12. Signal line references (A, B, C, D, E, F, G, H) refer back 

to Figure 30. The input signals, labeled A-H, are switched to test the longest delay of the 

decode circuitry, both for a low-to-high transition on the output and a high-to-low 
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Timing of 256x8 bit register file 
Location Bit Operation Time (ns) 

0 7 Write '0' 1.22 
0 7 Read '0' 2.52 
0 7 Write'1' 1.52 
0 7 Read T 2.02 
3 0 Write '0' 1.22 
3 0 Read 'O' 2.16 
3 0 Write'1' 1.52 
3 0 ReadT 1.48 

124 7 Write '0' 1.22 
124 7 Read '0' 2.15 
124 7 Write'1' 1.51 
124 7 ReadT 1.47 
127 0 Write '0' 1.22 
127 0 Read '0' 2.57 
127 0 Write '1' 1.51 
127 0 ReadT 2.00 
252 7 Write '0' 1.22 
252 7 Read '0' 2.15 
252 7 Write'1' 1.51 
252 7 ReadT 1.47 
255 0 Write '0' 1.22 
255 0 Read "0" 2.57 
255 0 Write'V 1.51 
255 0 Read T 2.00 

Max time 2.57 

Table 11. Access Times for Register File 

Timing of Read Decode Circuitry 
Output 

0to1 1 toO 

All H to L 
AIILtoH 

ABCGFE are L 
DHgoL 
AIILtoH 

DCBHGF are L 
AEgoH 

1.71 ns 

1.53 ns 

1.34 ns 

0.457 ns 

0.457 ns 

Max time 1.71ns     0.457 ns 

Timing of Write Decode Circuitry 
Output 

0to1 1 toO 

All H to L 1.70 ns 
All L to H 0.453 ns 

ABCGFE are L 
DHgoL 1.52 ns 
All L to H 0.454 ns 

DCBHGF are L 
AEgoH 1.33 ns 

Max time 1.70 ns     0.454 ns 

Table 12. Timing for Read/Write Decode Logic 
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transition on the output. As shown, a maximum switching time of 1.71 ns was 

calculated. 

5.5 Testing of the Inverse Transform by Rows Section 

Due to time constraints, only one of the four sections, the inverse row transform, 

was completely integrated and tested as a unit. Expected timing for the remaining three 

sections should be similar, since the inverse row transform section uses all but one of the 

ALU components used in the other sections. 

The inverse row transform section was integrated keeping in mind where the other 

three sections would be located in the physical layout. See Figure 32 for how the inverse 

row transform section is physically integrated and where the other three sections are 

placed relative to the inverse row transform section. Once integrated, the inverse row 

transform section was tested using ERSIM. 

First, data values were read in from RAM. It was checked that the RAM 

locations being accessed for the reads were correct and data was accessed in the right 

order. Results of the inverse transform performed on the first half of the image are 

written to the internal register file. It was checked that the correct register file locations 

were being written to and in the correct order. Next, eight different values were input to 

the inverse row transform section. It was checked that the correct results from the inverse 

transform were obtained. Results were then checked for accuracy and placed on the data 

bus for storing into the register file. 
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Once simulations were run successfully with IRSIM, HSPICE was used to get 

more accurate timing information. The timing data obtained by using HSPICE was then 

used to facilitate the design of the memory strobe for RAM and the register enable for the 

internal register file. The timing diagrams for the inverse row transform section are 

described next. 

Register 
o 

'5b 
o 
►J 
u 

o 
'5b 
2 
B 
55 

« 

19-Bit Adder <=> 

n 

Figure 32. Layout of ASIC Design 
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5.6 Read/Write Logic 

Timing of the control lines used to access RAM is critical and has to abide by 

certain rules. As mentioned, a RAM access time of 35 ns is used for the ASIC design. 

Once all necessary signals are stable the RAM strobe is asserted and remains asserted for 

35 ns, the time needed for the RAM to perform either a read or a write operation. 

The inverse row transform section contains four different memory read/write 

scenarios. A design margin is incorporated into the timing of the read and write accesses 

for both the RAM and the register file. The design margin is in case the other three 

sections, not yet connected, require extra time. Other factors, such as variances in 

fabrication, pad frame delays and routing to and from the pad frame, add delay time. 

When the complete ASIC design is integrated the timing delays will have to be refined. 

The first scenario is a read from RAM. Four reads occur sequentially. Figure 33 

shows the timing diagram for two sequential reads. Data from the read isn't latched until 

two cycles after the request. External circuitry is required to account for the two-cycle 

delay and is consistent with the Wildforce board implementation. The memory address is 

valid 12 ns after the clock edge. The memory strobe is asserted 2.5 ns later and stays 

asserted for 35.4 ns. Data is latched in on the rising edge of a clock. The 7.1 ns specified 

in Figure 33 is the time it takes to latch the data through the logic. The actual time the 

data needs to be valid is approximately 2 ns before the clock edge until 1 ns after the 

clock edge providing a 4.1 ns design margin in the ASIC implementation. 
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H- 
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Figure 33. Read from RAM Timing Diagram 

The second scenario is a write to the register file. Four writes occur sequentially 

in the operation of the Wavelet ASIC. Figure 34 shows the timing diagram for two 

sequential register writes. The data is valid 10.9 ns after the clock edge, while the 

register address is asserted 11.1 ns after a clock edge. Then the register enable is asserted 

2.4 ns later and stays asserted for 37.0 ns. The actual time it takes for the register file to 

store the data is approximately 4.28 ns. The logic that asserts the register enable also 

asserts the memory strobe in a different read/write scenario and, therefore needs to hold 

the assertion for at least 35 ns. The write to register file state isn't on the critical path 

state of the ASIC design so the extra time used by the write to register file state doesn't 

slow down the ASIC operation. 
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Figure 34. Write to Register File Timing Diagram 

The third scenario is a data write to the RAM. Four writes occur sequentially 

during normal operation. Figure 35 shows the timing diagram for two sequential writes. 

The data is valid 10.9 ns after the clock edge followed by the memory address, which is 

valid 12.0 ns after a clock edge. Then the memory strobe is asserted 1.5 ns later and 

stays asserted for 37.0 ns. 

The last scenario is a data read from the register file combined with a write to the 

RAM. Figure 35 shows one cycle of the read/write scenario. The register address is 

asserted 11.1 ns after the clock edge. Then the register enable is asserted 1.93 ns later 

and stays asserted for 35.73 ns. The register takes approximately 7 ns to output data 

valid. The memory address is asserted and valid 12.0 ns after the clock edge. The 

memory strobe is then asserted 20.35 ns after the clock edge and is valid for 35.74 ns. 
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Figure 35. Write to RAM Timing Diagram 

For the inverse row transform section, the most complicated and longest state for 

reading and writing occurs when the internal register file is accessed for a data read and 

the data is then written to RAM. Control lines necessary for the read and write states are 

stable long before the memory addresses are stable and therefore are have no impact on 

the timing calculations. Worst-case timing of data accesses was used from tests of the 

register file to simulate the operation of the register file. The register address is first 

decoded in 1.71 ns. Once the address is decoded the location in the register file is 

accessed and the results are available on the data lines after 2.57 ns. The data passes 

through two multiplexers, 0.42 ns and 0.39 ns, and then through a tristate buffer, 

0.396 ns, before being asserted on the RAM data lines. The total time from register 

address stable to data stable on RAM data lines is 5.486 ns plus some estimated time for 
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Figure 36. Read from Register and Write to RAM Timing Diagram 

routing. Incorporating a design margin of 1.5 ns, a total delay time of 7 ns is used to 

simulate the rest of the timing delays. 

The state control lines are used to generate the internal register file enable and the 

RAM strobe. The state control line is asserted after the clock edge and is used to indicate 

to the circuitry which state is active. To create the enable and strobe signals, the control 
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line is first sent through an inverter yielding the inverse of the control signal (control bar). 

Both signals are delayed to create a pulse of approximately 35 ns in width (Figure 37). 

The width has to be greater than 35ns for the RAM strobe and greater than 4.28 ns for the 

register enable. The control circuitry schematic used to generate the pulses is shown in 

Figure 38. The control circuitry asserts the enable and strobe signals when both control 

CLOCK 

CONTROL 

CONTROLBAR 

CONTROL DELAYED - 

CONTROLBAR DELAYED 

PULSE SIGNAL FROM ENABLE 
AND CONTROL CIRCUITRY — 

5.3 ns 

|*- 5.5 ns 

35.0 ns pulse 

r 

Figure 37. Timing Diagram Showing Pulse Created From Control Signals 

signals, state control and state control bar, are logic '1'. The delay for each of the control 

lines and control bar lines is not shown in Figure 38. By delaying the control signals, 

they can be used to assert the enable and strobe lines. By delaying the control bar signals 

even longer, they can be used to clear the enable and strobe lines. The delay blocks in 

Figure 38 make the strobe signal line assert and deassert approximately 7 ns after the 



register enable signal asserts and clears. The 7 ns delay is necessary for the register data 

to become valid. 

ReadPixl 
ReadPixlBar 

ReadPix2 
ReadPix2Bar 

RegPixl 

RegPixlBar 

RegPix2 

RegPix2Bar - 

WritePix 

WritePixBar 

WritelPix   - 
WritelPixBar- 

Write2Pix 
Write2PixBar- 

Write3Pix   - 

Write3PixBar 

Write4Pix   • 

Write4PixBar- 

RAM Strobe 

b—{>— Reg Enable 

Figure 38. Enable and Strobe Control Circuitry 

The critical path, read/write state, limits the speed of the ASIC design. The 

memory strobe is cleared 56.09 ns after the clock edge. Adding approximately 2 ns from 

the clearing of the memory strobe signal makes the worst-case state timing equal to 

58.09 ns. The 2 ns before the next clock edge is a design margin for the ASIC. Further 

design optimizations could reduce the buffer time. The 58.09 ns worst-case state time 

translates into a maximum operating speed of 17.21 MHz. 
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5.7 Conclusion 

The inverse row transform was the only section that was fully integrated and 

simulated for timing data. A maximum operating speed of approximately 17.21 MHz is 

expected. The other three main sections could affect the speed once they are integrated 

into the layout. Other factors that affect execution speed are input/output pad delays and 

routing to and from the pads. Design margins incorporated into the timing of the ASIC 

should account for extra delays. Using an operating speed of 17.21 MHz and the total 

number of states needed to transform one image, the Wavelet ASIC design outputs one 

transformed image every 170.2 ms or just under six images per second. See Appendix C 

for the complete breakdown of states used for the Wavelet ASIC design. The frame rate 

only accounts for the processing time of an image that exists in memory. Associated 

operations like loading a new image into memory and transmitting the image could affect 

the frame rate if a single port RAM is used. 

As shown, the 35 ns RAM access limits the overall speed of ASIC design. A 

faster RAM chip could be used but the speed of the ASIC design cannot be increased 

without altering the layout, since a 35 ns pulse width is hard-wired into the ASIC design. 

Since a RAM read incorporating a two-cycle delay is used as implemented on the 

Wildforce board and the FPGA logic, a delay for the read data would need to be buffered 

by off chip logic when using a standard RAM chip with a one cycle read access time. 

Power needed to operate the Wavelet ASIC is discussed next. 

After initialization of the inverse row transform section of the ASIC, the 

maximum power used is 220 mW. The maximum power is only for the inverse row 
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transform section. Since the more complicated piece of the design is the column 

transform section, it is probable that the maximum power used will increase. Measuring 

the individual pieces of the inverse row transform section, it was found that the maximum 

power used is 118 mW. Measuring the individual pieces of the column transform 

section, it was found that the maximum power used is 212 mW. Using these power 

measurements, the estimate of the total maximum power used by the transform row 

section is 395 mW. Since the register file was not used in the tests for the inverse row 

transform section, the measured power of the register file, 32.1 mW, needs to be added to 

the power calculation. Adding the power used by the register file to the power used by 

the transform row section yields a maximum estimated power of 427.1 mW. 
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VI. Conclusions and Recommendations 

6.1 Conclusions 

The steps necessary to take a design from an FPGA implementation to an ASIC 

implementation design were discussed. The objective of this research was to first 

translate the FPGA VHDL behavioral code to synthesizeable VHDL behavioral code. 

Performing the translation uncovered many unnecessary RAM accesses in the FPGA 

design. Combining the quantize and threshold steps with the column transform step 

saved 47 percent of the RAM accesses. 

Another objective was to minimize the power needed by the design. Extra control 

circuitry was added to decrease the amount of switching by the transistors. The extra 

control circuitry makes the ALU components active only when they are being used. The 

decreased amount of switching has a positive impact on the overall power used by the 

design. The estimated maximum power used by the ASIC is 427.1 mW. The power 

rating is for the first iteration of the Wavelet ASIC and can be used as a benchmark for 

future design work. Comparing the estimated power of the ASIC to that of the FPGA, 

11.6 W, a 96 % reduction in power usage is achieved. 

Minimizing the area of the Wavelet ASIC was another goal. The total die area 

used by the ASIC is 22.138 mm2. The core of the ASIC is 16.146 mm2 without the pad 

frame. The size of the ASIC is less than 25 % of the 4 FPGA chips utilized in the 

original FPGA design. 
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The final goal was speed. The FPGA design runs at 20 MHz. The 20 MHz 

operation translates into a 196.609 ms per frame transform rate or 5 frames per second. 

Using an operating speed of 17.21 MHz and the total number of states needed to 

transform one image, the ASIC design transforms one image every 170.2 ms or 5.8 

frames per second, a 13 % improvement over the FPGA design. The image rate 

calculation is an estimation based on the inverse row transform timing. Using a faster 

RAM chip, 10 ns access time, would significantly improve on the frame rate by 

approximately 43%, since the frame transform rate would decrease to 96.95 ms. The 

decreased frame rate equates to 10.3 frames per second. 

6.2 Recommendations 

There are several research possibilities regarding the ASIC design. One obvious 

extension is to connect the remaining components and present the design for fabrication. 

Improvements on area, speed, and power are still possible. 

A significant improvement would be in the area used by the ASIC design. The 

use of automatic layout tools added a significant amount of area to each of the 

components, since a channel routing algorithm was used. The algorithm also limits its 

routing to only two layers of metal. Using a non-channel routing technique, as well as 

using metal 3 and metal 4 could realize a savings of 40 percent. This estimate is based on 

a visual analysis of the individual blocks. An additional way to decrease area is by 

adding data buses to handle all traffic to the ALU components. Currently each of the 

four components has separate signal lines that trace to the ALU components. Using 
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buses to combine many of the signals would reduce the number of multiplexers needed 

for each of the ALU components. The area used by signal lines running to the ALU 

components would be reduced by approximately a factor of two. By removing 

approximately three-fourths of the multiplexers and half of the signal lines, 

20,630,143 lambda2 and 83,940,000 lambda2 would be saved. For the Wavelet ASIC, 

25 lambda2 equates to 1 \im2 in die area. The total savings equates to 0.825 mm and 

3.357 mm2, which totals 4.182 mm2 in die area. The cost of using buses would be the 

extra area needed to add a tristate buffer on all signals connected to the buses. 

Approximately 1200 signal lines require 1200 tristate buffers at 4736 lambda2 for each 

buffer, totaling 5,683,200 lambda2. Subtracting the total tristate buffer area from total 

area saved from multiplexers and signal lines gives an estimated savings of 3.955 mm in 

die area. 

Increasing the operating speed of the ASIC is also possible. The first way to 

increase speed is by reducing the area. If the area is reduced so is the propagation time of 

the signals. Another way to increase the operating speed is to choose a faster RAM. 

Choosing a faster RAM would reduce the critical path of the design. For example if a 

RAM with a 10 ns read/write access time was used, 25 ns could be shaved off the longest 

state causing the design speed to increase from 17.21 MHz to 30.22 MHz. The speed 

increase would improve the frame rate by 73 ns, yielding 10.3 frames per second. 

Another way to increase the output is by redesigning the state machines. By 

simply removing the one state used to calculate the FPGA memory offset and using two 

states instead of three to empty the internal register file, 7.1 frames per second would be 
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achieved. Using a 10 ns RAM in conjunction with the reduced number of states yields an 

output of 12.5 frames per second. 

Finally, power consumption would decrease as a result of the reduced number of 

signal lines and the reduced number of multiplexers. The design would be smaller and 

faster but extra control circuitry needed for the added tristate buffers would require extra 

power. A study would have to be done to see whether or not the above changes would 

have a positive or negative affect on the power consumption. Estimating the power saved 

by subtracting the power from the added tristate buffers from the power of the removed 

multiplexers is possible. However, the estimate isn't very accurate since neither the 

multiplexers nor the tristate buffers are switching at the same time. 
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Appendix A. State Diagrams 

A.l Transform State Diagram 

TRANSFORM STATE MACHINE 
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A.2 Row Transform State Diagram 

(ENDSTATE J 

DOROW STATE MACHINE 
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A. 3 Column Transform State Diagram 

MBNDSTATE J 

DOCOL STATE MACHINE 
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A.4 Inverse Transform State Diagram 

INVERSE TRANSFORM STATE MACHINE 
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A. 5 Inverse Column Transform State Diagram 

UNCOL STATE MACHINE 
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A. 6 Inverse Row Transform State Diagram 

MBNDSTATE J 

UNROW STATE MACHINE 
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Appendix B. Savings of Ram Accesses 

B.l Original Code Ram Accesses 

Operation (Original Code) Reads Writes 
Read in 4 words, Pack, write out 1 word 512 128 
Read in 2 words, Transform, write 2 words 128 128 
Read in 2 words, Unpack, write 8 words 128 512 
Do these 512 times (512 rows) 
Total Ram accesses 393216 393216 
Read in 4 words, Pack, write out 1 word 512 128 
Read in 2 words, Transform, write 2 words 128 128 
Read in 2 words, Unpack, write 8 words 128 512 
Do these 512 times (512 cols) 
Total Ram accesses 393216 393216 
Read in 4 words, Pack, write out 1 word 256 64 
Read in 2 words, Transform, write 2 words 64 64 
Read in 2 words, Unpack, write 8 words 64 256 
Do these 256 times (256 rows) 
Total Ram accesses 98304 98304 
Read in 4 words, Pack, write out 1 word 256 64 
Read in 2 words, Transform, write 2 words 64 64 
Read in 2 words, Unpack, write 8 words 64 256 
Do these 256 times (256 cols) 
Total Ram accesses 98304 98304 
Read in 4 words, Pack, write out 1 word 128 32 
Read in 2 words, Transform, write 2 words 32 32 
Read in 2 words, Unpack, write 8 words 32 128 
Do these 128 times (128 rows) 
Total Ram accesses 24576 24576 
Read in 4 words, Pack, write out 1 word 128 32 
Read in 2 words, Transform, write 2 words 32 32 
Read in 2 words, Unpack, write 8 words 32 128 
Do these 128 times (128 rows) 
Total Ram accesses 24576 24576 
Total Ram access for transform 1032192 1032192 
Quantize/Threshold image 512 512 
512 rows 
Total Ram accesses 262144 262144 

Grand Total Ram access 1294336 1294336 
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B.2 New Code Ram Accesses 

Operation (New Code) Reads Writes 
Read in 4 words, Transform, write out 4 words 512 512 

Do these 512 times (512 rows) 
Total Ram accesses 262144 262144 
Read in 4 words, Transform, write out 4 words 512 512 

Do these 512 times (512 cols) 
Total Ram accesses 262144 262144 
Read in 4 words, Transform, write out 4 words 256 256 

Do these 256 times (256 rows) 
Total Ram accesses 65536 65536 
Read in 4 words, Transform, write out 4 words 256 256 

Do these 256 times (256 cols) 
Total Ram accesses 65536 65536 
Read in 4 words, Transform, write out 4 words 128 128 

Do these 128 times (128 rows) 
Total Ram accesses 16384 16384 
Read in 4 words, Transform, write out 4 words 128 128 

Do these 128 times (128 rows) 
Total Ram accesses 16384 16384 
Total Ram accesses for transform 688128 688128 
QuantizeAThreshold: done during column transform 0 0 

Total Ram accesses 0 0 

Grand Total Ram access 688128 688128 

106 



Appendix C. Total States Required for Transform Half of Both The ASIC Design and 
The FPGA Design. 

C.l States for Transform Half of FPGA Design. 

The transform occurs in three iterations. The three iterations are listed with 

subtotals for each iteration. A total number of states is listed for the transform step. 

Following the three iterations is the quantize step. The total number of states for the 

quantize step are listed followed by a total number of states for the transform and 

quantization. The totals are not exact. States that occur only a few times are not used in 

the totals. Not using the minimal occurring states simplified the counting process. The 

minimal number of extra states would not affect the overall number significantly. 
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TRANSFORM Steps 
First iteration 
Pack4Row 
7 states to process 4 
pixels 7*128 for one row 896*512 for all rows 458752 

Transform 
6 States to process 8 
pixels 6*64 for one row 384*512 for all rows 196608 

Unpack4row 
12 States to process 8 
pixels 12*64 for one row 768*512 for all rows 393216 

Total 1048576 

Pack4Col 
7 states to read in and 
pack 4 pixels 7*128 for one row 896*512 for all rows 458752 
Transform 
6 States to process 8 
pixels 6*64 for one row 384*512 for all rows 196608 

Unpack4Col 

12 States to unpack 
and write out 8 pixels 12*64 for one row 768*512 for all rows 393216 

Total 1048576 

Subtotal 2097152 
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Second Iteration 
Pack4Row 
7 states to process 4 
pixels 7*64 for one row 448*256 for all rows 114688 

Transform 
6 States to process 8 
pixels 6*32 for one row 192*256 for all rows 49152 

Unpack4row 
12 States to process 8 
pixels 12*32 for one row 384*256 for all rows 98304 

Total 262144 

Pack4Col 
7 states to read in and 
pack 4 pixels 7*64 for one row 448*256 for all rows 114688 

Transform 
6 States to process 8 
pixels 6*32 for one row 192*256 for all rows 49152 

Unpack4Col 

12 States to unpack 
and write out 8 pixels 12*32 for one row 384*256 for all rows 98304 

Total 262144 

Subtotal I 524288 
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Third iteration 
Pack4Row 
7 states to process 4 
pixels 7*32 for one row 224*128 for all rows 28672 

Transform 
6 States to process 8 
pixels 6*16 for one row 96*128 for all rows 12288 

Unpack4row 
12 States to process 8 
pixels 12*16 for one row 192*128 for all rows 24576 

Total 65536 

Pack4Col 
7 states to process 4 
pixels 7*32 for one row 224*128 for all rows 28672 

Transform 
6 States to process 8 
pixels 6*16 for one row 96*128 for all rows 12288 

Unpack4Col 
12 States to process 8 
pixels 12*16 for one row 192*128 for all rows 24576 

Total 65536 

Subtotal 131072 

TOTAL 2752512 

QUANTIZE Steps 
9 states to process 2 
coefficients 9*256 for one row 2304*512 for all rows 1179648 

GRAND TOTAL 3932160 
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C.2 States for Transform Half of ASIC Design 

The transform occurs in three iterations. The three iterations are listed with 

subtotals for each iteration. A total number of states is listed for the transform step. The 

total is not exact. States that occur only a few times are not used in the totals. Not using 

the minimal occurring states simplified the counting process. The minimal number of 

extra states would not affect the overall number significantly. 

First iteration 
Row state 
10 states to read in 4 
pixels 10*128 for one row 1280*512 for all rows 655360 
1+3*256+1+1 states 
to write out register 771*512 for all rows 394752 

Total 1050112 

Col state 
12 states to read in 4 
pixels 12*128 for one row 1536*512 for all rows 786432 
1+3*256+1+1 to write 
out register 771*512 for all rows 394752 

Total 1181184 
Subtotal 2231296 

Second interation 
Row state 
10 states to read in 4 10*64 for one row 640*256 for all rows 163840 
1+3*128+1+1 to write 
out register 387*256 for all rows 99072 

Total 262912 

Column State 
12 states to read in 4 12*64 for one row 768*256 for all rows 196608 
1+3*128+1+1 to write 
out register 387*256 for all rows 99072 

Total 295680 
Subtotal 558592 

111 



Third interation 
Row state 
10 states to read in 4 
pixels 10*32 for one row 320*128 for all rows 40960 
1+3*64+1+1 to write 
out register 195*128 for all rows 24960 

Total 65920 

Column State 
12 states to read in 4 
pixels 12*32 for one row 384*128 for all rows 49152 
1+3*64+1+1 to write 
out register 195*128 for all rows 24960 

Total 74112 
Subtotal 140032 

GRAND TOTAL 2929920 
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Appendix D. Component Listing and Timing 

Each component built for the ASIC design is listed in this appendix. Each 

component went through many changes. Some of the steps were not executed for some 

of the components. The steps are as follows: 

1. Write Behavioral VHDL (Beh VHDL). 
2. Test Behavioral VHDL (Test Beh). 
3. Executed Design Analyzer (DA). 
4. Number of optimizations performed in Design Analyzer (# Opt). 
5. Timing from Design Analyzer (Design Analyzer Timing Parameters). 
6. DB2SGE conversion (DP2SGE). 
7. Creation of Structural VHDL (Str VHDL). 
8. Test Structural VHDL (Test Struct). 
9. Timing from Synopsys VHDL analyzer (Timing (ns)). 
10. Edit SDL file produced by SGE (Edit SDL). 
11. Open component in MAGIC (Mag). 
12. Size of component in MAGIC (Magic Size). 
13. IRSIM timing result of the component (IRSIM (ns)). 
14. HSPICE execution (HSPICE). 
15. Timing results from HSPICE (HSPICE Timing (ns)). 

The 'X' indicates the component was run through the associated step. A ' ' indicates 

the component did not run through the associated step. Information following the 

component listing indicates several changes made to the components while they were 

being realized into a layout level component. Several signals were removed because they 

were either not necessary or they were realized by another signals. Verification of the 

unused signals was verified in the VHDL files but not changed. In some cases, buffers 

were added to some of the components built using the automated tools. 
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Component Changes 

unrowla: column 1 = shift 0 shift 1 = shift 3 

column 3 = shift 2 

column 5 = shift 4 

column 6 — shift 5 

column 8 = shift 7 

column 7 = shift 6 

column 9 = shift 8 

uncolld: 11 buffers use 13 d ff 
1 buffer uses 14 dff 

uncollb: 4 buffers use 16 dff 

uncollc 4 buffers use 11 dff 

unrowlb 5 buffers use 13 dff 

unrowlc 3 buffers use 13 dff 
1 buffers use 15 dff 

uncolla shift 0 = 0 shift1=shift3 

shift 13 = row 9 
shift 8 = row 4 

shift 9 = row 5 
shift 5 = row 1 
shift 6 = row 2 
shift 7 = row 3 

shift 4 = row 0 
shift 10 = row 6 
shift 11 = row 7 
shift 12 = row 8 

docollb behav scal1c7 = tscall c7 
scal2c7 = tscal2c7 
wave1c7 = twavl1c7 
wave1c7 = twavl1c7 
scadd3 = wvadd4 

docollc: 4 buffers use 14 dff, 1 buffer use 10 dff 

docolld: 1 buffer use 10 dff, 1 buffer use 9 dff 

docolle: Removed add9res0 from SGE but it is still in VHDL 
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Appendix E. Sections of Code with the Utilized Components. 

The list of components contains all the VHDL files used for each of the four main 

pieces of the design. The files used to tie each halve together are also listed. It is noted if 

the file was implemented or just needed for testing purposes. The list doesn't specify 

how many of each component was used. Referencing the block diagrams will show the 

number of each component utilized. 

Row Transform Description Purpose 
dorowla Control logic Implemented 
dorowlb Control logic Implemented 
dorowlc Control logic Implemented 
dorowld Control logic Implemented 
dorowle Control logic Implemented 
dorowsm State Machine Implemented 
comparelO 10 bit comparator Implemented 
mux3b10 3 by 10 Bit Multiplexer Implemented 
incbylO 19 Bit Increment by 10 Implemented 
incIO 10 bit Increment by 1 Implemented 
add10 10 Bit Adder Implemented 
inc19 19 Bit Adder Implemented 
add9 9 Bit Adder Implemented 
sub9 9 Bit Subtractor Implemented 
mux2 2 by 19 Bit Multiplexer Implemented 
mux5 5 by 19 Bit Multiplexer Implemented 
mux2b9 2 by 9 Bit Multiplexer Implemented 
topdrlog Misc Control Logic Implemented 

Column Transform 
docolla Control logic Implemented 
docollb Control logic Implemented 
docollc Control logic Implemented 
docolld Control logic Implemented 
docolle Control logic Implemented 
docolsm State Machine Implemented 
mux4b10 4 by 10 Bit Multiplexer Implemented 
comparelO 10 bit comparator Implemented 
incbylO 19 Bit Increment by 10 Implemented 
incIO 10 bit Increment by 1 Implemented 
add19 19 Bit Adder Implemented 
add8 8 Bit Adder Implemented 
add9 9 Bit Adder Implemented 
sub9 9 Bit Subtractor Implemented 
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mux3b10 3 by 10 Bit Multiplexer Implemented 
mux7b19 7 by 19 Bit Multiplexer Implemented 
mux4b19 4 by 19 Bit Multiplexer Implemented 
mux2b8 3 by 10 Bit Multiplexer Implemented 
mux3b9 3 by 9 Bit Multiplexer Implemented 
mux4b9 4 by 9 Bit Multiplexer Implemented 
topdclog Misc logic Implemented 

Column Inverse Transform 
uncolla Control Logic Implemented 
uncollb Control Logic Implemented 
uncollc Control Logic Implemented 
uncolld Control Logic Implemented 
uncolsm State Machine Implemented 
mux4b10 4 by 10 Bit Multiplexer Implemented 
comparelO 10 bit comparator Implemented 
incbyl 0 19 Bit Increment by 10 Implemented 
inc10 10 bit Increment by 1 Implemented 
add19 19 Bit Adder Implemented 
add8 8 Bit Adder Implemented 
sub9 9 Bit Subtractor Implemented 
mux3b10 3 by 10 Bit Multiplexer Implemented 
mux6b19 6 by 19 Bit Multiplexer Implemented 
mux2b8 2 by 8 Bit Multiplexer Implemented 
topuclog Misc logic Implemented 

Row Inverse Transform 
unrowla Control Logic Implemented 
unrowlb Control Logic Implemented 
unrowlc Control Logic Implemented 
unrowld Control Logic Implemented 
unrowsm State Machine Implemented 
mux4b10 4 by 10 Bit Multiplexer Implemented 
comparelO 10 bit comparator Implemented 
incbyl0 19 Bit Increment by 10 Implemented 
indO 10 bit Increment by 1 Implemented 
add19 19 Bit Adder Implemented 
inc19 19 Bit Increment by 10 Implemented 
add8 8 Bit Adder Implemented 
sub9 9 Bit Subtractor Implemented 
mux3b10 3 by 10 Bit Multiplexer Implemented 
mux3b19 3 by 19 Bit Multiplexer Implemented 
mux2b8 2 by 8 Bit Multiplexer Implemented 
topurloq Misc logic Implemented 

Transform Half of Code 
transfsm State Machine Implemented 
translog Control Logic Implemented 
toptrla Control Logic Implemented 
toptrlb Control Logic Implemented 
toptrlc Control Logic Implemented 
ttrsmchc State Bit Multiplexer Implemented 
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Inverse Transform Half of 
Code 
invtrasm State Machine Implemented 
invtrlog Control Logic Implemented 
topinla Control Logic Implemented 
topinlb Control Logic Implemented 
topinlc Control Logic Implemented 
ttrsmchc State Bit Multiplexer Implemented 

Extra Logic for ASIC 
mux3b5 Multiplexer Implemented 
clock gen Clock and Reset signals Testing only 
std logic_vector_to_integer Used for simulated Ram Testing only 
memoryl Used for simulated Ram Testing only 
ram1 behav Used for simulated Ram Testing only 

std logic vector19_to_integer 
Used for simulated Register 
File Testing only 

memory2 
Used for simulated Register 
File Testing only 

ram2 behav 
Used for simulated Register 
File Testing only 

flipflop_behav 
Simulates 2 cycle read 
delay Testing only 
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Appendix F. Data Used for Testing. 

The following data shows the beginning value placed in RAM. It also shows the 

intermediate values in the memory locations that are used to compute the ending value 

that is subject to the current test. Each location was verified while executing the code. 

The final result was verified as well. The result in parenthesis is the actual result written 

to RAM. Each quadrant of each iteration was verified. The table shows the steps used 

for the Transform half of the code. It was the most complicated as it had many design 

rules. The inverse transform half was tested but it wasn't necessary to use the same range 

of inputs, as the operations were always the same in each iteration for each quadrant. 

Iteration k=Cfc Lower Left Iteration te=1: Lower Lefl Iteration IfeÄ Lower Left 

Loc Val Ino Val Loc Val BndVal Loc Val Loc Val Loc Val BrdVal Loc Val Loc Val Loc Val BidVal 

10 0 10 0 522 -20 (-8) 10 -82 10 ■«2 266 ■62 (-64) 10 -82 10 -82 138 -82 (-82) 

11 0 11 -82 11 -82 
42 0 42 40 42 82 42 82 42 82 42 82 

43 80 43 82 43 82 
74 0 74 0 554 -9 (-8) 74 -65 74 -65 298 -65 (-64) 74 -65 74 -65 170 ■65 (-64) 

75 0 75 -65 75 -65 

106 0 106 18 106 65 106 65 106 65 106 65 

107 36 107 65 107 65 

133 0 133 0 586 -3 (°) 138 -21 138 -21 330 -21 (-20) 138 -21 138 -21 202 -21 (-20) 

139 0 139 -21 139 -21 
170 0 170 6 170 21 170 21 170 21 170 21 

171 12 171 21 171 21 
202 20 202 10 618 5 (0) 202 20 202 10 362 5 (4) 202 20 202 10 234 5 (4) 
203 0 203 0 203 0 

234 0 234 0 234 0 234 0 234 0 234 0 

235 0 235 0 235 0 
266 68 266 34 650 17 (8) 266 101 266 101 394 101 (64) 
267 0 267 101 
298 0 298 0 298 -101 298 -101 
299 0 299 -101 
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Iteration k=0: upper right (sealer) Iteration k=1: upper right (sealer) Iteration k=2: upper right (sealer) 

Loc Val Loc Val Loc Val EndVal Loc Val Loc Val Loc Val EndVal Loc Val Loc Val Loc Val EndVal 

10 -20 26 -20 26 -20 (-8) 10 -82 18 -82 18 -82 (-64) 10 -82 14 -82 14 -82 (-82) 

11 20 11 82 11 82 

42 -20 58 -20 42 -82 50 -82 42 -82 46 -82 

43 20 43 82 43 82 

74 -9 90 -9 58 -9 (-8) 74 -65 82 -65 50 -65 (-64) 74 -65 78 -65 46 -65 (-64) 

75 9 75 65 75 65 

106 -9 122 -9 106 -65 114 -65 106 -65 110 -65 

107 9 107 65 107 65 

138 -3 154 -3 90 -3 (°) 138 -21 146 -21 82 -21 (-20) 138 -21 142 -21 78 -21 (-20) 

139 3 139 21 139 21 

170 -3 186 -3 170 -21 178 -21 170 -21 174 -21 

171 3 171 21 171 21 

202 20 218 10 122 5 (0) 202 20 210 10 114 5 (4) 202 20 206 10 110 5 (4) 
203 0 203 0 203 0 

234 0 250 0 234 0 242 0 234 0 238 0 

235 0 235 0 235 0 

266 17 282 171 154 17 (8) 266 101 274 101 146 101 (64) 

267 -17 267 -101 
298 17 314 17 298 101 306 101 
299 -17 299 -101 

■ 

Iteration k=0: Lower Right Iteration k=1: Lower Right Iteration k=2: Lower Right 

Loc Val Loc Val Loc Val EndVal Loc Val Loc Val Loc Val EndVal Loc Val Loc Val Loc Val EndVal 

10 0 26 0 538 -24 (-8) 10 -65 18 -65 274 -65 (-64) 10 -65 14 -65 142 -65 (-64) 

11 0 11 65 11 65 

42 0 58 48 42 65 50 65 42 65 46 65 

43 -96 43 -65 43 -65 

74 0 90 0 570 -8 (°) 74 -63 82 -63 306 -63 (-56) 74 -63 78 -63 174 -63 (-60) 

75 0 75 63 75 63 

106 0 122 16 106 63 114 63 106 63 110 63 

107 -32 107 -63 107 -63 

138 0 154 0 602 -1 (0) 138 -7 146 -7 338 -7 (0) 138 -7 142 -7 206 -7 H) 
139 0 139 7 139 7 

170 0 186 2 170 7 178 7 170 7 174 7 

171 -4 171 -7 171 -7 

202 28 218 14 634 7 (°) 202 48 210 24 370 12 (8) 202 48 206 24 238 12 (12) 

203 0 203 0 203 0 

234 0 250 0 234 0 242 0 234 0 238 0 

235 0 235 0 235 0 

266 80 282 40 666 20 (8) 266 101 274 101 402 101 (64) 
267 0 267 -101 
298 0 314 0 298 -101 306 -101 
299 0 299 101 
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Appendix G. Power Calculation of the FPGA Design. 

Using the WildForce board documentation (3), an estimate of the power usage 

was calculated. According to the documentation: 

Total Power = Base Power + Memory Power + External VO Power + Total PE Power 

Base Power = 3.75 W 
Memory Power = 5 W 
External I/O Power = OW 
Total PE Power = Number of Pe's *PE Power 
Number of Pe's = 5 (CPE0.PE1, PE2, PE3, PE4) 
PE Power = ((.02 * Frequency) + 0.09) * Activity * Size Factor * 5V 
Frequency = 20 MHz 
Activity is percent of registers that are switching at same time: 

(% utilization of flip-flops) * (% active at any given time) 
Activity = .47 * .40 
Size Factor for FPGA type 4062XL = 1.23 
PE Power = ((.02 * 20) + 0.09) * 0.188 * 1.23 * 5V = 0.567 W 
Total PE Power = 5 * 0.567 W = 2.8 W 
Total Power = 3.75 + 5 + 0 + 2.8 = 11.6 W 

Activity was estimated based on the Behavioral Code and the WildForce 

Documentation. A better estimate could have been calculated by analyzing the files 

produced by the WildForce loading program (3). However, since the majority of the total 

power is based on the memory and base power, the estimate is sufficient for comparison 

purposes. 
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