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Abstract 

A computer model of a pressurized water reactor (PWR) was developed for use as a 

teaching tool in graduate level nuclear reactor courses. The development, based on the 

diffusion equation, includes the methodology for solving the steady state spatial 

dependence of the neutron power output in a homogeneous right circular cylinder 

unreflected PWR system. This includes a two dimensional one energy group model, a 

three dimensional one energy group model, and a three dimensional two energy group 

model. 

To solve the homogeneous diffusion equation, a method was developed to search for 

criticality of the reactor based on the geometry and reactor core material composition. 

For the one energy group models, a perturbation technique was developed to assist the 

program user in modifying the macroscopic absorption coefficient to drive the reactor to 

criticality.   For the three dimensional models, a blocked tridiagonal solver was 

developed to solve the numerical linear system of equations approximating the diffusion 

equation. 

The model was coded using Visual BASIC 5.0™. This provides a platform that is 

exportable to personal computers and allows direct linkage to Windows based programs. 

The code automatically charts and displays the power distribution profile using Excel™ 

and displays the calculated multiplication factor determining criticality. 



MODELING PRESSURIZED WATER REACTOR KINETICS 

I. Introduction 

Background 

Basic nuclear reactor courses at the graduate and undergraduate level focus on 

teaching students how to calculate radial and axial flux and power for steady state (non- 

time dependent) reactors. Many nuclear reactor textbooks cover the fundamentals of 

nuclear physics and apply the diffusion equation to approximate the behavior of neutrons 

within the reactor core. Typically, the reactor books review one-dimensional, one speed, 

homogeneous models for various geometric shapes in great detail. Some even outline 

numerical approaches for solving the approximate solution. 

While students often gain a basic understanding of the general physics, they typically 

lack a qualitative and intuitive understanding of the reactor core nucleonic behavior based 

on core geometry and composition. A computer model can be used to provide the 

students with a tool that can visually explain how flux and power are impacted by 

changing the core geometry and composition. 

Problem Statement 

The problem statement for this thesis was to develop a working computer model of a 

pressurized water reactor (PWR) for use as a teaching tool in graduate level nuclear 



reactor courses. The development includes the equations and methodology for solving 

the steady state spatial dependence of the neutron flux and power output in a 

homogeneous right circular cylinder unreflected PWR system.    This includes a two 

dimensional one energy group model, a three dimensional one energy group model, and a 

three dimensional two energy group model. 

Approach 

The fundamental approach was to model the reactor using the diffusion equation. For 

a steady state system, the diffusion equation reduces to the Helmholtz equation. 

VV(r) + B^(r) = 0 

where 

BB = Geometric buckling =  {II cm ). 
* D 

Since this is a homogeneous equation, one must determine the eigenvalues to achieve a 

non-trivial solution. For cylindrical geometries, the eigenfunction corresponding to the 

smallest eigenvalue is non-negative everywhere within the reactor. This is physically the 

only value of importance because the flux cannot be negative in a reactor. 

To achieve a physical solution, we rewrite the Helmholtz equation and insert an 

eigenvalue —. 
k 

K 

Where 

v = average number of neutrons per fission 

Xa = the probability of absorption per unit path length (1/cm). 



For a particular value of k, this equation will have a unique solution. As will be shown 

later, if k equals one the reactor is critical. If k does not equal one, the core geometry 

and/or material composition must be changed. Searching for the flux when k equals one 

is called the criticality search. This criticality search, using the diffusion equation, is the 

basis for the development of the code. 

The first step in developing the code was to solve the two dimensional, one energy 

group diffusion equation using the finite central difference method. The finite central 

difference method provides a satisfactory order of accuracy and is generally used as the 

initial method for modeling or designing reactors. The finite difference method results in 

solving a tridiagonal matrix system using a power iterative technique to solve for the flux 

at criticality. The program in this thesis uses the Crout factorization method to solve the 

tridiagonal system of equations. A perturbation technique is used to perturb an initial 

guess of the macroscopic cross section to drive the modeled reactor to a critical level. 

This perturbation will assist the user in selecting the macroscopic cross section that will 

result in a critical condition. The one group model assumes that the energy of the 

neutrons is equal at every spatial point within the reactor. The model, based on a 

homogeneous un-reflected reactor, which is not time dependent, yields a two dimensional 

solution of power versus radial position. The initial two dimensional model was 

developed using FORTRAN™ and then later converted to Visual BASIC 5.0 ™. 

The two dimensional one group model was expanded to a third dimension by adding 

a solution in the axial direction. The output of this model provides both radial and axial 

power plots in three dimensions.   I used the finite central difference method to 

approximate the diffusion equation. This changed the system from a pure tridiagonal to a 



blocked tridiagonal system because of the additional sub and super diagonals. This 

required the development of a blocked tridiagonal solver to solve the system of equations 

and provide the flux at each interior mesh point. With all flux values known at the 

interior points, both the axial and radial power distributions can then be plotted. The 

three dimensional model was written in Visual BASIC 5.0. 

The final step was to develop a two energy group three dimensional model. The 

model assumes only down scatter of neutrons that are directly coupled, meaning neutrons 

only scatter to the next lowest energy level. This model uses the finite central difference 

method and the blocked tridiagonal solver. 

Visual BASIC 5.0 was chosen because it offers many advantages over scientific 

languages such as FORTRAN. It allows the programmer to build an executable file that 

links automatically into simple plotting tools such as Excel. With Visual BASIC 5.0, you 

can command and control Excel as well as other Microsoft Windows software. For 

example, the Visual BASIC 5.0 reactor code populates an Excel spreadsheet with the 

solution data and then builds the charts all from within Visual BASIC 5.0. The charts are 

linked and updated to appear as an object on the Visual BASIC 5.0 form. This capability 

provides the user with automated graphs of the power based upon the input parameters as 

well as access to the output data on spreadsheets. This advantage precludes the user from 

having to manually create the charts or plots in another computer language. These 

features outweigh the advantages of FORTRAN such as computational speed and built-in 

intrinsic functions.   Additionally, one can export the program packaged with the runtime 

dynamic link language, thus not requiring Visual BASIC. 



The advancements in computer technology have made using Visual BASIC 5.0 an 

alternative to scientific programs. Less than five years ago personal computers were too 

slow to solve three dimensional diffusion problems using Visual BASIC 5.0. The low 

cost and improvements of memory and processors allow personal computers to be 

capable of solving complex numerical problems using Visual BASIC 5.0 in a fraction of 

previous times. 



II. Theoretical Development 

Diffusion Theory 

"Reactor kinetics is the area of reactor physics concerned with predicting what 

happens to the neutron flux density when the balance condition associated with the 

critical state is disturbed (Henry, 1986:296)." The generation of heat in a reactor system 

is proportional to the fission rate, which is a function of the neutron flux. The neutrons in 

a thermal reactor range in energies from 0.001 eV to about 10 MeV. To simplify the 

design process of reactors, neutrons are divided into energy groups. The one group 

model deals with the thermal neutrons only; however, it also accounts for those produced 

from both prompt and delayed neutrons. The two-group model deals separately with both 

thermal and fast neutrons. 

It is common practice to approximate the exact neutron transport equation using 

diffusion theory. The neutron transport equation accounts for the angular dependent 

neutron density within a volume. The diffusion equation is the result of removing the 

angular dependence from the transport equation. 

The diffusion equation is based on Fick's Law and the equation of continuity. Fick's 

law is shown in equation (1). 

ax 

where 

Jx = the net number of neutrons passing a unit area 

perpendicular to the x-direction in a unit of time 

D = the diffusion coefficient (cm) 

(j) = the flux (neutrons/cm3 )(cm/sec) 



Fick's law was originally used to predict the flow of chemicals from one region of 

higher concentration to another region of lower concentration solute. The flow was 

found to be equal to the negative gradient of the solute concentration. Although neutrons 

do not actually flow, their behavior can be modeled using this concept (Lamarsh, 

1983:192). Early reactors were designed using this technique. Today, more 

sophisticated and computationally demanding methods are available to design reactor 

cores. 

To develop the diffusion equation one begins by using the equation of continuity. 

The equation of continuity states that: 

The rate of change in 

number of neutrons per 

volume (V) 

production rate 

of neutrons in V 

absorption rate 

of neutrons in V 

leakage rate of 

neutrons in V 
(2) 

By substituting Fick's law into the equation of continuity, the general diffusion equation 

becomes: 

72 .    T.    , .    T.    ,     dn 
DV>-2a^ + vX/^ = —, (3) 

dt 

where equation (3) is the non-steady state diffusion equation and 

D= the diffusion coefficient (cm) 

V2 = the Laplacian (divergence of the gradient) 

(j) = the neutron flux (neutron cm/cm3 sec) 

Ea = macroscopic absorption cross section (1/cm) 

Zf = macroscopic fission cross section (1/cm) 

v = neutrons/fission. 

Removing the time dependence results in the Helmholtz equation. 

(4) 



-DV2<t> + Zj = vZf<p (5) 

This is the fundamental equation to be solved for the solutions to the problem statement. 

The development of the boundary conditions is key to the solution of the diffusion 

equation for finite cylindrically shaped reactor cores. In order to develop a physical 

meaning, the total flux must be positive and real in all areas within the core. The 

diffusion equation and Fick's law are not valid at physical boundaries since they 

approximate the value several mean free paths inside the boundary. To account for the 

physical boundaries, the diffusion method models the measured flux by assuming the flux 

is zero at an extrapolated distance beyond the outer physical boundary layer of the reactor 

core. The exact flux does not reduce to zero beyond the boundary; however, the 

diffusion theory assumption allows for reasonable flux calculations within a few mean 

free paths of the boundary (Duderstadt and Hamilton, 1976:144). See Figure 1 for a 

graphical comparison of the measured flux and the diffusion theory. 

The extrapolated distance for plane geometries is calculated by using equation (6). 

d = 0.714 (cm) (6) 

where the transport mean free path is 

K=3D = ± 



Diffusion Theory 
«_ Surface 

MeasurecL^v              ^-^ Air 

Flux                  \s 

Diffusion Medium   \. 

\ 

Figure 1 Extrapolated distance at outer boundary 

However, for relatively large reactors the extrapolated distance can be neglected 

without significantly impacting the order of accuracy because the extrapolated distance is 

on the order of centimeters or less as compared to the radius of approximately one to two 

meters on average. In this model, the assumption is made that the flux is zero at the top, 

bottom, and sides of the reactor core and the derivative of the axial and radial flux at the 

centerline of the reactor equals zero. This is accomplished by setting the flux at the 

centerline equal to the flux at the first interior mesh point away from the centerline. 

The multi-group diffusion equation discretizes the range of neutron energies into 

energy groups as shown in Figure 2. Notice that the grouping begins with the highest 

energy group number and works toward the lowest energy group number. The highest 

energy group number corresponds to the lowest energy level of the neutrons. 



Group g 

Aj ^G-l E'g J-V-1        *-"> 

Figure 2 Energy Groups 

Equation (7) can be described by the energy dependent version of the diffusion 

equation. The equation is based on integrating the neutron energy (averaging) over the 

energy group of concern, Eg<E< Eg_i. 

The rate of change 

of neutrons in 

Group g 

Change due to 

leakage 

neutrons 

scattering 

out of group g 

+ 

absorption in 

group g 

neutrons 

scattering into 

group g 

+ 
source 

neutrons 

in group g 
(7) 

For the two energy group model, the energy groups are shown in Figure 3. 

10 



Thermal Fast 

E^OeV 
g=2 R=l 

E,=l eV E0=10 MeV 

Figure 3 Energy Spectra for Two Energy Group Model 

The development of the two energy group system is based on the assumptions that all 

fission neutrons are born in the fast group and that there is no up scatter from the thermal 

group. The final form of the two energy group diffusion equation becomes 

-V.^Vß + 1R1 fa =-(v12/, ß + v2 S/2 fa) 

-V.D2V02 + Ea2 </>2 = Zsi2 Ä 

(8) 

(9) 

where 

subcripts 1 and 2 refer to groups 1 and 2 respectively 

2-i m    -",i   2jt S12 

ESi2 = Cross section for scatter from group 1 to group 2. 

11 



Two Dimensional, One Energy Group Model 

To develop this model, I chose to use a criticality search technique outlined in several 

references (Duderstadt and Hamilton, 1976:214-226), (Clark and Hansen, 1964:175-178), 

(Glasstone and Sesonske, 1981:208-213), and (Ott, 1989:349-356). This section will 

derive the methodology for the criticality search and the numerical development to solve 

the two dimensional, one energy group diffusion equation. 

As stated earlier, the energy level of neutrons within a typical PWR ranges from 

about 0.001 eV to 10 MeV. Modeling the reactor proves very complicated when 

attempting to incorporate the entire energy range. Historically, attempts to solve the 

diffusion equation assumed all neutrons were at the same energy level. The key to 

solving the one group model is selecting the appropriate macroscopic cross section data. 

The cross sections are dependent upon the neutron energy level. By choosing the 

appropriate cross section, the one group model can provide quantitative as well as 

qualitative analysis of the reactor behavior. The parameters chosen for this model were 

based on the homogenized data from a typical reactor (Duderstadt and Hamilton, 

1976:210). Certainly, nuclear reactor designers would not use the one group model for 

design purposes. The value of using a one group model is its ease of calculation and 

proven qualitative similarity to more rigorous models. 

Criticality Solution Technique. 

Determining the flux at criticality becomes an eigenvalue problem as 

-V ■ DV<zKr) + Zfl0(r) = |iS^(r) (10) 

12 



where — is the eigenvalue. For criticality, we seek k equal to one. Rewritten in matrix 
k 

form, equation (10) yields 

M</> = -F<f> (11) 
K 

where 

F = VLf (1/cm) 

and the operator M = -V ■ DV + Sa (1/cm). 

To solve this problem, we guess an initial "source" term S(r) and k value where 

S(r) = F0(r) = S(0) (r) and k = km (12) 

and solve for the flux (j)m using a tridiagonal solver. 

M</>W = -v-DV^(1)+zyi) =-4r^(0) (13) 

After solving for the flux we must recalculate the source and k values. The source is easy 

to recalculate based on known values. 

Sm=F0m=vLf0
m (14) 

The iterative scheme is shown in equations (15) and (16). This repetitive process yields 

the flux at successive values until equation (17) is approximately true within set 

tolerances. 

M</>(n+1)=-^Sw (15) 
K 

M^=^F^ (17) 

To solve for the next k iterative value, we recognize 

13 



M</> (n+l) ±-F</>(n)=-±-F<^+l\ 
;(n)      r t("+1)      r (18) 

Solving for &("+1), we then integrate the flux over space. This is essentially averaging the 

values to obtain a new eigenvalue, where 

^   jS^Wr   =   fV'(r)* 
(19) 

The integration is accomplished numerically using the composite trapezoid rule 

Ar f S(r)dr=^- S(a) + S(b) + 2^S(ri) 
Ja 7 TT 

H-l ^ 

(20) 

where n is the number of mesh points. The iteration process continues until the 

tolerances for k and the source are within a specified tolerance. 

*(»> _*<»-!> 

,(«) 
(fj and/or 

c(n) _ ci(n-l) 

i(n) (£2 
(21) 

where 

£,=0.00001 
£2 =0.015 

The tolerance setting for ex is critical to achieving low relative errors compared to the 

mathematical solution. Ott recommends a tolerance of 1E-5 for most calculations (Ott, 

1986; 351). See Chapter III, Program Validation for details. As the number of iterations 

gets large, we expect the flux to converge to the fundamental eigenfunction (Duderstadt 

and Hamilton, 1976:216-219). This will provide the correct flux mode shape to enable 

power and flux calculations. Figure 4 is a flowchart of the technique used in the code to 

solve for the flux and criticality based on the core material composition and geometry 

input. 

14 



Input material 
composition and 
radius. Guess 

initial 
k and source S 

Calculate flux 
using tridiagonal 

solver 

Calculate 
k"*1 and S"+1 

No Convergence 
test for 
kandS 

Completed 
Yes 

Yes 

k>=l? 
No 

Figure 4 Criticality Search Technique, 2D Model 

One must provide an initial guess for k and the source flux in order for the power 

iteration process to converge resulting in criticality. Because it is difficult to guess a 

sufficiently close guess, one must use perturbation theory. Perturbation methodology 

assists the user by adjusting the macroscopic cross section until criticality is met. 

Changing the macroscopic cross section by some small amount such as 

2» = Zfl(r) + <£a(r), (22) 

where 

Zj, is the value perturbed by some small positive or negative change <£a, 

yields a revised equation in matrix form. 

15 



M'</>'= ^7 F0 (23) 
k 

The perturbation in the cross section changes the diffusion operator. 

M' = M+SM' (24) 

where 

SM=SLa(r). 

We then calculate the change in k by applying the scalar product equation (23) with the 

adjoint flux f of the unperturbed core obtaining equation (25). 

(f,M4>') + {f,SMf) = ±(<f>',F<f>) (25) 

Using the inner product of the adjoint operator, yields 

(fMt) = (Myj) = (±FY,A = j(f,Ff) (26) 

where, for the one group diffusion model 

(j)*,F*, and M* are the adjoint values 

F=F* 

M=M*. 

Substituting equation (26) into equation (25) yields 

'1    xyft.SMf) 
Kk'    k)     (f,F</>)  ' 

However, this requires us to know the adjoint and perturbed fluxes that cannot be 

calculated directly. We can rewrite the left-hand side in terms of reactivity. 

f\     \\_   (f,SM</>) 

(27) 

Ap =  T|-     -; ,x (28) 
k      k) (f,F</>) 

16 



Using perturbation theory we can translate the unknowns into known values. A small 

change in absorption cross section is assumed to result in a small change in flux 

(Duderstadt and Hamilton, 1976:223). Expanding equation (28) provides the following. 

A        (f,SLa0)   (?,&&)   (f,SZj)(f,XaS<p)^ 
P        (f,F</>)       (f,F</>) (<f,F^)2 

Using the self adjointness of the flux provides the form required to calculate the small 

change in macroscopic cross section, 

l<P(r)2vZf(r)d3r    VLf 

81a= v~ \vlf (31) 
V k  k 

where, for criticality, 

k'=l. 

With a known change in the macroscopic absorption cross section, the program user can 

iterate the program until criticality is achieved for the geometry and material composition 

specified, if achievable. The change in the macroscopic absorption cross section can only 

be accomplished physically by changing the material composition in the homogeneous 

reactor core because 

x.=5>tö (32> 

where 

i=i 

n = the number of materials 

Nt = the number density of the material i (neutrons/cm3) 

a\ = the microscopic absorption cross section of 

material / (cm2). 
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Numerical Development. 

The numerical development of the one group model is based on the central difference 

approximation to the diffusion equation in right circular cylinder coordinates. 

r D D 
(33) 

Expanding <j> in a Taylor series about r 

dr 

dr 

A2 d> 

,      2 dr2 

A2 
| dV 

,     2 dr2 

+ . 

+ .... 

(34) 

(35) 

Now adding equations (34) and (35) yields the standard central difference formula with 

an order of A2. 

d2</> 

dr2 

</>i+1-2(/>i+</>i_l 

For the standard differential the central difference yields 

d(f>_ 
dr 2A 

The final form of the numerical equation becomes 

-l-p(r) 
h^ 

0i_1+(2 + h2q(r))</>i + -l + p(r) 
h 

</>M=-h2r(r) 

(36) 

(37) 

(38) 

where 

18 



h is the distance between nodes (cm) 

p(r)=- (1/cm) 
r; 

q(r)=^ (1/cm2) 
D 
1     _   ,   ,   1     neutrons-cms 

r(r)=r7TvSf #>(^ —3 )• kD cm        cm -sec 

The boundary conditions are shown in Figure 5 for a typical reactor core. 

core height 

J=m 

Center of 
core 

P(0j)=P(lj) 

j=l 

(0,0) 

P(i,m)=0 Top of core 

1,3 m———ik 

pi; 

pi,i 
#—■—# 

2,3 

2,2 
m—■—» 

P2,l 

3,3 

■2,3 

P3,l 

P(n,j)=0 

-*■ radius 

i=l 
P(i,0)=0 

i=n 

Figure 5 Boundary Conditions 

Using a standard tridiagonal solver rapidly provides the flux values for this system of 

equations along the radius of the core. 
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Three Dimensional, One Energy Group Model 

I used the same criticality search technique for this model as in the two dimensional 

model; however, the numerical solution technique is quite different. Adding the third 

dimension increased the boundary conditions and allowed me to develop a model that 

allows the user to choose to calculate the power distribution and criticality in either a half 

or a quarter of the reactor core. Duderstadt recommends using a Gauss-Seidel or a 

successive relaxation method to solve the numerical equations (Duderstadt and Hamilton, 

1976:191). I chose to develop and use a blocked tridiagonal solver because it reduced the 

computational time and computer memory requirements over those recommended. 

Criticality Solution Technique 

The three dimensional model uses the same criticality iterative search technique to 

solve for the flux as the two dimensional model; however, the derivation of the volume 

source integration used in equation (19) to solve for k"+1 is more complicated. See 

Appendix A for a complete derivation. As shown in Figure 6, the three dimensional 

model uses the blocked tridiagonal solver vice the tridiagonal solver for the two 

dimensional model. 
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Input material 
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initial 
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Calculate flux 
using blocked 
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No 
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No Convergence 
test for 
kandS 

Completed 
Yes 

„ Yes 

k>=l? 
No 

Figure 6 Criticality Solution Technique 

Numerical Development. 

In three dimensions, the diffusion equation in right circular cylinder coordinates 

becomes 

fl2 2^ a_v jty  av 
. dr2     rdr    dz D        D 

where the appropriate Laplacian is 

i a   a   i a2 

V  =-—r-^ + + - 
r dr   dr    r  d&     dz 

(39) 

Owing to symmetry, ——- = 0. 

Using central differences and collecting terms yields 
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Ar2 
+ h+ij-h-u 

rlAr 
+ 

Az2 t^=T   m 

and 

1   ,     1 

Ar2    2rAr ß-i,; + 
2      2„ 

Ar2    Az2     D 

\ r 
+ 

) V 

1 •+- 1 ^ 

Ar    2rAr ft+ij 

+^rfe-1 
+ ^+i)=i7 

(41) 

D 

where the boundary conditions are shown in Figure 7. The model provides solutions for 

half of the reactor core or quarter of the reactor core owing to symmetry of the 

homogeneous system. 

core height 
+Z              P(i,m)=0 

j=m 

P(0,j)=P(lj) 

k            ^-— Top of core core height 

pu P2,3 P3,3 

P(n,j)=0 

+Z 

j=m 

P(i,m)=0 
 Top of core 

pu ^2,2 P2,3 Pl,3 1*2,3 P3,3 

j=l 
Center of 
core 

—< r«, A\ P3.! P(0,j)=P(lj) Pl,2 1*2,2 **2,3 
P(n,j)=0 

j=l 

—1 r— 
pu 

i -^ 

P2.. 

i  

P3, 
radius 

i=l               i=n 

P(i,0)=P(i,l) (0,0) radius 
i=l                i=n 

P(i,0)=0 

core height 
-Z 

Boundary Conditions Upper Quarter Rx Boundary Conditions Rieht Half Rx 

Figure 7 Boundary Conditions 

To explain the method of converting the numerical equation into a system of linear 

equations, I will use the sample mesh system shown in Figure 8. 

22 



core height      ^ Top of core 

m-4 

Center of 
core 

j=l 

-6- 1,3 

pi,: 
€) ■ # 

PU 

2,3 -# 

■2,2 

P2,l 

3,3 

HfF 
"2,3 

-II- 

P3,l 

-*- radius 

i=l n=4 

Figure 8 Example 4x4-Three Dimensional Mesh System 

To convert these equations into a solvable linear algebra system, it is necessary to 

convert the (i,j) indices into a single value using 

l = i + (m-l-j)(n-V) (42) 

where m is the number of nodes along the z-axis and n is the number of nodes along the 

radius (Barden and Faires, 1997:676). This conversion results in re-numbering the 

interior mesh points as shown in Figure 9. 
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core height      ^Topofcore 

m=4 

Center of 
core 

j=l 

P. 
-o- 

-*■ radius 

i=l n=4 

Figure 9 Relabeled Interior Mesh Points 

Referring to equation (41), this system has five terms instead of the three terms used 

in the two-dimension model. This corresponds to the sample 9x9 matrix shown in 

equation (43). The matrix is a tridiagonal system with a sub and super diagonal. The sub 

and super diagonal, in this case, contain constant and equal values in each component. 

The upper and lower tridiagonal diagonals are variables that depend on the position along 

the radius as shown in equation (41). 

24 



n p* 0 p, 0 0 0 0 0 

Pi p2 pi 
0 ^5 0 0 0 0 

0 Pi ^3 0 0 ^6 0 0 0 

p> 0 0 p* p5 
0 Pi 0 0 

0 p2 
0 PA p5 ^6 0 ^8 0 

0 0 h 0 p5 p6 
0 0 p9 

0 0 0 PA 0 0 Pi ^8 0 

0 0 0 0 p5 
0 Pi ^8 p9 

0 0 0 0 0 n 0 ^8 p9 

0 Bi 

02 B2 

01 B3 

0A B, 

'05 - B5 

06 B6 

01 Bi 

0i Bs 

\j>9_ W 

(43) 

This same pattern applies to any size matrix depending upon the number of interior 

mesh points selected. The boundary conditions are incorporated into positions Pi, P4, and 

P7 in the matrix. 

Matrix Solution Methods. 

There are several methods available to solve these types of matrix problems. One is 

the Jacobi method. This method converges too slowly for practical use in large matrices 

because of the number of required operations. Another method, Gauss-Seidel, is often 

used to solve small to medium sized matrices.   Gauss-Seidel also converges slowly and, 

like the Jacobi method, requires storing every point in the matrix in computer memory. 

As a result, it is slow and computationally inefficient. Successive over-relaxation (SOR) 

is an improved version of the Gauss-Seidel method. It makes an over correction by 

anticipating future corrections. To reduce the error by a factor of 10"p, the SOR method 

requires on the order of J iterations compared to J2 for the other methods (Press, 

1996:858) where 

and 

1    r r- — pj 
3 

r - the rth stage of the iteration process 

J - the number of iterations. 

(44) 

25 



Each of these methods requires filling and using the entire matrix to obtain a solution. 

This is computationally inefficient when dealing with relatively large matrices. Using a 

reactor size of 120 cm radius and 360 cm height and 0.5 cm node spacing requires a 

171,841 x 171,841 matrix. This is a fairly large matrix and using any of the above 

techniques would increase the computation time and memory requirements of the 

computer. 

To solve this system, I chose a blocked tridiagonal solver technique. This method 

requires only storing the values in the diagonals of the tridiagonal matrix of size (m-1 x 

n-1) as compared to (m-1 x n-1)2 for the Gauss-Seidel method. Using the previous 9x9 

example, the system of equations in (43) becomes 

" 

A D *i B, 

D A, D X2 = B2 

D A3 X, Bi 

1 

(45) 

where D is the sub and super diagonal with constant coefficients, Ai>2,3 are tridiagonal 

matrices, Xi,2,3 are the unknown flux values at the interior mesh points, and B1,2,3 are the 

solutions at each interior mesh point. 

This can be further broken down into three equations that can each be solved using a 

standard tridiagonal solver. 

DX1+A2X2 + DX3^B2 

DX2 + AiXi=Bz 

(46) 
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Inverting the D diagonal (which is constant) and rearranging the equations allows 

them to become 

D-'^Xi    =D~lBl-Xn
2 

D-'AJ x;+1 = D'B . - x;_+; - x;+1 (47) 

where j is the jth row along the z-axis. This allows one to solve the system only using the 

main tridiagonal components. To solve the system of equations in (47), set the initial 

values of xy. to zero and solve each equation in a tridiagonal solver making use of the 

previous Xs value. This iterative approach is similar to the Gauss-Seidel approach 

without the excess storage or computations. Once the values of Xs are within the set 

tolerance of the previous xhl, then the process has converged to the solution. This 

tolerance level is critical to achieving low relative errors between the old and the new 

flux values. For example, setting the tolerance equal to 0.001 provides a maximum 

relative error of 18 % for the axial power using a mesh spacing of one centimeter. 

Changing the tolerance to 1E-6, reduces the maximum relative error to 8 %. Reducing 

the tolerance does however increase the computational time dramatically. See Chapter 

III, Program Validation for further details. 

Three Dimensional, Two Energy Group Model 

Criticality Solution Technique 

The solution technique is the same as the one group homogeneous method except one 

must guess an initial value for <px and (j)2 to solve for ^ in equation (8). <j\ is then used to 

solve for (j)2 in equation (9). The code iterates as in the one group model solving for 
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5("+1) and k{n+l) per equations (16) and (19) and then checks for convergence per equation 

(21). This is shown in Figure 10. 

Input material 
composition and 
geometry. Guess 

initial 
k and source S 

i 
Calculate fast 
flux with BTS 

Note: 
BTS= Blocked tridiagonal 

solver 

i ]   No Convergence 
test for fast flux 

Yes 

Calculate thermal 
flux with BTS 

1 
Convergence test 
for thermal flux 

Yes 1' 
Calculate 

k»+1 and S"+I 

i ' 
No 

Convergence 
test for 
kandS 

i 
,Yes 

Completed 
Ye <— k>=l? 

No 

Figure 10 Criticality Solution Technique for Two Energy Groups 

There is a difference in calculating the perturbation of the cross sections. The method 

is not as simple as in the one energy case because the multi-group criticality problem is 

not self-adjoint. I did not include the perturbation because of the complexity of having to 

change multiple parameters in both energy groups. The method is outlined in Duderstadt 

and Hamilton. 

Numerical Development. 

The development of the numerical solution technique is very similar to the three 

dimensional one group technique; however, there are now two coupled equations to 
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solve. The first equation, derived from applying central differences to equation (8), is 

shown in equation (48). 

1 1 

Ar2    2rAr #-u + 
-2       2      S   A J

Rl 

Ar2    Az2     D, ^ + 
1 -+- 1 

Ar    2rAr #+u 

+ ^(^+^>=^ m 

(48) 

where 

5 = (v1S/i^+v2I/2^2) 

The program solves this equation for the fast flux, (f>x, and then solves the second coupled 

equation for the thermal flux, <p2 using the blocked tridiagonal solver. The second 

coupled equation, derived by applying central differences to equation (9), is 

1 1 
Ar2    2rAr <tw + 

kD, 

(49) 

where 

*2=0. 
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III. Program Development and Validation 

Program Development 

In general, the program provides much flexibility for the user. The user can choose 

between a two dimensional, one energy group model, a three dimensional one energy 

group model, or a three dimensional two energy group model. The program provides a 

drop down Windows menu to allow the user to select various command options such as 

models to run or help files to view. Within each model, the user can point the mouse 

over input boxes and get definitions or additional explanations. This serves to assist the 

user in understanding either the physics involved or how to proceed. 

The program requires initial data input that represents a homogenized reactor core in 

cylindrical geometry. It requires the user to input the reactor core dimensions and 

material composition/cross sections. If the user is not sure of the material composition, 

the program provides recommended input values. The values for the macroscopic cross 

sections (absorption and fission), the diffusion coefficient, the number of interior mesh 

points, and the initial guess values for keffective and flux are required for input. The 

program will only allow for equal mesh spacing in both the axial and radial directions 

and requires the core height and radius be multiples of mesh spacing. The boundary 

conditions are established within the program. For all exterior points the flux is assumed 

to be zero. At the center of the reactor core, the flux is set equal to the flux value at the 

first interior mesh point away from the centerline. This makes use of the symmetry of the 

homogeneous core and meets the requirement that the first derivative of the flux equals 

zero at the center. 
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Given the initial input, the program will calculate the initial source term 

value (vl,f 0°) for the right hand side of the diffusion equation at each interior mesh point. 

If the user requested to solve the two dimensional simulation, the program calls a linear 

finite difference solver that uses the Crout factorization method for tridiagonal linear 

systems. The solver returns a vector of flux values along the radial interior mesh points. 

Next, the program begins to iterate to converge to the solution. It evaluates the tolerance 

between the old and the new flux values and the old and new keffective values. To calculate 

the new keffective» the program integrates the old and new source terms over space and 

essentially averages them as in equation (19). With the updated source and keffective, the 

program iterates again. This process continues until convergence is met. Next, the 

program checks if the reactor is critical. If keffective is greater than or equal to one, the 

system is critical. If the reactor is not critical, the program uses perturbation theory to 

provide a revised macroscopic cross section that should assist the user in achieving a 

critical reactor. In either case, the data are automatically loaded onto an Excel 

spreadsheet and plotted in Excel. The Excel chart is automatically updated onto the 

Visual BASIC form and saved to a location provided by the user. The user of the 

program does not see Excel running in the background. 

For the three dimensional one energy group problem, the user has the option of 

selecting to calculate the power profile for either a half or a quarter of the reactor core. 

Because of the symmetry of the core geometry, the solution to the half of the reactor core 

is a mirror image of the quarter core solution. The iterative processes are very similar to 

the two dimensional problem; however, the solver is different. Because the numerical 

analysis problem generates a blocked tridiagonal system, the solution technique changes. 
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The program builds blocked tridiagonal vectors that create a (m-1) system of equations. 

It fills each diagonal component with its corresponding coefficient and then iterates 

through the Crout factorization method for each tridiagonal linear system until the desired 

convergence is met for the iterative solution. Next, the program updates keffective and tests 

for convergence of the old and new source terms similar to the two dimensional problem. 

If the reactor is not critical, the program will again recommend an adjusted value for the 

macroscopic cross section and plot both the radial and axial power values in Excel. 

The three dimensional, two energy group model uses the same process as the three 

dimensional, one energy group model with a few modifications. In addition to the 

previous input requirements, the user must provide the macroscopic scatter and removal 

cross sections for the fast and thermal energy ranges as well as the fast and thermal flux 

initial guesses. Using this data, the program solves for the fast flux using the blocked 

tridiagonal solver and then it uses that value to solve for the thermal flux, again using the 

blocked tridiagonal solver. The program iterates as before until convergence is met for 

the total source term values and k. 

The user can double click each Excel chart on the form and open Excel to access the 

chart or the data.   A complete program along with typical output data is included in 

Appendices C, D, E, and F. 

Operating the Code 

Each window in the program is a form that allows the program user several options. 

There is typically a drop down menu window structured as shown in Figure 11. 
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Typical Form 

1 1 1 
File View Select Model Run Help         | 

Print Form Reactor 2D, One 
Energy Group 

Exit Boundary 
Conditions 

3D, One 
Energy Group 

3D, Two 
Energy Groups 

Figure 11 Typical Drop Down File Menu 

The initial welcome form is shown in Figure 12 below. 
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Figure 12 Welcome Screen 

The PrintForm menu function prints the current form to the default printer. The Exit 

menu function exits the program. Clicking the View menu function provides two 

options. The program user can either view a schematic of the reactor or the boundary 

conditions as shown in Figure 13 and Figure 14 respectively. From either of them the 

user can return to the previous screen by clicking the return menu. To choose one of the 

three models to run, click the Select Model menu and choose the desired model. From 

the chosen model, the user can return to the starting window or select from any of the 

options shown. Clicking the run menu function will execute the selected module. The 

help menu function will bring up a window with a help object written in Word. To view 

the help information, double click the object window and scroll through the file. To close 

the file and return to the previous screen, click the "x" on the windows screen. 
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The program has several built in error commands that prevent the program from 

crashing should the user fail to input required data or input incorrect data. For example, 

if the user fails to input keffeclive, the program will anticipate and prevent the division by 

zero in the code. The code will display a message explaining the error and insert 

K/fecive - °-9 • While the code is certainly not yet totally failsafe, it provides error 

corrections to many anticipated runtime errors. 

To run the two dimensional one energy group model, the code requires input for 2a, 

v2f, <|)guess, diffusion coefficient, radius, and kguess. All appropriate data must include units 

of centimeters. Each of the three reactor model forms provides tips for the user when the 

cursor is placed over some of the input description boxes. The user must also input the 

mesh spacing between mesh points. For typical reactors a mesh spacing of 0.5 cm 

provides a maximum relative error of less than two percent and runs within a few 

seconds. Finally, the user must input a file name and location to save the Excel 

workbook with an extension of filename.xls. 

Figure 15 shows an example of the two dimensional model form. The form lets the 

user know if the reactor is critical and if not provides a recommended Sa that will drive 

the reactor to criticality. 
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Figure 15 2D, One Energy Group Form 

It also provides a power distribution plot. To access the plot and data, double click the 

chart and Excel will open the workbook containing the data and chart. Closing Excel 

returns the user to the form; however, the chart will not be resized to fit the screen. The 

chart will automatically resize upon running another problem. 

To run the three dimensional one energy group model, input the same information 

required for the two dimensional model along with the reactor height. The program 

requires the user to select whether to calculate the power distribution for either a half or a 

quarter of the core. The mesh spacing will be equally applied to the axial and radial 

directions. Additionally, there is an option to choose between reduced relative error; 

slower run times and average relative error; faster run times. These correspond to the 
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results provided in Table 5, Table 6, and Table 10.   Figure 16 shows the results of 

running a sample problem using half of the core. 
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Figure 16 3D, One Energy Group Form 

The reactor core height input corresponds to the height of either the half or quarter 

reactor core selection. Again, the program will provide the criticality information. 

The three dimensional two energy group model requires more information than the 

previous models. The input data for both the thermal and fast energy groups must also 

include 2Removal and Zscatter. Table 2 provides sample input data for two energy groups. 

Additionally, the user must select the radial and axial positions to plot the power 

distribution. Figure 17 displays the input box to select the radial position upon which to 

plot the axial power distribution. The maximum axial power will occur at the zero 
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position for either the half or quarter core selection. For the radial power distribution, the 

maximum will occur at the zero axial position for the quarter core or center axial position 

for the half core. The plots are independent of one another allowing the user to select the 

power distribution along any section of the core. 

Like the three dimensional one energy group model, the user must choose between 

reduced relative error; slower run times and average relative error; faster run times. 
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Figure 17 3D, Two Energy Groups Axial Choice 

Figure 18 is an example of the final solution. The plots include the thermal, fast, and 

total power distributions. As in the other models, the program user can access the 

Excel workbook directly by double clicking either chart. The workbook will contain 

the power distribution data for the radial and axial plots on separate worksheets. 
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Figure 18 3D, Two Energy Group Form 
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Program Validation 

To validate the code, I tested each of the three models independently. I compared the 

code's normalized power distribution to the normalized analytical solution to determine 

the point-by-point relative error. For the three dimensional models, I tested and validated 

the blocked tridiagonal solver using various matrices solved with Mathamatica before 

testing the entire code. 

Two Dimensional, One Energy Group Model. 

I tested the model using data for a typical homogeneous reactor as shown in Table 1. 

Table 1 One-Speed Reactor Input Data 

Reactor Data 

£„ 0.1532 1/cm 

vlf 0.1570 1/cm 

Diffusion Coefficient 9.21 cm 

2,r 0.0362 1/cm 

I compared the model to the flux distribution profile for an infinite right circular cylinder. 

</> = J0 

KR J 
(50) 

where 

v0 = 2.405 = smallest zero of J0 

R is the radius of the cylinder 

r is the position along the radius. 
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Figure 19 shows the normalized flux profile for the reactor with a radius of 120 cm. 

Figure 20 shows the normalized flux profile for the data from the one-group model. 

Figure 21 is a combination of both. They overlap each other indicating that the one- 

speed model is producing the correct fundamental flux mode shape. Using a radius of 

120 cm and a mesh spacing of 0.5 cm, the maximum relative point-by-point error was 

0.02. 

1.2 
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n 
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0 
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Figure 19 Flux profile of infinite right circular cylinder (Bessel J function) 
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Two Dimensional, One Energy Group 
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Figure 20 Normalized flux from one-speed computer model 
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Figure 21 Flux profile of Bessel J function and one-speed computer model together 
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Three Dimensional, One and Two Energy Group Models. 

To test the two models, I verified the blocked tridiagonal solver and then each code 

separately. I initially tested the blocked tridiagonal solver using Mathematica with a 

diagonally dominant system of equations as shown in the augmented matrix (51). 

5.16 1.25 0 1 0 0 0 0 0 -1.894 

0.5 -5.16 1.167 0 1 0 0 0 0 -1.894 

0 0.75 -5.16 0 0 1 0 0 0 -1.894 

1 0 0 -5.16 1.25 0 1 0 0 -1.894 

0 1 0 0.5 -5.16 1.167 0 1 0 -1.894 

0 0 1 0 0.75 -5.16 0 0 1 -1.894 

0 0 0 1 0 0 -5.16 1.25 0 -1.894 

0 0 0 0 1 0 0.5 -5.16 1.167 -1.894 

0 0 0 0 0 1 0 0.75 -5.16 -1.894 

(51) 

The approximate solution is 

(52) 

100000000 0.678681 

010000000 0.678681 

001000000 0.678681 

000100000 0.678681 

000010000 0.678681 

000001000 0.678681 

000000100 0.678681 

000000010 0.678681 

000000001 0.678681 

In this case, the system resulted in a nine by nine matrix where m=4 and n=4. The 

pattern and coefficients are similar to the actual pattern and coefficients generated by 

numerically solving the diffusion equation using the one group data. The solution 

generated by Mathematica matched the solution given by the blocked tridiagonal solver. 

The blocked tridiagonal solver typically converges to the approximate solution within 10- 
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15 iterations with a tolerance of 1E-6, using mesh spaces greater than 10 centimeters. 

Their agreement indicates that the solver is converging to the correct solution. 

Varying the values, constant and non-constant coefficients, of the lower and upper 

diagonals while maintaining diagonal dominance resulted in correct solutions as well. 

This was one of the several comparisons I made, each of which agreed with the blocked 

tridiagonal solver's solution. 

Next, I verified that the codes produced the approximate correct power distribution 

within the reactor core. The compiled program was tested using an AMD-K3 450 

megahertz personal computer with 64 megabytes of random access memory. I compared 

the relative maximum error of the normalized numerical solutions at each mesh point to 

the normalized mathematical solution for a finite cylinder. 

0(r,z) = Jc 
2.405/-^   (nz^ 

v R 
Cos 

VHJ 
(53) 

where 

H = the height of the cylinder 

z = the position along the z axis (height) 

For the three dimensional one group model, I used the same input data used in the 

two dimensional one group model. I used the data in Table 2 as input for the three 

dimensional two energy group model (Duderstadt and Hamilton, 1976:312). 
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Table 2 Two Group Diffusion Theory Constants (Table 7-2 Duderstadt) 

Group 
Constant 

Group 1 Fast Group 2 
Thermal 

Ea (1/cm) 0.01207 0.1210 
v2f (1/cm) 0.008476 0.18514 
Sf (1/cm) 0.003320 0.07537 
Diffusion 
Coefficeint 
(cm) 

1.2627 0.3543 

SigmaRemoval 
(1/cm) 

0.02619 0.1210 

SigmaScatter 
(1/cm) 

0.01412 0 

I originally limited the blocked tridiagonal solver to 20 iterations because of the 

typical convergence within 10-15 iterations.   However, this produced erroneous results 

as the mesh spacing was reduced to less than six centimeters. The blocked tridiagonal 

solver failed to completely converge after 20 iterations causing the large relative errors 

shown in Table 3 and Table 4. Notice the relative error converges and then begins to 

diverge below mesh spacings of around 4-6 centimeters.   Table 3 and Table 4 show the 

relative errors and approximate code running times for several test runs for half and 

quarter of the core test runs. 
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Table 3 Relative Errors for Quarter Core 3D Models, Blocked Tridiagonal 
Tolerance =lE-8 with Maximum of 20 Iterations 

One Energy Group Two Energy Groups 
Mesh 

Spacing 
Centimeters 

Radial 
Maximum 
Relative 

Error 

Axial 
Maximum 
Relative 

Error 

Running 
Time 

(MimSec) 

Radial 
Maximum 
Relative 

Error 

Axial 
Maximum 
Relative 

Error 

Running 
Time 

(Min:Sec) 

30 0.1 0.1 00:08 0.1 0.1 00:16 
20 0.07 0.06 00:13 0.07 0.06 00:21 
15 0.04 0.05 00:21 0.04 0.05 00:32 
12 0.03 0.04 00:36 0.03 0.04 00:51 
10 0.02 0.03 00:52 0.02 0.03 01:21 
6 0.01 0.01 02:20 0.01 0.02 03:52 
5 0.008 0.03 03:20 0.008 0.005 05:52 
4 0.006 0.2 05:27 0.006 0.1 09:54 
3 0.005 0.7 Untimed 0.005 0.5 Untimed 

Table 4 Relative Errors for Half Core 3D Models, Blocked Tridiagonal Tolerance 
=lE-8 with Maximum of 20 Iterations 

One Energy Group Two Energy Groups (Total Power) 
Mesh 

Spacing 
Centimeters 

Radial 
Maximum 
Relative 

Error 

Axial 
Maximum 
Relative 

Error 

Running 
Time 

(MimSec) 

Radial 
Maximum 
Relative 

Error 

Axial 
Maximum 
Relative 

Error 

Running 
Time 

(Min:Sec) 

30 0.1 0.0001 00:11 0.1 0.0001 00:19 
20 0.07 0.00009 00:21 0.07 0.0001 00:34 
15 0.04 0.00009 00:39 0.04 0.0001 00:59 
12 0.03 0.00009 01:12 0.03 0.0001 01:49 
10 0.02 0.00009 01:42 0.02 0.0001 02:45 
6 0.01 0.004 04:41 0.01 0.0009 08:03 
5 0.008 0.03 06:41 0.008 0.01 11:57 
4 0.006 0.2 07:52 0.006 0.6 19:04 
3 0.005 1.0 Untimed 0.005 0.4 21:37 

I initially thought the divergence was due to instability of the finite central difference 

method; however, Figure 22 shows that the relative error was not symmetrical. 
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Figure 22 Intitial Test, Mesh Spacing = 3 cm 

This suggested that the error was not due to instability.   Increasing the maximum 

number of iterations in the blocked tridiagonal solver from 20 to 1000 allowed for 

complete convergence with smaller mesh sizes and corrected the error. 

The tolerances set for the convergence of the multiplication factor k and the blocked 

tridiagonal solver are critical to achieving useful solutions. For most cases, a k tolerance 

of 1E-5 provides acceptable results (Ott, 1989:351). Table 5 and Table 6 provide a 

summary of the results using a tolerance of 0.001 for the blocked tridiagonal solver and a 

k tolerance of 1E-5. This tolerance setting provided maximum relative errors of less than 

six percent for a mesh spacing of two centimeters when analyzing a quarter of the reactor. 

Analyzing half the reactor core increased the maximum relative error and run times as 

expected. I chose this setting because it yielded reasonable results with fast run times. 
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Table 5 Relative Error for Quarter Core 3D, Blocked Tridagonal Tolerance = 0.001 

One Energy Group Two Energy Groups 
Mesh 

Spacing 
Centimeters 

Radial 
Maximum 
Relative 

Error 

Axial 
Maximum 
Relative 

Error 

Running 
Time 

(Min:Sec) 

Radial 
Maximum 
Relative 

Error 

Axial 
Maximum 
Relative 

Error 

Running 
Time 

(MimSec) 

30 0.1 0.2 00:06 0.1 0.2 00:09 
20 0.07 0.1 00:07 0.07 0.2 00:09 
15 0.04 0.1 00:07 0.04 0.1 00:10 
12 0.03 0.1 00:09 0.03 0.1 00:11 
10 0.02 0.09 00:11 0.02 0.1 00:13 
6 0.01 0.07 00:20 0.01 0.1 00:33 
5 0.009 0.06 00:49 0.009 0.09 00:52 
4 0.007 0.04 01:32 0.008 0.08 01:36 
3 0.006 0.006 03:43 0.007 0.04 03:47 
2 0.006 0.05 13:56 0.007 0.02 14:13 
1 0.01 0.2 =180:00 No test No test No test 

Table 6 Relative Errors for Half Core 3D, Blocked Tridiagonal Tolerance = 0.001 

One Energy Group Two Energy Groups 
Mesh 

Spacing 
Centimeters 

Radial 
Maximum 
Relative 

Error 

Axial 
Maximum 
Relative 

Error 

Running 
Time 

(MimSec) 

Radial 
Maximum 
Relative 

Error 

Axial 
Maximum 
Relative 

Error 

Running 
Time 

(Min:Sec) 

30 0.1 0.09 00:07 0.1 0.1 00:09 
20 0.07 0.09 00:07 0.07 0.1 00:11 
15 0.04 0.08 00:10 0.04 0.1 00:13 
12 0.03 0.08 00:15 0.03 0.1 00:16 
10 0.02 0.09 00:18 0.02 0.1 00:22 
6 0.01 0.1 00:58 0.01 0.1 01:01 
5 0.008 0.1 01:41 0.009 0.1 01:39 
4 0.007 0.1 03:02 0.008 0.1 03:09 
3 0.006 0.1 07:20 0.007 0.2 07:54 
2 0.006 0.2 27:45 0.007 0.2 29:26 
1 No test No test No test 0.01 0.3 Untimed 

What impact does reducing the tolerance of the blocked tridiagonal solver have on the 

maximum relative error? Table 7 and Table 8 show the results of changing the tolerance 
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to 1E-4 and 1E-6 respectively for half of the core using two energy groups. There was 

not a significant reduction in the maximum relative error by changing the tolerance to 1E- 

4.   Reducing the tolerance to 1E-6 did not significantly reduce the error in the radial 

direction; however, the error was reduced by over ten percent in the axial direction. The 

trade off is doubling the run time from approximately 29 minutes as shown in Table 6 to 

60 minutes as shown in Table 8. 

Table 7 Half Core 3D, Blocked tridiagonal Tolerance = 1E-4 

Two Energy Groups 
Mesh Spacing 
Centimeters 

Radial Maximum 
Relative Error 

Axial Maximum 
Relative Error 

Running 
Time 

(Min: Sec) 
2 0.006 0.2 33:42 

Table 8 Half Core 3D, Blocked Tridiagonal Tolerance = 1E-6 

Two Energy Groups 
Mesh Spacing 
Centimeters 

Radial Maximum 
Relative Error 

Axial Maximum 
Relative Error 

Running 
Time 

(Min:Sec) 
2 0.006 0.08 60:05 

Reducing the tolerance to 1E-8 provided even better results as shown in Table 9. 

This tolerance reduced the maximum axial error as shown in Table 6 by approximately 

19 percent for the mesh spacing of one centimeter. 

Table ! ) Half Core 3D, Blocked Tridiagonal Tolerance = 1E-8 

Two Energy Groups 
Mesh Spacing 
Centimeters 

Radial Maximum 
Relative Error 

Axial Maximum 
Relative Error 

Running 
Time 

(Min:Sec) 
1 0.01 0.1 Several Hours 
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Figure 23 is the normalized power distribution plot compared to the normalized 

mathematical solution for the reduced blocked tridiagonal tolerance of 1E-8. Although 

the maximum error is about 10 percent, the error is symmetric about the center of the 

reactor core. 

3D, 2 Energy Groups, Half Rx 

■Numerical Solution 

Mathematical 
Solution 

 1 ! ! ! ! ! ! !  

0 40 80 120 160 200 240 280 320 360 

Height (cm) 

Figure 23 3D, Total 2 Energy Groups, Blocked Tridiagonal Tolerance = 1E-8 with 
Mesh Spacing = 1 cm 

To reduce the maximum relative error even more, I set the tolerances for convergence 

of the multiplication factor k and the blocked tridiagonal solver to 1E-7 and 1E-8 

respectively. Table 10 is a summary of the maximum relative errors for test runs 

calculating the power distribution for a half reactor core, using two energy groups. The 

data indicates that the radial maximum relative error continues to reduce while the axial 

error remains constant at about 0.001. As before, the running times increase significantly 

as the mesh spacing reduces to one centimeter. 
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Table 10 Half Core 3D, k Tolerance =lE-7, Blocked Tridiagonal Tolerance = 1E-8 

Two Energy Groups 
Mesh Spacing 
Centimeters 

Radial Maximum 
Relative Error 

Axial Maximum 
Relative Error 

Running 
Time 

(Min:Sec) 
30 0.1 0.001 00:10 
20 0.07 0.001 00:15 
15 0.04 0.001 00:25 
12 0.03 0.001 00:40 
10 0.02 0.001 01:04 
6 0.009 0.001 04:29 
5 0.007 0.001 07:55 
4 0.006 0.001 16:59 
3 0.005 0.001 47:30 

Appendix G contains plots comparing the relative errors as indicated in Table 5 and 

Table 6 using a blocked tridiagonal tolerance of 0.001 and a k tolerance of 1E-5. 

The final code provides the user with the options as shown in Table 11 below. This 

provides the user with the flexibility to choose between a level of maximum relative 

errors and run times corresponding to Table 5, Table 6, and Table 10. 

Table 11 Options for Three Dimensional Models 

Tolerance for k Tolerance for blocked 
Tridiagonal solver 

Reduced relative error, 
Increased run time 

1E-7 1E-8 

Average relative error, 
Faster run time 

1E-5 0.001 
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IV. Conclusions and Recommendations 

Conclusions 

The model provides the power distribution of a homogeneous unreflected reactor core 

in two or three dimensions using either one or two energy groups for a steady state 

reactor. Teachers can use the program to augment fundamental nuclear reactor courses 

by providing students with an additional resource to enhance learning. The program 

allows the user to modify the reactor dimensions and/or core composition and see the 

impacts on the power distribution and criticality within the reactor core. 

Reducing the allowed acceptable tolerance for convergence in the blocked tridiagonal 

solver and the multiplication factor will reduce the normalized maximum relative error 

for the three dimensional models. The major trade off is increasing the computational 

time. Using 1E-5 and 0.01 as the convergence tolerances for the multiplication factor and 

blocked tridiagonal solver respectively, the model yields a power distribution with a 

maximum relative error of about four percent for a mesh spacing of three centimeters, 

using two energy groups for a quarter core calculation. Using 1E-7 and 1E-8 

respectively, the model yielded a maximum relative error of about one half of one percent 

for the half core calculations. To achieve such a low relative error, the running times 

increased from about four minutes to 48 minutes. Because this is a homogeneous system, 

one should take advantage of symmetry and calculate the power distribution in a quarter 

of the core. 

The Visual BASIC 5.0 program is completely exportable to most Windows based 

personal computers. It automatically plots the power distribution, based on the core 
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dimensions and composition input, using Excel and links the chart to the Visual BASIC 

5.0 form. Additionally, it calculates the multiplication factor to determine criticality. 

Recommendations 

The code is flexible enough to allow for future, user-friendly improvements while the 

finite central difference method and criticality search technique are the foundation for 

more complex reactor codes.   The model can be the basis for adding a heterogeneous 

core and other modules including thermal-hydraulics, control adjustments, and depletion. 

Although, the code has some built in error checks, it is not totally "crash proof. 

Several additional error checks should be added as the program is used and tested by 

teachers and students alike. Additionally, an improved help file and automated read input 

statement should be added. 

One approach to developing a heterogeneous model is to convert the unit cells of the 

lattice core to homogeneous cells as shown in Figure 24. Reactor cores are constructed 

of several material compositions including fuel rods, cladding, and coolant. Using the 

general assumption that the net neutron current flow across cell boundaries equals zero, 

one spatially averages the multigroup cross sections of the materials to obtain a group 

cross section for the unit cell. This is usually done for the fast and thermal group effects. 

Equation (54) defines the cell averaged group constant. 
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Figure 24 Fuel-Cell Homogenization 

\    SI cell 

J dE j Z(r,E)<f>(r,E)d3r 

j dEJ </>(r,E)d3 

(54) 

After homogenizing the unit cells, control rods can be added to the homogenized 

core. One can use the cell group constants along with the control rod cross sections in a 

multigroup two dimensional diffusion calculation. These revised flux values can then be 

used to calculate the final group constants for the homogenized fuel assembly. The final 

step is to calculate the flux and power levels in the homogenized core. This can be 

accomplished by dividing the core into equal lattice structures of squares or other 
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geometric shapes that take advantage of symmetry to reduce the computation 

requirements. 

The addition of a thermal-hydraulic module would significantly enhance the model's 

capability. PWR power distributions are coupled to temperature. PWRs use water as a 

coolant that typically enters the bottom of the core and leaves near the top. The coolant 

decreases in density as it absorbs heat moving up through the core. The power density of 

the current model predicts a symmetric power peaking profile that is not truly the case. 

Because of the change in density, the axial power peak is actually slightly toward the 

bottom. The average fuel and moderator temperatures can then be used to adjust the 

macroscopic cross sections for use in the power distribution model. 

Finally, a control adjustment and depletion module can be added. The control 

adjustment module would calculate the adjustments necessary for control rod insertion or 

withdrawal to maintain criticality and the depletion module would account for fuel burn 

up impacts on the reactor core. 
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Appendix A. Derivation of Three Dimensional Source Integration 

Let 

tin PR 7"=n„ l,r(r.zy*dodz (55) 

for a given homogeneous material. Integrating cp yields 

r = 2n^\R<l)n(r,zydrdz. (56) 

Let 

In(r) = 2n^</)n(r,z)dz. (57) 

Using the trapezoid rule to numerically solve the integration with respect to z, where the 

trapezoid rule is 

rb AY( n~1 ^ 
J /(*)*■=£ f(a) + f{b) + 2YJf{xi 

and 

(58) 

yields 

x( =iAx, i = 1,2,3,...n 

A b 

Ax = — 
n 

V(r)~2n 
Az m—i 

J=I 

(59) 

where 

0"(r> z0) = 0 and 0"(r,O) = 0 due to boundary conditions 

Zj = j'Az 

Az = ^. 
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Integrating with respect to r, yields 

/" 
Ar n-\ 

I" (0)0 + r(R)R + 2^In(rj)ri 
1=1 

(60) 

where 

but from equation (57) 

rt = /Ar 

A R Ar = — 

r(R) = 27tj(f>n(R,z)dz = 0. (61) 

Simplifying and combining equations (59) and (60) results in 

n-\   m-\ 

i=l    ;=1 

(62) 

58 

L 



Appendix B. Derivation of Right Circular Cylinder Reactor Core Solution 

The basic equation is 

vV-—4>= v f </> 
D D 

(63) 

where the boundary conditions are 

0(r,±H) = O 

Converting this into right circular cylinder coordinates results in 

13^   ZA\   f&*\ 

r Or 

d(j) 
r— 

V   drJ 
+ + B > = 0 (64) 

where 

l?=±(vZ,-l.). 

Separating the variables and letting 

0(r,z) = R(r)Z(z) 

yields 

^(rR'(r)Z(z))+R(r)Z"(z) + B2R(r)Z(z) = 0. 
r or 

(65) 

Collecting the terms provides 

1 (rR')     Z"(z)      2 

rR(r)     Z{z) 
(66) 

Now setting the equation equal to a constant provides 
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1(Q     ,g2_-Z'0Q_A2 
r i?(r) Z(z) 

(67) 

Solving 

Z"(z)+A2Z(z) = 0 (68) 

where 

/ 4-- 
yields 

Z„(z) = 0« ( nnz^ (69) 

where 

^2 n = 1,3, 

Now solving the second equation 

i(4 
r R(r) 

2        12 + 52=2 (70) 

where 

R(R)=Q> 

-(rR'j+ju2R = 0 (71) 

and 

fi2=B2-A2=-(vlf-la)- 
f    ^2 

v#y 

The solution is in the form of the zeroth order Bessel functions. 
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R(r) = AJo(jur) + CY0(ßr) 

However as r —> 0, Y0 (jur) —> °°, therefore C must equal zero. At the boundary 

(72) 

condition r = R, 

R(R")=O = AJ0(JUR) (73) 

only if A does not equal zero and if juR = vn, where vn is the zeros of the /0. 

Therefore the eigenfunctions and eigenvalues are 

Rn(r) = Jt 

v* J 

rt = 
vR; 

for n = 0,1,2,. 

(74) 

Ba=^(vX/-Z«) = 
r„ \ 

vÄ; 2tf 
(75) 

Equation (75) represents the geometric buckling of the reactor. The general solution the 

problem then becomes 

where A is a normalization factor. 

Cos 
1' nz^ (76) 
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Appendix C. Two Dimension, One Energy Group Visual BASIC Code 

Thesis code by MAJ Will Harman 
This program calculates the radial flux/power profile for a typical right circular 
'cylinder in two dimensions. It uses the standard diffusion equation in a one energy 
group (one-speed) 
homogeneous unreflected reactor core. The equation is solved by using the finite central 
'difference technique. The scheme uses a power iterative technique to solve for 
'flux based upon an inital guess of k effective and the flux. It finds the eigenfunction 
'for the maximum eigenvalue providing the fundamental mode shape for flux. 

Const mnErrDivByZero = 11, mnErrOverFlow = 6 
Const mnErrBadCall = 5 
Private Sub Form_Load() 
Load initial values from Duderstadt page 210-211 
Dim kGuess, FluxGuess, SigmaA, NueSigmaF As Double 
Dim DiffusionCoefficient, Radius, h As Double 
Textl = "" 
Text2 = 0.157 NueSigmaF 1/cm 
Text3 = 9.21 DiffusionCoefficient cm 
Text4 = 120 Radius cm 
Text5 = 0.5 'mesh spacing 
Text6 = 0.9 TC guess 
Text8 = "" 'Critical Rx? 
Text9 = "" Ineffective will be calculated 
TextlO = "" 
Textll = "" 
Textl4 ="" 
End Sub 

Sub Kinetics() 
Dim prompt 'ask user for input 
Dim Valu(2) As Double 
Dim kGuess As Double 
Dim SigmaA As Double 
'Set source document for Excel chart to name and location by user 
OLE2.SourceDoc = ("Textl") 
OLE2. Visible = True 
'Ckeck for numerical entries 
ok = 0 
Forj = 0Tol 

ykk = Checkin(MaskEdBox(j)) 
ok = ok + ykk 

Nextj 
If ok > 0 Then 
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MsgBox ("You must enter positive numbers") 
End If 
'Assign variables to input boxes 
kGuess = MaskEdBox(O) 
FluxGuess = MaskEdBox(2) 'neutron/cmA2 
SigmaA = MaskEdBox(l) '1/cm 
NueSigmaF = CDbl(Text2.Text) 1/cm 
DiffusionCoefficient = CDbl(Text3.Text)       'cm 
Radius = CDbl(Text4.Text) 'cm 
h = CDbl(Text5.Text) 'spatial distance between nodes cm 
n = Radius / h 'number of nodes along radius 
DeltaR = h 'cm 
DeltaZ = h 'cm 
Maxlterations = 1000 'number of iterations for convergence of k 
and source 
Epsilonk = 0.00001 'acceptable error in k 
EpsilonS = 0.015 'acceptable error in S (nueSigmaF*Flux) 
kCriticalityTolerance = 0.0001 
Dim Sl(), S2(), k(), Flux(), ErrorS(), FluxData() 'As Integer 
ReDimSl(n) 
ReDim S2(n) 
ReDim Flux(n) 
ReDim k(MaxIterations + 1) 
ReDim ErrorS(n -1) 
ReDim FluxData(n, 1) 
build initial flux and source guess 
Restart 1: Used in ProgramError 
For i = 0 To n -1 
Flux(i) = FluxGuess 
Sl(i) = NueSigmaF * Flux(i) 
Nexti 
Restart2: Used in ProgramError 
k(0) = kGuess 
On Error GoTo ProgramError 
test = 1 / k(0) 'Check if user input k value. 
'! Outer iterations 
For i = 0 To Maxlterations 
Flux is the only term coming out of Call statement 
Call LinearFiniteDifference(Sl, n, k(i), SigmaA, DiffusionCoefficient, h, Radius, Flux) 
'Convert flux back into source for comparison with previous source 
For m = 0 To n 
S2(m) = NueSigmaF * Flux(m) 'convert flux to S(n+1; neutron/cmA3 
Nextm 
'!Calc area under curve using composite trap rule 
Suml = (h/2#)*S1(0)'0 
Sum2 = (h / 2#) * S2(0) '0 
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For j = 1 To n - 1 
Sum2 = Sum2 + h * S2(j) 
Suml = Suml+h*Sl(j) 
Nextj 

Integral S(n+l)/(l/k(n)*Integral S(n)) 
'Build array of Source errors to use in tolerance test 
On Error GoTo ProgramError 
k(i + 1) = k(i) * Sum2 / Suml Equation 5-274 Duderstadt 
'Calculate relative error between old and new source 
'!run to n-1 because S=0 at BC 

For 1 = 0 To n -1 
ErrorS(l) = Abs((S2(l) - Sl(l)) / S2(l)) Equation 5-275 Duderstadt 
Next 

Find maximum value of ErrorS() 
MaxErrorS = ErrorS(O) 
For 1 = 1 To n - 1 
If (ErrorS(l) > MaxErrorS) Then 
MaxErrorS = ErrorS(l) 
End If 
Nextl 
'Check for tolerances 
If ((Abs((k(i + 1) - k(i)) / k(i)) < Epsilonk)) And (MaxErrorS < EpsilonS) Then Equation 
5-275 Duderstadt 
End outer iterations check for convergence if true 
kEffective = k(i + 1) 
Exit For 
End If 
'reset S1=S2 for next iteration 
Forj =0Ton 
si(j) = S2(j) 
Nextj 
kEffective = k(i + 1) 
Next i 'end outer iteration 
'Check if k=l, if so k=keff=critical Rx 
Numberlterations = I 
MultFactor = Format(k(i), "#.#####") 
If (kEffective > 1# - kCriticalityTolerance) Then 
Text8 = "Yes" 
Text9 = MultFactor 1c(i) 
Else 
Text8 = "No" 
Text9 = MultFactor ' k(i) 
Use perturbation to assist the user in changing SigmaA to get criticality 
DeltaSigmaA = Abs(l# / kGuess -1#) * (-NueSigmaF) Equation 5-306 Duderstadt 
TextlO = SigmaA + DeltaSigmaA 'adjust new SigmaA for criticality 
End If 
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n 

If (i < Maxlterations) Then 
Text 11 = Numberlterations 

Else 
Textl4 = "Exceeded maxiterations before convergence" 

End If 

Build chart using Excel and OLE capability 
Dim ExcelApp As Object 
Dim ExcelChart As Object 
Dim ChartTypeVal As Integer 

'-4100 is the value for the MS Excel constant xBDColumn. Visual 
BASIC does not understand MS Excel constants, so the value must be 
'used instead. 
'xlLine=4 
'xlXYScatter = -4169 
'xl3DSurface=-4103 

Define my chart typ 
ChartTypeVal = -4169 
Set ExcelApp = CreateObject(" excel, application") 
ExcelApp.Visible = False Will not see Excel load, build, and chart 
ExcelApp .Workbooks .Add 
Populate the worksheet in Excel with the power (W/cmA3) 
Power conversion per Ott 
For rwlndex = 0 To n 

ExcelApp.Cells(rwlndex + 2, l).Value = h * rwlndex 
ExcelApp.Cells(rwIndex + 2, 2).Value = Flux(rwlndex) * NueSigmaF / (2.43 * 3.1 * 

10 A 10) W/cmA3 
Next rwlndex 
'select rows and columns in worksheet to chart Starts at Al and highlights all values 
ExcelApp.Range("Al").CurrentRegion.Select 
Set ExcelChart = ExcelApp.Charts.Add() 
ExcelChart.Type = ChartTypeVal 
ExcelChart.SeriesCollection(l).Name = "=""Power""" 
With ExcelChart 

.Axes(xlCategory, xlPrimary).HasTitle = True 

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Radius (cm)" 

.Axes(xl Value, xlPrimary).HasTitle = True 

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Power (Watts/cmA3)" 
End With 
ExcelChart.SaveAs [Textl] 'Save chart/data per user input 

Using the square brackets tells Visual Basic that this is an 
MS Excel command not a Visual Basic command. 

OLE2.CreateLink (Textl) Link to saved chart 
OLE2.Update 'allow immediate update of excel chart 
ExcelApp.Quit 
Set ExcelChart = Nothing 
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Set ExcelApp = Nothing 

ProgramError: 
Select Case Err.Number 
Case mnErrOverFlow 
MsgBox ("You must guess an initial flux to get a non-trivial solution; the code will guess 
1.0E10 neutrons/sec-cmA2") 
FluxGuess = 10000000000# 
Resume Restart 1 
Case mnErrDivByZero 
MsgBox ("You must input a value for k, the code will assume kguess=0.9") 
kGuess = 0.9 
Resume Restart2 
End Select 
End Sub 

Sub LinearFiniteDifference(Sl, m, k, SigmaA, DiffusionCoefficient, h, Radius, Flux) 

'!Solvesy(n+l)"=-l/r*y(n+l)'+SigmaA/D*y(n+l)-l/(D*k(n))*NueSigmaF:,:y(n) 
'!for y(n+l). k(n) and y(n) are calculated in main program. 
'Algorithm 11.3 Burden & Faires 
LowerLimit = 0 'ünner radius 
UpperLimit = m * h '! outer radius 
alpha = 0       '!I.C. y(LowerLimit)=alpha 
beta = 0        '!I.C. y(upperLimit)=beta 
n = m- 1 
ReDim A(n) lower diagonal 
ReDim b(n) 'diagonal 
ReDim C(n) 'upper diagonal 
ReDim D(n) 'A.x=d The d vector 
ReDim l(n) 
ReDim u(n) 
ReDim Z(n) 
ReDim w(n + 1) 
'!Set distance of first node 
x = LowerLimit + h 'cm 
'SBuild diagonals; 
'!a(l) = w(i)+w(i-l) because flux(0)=flux(l)at interior BC 
A(l) = 2 + h A 2 * q(x, SigmaA, DiffusionCoefficient) + (-1 - (h / 2#) * p(x)) No units 
b(l) = -1 + (h / 2#) * p(x) 'no units 
D(l) = -h A 2 * r(x, h, n, k, DiffusionCoefficient, SI) 'neutron/cmA2 
For i = 2 To n -1 

x = LowerLimit + i * h 
A(i) = 2 + h A 2 * q(x, SigmaA, DiffusionCoefficient) 'no units 
b(i) = -1 + (h / 2#) * p(x) 'no units 
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C(i) = -1 - (h / 2#) * p(x) 'no units 
D(i) = -h A 2 * r(x, h, n, k, DiffusionCoefficient, SI) 'neutrons/cmA2 

Next 
x = UpperLimit - h 
A(n) = 2 + h A 2 * q(x, SigmaA, DiffusionCoefficient) 'no units 
C(n) = -1 - (h / 2#) * p(x) 'no units 
D(n) = -h A 2 * r(x, h, n, k, DiffusionCoefficient, SI) + (1 - (h / 2#) * p(x)) * beta 
'neutron/cmA2 
'Crout Factorization for tridiagonal linear systems 
'IBack substitute for solution 
1(1) = A(l) 'no units 
u(l) = b(l)/A(l) 'no units 
Z(l) = D(l) /1(1) 'neutron/cmA2 
For i = 2 To n - 1 

l(i) = A(i) - C(i) * u(i -1) 'no units 
u(i) = b(i) / l(i) 'no units 
Z(i) = (D(i) - C(i) * Z(i - 1)) / l(i) 'neutron/cmA2 

Next 
l(n) = A(n) - C(n) * u(n - 1) 'no units 
Z(n) = (D(n) - C(n) * Z(n -1)) / l(n) 'neutron/cmA2 
'!Set solution flux values 
Flux(n + 1) = beta '!Flux at outer boundary; neutron/cmA2 
Flux(n) = Z(n) 'neutron/cmA2 
For i = n -1 To 1 Step -1 

Flux(i) = Z(i) - u(i) * Flux(i + 1) 'neutron/cmA2 
Next 
Flux(O) = Flux(l) '!Set BC dFlux/dr=0; neutron/cmA2 
End Subroutine LinearFiniteDifference 

End Sub 
'!NOTE: x=radius of core in cm 
Function p(x) 
Real (8):: x 
p = -1 / x 1/cm 
End Function 

Function q(x, SigmaA, DiffusionCoefficient) 
q = SigmaA / DiffusionCoefficient l/cmA2 
End Function 

Function r(x, h, n, k, DiffusionCoefficient, SI) 
'!S1 is an array filled by node position. Must convert x to nodal points. 
If (x = h) Then 
x = l 
Elself (x = n) Then 
x = n 
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Else 
x = x/h 
End If 
r = -l/k*Sl(x)* 1/ DiffusionCoefficient 'neutron/cmA4 

End Function 

Function Checkin(Box) 
If Len(Box) = 0 Then 
Checkin = 1 

End If 
End Function 

Private Sub mnu3D2EnergyGroups_Click() 
Load TwoEnergyGroup 
TwoEnergyGroup.Show 
Unload k 
End Sub 

Private Sub mnu3DOneEnergyGroupItem_Click() 
Load rxfrm 
rxfrm.Show 
Unload k 
End Sub 

Private Sub mnuExitItem_Click() 
End 
End Sub 

Private Sub mnuHelpItem_Click() 
Load Help 
Help.Show 
End Sub 

Private Sub mnuPrintItem_Click() 
k.PrintForm 
End Sub 

Private Sub mnuReactorItem_Click() 
Load Reactor 
Reactor.Show 
End Sub 

Private Sub mnuRunItem_Click() 
Call Kinetics 
End Sub 
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Private Sub mnuStartItem_Click() 
Load ReactorCoreModel 
ReactorCoreModel. S how 
Unload k 
End Sub 

Private Sub Optionl_Click() 
MsgBox ("Try SigmaA=0.1532 1/cm") 
End Sub 
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Appendix D. Three Dimension, One Energy Group Visual Basic Code 

Thesis code by MAJ Will Harman 
This program calculates the radial and axial flux profile (3D) for a typical right 
'circular cylinder. It uses the standard diffusion equation in a one energy group 
'(one-speed)homogeneous reactor core. The equation is solved by using the finite central 
'difference technique using a blocked tridiagonal solver. The scheme uses a power 
iterative 
'technique to solve for flux based upon an inital guess of k effective and the flux. 
It finds the eigenfunction for the maximum eigenvalue providing the fundamental mode 
shape for flux. 

'Common error statements 
Const mnSaveAsFailed = 1004 
Const mnTypeMismatch = 13 

Private Sub Form_Load() 
Load initial values 
Dim kGuess, FluxGuess, SigmaA, NueSigmaF As Double 
Dim DiffusionCoefficient, Radius, h As Double 
Textl = 180 half Rx hieght cm 
Text2 = 0.157 NueSigmaF 1/cm 
Text3 = 9.21 Diffusion Coefficient cm 
Text4 =120 'Core radius cm 
Text6 = "" 
Text7 = 100000000000# ' * 10 A 10 'neutrons/cmA2 
Text8 ="" 
Text9 = "" 
TextlO = "" 
Textll = "" 
TextH = "" 
build fixed selection of mesh spacing in axial and radial cm 
Combol.Addltem "30" 
Combol.Addltem "20" 
Combol.AddItem"15" 
Combol.Addltem "12" 
Combol.AddItem"10" 
Combol.Addltem "6" 
Combol.Addltem "5" 
Combol.Addltem "4" 
Combol.Addltem "3" 
Combol.Addltem "2" 
Combol.Addltem "1" 
Combo2. Addltem "Choose half reactor core" 'Select List Case 0 
Combo2.AddItem "Choose quarter Rx core" 'Select List Case 1 
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Combo3.AddItem "Reduced Relative Error; Slower Run Time" 
Combo3.AddItem "Average Relative Error; Faster Run Time" 
End Sub 

Sub KineticsO 
Dim Valu(2) As Double 
Dim kGuess As Double 
Dim SigmaA As Double 
Dim FluxGuess As Double 
'Set source document for Excel chart to name and location by user 
OLEl.SourceDoc = ("Text6") 
OLEl.Visible = True 
'Ckeck for numerical entries 
ok = 0 
Forj = 0Tol 

ykk = Checkin(MaskEdBox(j)) 
ok = ok + ykk 

Nextj 
If ok > 0 Then 
MsgBox ("You must enter positive numbers") 
End If 
'Check for ouput file location and name 
IfText6 = ""Then 
MsgBox ("You must input an output file location and name") 
End If 
'Assign variables to input boxes 
kGuess = MaskEdBox(O) 
FluxGuess = MaskEdBox(2) 'CDbl(Text7.Text) 'neutron/cmA2 
SigmaA = MaskEdBox(l) 'CDbl(Textl.Text) 1/cm 
NueSigmaF = CDbl(Text2.Text) 1/cm 
DiffusionCoefficient = CDbl(Text3.Text) 'cm 
Radius = CDbl(Text4Text) 'cm 
ZHeight = CDbl(Textl.Text) 'cm 
On Error GoTo ProgramError 
h = CDbl(Combo 1.Text) 'spatial distance between nodes; cm 
n = Radius / h 'number of nodes along radius 
m = ZHeight / h 'number of nodes along z axis 
DeltaR = h 'cm 
DeltaZ = h 'cm 
Maxlterations = 1000 'number of iterations for convergence of k and source 
Provide the user with a choice of relative run times and errors 
If (Combo3.Text = "Reduced Relative Error; Slower Run Time") Then 
kTolerance = 0.0000001 
kCriticalTol = 0.000001 
Else 
kTolerance = 0.00001 
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kCriticalTol = 0.0001 
End If 
Epsilonk = kTolerance 'acceptable error in k: Ref Ott 
EpsilonS = 0.015 'acceptable error in S (nueSigmaF*Flux) 
kCriticalityTolerance = kCriticalTol 
Dim Sl(), S2(), k(), Flux(), ErrorS(), FluxRadial(), FluxAxial() 'As Integer 
DimA(),l(),u() 
ReDimSl(n-l,m-l)'S(n) 
ReDimS2(n-l,m-l)'S(n+l) 
ReDim k(MaxIterations + 1) 
ReDim Flux(n - 1, m - 1) 
ReDim ErrorS(n -1, m - 1) 
ReDim FluxRadial(n, 1) 
ReDim Flux Axial (m, 1) 
ReDim A(n -1, m - 1) 'stores main diagonal of matrix 
ReDim l(n -1, m - 1) 'stores lower diag of tridiag matrix 
ReDim u(n - 1, m -1) 'stores upper diag of tridiag matrix 
'Calculate initial source 
For i = 0 To n - 1 
Forj=0Tom-l '(m-l)/2' 
Flux(i, j) = FluxGuess 'neutron/cmA2 
Sl(i, j) = NueSigmaF * Flux(i, j) 'neutron/cmA3; 
Nextj 
Nexti 

Build diagonals of the tridiagonal in the blocked system by selecting reactor 
Select Case Combo2.ListIndex 'either half or quarter of Rx. Boundaries change. 
Case 0 Half Rx core 
For j = 1 To m -1 'j=row position along z axis 

For i = 1 To n -1 'i=column position along radius 
Ifi = lThen 
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaA / DiffusionCoefficient 
Hold2 = (1# / DeltaR A 2) -1# / (2# * DeltaR A 2)    'add in boundary condition 

flux(0,j)=flux(l,j) 
A(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units 
Else 
'no units for A(i,j) 
A(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaA / DiffusionCoefficient) * 

DeltaZ A 2) 
End If 

Nexti 
Nextj 

Case 1 'Quarter Rx core 
For j = 1 To m - 1 'j=row position along z axis 

For i = 1 To n -1 'i=column position along radius 
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If (i = 1 And j = m - 1) Then 'flux(i,j)=flux(i,j-l)=flux(i-l,j) 
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaA / DiffusionCoefficient 
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2)    'add in boundary condition 

flux(0,j)=flux(l,j) 
A(i, j) = ((Holdl + Hold2 + 1 / DeltaZ A 2) * DeltaZ A 2) 'no units 

Elself i = 1 Then 'flux(i,j)=flux(i-l,j) 
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaA / DiffusionCoefficient 
Hold2 = (1# / DeltaR A 2) - 1# / (2# * i * DeltaR A 2)    'add in boundary condition 

flux(0,j)=flux(l,j) 
A(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units 

Elself j = m -1 Then 'flux(i,j)=flux(i,j-l) 
A(i, j) = DeltaZ A 2 * ((-2# / DeltaR A 2) - (1# / DeltaZ A 2) - SigmaA / 

DiffusionCoefficient) 
Else 
A(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaA / DiffusionCoefficient) * 

DeltaZ A 2) 
End If 
Nexti 

Nextj 
End Select 
'build lower diagonal of tridiagonal matrix 
For j = 1 To m - 1 'j=row position along z axis 

For i = 1 To n - 2 'i=column position along radius 
l(i, j) = (1# / DeltaR A 2 -1# / (2# * ((i + 1#) * DeltaR A 2))) * DeltaZ A 2 'no units 
Nexti 

Nextj 
build upper diag. of tridiag. matrix 
Forj = 1 Tom-1 

For i = 1 To n - 2 'no units for u(i,j) 
u(i, j) = (1# / DeltaR A 2 + 1# / (2# * (i * DeltaR A 2))) * DeltaZ A 2 
Nexti 

Nextj 

k(0) = kGuess 
'! Outer iterations 
For i = 0 To Maxlterations 
Flux is the only term coming out of Call statement and it is built 
'so that the first column of the flux matrix equals the flux in the 
'm-1 row of the Rx core. 
Call ThreeDSolver(Sl, A, 1, u, n, m, k(i), SigmaA, DiffusionCoefficient, DeltaR, DeltaZ, 
Flux) 
build 3D S2 
Select Case Combo2.ListIndex half or quarter Rx 
Case 0 naif of Rx 
For ii = 0 To n -1 
Forj = 0 To ra - 1 
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If j = 0 Then 
S2(ii, 0) = 0 BC 
Elself (ii = 0 And j <> 0) Then 
S2(0, j) = NueSigmaF * Flux(l, m - j) Flux(0,j)=Flux(l,j) 
Else 
S2(ii, j) = NueSigmaF * Flux(ii, m - j) 
End If 
Nextj 
Next ii 

Case 1 'Quarter of Rx 
For ii = 0 To n -1 
For j = 0 To m -1 
If(ii = OAndj=0)Then 
S2(0, 0) = NueSigmaF * Flux(l, m - 1) 
Elself (ii = 0 And j <> 0) Then 
S2(0, j) = NueSigmaF * Flux(l, m - j) 
Elself (j = 0 And ii <> 0) Then 
S2(ii, 0) = NueSigmaF * Flux(ii, m -1) 
Else 
S2(ii, j) = NueSigmaF * Flux(ii, m - j) 
End If 
Nextj 
Next ii 
End Select 

Suml = 0 
Sum2 = 0 
Build 3D integration of S(n+1) and S(n) using composite trap, rule 
Forj = 1 Tom- 1 
For b = 1 To n - 1 

Suml = Suml +b*Sl(b,j) 
Sum2 = Sum2 + b * S2(b, j) 

Nextb 
Nextj 
Integral S(n+l)/(l/k(n)*Integral S(n)) to find next k value 
Build array of Source errors to use in tolerance test 
k(i + 1) = k(i) * Sum2 / Suml Equation 5-275 Duderstadt 
'Calc 3D relative error between old and new source 
For ii = 1 To n -1 

For j = 1 To m - 1 
ErrorS(ii, j) = Abs((S2(ii, j) - Sl(ii, j)) / Abs(S2(ii, j))) 
Nextj 

Next ii 
Find maximum value of ErrorS() 
MaxErrorS = ErrorS(l, 1) 
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For ii = 1 To n -1 
Forj = 1 Tom -1 
If (ErrorS(ii, j) > MaxErrorS) Then 
MaxErrorS = ErrorS(ii, j) 
End If 
Nextj 
Next ii 
'Check for tolerances 
If ((Abs((k(i + 1) - k(i)) / k(i)) < Epsilonk)) And (MaxErrorS < EpsilonS) Then 
End outer iterations check for convergence 
kEffective = k(i + 1) 
Exit For 
End If 
Reassign S2 to SI for the next iteration 
For ii = 1 To m -1 
Forj = 1 Ton -1 
Sl(j,ii) = S2(j,ii) 

Nextj 
Next ii 
kEffective = k(i + 1) 
Next i 'end outer iteration 

'Check if k=l, if so k=keff=critical Rx 
Numberlterations = I 
MultFactor = Format(k(i), "#.#####") 
If (kEffective > 1# - kCriticalityTolerance) Then 
Text8 = "Yes" 
Text9 = MultFactor k(i) 
Else 
Text8 = "No" 
Text9 = MultFactor Ts:(i) 
Use perturbation to assist the user in changing SigmaA to get criticality 
DeltaSigmaA = Abs(l# / kGuess -1#) * (-NueSigmaF) 
TextlO = SigmaA + DeltaSigmaA 
End If 

Textl 1 = Numberlterations 
'   Textl4 = "Exceeded maxiterations before convergence" 

Build Excel chart and spreadsheet 
Dim ExcelApp As Object 

Dim ExcelChart As Object 
Dim ChartTypeVal As Integer 
'-4100 is the value for the MS Excel constant xBDColumn. Visual 
Basic does not understand MS Excel constants, so the value must be 
\ised instead. 
'xlLine=4 
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'xlXYScatter = -4169 
'xl3DSurface=-4103 

ChartTypeVal = -4103 
Set ExcelApp = CreateObject("excel.application") 
ExcelApp.Visible = False Hide the Excel appliction from the user 
Excel App .Workbooks. Add 
Populate the Excel spreadsheet with core power values and locations 
Select Case Combo2.ListIndex Tialf or quarter Rx 
Case 0 half Rx 

For rwlndex = 0 To n 
ExcelApp.Cells(rwIndex + 2, l).Value = h * rwlndex 
For collndex = 0 To m 
ExcelApp.Cells(l, collndex + 2).Value = h * collndex 
If rwlndex = n Then 
ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = 0 
Elself collndex = m Then 
ExcelApp.Cells(rwlndex + 2, collndex + 2).Value = 0 
Elself collndex = 0 Then 
ExcelApp.Cells(rwIndex + 2, 2).Value = 0 
Else 

ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = S2(rwlndex, collndex) / (2.43 * 
3.1*10A10)'NueSigmaF 

End If 
Next collndex 

Next rwlndex 
Case 1 'Quarter Rx 
For rwlndex = 0 To n 

ExcelApp.Cells(rwIndex + 2, 1).Value = h * rwlndex 
For collndex = 0 To m 

ExcelApp.Cells(l, collndex + 2).Value = h * collndex 
If rwlndex = n Then 
ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = 0 
Elself collndex = m Then 
ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = 0 

Elself collndex = 0 Then 
ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = S2(rwlndex, collndex) / (2.43 

* 3.1* 10 MO)   NueSigmaF 
Else 

ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = S2(rwlndex, collndex) / (2.43 * 
3.1* 10 A 10) NueSigmaF 

End If 
Next collndex 

Next rwlndex 
End Select 
'select rows and columns in worksheet to chart 
ExcelApp.Range("Al").CurrentRegion.Select 
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Set ExcelChart = ExcelApp.Charts.Add() 
'Add legend information 
ExcelChart.Type = ChartTypeVal 

With ExcelChart 
.HasTitle = True 
.ChartTitle.Characters.Text = "Power Plot of Reactor Core" 
.Axes(xlCategory).HasTitle = True 
.Axes(xlCategory).AxisTitle.Characters.Text = "Height (cm)" 
.Axes(xlSeries) .HasTitle = True 
.Axes(xlSeries).AxisTitle.Characters.Text = "Radius (cm)" 
.Axes(xlValue).HasTitle = True 
.Axes(xlValue).AxisTitle.Characters.Text = "Power (Watts/cmA3)" 

End With 
With ExcelChart.Axes(xlCategory) 

.HasMajorGridlines = False 

.HasMinorGridlines = False 
End With 
With ExcelChart.Axes(xlSeries) 

.HasMajorGridlines = False 

.HasMinorGridlines = False 
End With 
With ExcelChart.Axes(xlValue) 

.HasMajorGridlines = True 

.HasMinorGridlines = False 
End With 
ExcelChart. WallsAndGridlines2D = False 
ExcelChart.HasLegend = False 

On Error GoTo ProgramError 
ExcelChart.SaveAs [Text6] 
'Link Excel chart to saved name and location for update 
OLEl.CreateLink (Text6) 
OLE 1.Update 'allow immediate update of excel chart 
ExcelApp.Quit 

Set ExcelChart = Nothing 
Set ExcelApp = Nothing 

ProgramError: 
Select Case Err.Number 
Case mnTypeMismatch 

MsgBox ("You must select a mesh spacing; the code will assuem 20 cm") 
h = 20 
Resume Next 
Case mnSaveAsFailed 
MsgBox ("You must provide a name and file storage location to update the plot and store 
data") 
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Resume Next 
End Select 
End Sub 

Function Checkin(Box) 
IfLen(Box) = OThen 
Checkin = 1 

End If 
End Function 

Sub ThreeDSolver(Sl, A, 1, u, n, m, kEffective, SigmaA, DiffusionCoefficient, DeltaR, 
DeltaZ, X2) 
This 3D block tridiagonal solver uses an iterative technique similar to Gauss-Seidel. 
It sets up the banded tridiagonal system based on the discretized right circular cyl 
'diffusion equation and dismantles that into a blocked tridiagonal system. 
Each block is then solved with a standard tridiagonal solver using initial guesses 
'for the solution. The system iterates until convergence of the solution (flux at the 
'inner mesh points) 
ReDim b(n -1, m -1) 'stores B of A.x=B 
ReDim X2(n -1, m -1) 'stores solution at mesh points 
ReDim Xl(n -1, m -1) 'Stores the previous solution at mesh points 
ReDim e(n - 1, m -1) 'stores rhs of block tridiag system 
ReDim AA(n -1) 'Stores the main diag (jth column of A array) of block tridiag 
ReDim LL(n - 1) 'Stores the lower diag (jth column of 1 array) of block tridiag 
ReDim UU(n -1) 'Stores the upper diag (jth column of u array) of block tridiag 
ReDim EE(n -1) 'Stores the rhs diag of block tridiag 
ReDim XX(n) 'stores jth column solution vector from tridiagonal solver 
ReDim ErrorX(n - 1, m - 1) holds the max error in convergence of solution in tridiag 
build B vector of Ax=B. B contains the iterative guess for flux. 
Uses Sl(i,m-j) to convert the (i,j) values into m-j rows for the b matrix. 
For j = 1 To m -1 

For i = 1 To n -1 
Xl(i, j) = 0 'fill convergence test array XI with 0 
X2(i, j) = 0 'fill with 0 
b(i, j) = DeltaZ A 2 * (-Sl(i, m - j) / (kEffective * DiffusionCoefficient)) 'neutron/cmA2 
Nexti 

Nextj 
'solve block tridiagonal system. See Solution Methods of my thesis. 
For w = 1 To 10000 

For i = 1 To n -1 
e(i, 1) = b(i, 1) - X2(i, 2) 'neutron/cmA2 
EE(i) = e(i, 1) 'neutron/cmA2 typical 
LL(i) = l(i, 1) EL Lower diagonal of tridiagonal;no units typical 
AA(i) = A(i, 1) AA main diagonal of tridiagoanl; no units typical 
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UU(i) = u(i, 1) UU upper diagonal of tridiagonal; no units typical 
Nexti 
Call Tridiag(n, LL, AA, UU, EE, XX) 'returns flux at row m-1 in core 
For i = 1 To n - 1 

X2(i, 1) = XX(i) 'neutrons/cmA2 typical 
Nexti 
Forj = 2To(m-2) 

For i = 1 To n -1 
e(i,j) = b(i,j)-X2(i,j-l)-X2(i,j + l) 
EE(i) = e(i,j) 
LL(i) = l(i,j) 
AA(i) = A(i,j) 
UU(i) = u(i,j) 

Nexti 
Call Tridiag(n, LL, AA, UU, EE, XX) 

For i = 1 To n -1 
X2(i,j) = XX(i) 

Nexti 
Nextj 
For i = 1 To n -1 

e(i, m-1) = b(i, m-1) -X2(i, m- 2) 
EE(i) = e(i, m - 1) 
LL(i) = l(i, m -1) 
AA(i) = A(i, m - 1) 
UU(i) = u(i, m - 1) 

Nexti 
Call Tridiag(n, LL, AA, UU, EE, XX) 
For i = 1 To n -1 

X2(i, m - 1) = XX(i) 
Nexti 

For v = 1 To n -1 
For j = 1 To m - 1 
ErrorX(v, j) = Abs((X2(v, j) - Xl(v, j)) / Abs(X2(v, j))) 
Nextj 

Next v 
Find maximum value of ErrorS() 
MaxErrorX = ErrorX(l, 1) 
For i = 1 To n - 1 
Forj = 1 Tom -1 
Xl(i,j) = X2(i,j)'update XI 
If (ErrorX(i, j) > MaxErrorX) Then 
MaxErrorX = ErrorX(i, j) 
End If 
Nextj 
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Nexti 
If (Combo3.Text = "Reduced Relative Error; Slower Run Time") Then 
Tolerance = 0.00000001 
Else 
Tolerance = 0.001 
End If 

If (MaxErrorX < Tolerance) Then 
Exit For 
End If 

'Set boundary conditions 
Nextw 
If (w > 10000) Then 
MsgBox ("Exceeded block tridiagonal maxiterations before convergence") 
End If 
End Sub 

Sub Tridiag(n, LL, AA, UU, EE, XX) TL=lower diag, AA=Diag, UU=Upper 
diag,EE=A.x 
'Crout Factorization for tridiagonal linear systems 
'!Back substitute for solution 
m = n -1 
ReDim Lower(m) 
ReDim Upper(m) 
ReDim Z(m) 
Lower(l) = AA(1) 'no units 
Upper(l) = UU(1) / AA(1) 'no units 
Z(l) = EE(1) / Lower(l) 'neutron/cmA2 
For i = 2 To m - 1 

Lower(i) = AA(i) - LL(i - 1) * Upper(i -1) 'no units 
Upper(i) = UU(i) / Lower(i) 'no units 
Z(i) = (EE(i) - LL(i - 1) * Z(i -1)) / Lower(i) 'neutron/cmA2 

Next 
Lower(m) = AA(m) - LL(m -1) * Upper(m -1) 'no units 
Z(m) = (EE(m) - LL(m - 1) * Z(m -1)) / Lower(m) 'no units 
'!Set solution flux values 
XX(m + 1) = 0 '!Flux at outer boundary; neurton/cmA2 
XX(m) = Z(m) 'neutron/cmA2 
For i = m -1 To 1 Step -1 

XX(i) = Z(i) - Upper(i) * XX(i + 1) neutron/cmA2 
Next 
XX(0) = XX(1) '!Set BC dFlux/dr=0; 'neutron/cmA2 
End Sub Tridiagonal 
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Private Sub mnu2DOneEnergyGroupItem_Click() 
Loadk 
k.Show 
Unload rxfrm 
End Sub 

Private Sub mnu3DTwoEnergyGroupItem_Click() 
Load TwoEnergyGroup 
TwoEnergyGroup.Show 
Unload rxfrm 
End Sub 

Private Sub mnuExitItem_Click() 
End 
End Sub 

Private Sub mnuHelpItem_Click() 
Load Help 
Help.Show 
End Sub 

Private Sub mnuPrintItem_Click() 
rxfrm.PrintForm 
End Sub 

Private Sub mnuReactorItem_Click() 
Load Reactor 
Reactor.Show 
End Sub 

Private Sub mnuRunItem_Click() 
Call Kinetics 
End Sub 

Private Sub mnuStartFormItem_Click() 
Load ReactorCoreModel 
ReactorCoreModel.Show 
Unload rxfrm 
End Sub 

Private Sub Option l_Click() 
MsgBox ("Try SigmaA=0.1532 1/cm") 
End Sub 

Private Sub Text5_Change() 
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End Sub 
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Appendix E. Three Dimension, Two Energy Groups Visual Basic Code 

Thesis code by MAJ Will Harman 
This program calculates the radial and axial Flux/Power profile (3D) for a typical right 
'circular cylinder homogeneous reactor core using two energy groups. It uses the 
standard 
'diffusion equation. The equation is solved by using the finite central 
'difference technique using blocked tridiagonal solvwer. 
The scheme uses a power iterative technique to solve for Fluxl and Flux2 based upon an 
'inital guess of k effective and Fluxl and Flux2. It finds the eigenfunction for the 
maximum 
'eigenvalue providing the fundamental mode shape for Fluxl and Flux2. 

Private Sub Form_Load() 
ILoad initial values 
Dim kGuess, FluxlGuess, SigmaAl, NueSigmaFl As Double 
Dim DiffusionCoefficientl, Radius, h As Double 
Textl = 180 half Rx hieght cm 
Text2 = 0.008476 NueSigmaFl 1/cm 
Text3 = 1.2627 DiffusionCoefficientl cm 
Text4 = 120 'Core radius cm 
Text5 = 0.18514 NueSigmaF2 1/cm 
Text6 ="" 
Text7 = 0.3543 DiffusionCoefficient2 cm 
Text8 ="" 
Text9 = "" 
TextlO = "" 
Textll = "" 
Textl2 = 0.121 'SigmaR2 1/cm 
Textl3 = 0.02619 'SigmaRl 
Textl4 = 0.01207 'SigmaAl 1/cm 
Text 15 = 0.121 'SigmaA2 1/cm 
Textl6 = 0.01412 'SigmaScatterl2 1/cm 
Textl7 = 0 'SigmaScatter22 1/cm 
build fixed selection of mesh spacing in axial and radial cm 
Combol.Addltem "30" 
Combol.Addltem "20" 
Combol.Addltem "15" 
Combol.Addltem "12" 
Combol.Addltem "10" 
Combol.Addltem "6" 
Combol.Addltem "5" 
Combol.Addltem "4" 
Combol.Addltem "3" 
Combol.Addltem "2" 
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Combol.Addltem "1" 
Combo2.AddItem "Choose half reactor core" 'Select List Case 0 
Combo2.AddItem "Choose quarter Rx core" 'Select List Case 1 
Combo3.AddItem "Reduced Relative Error; Slower Run Time" 
Combo3 Addltem "Average Relative Error; Faster Run Time" 
End Sub 

Sub Kinetics() 
Dim Valu(2) As Double 
Dim kGuess As Double 
Dim SigmaAl As Double 
Dim Flux 1 Guess As Double 
Dim Flux2Guess As Double 
'Set source document for Excel chart to name and location by user 
OLEl.SourceDoc = ("Text6") 
OLEl.Visible = True 
OLE2.SourceDoc = ("Text6") 
OLE2. Visible = True 
'Ckeck for numerical entries 
ok = 0 
Forj=0Tol 

ykk = Checkin(MaskEdBox(j)) 
ok = ok + ykk 

Nextj 
If ok > 0 Then 
MsgBox ("You must enter positive numbers") 
End If 
'Check for ouput file location and name 
IfText6 = ""Then 
MsgBox ("You must input an output file location and name") 
End If 
Assign variables to input boxes 
kGuess = MaskEdBox(O) 
FluxlGuess = MaskEdBox(l) 'CDbl(Text7Text) 'neutron/cmA2 
Flux2Guess = MaskEdBox(2) 
SigmaAl = CDbl(Textl4.Text) 1/cm 
SigmaA2 = CDbl(Textl5.Text) 1/cm 
NueSigmaFl = CDbl(Text2.Text) 1/cm 
NueSigmaF2 = CDbl(Text5.Text) 1/cm 
DiffusionCoefficientl = CDbl(Text3Text) 'cm 
DiffusionCoefficient2 = CDbl(Text7.Text) 'cm 
SigmaRl = CDbl(Textl3.Text) 1/cm (SigmaTotal-SigmaScatter) 
SigmaR2 = CDbl(Textl2.Text) 1/cm (SigmaTotal-SigmaScatter) 
SigmaScatterl2 = CDbl(Textl6.Text) 1/cm 
Radius = CDbl(Text4.Text) 'cm 
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ZHeight = CDbl(Textl.Text) 'cm 
h = CDbl(Combol.Text) 'spatial distance between nodes; cm 
n = Radius / h 'number of nodes along radius 
m = ZHeight / h 'number of nodes along z axis 
DeltaR = h 'cm 
DeltaZ = h 'cm 
Maxlterations = 1000 'number of iterations for convergence of k and source 
Provide the user a choice of run times and relative error 
If (Combo3.Text = "Reduced Relative Error; Slower Run Time") Then 
kTolerance = 0.0000001 
kCriticalTol = 0.000001 
Else 
kTolerance = 0.00001 
kCriticalTol = 0.0001 
End If 
Epsilonk = kTolerance 'acceptable error in k; Ref Ott 
EpsilonS = 0.015 'acceptable error in S (NueSigmaFPFluxl) 
kCriticalityTolerance = kCriticalTol 
Dim Sl(), S2(), k(), FluxlO, ErrorS()', FluxlRadial(), FluxlAxial() 'As Integer 
Dim Flux2(), Flux2Radial(), Flux2Axial() As Integer 
DimAl(),A2(),l(),u() 
ReDimSl(n-l,m-l)'S(n) 
ReDim S2(n - 1, m -1) 'S(n+1) 
ReDim k(MaxIterations + 1) 
ReDim Fluxl(n- l,m- 1) 
ReDim Flux2(n - l,m- 1) 
ReDim ErrorS(n - 1, m - 1) 
ReDim Al(n-l,m-l) 'stores main diagonal of matrix 
ReDim A2(n - 1, m -1) 'stores main diagonal of matrix 
ReDim l(n -1, m -1) 'stores lower diag of tridiag matrix 
ReDim u(n -1, m -1) 'stores upper diag of tridiag matrix 
'Calculate initial source two D 
For i = 0 To n -1 
Forj=0Tom-l '(m-l)/2' 
Fluxl(i, j) = FluxlGuess 'neutron/cmA2 
Flux2(i, j) = Flux2Guess 'neutron/cmA2 
Sl(i, j) = NueSigmaF2 * Flux2(i, j) + NueSigmaFl * Fluxl(i, j) 'neutron/cmA3; 
Cos(3.141592654 * j * DeltaZ / Height) * Bessel 
Nextj 
Nexti 

Build diagonals of the tridiagonal in the blocked system for Fluxl 
Select Case Combo2.ListIndex 'either half or quarter of Rx. Boundaries change. 
Case 0 Half Rx core 
For j = 1 To m - 1 'j=row position along z axis 

For i = 1 To n -1 'i=column position along radius 
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Ifi = lThen 
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaRl / DiffusionCoefficientl 
Hold2 = (1# / DeltaR A 2) - 1# / (2# * i * DeltaR A 2)    'add in boundary condition 

Fluxl(0,j)=Fluxl(l,j) 
Al(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units 
Else 
'no units for A(i,j) 
Al(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaRl / DiffusionCoefficientl) * 

DeltaZ A 2) 
End If 

Next i 
Nextj 

Case 1 'Quarter Rx core 
For j = 1 To m - 1 'j=row position along z axis 

For i = 1 To n - 1 'i=column position along radius 
If (i = 1 And j = m -1) Then Fluxl(i,j)=Fluxl(i,j-l)=Fluxl(i-l,j) 
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaRl / DiffusionCoefficientl 
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2)    'add in boundary condition 

Fluxl(0,j)=Fluxl(l,j) 
Al(i, j) = ((Holdl + Hold2 + 1 / DeltaZ A 2) * DeltaZ A 2) 'no units 

Elself i = 1 Then Fluxl(i,j)=Fluxl(i-lj) 
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaRl / DiffusionCoefficientl 
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2)    'add in boundary condition 

Fluxl(0,j)=Fluxl(l,j) 
Al(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units 

Elself j = m - 1 Then Fluxl(i,j)=Fluxl(i,j-l) 
Al(i, j) = DeltaZ A 2 * ((-2# / DeltaR A 2) - (1# / DeltaZ A 2) - SigmaRl / 

DiffusionCoefficient 1) 
Else 
Al(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaRl / DiffusionCoefficientl) * 

DeltaZ A 2) 
End If 
Nexti 

Nextj 
End Select 
Build diagonal of the tridiagonal for Flux2 
Select Case Combo2.ListIndex 'either half or quarter of Rx. Boundaries change. 
Case 0 Half Rx core 
For j = 1 To m - 1 'j=row position along z axis 

For i = 1 To n -1 'i=column position along radius 
Ifi = lThen 
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaR2 / DiffusionCoefficient2 
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2)    'add in boundary condition 

Fluxl(0,j)=Fluxl(lj) 
A2(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units 
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Else 
'no units for A(i,j) 
A2(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaR2 / DiffusionCoefficient2) * 

DeltaZ A 2) 
End If 

Nexti 
Nextj 

Case 1 'Quarter Rx core 
For j = 1 To m - 1 'j=row position along z axis 

For i = 1 To n - 1 'i=column position along radius 
If (i = 1 And j = m - 1) Then Fluxl(i,j)=Fluxl(i,j-l)=Fluxl(i-l,j) 
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaR2 / DiffusionCoefficient2 
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2)    'add in boundary condition 

Fluxl(0,j)=Fluxl(l,j) 
A2(i, j) = ((Holdl + Hold2 + 1 / DeltaZ A 2) * DeltaZ A 2) 'no units 
Elself i = 1 Then Fluxl(i,j)=Fluxl(i-l,j) 
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaR2 / DiffusionCoefficient2 
Hold2 = (1# / DeltaR A 2) - 1# / (2# * i * DeltaR A 2)    'add in boundary condition 

Fluxl(0,j)=Fluxl(l,j) 
A2(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units 
Elself j = m - 1 Then Fluxl(i,j)=Fluxl(i,j-l) 
A2(i, j) = DeltaZ A 2 * ((-2# / DeltaR A 2) - (1# / DeltaZ A 2) - SigmaR2 / 

DiffusionCoefficient2) 
Else 
A2(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaR2 / DiffusionCoefficient2) * 

DeltaZ A 2) 
End If 
Nexti 

Nextj 
End Select 
build lower diagonal of tridiagonal matrix 
For j = 1 To m -1 'j=row position along z axis 

For i = 1 To n - 2 'i=column position along radius 
l(i, j) = (1# / DeltaR A 2 - 1# / (2# * ((i + 1#) * DeltaR A 2))) * DeltaZ A 2 'no units 
Nexti 

Nextj 
build upper diag. of tridiag. matrix 
Forj = 1 Tom-1 

For i = 1 To n - 2 'no units for u(i,j) 
u(i, j) = (1# / DeltaR A 2 + 1# / (2# * (i * DeltaR A 2))) * DeltaZ A 2 
Nexti 

Nextj 

k(0) = kGuess 
'! Outer iterations 
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For i = 0 To Maxlterations 
Fluxl is the only term coming out of Call statement and it is built 
'so that the first column of the Fluxl matrix equals the Fluxl in the 
'm-1 row of the Rx core. 
SolvingFlux = 1 'Selection of B vector in A.x=B 
'Solve for fast flux values 
Call ThreeDSolver(SolvingFlux, SI, Al, 1, u, n, m, k(i), DeltaR, DeltaZ, Fluxl, Fluxl) 
SolvingFlux = 2 'Selection of B vector in A.x=B 
Use fast flux values and solve for thermal values 
Call ThreeDSolver(SolvingFlux, SI, A2,1, u, n, m, k(i), DeltaR, DeltaZ, Fluxl, Flux2) 
huild 3D S2 
Select Case Combo2.ListIndex half or quarter Rx 
Case 0 half of Rx 
For ii = 0 To n -1 
Forj = 0 To m -1 
Ifj=0Then 
S2(ii, 0) = 0 BC 
Elself ii = 0 Then 
S2(0, j) = NueSigmaFl * Fluxl(l, m - 1) + NueSigmaF2 * Flux2(l, m - j) 
Fluxl/2(0,j)=Fluxl/2(l,j) 
Else 
S2(ii, j) = NueSigmaFl * Fluxl(ii, m - j) + NueSigmaF2 * Flux2(ii, m - j) 
End If 
Nextj 
Next ii 

Case 1 'Quarter of Rx 
For ii = 0 To n -1 
Forj = 0 To m - 1 
If(ii = OAndj=0)Then 
S2(0, 0) = NueSigmaFl * Fluxl(l, m - 1) + NueSigmaF2 * Flux2(l, m - 1) 
Elself ii = 0 Then 
S2(0, j) = NueSigmaFl * Fluxl(l, m - j) + NueSigmaF2 * Flux2(l, m - j) 
Elself (j = 0 And ii <> 0) Then 
S2(ii, 0) = NueSigmaFl * Fluxl(ii, m - 1) + NueSigmaF2 * Flux2(ii, m - 1) 
Else 
S2(ii, j) = NueSigmaFl * Fluxl(ii, m - j) + NueSigmaF2 * Flux2(ii, m - j) 
End If 
Nextj 
Next ii 
End Select 

Suml = 0 
Sum2 = 0 
Build 3D integration of S(n+1) and S(n) using composite trap, rule 
Forj = 1 Tom- 1 
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For b = 1 To n -1 
Suml = Suml+b*Sl(b,j) 
Sum2 = Sum2 + b * S2(b, j) 

Nextb 
Nextj 
Integral S(n+l)/(l/k(n)*Integral S(n)) to find next k value 
Build array of Source errors to use in tolerance test 
k(i + 1) = k(i) * Sum2 / Suml Equation 5-275 Duderstadt 
'Calc 3D relative error between old and new source 
For ii = 1 To n -1 

Forj = 1 Tom-1 
ErrorS(ii, j) = Abs((S2(ii, j) - Sl(ii, j)) / Abs(S2(ii, j))) 
Nextj 

Next ii 
Find maximum value of ErrorS() 
MaxErrorS = ErrorS(l, 1) 
For ii = 1 To n - 1 
For j = 1 To m -1 
If (ErrorS(ii, j) > MaxErrorS) Then 
MaxErrorS = ErrorS(ii, j) 
End If 
Nextj 
Next ii 
'Check for tolerances 
If ((Abs((k(i + 1) - k(i)) / k(i)) < Epsilonk)) And (MaxErrorS < EpsilonS) Then 
End outer iterations check for convergence 
kEffective = k(i + 1) 
Exit For 
End If 
Reassign S2 to SI for the next iteration 
For ii = 1 To m -1 
Forj = 1 Ton - 1 
Sl(j,ii) = S2(j,ii) 

Nextj 
Next ii 
kEffective = k(i + 1) 
Next i 'end outer iteration 
'Check if k=l, if so k=keff=critical Rx 
Numberlterations = I 
MultFactor = Format(k(i), "#.#####") 
If (kEffective > 1# - kCriticalityTolerance) Then 
Text8 = "Yes" 
Text9 = MultFactor ^(i) 
Else 
Text8 = "No" 
Text9 = MultFactor 'k(i) 
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MsgBox ("The system is not critical. Please try changing the core composition density" 
&_ 

" or core geometry") 
End If 

Text 11 = Numberlterations 
If (i > 1000) Then 
MsgBox ("Exceeded maxiterations before convergence") 
End If 

Build Excel chart and spreadsheets 
Dim ExcelApp As Object 
Dim ExcelChartl As Object 
Dim ExcelChart2 As Object 
Dim ChartTypeVal As Integer 

-4100 is the value for the MS Excel constant xBDColumn. Visual 
Basic does not understand MS Excel constants, so the value must be 
'used instead. 
'xlLine=4 
'xlXYScatter = -4169 
'xl3DSurface=-4103 

ChartTypeVal = -4169 '-4103 
Set ExcelApp = CreateObject("excel.application") 

ExcelApp.Visible = False 
ExcelApp .Workbooks .Add 
Allow the user to choose which node to plot the data on both radial and axial 
Dim prompt 1, prompt2 
promptl = "The number of interior radial mesh spaces =" & n _ 
& ". Please choose the mesh point between 0 and " & n & " to plot the axial power." 
plotAxial = InputBox$(promptl) 
prompt2 = "The number of interior axial mesh spaces =" & m _ 
& ". Please choose the interior mesh point between 0 and " & m & " to plot the radial 
power." 
plotRadial = InputBox$(prompt2) 
Select Case Combo2.ListIndex half or quarter Rx 
Case 0 half Rx 
For rwlndex = 0 To n 
Fill Excel sheet 1 with Radial power data 

ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, l)Value = h * rwlndex 
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 2).Value = Flux 1 (rwlndex, m - 

plotRadial) * NueSigmaFl / (2.43 * 3.1 * 10 A 10) W/cmA3 
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 3).Value = Flux2(rwlndex, m - 

plotRadial) * NueSigmaF2 / (2.43 * 3.1 * 10 A 10) W/cmA3 
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 4).Value = (Flux 1 (rwlndex, m - 

plotRadial) * NueSigmaFl + Flux2(rwlndex, m - plotRadial) * NueSigmaF2) / (2.43 * 
3.1*10A10)'W/cmA3 
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Next rwlndex 
For collndex = 0 To m 
'fill Excel sheet2 with axial power data 

ExcelApp.Sheets("Sheet2").Cells(m - collndex + 2, 1).Value = h * collndex 
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 2).Value = Fluxl(plotAxial, 

collndex) * NueSigmaFl / (2.43 * 3.1 * 10 A 10) W/cmA3 
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 3).Value = Flux2(plotAxial, 

collndex) * NueSigmaF2 / (2.43 * 3.1 * 10 A 10) W/cmA3 
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 4).Value = (Flux 1 (plotAxial, 

collndex) * NueSigmaFl + Flux2(plotAxial, collndex) * NueSigmaF2) / (2.43 * 3.1 * 10 
A 10) W/cmA3 
Next collndex 
Case 1 'Quarter Rx 
For rwlndex = 0 To n 

ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 1).Value = h * rwlndex 
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 2).Value = Flux 1 (rwlndex, m - 

plotRadial) * NueSigmaFl / (2.43 * 3.1 * 10 A 10) W/cmA3 
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 3).Value = Flux2(rwlndex, m - 

plotRadial) * NueSigmaF2 / (2.43 * 3.1 * 10 A 10) W/cmA3 
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 4).Value = (Flux 1 (rwlndex, m - 

plotRadial) * NueSigmaFl + Flux2(rwlndex, m - plotRadial) * NueSigmaF2) / (2.43 * 
3.1*10A10) W/cmA3 
Next rwlndex 
For collndex = 0 To m 

ExcelApp.Sheets("Sheet2").Cells(m - collndex + 2, l).Value = h * collndex 
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 2).Value = Fluxl(plotAxial, 

collndex) * NueSigmaFl / (2.43 * 3.1 * 10 A 10) W/cmA3 
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 3).Value = Flux2(plotAxial, 

collndex) * NueSigmaF2 / (2.43 * 3.1 * 10 A 10) W/cmA3 
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 4).Value = (Fluxl(plotAxial, 

collndex) * NueSigmaFl + Flux2(plotAxial, collndex) * NueSigmaF2) / (2.43 * 3.1 * 10 
A 10) W/cmA3 
Next collndex 
End Select 
'select rows and columns in worksheet to chart 
ExcelApp.Sheets("Sheetl").Range("Al").CurrentRegion.Select 
Set ExcelChartl = ExcelApp.Charts.Add() 
ExcelApp.Sheets("Sheet2").Range("Al").CurrentRegion.Select 
ExcelChartl.Type = ChartTypeVal 
ExcelChartl.SeriesCollection(l).Name = "=" "Thermal""" 
ExcelChartl.SeriesCollection(2).Name = "=""Fast  
ExcelChartl.SeriesCollection(3).Name = "=""Total  
' ExcelChart.Location Where:=xlLocationAsObject, Name:="Sheetl" 

With ExcelChartl 
.HasTitle = True 
.ChartTitle.Characters.Text = "Power in Reactor Core" 
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.Axes(xlCategory, xlPrimary).HasTitle = True 

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Radius (cm)" 

.Axes(xlValue, xlPrimary).HasTitle = True 

.Axes(xlValue, xlPrimary)AxisTitle.Characters.Text = "Power (Watts/cmA3)" 
End With 
ExcelChartl.HasLegend = True 
Build Chart 2 for Core Height profile 
ExcelApp.Sheets("Sheet2").Select '.Range("Al").CurrentRegion.Select 
ExcelApp.Sheets("Sheet2").Range("Al").CurrentRegion.Select 
Set ExcelChart2 = ExcelApp.Charts.Add() 

ExcelChart2.Type = ChartTypeVal 
ExcelChart2.SeriesCollection(l).Name = "=""Thermal  
ExcelChart2.SeriesCollection(2).Name = "=""Fast""" 
ExcelChart2.SeriesCollection(3).Name = "=" "Total  

With ExcelChart2 
.HasTitle = True 
.ChartTitle.Characters.Text = "Power in Reactor Core" 
.Axes(xlCategory, xlPrimary).HasTitle = True 
.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Core Height(cm)" 
.Axes(xlValue, xlPrimary).HasTitle = True 
.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Power (Watts/cmA3)" 

End With 
ExcelChart2.HasLegend = True 
'save chart, activate chart, OLE link chart, OLE update chart for chart 1 & 2 
ExcelChartl.SaveAs [Text6] 
ExcelApp.Sheets("Chartl").Select 'activate chart 
OLEl.CreateLink (Text6) 
OLE1.Update 'allow immediate update of excel chart 
ExcelApp.Sheets("Chart2").Select Activate chart 
OLE2.CreateLink (Text6) 
OLE2.Update 
ExcelApp.Quit 
Set ExcelChart = Nothing 
Set ExcelApp = Nothing 

End Sub 

Function Checkin(Box) 
IfLen(Box) = OThen 
Checkin = 1 

End If 
End Function 

Sub ThreeDSolver(SolvingFlux, SI, A, 1, u, n, m, kEffective, DeltaR, DeltaZ, Fluxl, X2) 
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This 3D block tridiagonal solver uses an iterative technique similar to Gauss-Seidel. 
It sets up the banded tridiagonal system based on the discretized right circular cyl 
'diffusion equation and dismantles that into a blocked tridiagonal system. 
Each block is then solved with a standard tridiagonal solver using initial guesses 
'for the solution. The system iterates until convergence of the solution (Fluxl at the 
'inner mesh points) 
SigmaScatterl2 = CDbl(Textl6.Text) '1/cm 
DiffusionCoefficientl = CDbl(Text3Text) 'cm 
DiffusionCoefficient2 = CDbl(Text7Text) 'cm 
ReDim b(n -1, m -1) 'stores B of A.x=B 
ReDim X2(n, m) 'stores solution at mesh points 
ReDim Xl(n, m)   'Stores the previous solution at mesh points 
ReDim e(n -1, m -1) 'stores rhs of block tridiag system 
ReDim AA(n - 1) 'Stores the main diag (jth column of A array) of block tridiag 
ReDim LL(n - 1) 'Stores the lower diag (jth column of 1 array) of block tridiag 
ReDim UU(n -1) 'Stores the upper diag (jth column of u array) of block tridiag 
ReDim EE(n -1) 'Stores the rhs diag of block tridiag 
ReDim XX(n) 'stores jth column solution vector from tridiagonal solver 
ReDim ErrorX(n - 1, m - 1) holds the max error in convergence of solution in tridiag 
Till solutions with 0 
For j = 0 To m 

For i = 0 To n 
Xl(i, j) = 0 'fill convergence test array XI with 0 
X2(i, j) = 0 'fill with 0 
Nexti 

Nextj 
build B vector of Ax=B. B contains the iterative guess for Fluxl. 
If SolvingFlux = 1 Then 
Forj = lTom-l 

For i = 1 To n - 1 
b(i, j) = DeltaZ A 2 * (-Sl(i, m - j) / (kEffective * DiffusionCoefficientl)) 

'neutron/cmA2 
Nexti 

Next j 
Else 'SolvingFlux = 2 
Forj = 1 Tom- 1 

For i = 1 To n -1 
b(i, j) = DeltaZ A 2 * (-SigmaScatterl2 * Fluxl(i, j) / DiffusionCoefficient2) 

'neutron/cmA2 
Nexti 

Nextj 
End If 
'solve block tridiagonal system. See Solution Methods in my thesis. 
For w = 1 To 100000 

For i = 1 To n - 1 
e(i, 1) = b(i, 1) - X2(i, 2) 'neutron/cmA2 
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EE(i) = e(i, 1) 'neutron/cmA2 typical 
LL(i) = l(i, 1) LL Lower diagonal of tridiagonal;no units typical 
AA(i) = A(i, 1) 'AA main diagonal of tridiagoanl; no units typical 
UU(i) = u(i, 1) UU upper diagonal of tridiagonal; no units typical 
Nexti 
Call Tridiag(n, LL, AA, UU, EE, XX) 'returns Fluxl at row m-1 in core 
For i = 1 To n -1 

X2(i, 1) = XX(i) 'neutrons/cmA2 typical 
Nexti 
Forj = 2To(m-2) 

For i = 1 To n -1 
e(i,j) = b(i,j)-X2(i,j-l)-X2(i,j + l) 
EE(i) = e(i,j) 
LL(i) = l(i,j) 
AA(i) = A(i,j) 
UU(i) = u(i,j) 

Nexti 
Call Tridiag(n, LL, AA, UU, EE, XX) 

For i = 1 To n - 1 
X2(i,j) = XX(i) 

Nexti 
Nextj 
For i = 1 To n -1 

e(i, m- 1) = b(i, m-1) -X2(i, m- 2) 
EE(i) = e(i, m - 1) 
LL(i) = l(i, m -1) 
AA(i) = A(i, m - 1) 
UU(i) = u(i, m -1) 

Nexti 
Call Tridiag(n, LL, AA, UU, EE, XX) 
For i = 1 To n -1 

X2(i, m -1) = XX(i) 
Nexti 
For i = 0 To m - 1 
X2(0,i) = X2(l,i) 
Nexti 

For i = 0 To n 
Select Case Combo2.ListIndex 'either half or quarter of Rx. Boundaries change. 
Case 0 Half Rx core 
X2(i, m) = 0 'update XI 
Case 1 'Quarter Rx 
X2(i, m) = X2(i, m -1) 'update XI 
End Select 
X2(i, 0) = 0 
Nexti 
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For v = 1 To n - 1 
For j = 1 To m - 1 
ErrorX(v, j) = Abs((X2(v, j) - XI(v, j)) / Abs(X2(v, j))) 
Nextj 

Next v 
Find maximum value of ErrorS() 
MaxErrorX = ErrorX(l, 1) 
For i = 1 To n -1 
For j = 1 To m -1 
Xl(i,j) = X2(i,j) 'update XI 
If (ErrorX(i, j) > MaxErrorX) Then 
MaxErrorX = ErrorX(i, j) 
End If 
Nextj 
Nexti 
If (Combo3.Text = "Reduced Relative Error; Slower Run Time") Then 
Tolerance = 0.00000001 
Else 
Tolerance = 0.001 
End If 
If (MaxErrorX < Tolerance) Then 
Exit For 
End If 

'Set boundary conditions 
Next w 
If (w > 10000) Then 
MsgBox ("Exceeded block tridiagonal maxiterations before convergence") 
End If 
End Sub 

Sub Tridiag(n, LL, AA, UU, EE, XX) TL=lower diag, AA=Diag, UU=Upper 
diag,EE=A.x 
'Crout Factorization for tridiagonal linear systems 
'!Back substitute for solution 
m = n - 1 
ReDim Lower(m) 
ReDim Upper(m) 
ReDim Z(m) 
Lower(l) = AA(1) 'no units 
Upper(l) = UU(1) / AA(1) 'no units 
Z(l) = EE(1) / Lower(l) 'neutron/cmA2 
For i = 2 To m -1 

Lower(i) = AA(i) - LL(i -1) * Upper(i -1) 'no units 
Upper(i) = UU(i) / Lower(i) 'no units 
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Z(i) = (EE(i) - LL(i - 1) * Z(i -1)) / Lower(i) 'neutron/cmA2 
Next 
Lower(m) = AA(m) - LL(m - 1) * Upper(m -1) 'no units 
Z(m) = (EE(m) - LL(m - 1) * Z(m - 1)) / Lower(m) 'no units 
'!Set solution Fluxl values 
XX(m + 1) = 0 'IFluxl at outer boundary; neurton/cmA2 
XX(m) = Z(m) 'neutron/cmA2 
Fori = m- 1 To 1 Step-1 

XX(i) = Z(i) - Upper(i) * XX(i + 1) 'neutron/cmA2 
Next 
XX(0) = XX(1) '!Set BC dFluxl/dr=0; 'neutron/cmA2 
End Sub Tridiagonal 

Private Sub Option l_Click() 
MsgBox ("Try SigmaAl=0.1532 1/cm") 
End Sub 

Private Sub mnu2DOneEnergyGroupItem_Click() 
Loadk 
k.Show 
Unload TwoEnergyGroup 
End Sub 

Private Sub mnu3DOneEnergyGroupItem_Click() 
Load rxfrm 
rxfrm.Show 
Unload TwoEnergyGroup 
End Sub 

Private Sub mnuExitItem_Click() 
End 
End Sub 

Private Sub mnuHelpItem_Click() 
Load Help 
Help.Show 
End Sub 

Private Sub mnuPrintItem_Click() 
TwoEnergyGroup.PrintForm 
End Sub 

Private Sub mnuReactorItem_Click() 
Load Reactor 
Reactor.Show 
End Sub 
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Private Sub mnuRunItem_Click() 
Call Kinetics 
End Sub 

Private Sub mnuStartFormItem_Click() 
Load ReactorCoreModel 
ReactorCoreModel .Show 
Unload TwoEnergyGroup 
End Sub 

Private Sub OLEl_Updated(Code As Integer) 
OLEl.Visible = True 
End Sub 

Private Sub OLE2_Updated(Code As Integer) 
OLE2.Visible = True 
End Sub 
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Appendix F. Sample Output Charts and Data 

The figures below are typical charts provided as output to the user. In addition to the 

charts, the program saves the data on an Excel worksheet for later use by the program 

user. 

Radius (cm) 

Figure 25 Two Dimensional Output with Mesh Spacing = 0.5 cm 
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Power Plot of Reactor Core 

Height (em) 

Figure 26 3D, One Energy Group, Half Core Plot with Mesh Spacing = 6 cm 
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Figure 27 3D, One Energy Group, Quarter Core Plot with Mesh Spacing = 6 cm 
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Power in Reactor Core 

Radius (cm) 

-Thermal 

-Fast 

Total 

Figure 28 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups 
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Figure 29 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups 
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Power in Reactor Core 
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Figure 30 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups Half Rx 
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Figure 31 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups Half Rx 
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Appendix G. Relative Error Plots of Test Cases 

3D, 1 Energy Group, Quarter Rx 

•Numerical Solution 
• Mathematical Solution 

50 100 

Radius (cm) 
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Figure 32 Radial Plot, Mesh Spacing = 30 cm 

1.2 

3D, 1 Energy Group, Quarter Rx 
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• Mathematical Solution 
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Figure 33 Axial Plot, Mesh Spacing = 30 cm 
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3D, 1 Energy Group, Quarter Rx 
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Figure 34 Radial Plot, Mesh Spacing = 15 cm 

3D, 1 Energy Group, Quarter Rx 
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Figure 35 Axial Plot, Mesh Spacing = 15 cm 
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3D, 1 Energy Group, Quarter Rx 
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Figure 36 Radial Plot, Mesh Spacing = 10 cm 

3D, 1 Energy Group, Quarter Rx 
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Figure 37 Axial Plot, Mesh Spacing = 10 cm 
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3D, 1 Energy Group, Quarter Rx 

■ Numerical Solution 

• Mathematical Solution 

50 100 

Radius (cm) 

150 

Figure 38 Radial Plot, Mesh Spacing = 5 cm 

3D, 1 Energy Group, Quarter Rx 
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Figure 39 Axial Plot, Mesh Spacing = 5 cm 
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3D, 1 Energy Group, Quarter Rx 
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Figure 40 Radial Plot, Mesh Spacing = 4 cm 
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Figure 41 Axial Plot, Mesh Spacing = 4 cm 
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Figure 42 Radial Plot, Mesh Spacing = 3 cm 
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Figure 43 Axial Plot, Mesh Spacing = 3 cm 
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3D, 1 Energy Group, Quarter Rx 

■ Numerical Solution 
- Mathematical Solution 
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Figure 44 Radial Plot, Mesh Spacing = 2 cm 
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Figure 45 Axial Plot, Mesh Spacing = 2 cm 
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3D, 1 Energy Group, Quarter Rx 
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Figure 46 Radial Plot, Mesh Spacing = 1 cm 
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Figure 47 Axial Plot, Mesh Spacing = 1 cm 
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Figure 48 Radial Plot, Mesh Spacing = 30 cm 
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Figure 49 Axial Plot, Mesh Spacing = 30 
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Figure 50 Radial Plot, Mesh Spacing = 20 cm 
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Figure 51 Axial Plot, Mesh Spacing =20 
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Figure 52 Radial Plot, Mesh Spacing = 15 cm 
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Figure 53 Axial Plot, Mesh Spacing = 15 cm 
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Figure 54 Radial Plot, Mesh Spacing = 10 cm 
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Figure 55 Axial Plot, Mesh Spacing = 10 cm 
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Figure 56 Radial Plot, Mesh Spacing = 5 cm 
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Figure 57 Axial Plot, Mesh Spacing = 5 cm 
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Figure 58 Radial Plot, Mesh Spacing = 4 cm 
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Figure 59 Axial Plot, Mesh Spacing = 4 cm 
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Figure 60 Radial Plot, Mesh Spacing = 3 cm 
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Figure 61 Axial Plot, Mesh Spacing = 3 cm 
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Figure 62 Radial Plot, Mesh Spacing = 2 cm 
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Figure 63 Axial Plot, Mesh Spacing = 2 cm 
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Figure 64 Radial Plot, Mesh Spacing = 1 cm 
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Figure 65 Axial Plot, Mesh Spacing = 1 cm 
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Appendix H. Linking Visual BASIC and Excel 

There are several references available to assist in creating embedded OLE Excel 

charts within Visual BASIC; however, they do not fully explain how to chart an array of 

data. This appendix provides the general procedure to chart and embed an OLE Excel 

object consisting of an array of data as well provide tips to creating more complicated 

charts and links. 

The key to creating an embedded OLE Excel chart is to understand the OLE 

commands and the Excel application commands. To set the OLE source documentation 

to link the OLE to the source file, provide the name and location of the Excel file that 

will contain the data generated by the Visual BASIC code. 

OLE.SourceDoc = ("Text6") 

In this example, "Text6" is the TextBox on the Visual BASIC form that the program user 

uses to input the name and location of the Excel file. SourceDoc is a procedure that 

links the OLE to the source document. To make the OLE object visible on the Visual 

BASIC Form, use the following code. 

OLE.Visible = True 

This should be placed in the code so that the OLE object becomes visible only when 

desired. Visual BASIC is object oriented. Objects have built-in procedures and settings 

that allow the programmer to control the functionality of the object. To build the Excel 

chart, dimension each object as shown below. 

Dim ExcelApp As Object 
Dim ExcelChart As Object 

This will allow each of the newly defined objects to have an associated property or 

method drop down window displaying the available commands in Visual BASIC. 
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To define the Excel chart type, Visual BASIC must be given the Excel constants instead 

of the chart name. Some common Excel constants are given in Table 12. 

Table 12 Excel Constants for Charts 

Chart Type Excel Constant 

xlLine 4 

xlColumn 3 

xlXYScatter -4169 

xBDBar -4099 

xl3DSurface -4103 

To create a three dimensional chart, dimension the variable name for the chart type 

and assign it an Excel constant value. 

Dim ChartTypeVal As Integer 
ChartTypeVal = -4103 

Build an Excel Workbook and Worksheet using the following commands. 

Set ExcelApp = CreateObject("excel.application") 
ExcelApp.Visible = False 
ExcelApp.Workbooks.Add 

This adds a workbook to Excel and keeps the Excel code running in the background 

without being visible to the program user. To see Excel run during the Visual BASIC 

runtime mode, change "false" to "true". This can assist the programmer during 

debugging because it allows the program user to see how the data is being added the 

worksheet. 

To add data to the Excel Worksheet, use a For-Next loop as shown. 
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For rwlndex = 0 to n 
ExcelApp.Sheets("Sheet1").Cells(rwlndex,collndex).Value = your data 

Next rwindex 

This adds the data to Worksheet one in the cells corresponding to the Excel (row, 

column) coordinate system. Once the data is added to the Worksheet it can then be 

charted and linked to the Visual BASIC OLE. The following sample code selects the 

data on the sheet, defines the chart type, adds data series and axis labels, saves the chart, 

and links the chart to the OLE. 

ExcelApp.Sheets("Sheet1 ").Range("A1 ").CurrentRegion.Select 
Set ExcelChartl = ExcelApp.Charts.Add() 
ExcelChartl Type = ChartTypeVal 
ExcelChartl .SeriesCollection(l).Name = "^"Thermal""" 
ExcelChartl .SeriesCollection(2).Name = "=""Fast  
ExcelChartl .SeriesCollection(3).Name = "=""Total  
With ExcelChartl 

.HasTitle = True 

.ChartTitle.Characters.Text = "Power in Reactor Core" 

.Axes(xlCategory, xIPrimary).HasTitle = True 

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Radius (cm)" 

.Axes(xlValue, xIPrimary).HasTitle = True 

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Power (Watts/cmA3)" 
End With 
ExcelChartl .HasLegend = True 
'save chart, activate chart, OLE link chart, OLE update chart for chart 1 
ExcelChartl .SaveAs [Text6] 
ExcelApp.Sheets("Chart1").Select 'activates the desired chart 
OLE1 .CreateLink (Text6) 'Creates the link to the name and location 

'given in TextBox six 
OLE1 .Update 'allow immediate update of excel chart on 

'the Visual BASIC Form 
ExcelApp.Quit 'Quits the application 
Set ExcelChart = Nothing ' Clears the previous settings 
Set ExcelApp = Nothing 

This sample code produced the OLE embedded object shown in Figure 66 directly on 

the Visual BASIC Form. To open Excel and access the chart and data, double click the 

OLE on the Visual BASIC Form. 
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Power Plot of Reactor Core 

Radius (cm) 

^ffl(gWPm>! 

Figure 66 Sample OLE Embedded Object 

Excel contains Visual BASIC with Applications that is a limited version of Visual 

BASIC. Although the Visual BASIC with Applications will not run many Visual BASIC 

commands, it can assist it developing Visual Basic code needed to create embedded 

charts. For example, to develop sample Visual BASIC codes use the macro command 

while in Excel to record the steps in building an Excel chart and then display the code 

using Visual BASIC with Applications. This will provide the general coding language to 

develop variations to Excel charts. In some cases, the sample code displayed in Visual 

BASIC with Applications can be copied directly into Visual BASIC. 
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