
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2001

Modeling Pressurized Water Reactor Kinetics Modeling Pressurized Water Reactor Kinetics

William H. Harman

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Nuclear Engineering Commons

Recommended Citation Recommended Citation
Harman, William H., "Modeling Pressurized Water Reactor Kinetics" (2001). Theses and Dissertations.
4622.
https://scholar.afit.edu/etd/4622

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/314?utm_source=scholar.afit.edu%2Fetd%2F4622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4622?utm_source=scholar.afit.edu%2Fetd%2F4622&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

^

^ tp ^

Jl>jiSX> &

< ' #

. K ^

ggSIä

Modeling Pressurized Water Reactor Kinetics

Thesis

William H. Harman, Major, USA

AFIT\GNE\ENP\01M-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

20010730 032

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

AFIT\GNE\ENP\01M-03

Modeling Pressurized Water Reactor Kinetics

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Nuclear Engineering

William H. Harman, B.S., M.S., P.E.

Major, USA

March 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT\GNE\ENP\01M-03

Modeling Pressurized Water Reactor Kinetics

William H. Harman, B.S., M.S., P.E.

Major, USA

Approved:

lames C. Petrosky (Chari:

Michael P. Susalla (Member)

2<? fe& a |
date

Vo r&ß ol
date

Vincent J. Jodoin (Member)
%c Peg, o|

date

Acknowledgements

I would like to thank my advisor, LTC James Petrosky, for his guidance, counsel, and

willingness to allow me to approach and solve the problem in my own way. A special

thanks goes to Dr. William Baker for his hours of tutoring and assistance in developing

the mathematical background to solve the numerical equations, to Capt. Mark Suriano for

his assistance in computational problem solving, and to Commander Michael Susalla for

his professional teaching during my first four quarters at AFIT.

Finally, I would like to thank my wife for giving me her full support and

encouragement. I could not have completed this thesis without her.

IV

Table of Contents

Page

Acknowledgements iv

Table of Contents v

List of Figures vii

List of Tables ix

Abstract x

I. Introduction 1

Background 1

Problem Statement 1

Approach 2

II. Theoretical Development 6

Diffusion Theory 6

Two Dimensional, One Energy Group Model 12
Criticality Solution Technique. 12
Numerical Development. 18

Three Dimensional, One Energy Group Model 20
Criticality Solution Technique 20
Numerical Development. 21
Matrix Solution Methods. 25

Three Dimensional, Two Energy Group Model 27
Criticality Solution Technique 27
Numerical Development. 28

III. Program Development and Validation 30

Program Development 30

Operating the Code 32

Program Validation 41
Two Dimensional, One Energy Group Model. 41
Three Dimensional, One and Two Energy Group Models. 44

IV. Conclusions and Recommendations 53

Conclusions 53

Recommendations 54

Appendix A. Derivation of Three Dimensional Source Integration 57

Appendix B. Derivation of Right Circular Cylinder Reactor Core Solution 59

Appendix C. Two Dimension, One Energy Group Visual BASIC Code 62

Appendix D. Three Dimension, One Energy Group Visual Basic Code 70

Appendix E. Three Dimension, Two Energy Groups Visual Basic Code 83

Appendix F. Sample Output Charts and Data 98

Appendix G. Relative Error Plots of Test Cases 102

Appendix H. Linking Visual BASIC and Excel 119

Bibliography 123

Vita 125

VI

List of Figures

Figure Page
Figure 1 Extrapolated distance at outer boundary 9
Figure 2 Energy Groups 10
Figure 3 Energy Spectra for Two Energy Group Model 11
Figure 4 Criticality Search Technique, 2D Model 15
Figure 5 Boundary Conditions 19
Figure 6 Criticality Solution Technique 21
Figure 7 Boundary Conditions 22
Figure 8 Example 4x4-Three Dimensional Mesh System 23
Figure 9 Relabeled Interior Mesh Points 24
Figure 10 Criticality Solution Technique for Two Energy Groups 28
Figure 11 Typical Drop Down File Menu 33
Figure 12 Welcome Screen 34
Figure 13 Reactor Schematic Form 35
Figure 14 Boundary Condition Form 35
Figure 15 2D, One Energy Group Form 37
Figure 16 3D, One Energy Group Form 38
Figure 17 3D, Two Energy Groups Axial Choice 39
Figure 18 3D, Two Energy Group Form 40
Figure 19 Flux profile of infinite right circular cylinder (Bessel J function) 42
Figure 20 Normalized flux from one-speed computer model 43
Figure 21 Flux profile of Bessel J function and one-speed computer model together 43
Figure 22 Intitial Test, Mesh Spacing = 3 cm 48
Figure 23 3D, Total 2 Energy Groups, Blocked Tridiagonal Tolerance = 1E-8 with Mesh

Spacing = 1 cm 51
Figure 24 Fuel-Cell Homogenization 55
Figure 25 Two Dimensional Output with Mesh Spacing = 0.5 cm 98
Figure 26 3D, One Energy Group, Half Core Plot with Mesh Spacing = 6 cm 99
Figure 27 3D, One Energy Group, Quarter Core Plot with Mesh Spacing = 6 cm 99
Figure 28 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups 100
Figure 29 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups 100
Figure 30 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups Half Rx 101
Figure 31 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups Half Rx 101
Figure 32 Radial Plot, Mesh Spacing = 30 cm 102
Figure 33 Axial Plot, Mesh Spacing = 30 cm 102
Figure 34 Radial Plot, Mesh Spacing = 15 cm 103
Figure 35 Axial Plot, Mesh Spacing = 15 cm 103
Figure 36 Radial Plot, Mesh Spacing = 10 cm 104
Figure 37 Axial Plot, Mesh Spacing = 10 cm 104
Figure 38 Radial Plot, Mesh Spacing = 5 cm 105
Figure 39 Axial Plot, Mesh Spacing = 5 cm 105
Figure 40 Radial Plot, Mesh Spacing = 4 cm 106
Figure 41 Axial Plot, Mesh Spacing = 4 cm 106
Figure 42 Radial Plot, Mesh Spacing = 3 cm 107

Vll

Figure 43 Axial Plot, Mesh Spacing = 3 cm 107
Figure 44 Radial Plot, Mesh Spacing = 2 cm 108
Figure 45 Axial Plot, Mesh Spacing = 2 cm 108
Figure 46 Radial Plot, Mesh Spacing = 1 cm 109
Figure 47 Axial Plot, Mesh Spacing = 1 cm 109
Figure 48 Radial Plot, Mesh Spacing = 30 cm 110
Figure 49 Axial Plot, Mesh Spacing = 30 110
Figure 50 Radial Plot, Mesh Spacing = 20 cm Ill
Figure 51 Axial Plot, Mesh Spacing =20 Ill
Figure 52 Radial Plot, Mesh Spacing = 15 cm 112
Figure 53 Axial Plot, Mesh Spacing = 15 cm 112
Figure 54 Radial Plot, Mesh Spacing = 10 cm 113
Figure 55 Axial Plot, Mesh Spacing = 10 cm 113
Figure 56 Radial Plot, Mesh Spacing = 5 cm 114
Figure 57 Axial Plot, Mesh Spacing = 5 cm 114
Figure 58 Radial Plot, Mesh Spacing = 4 cm 115
Figure 59 Axial Plot, Mesh Spacing = 4 cm 115
Figure 60 Radial Plot, Mesh Spacing = 3 cm 116
Figure 61 Axial Plot, Mesh Spacing = 3 cm 116
Figure 62 Radial Plot, Mesh Spacing = 2 cm 117
Figure 63 Axial Plot, Mesh Spacing = 2 cm 117
Figure 64 Radial Plot, Mesh Spacing = 1 cm 118
Figure 65 Axial Plot, Mesh Spacing = 1 cm 118
Figure 66 Sample OLE Embedded Object 122

Vlll

List of Tables

Table Page

Table 1 One-Speed Reactor Input Data 41
Table 2 Two Group Diffusion Theory Constants (Table 7-2 Duderstadt) 46
Table 3 Relative Errors for Quarter Core 3D Models, Blocked Tridiagonal Tolerance

=lE-8 with Maximum of 20 Iterations 47
Table 4 Relative Errors for Half Core 3D Models, Blocked Tridiagonal Tolerance =lE-8

with Maximum of 20 Iterations 47
Table 5 Relative Error for Quarter Core 3D, Blocked Tridagonal Tolerance = 0.001.... 49
Table 6 Relative Errors for Half Core 3D, Blocked Tridiagonal Tolerance = 0.001 49
Table 7 Half Core 3D, Blocked tridiagonal Tolerance = 1E-4 50
Table 8 Half Core 3D, Blocked Tridiagonal Tolerance = 1E-6 50
Table 9 Half Core 3D, Blocked Tridiagonal Tolerance = 1E-8 50
Table 10 Half Core 3D, k Tolerance =lE-7, Blocked Tridiagonal Tolerance = 1E-8 52
Table 11 Options for Three Dimensional Models 52
Table 12 Excel Constants for Charts 120

IX

Abstract

A computer model of a pressurized water reactor (PWR) was developed for use as a

teaching tool in graduate level nuclear reactor courses. The development, based on the

diffusion equation, includes the methodology for solving the steady state spatial

dependence of the neutron power output in a homogeneous right circular cylinder

unreflected PWR system. This includes a two dimensional one energy group model, a

three dimensional one energy group model, and a three dimensional two energy group

model.

To solve the homogeneous diffusion equation, a method was developed to search for

criticality of the reactor based on the geometry and reactor core material composition.

For the one energy group models, a perturbation technique was developed to assist the

program user in modifying the macroscopic absorption coefficient to drive the reactor to

criticality. For the three dimensional models, a blocked tridiagonal solver was

developed to solve the numerical linear system of equations approximating the diffusion

equation.

The model was coded using Visual BASIC 5.0™. This provides a platform that is

exportable to personal computers and allows direct linkage to Windows based programs.

The code automatically charts and displays the power distribution profile using Excel™

and displays the calculated multiplication factor determining criticality.

MODELING PRESSURIZED WATER REACTOR KINETICS

I. Introduction

Background

Basic nuclear reactor courses at the graduate and undergraduate level focus on

teaching students how to calculate radial and axial flux and power for steady state (non-

time dependent) reactors. Many nuclear reactor textbooks cover the fundamentals of

nuclear physics and apply the diffusion equation to approximate the behavior of neutrons

within the reactor core. Typically, the reactor books review one-dimensional, one speed,

homogeneous models for various geometric shapes in great detail. Some even outline

numerical approaches for solving the approximate solution.

While students often gain a basic understanding of the general physics, they typically

lack a qualitative and intuitive understanding of the reactor core nucleonic behavior based

on core geometry and composition. A computer model can be used to provide the

students with a tool that can visually explain how flux and power are impacted by

changing the core geometry and composition.

Problem Statement

The problem statement for this thesis was to develop a working computer model of a

pressurized water reactor (PWR) for use as a teaching tool in graduate level nuclear

reactor courses. The development includes the equations and methodology for solving

the steady state spatial dependence of the neutron flux and power output in a

homogeneous right circular cylinder unreflected PWR system. This includes a two

dimensional one energy group model, a three dimensional one energy group model, and a

three dimensional two energy group model.

Approach

The fundamental approach was to model the reactor using the diffusion equation. For

a steady state system, the diffusion equation reduces to the Helmholtz equation.

VV(r) + B^(r) = 0

where

BB = Geometric buckling = {II cm).
* D

Since this is a homogeneous equation, one must determine the eigenvalues to achieve a

non-trivial solution. For cylindrical geometries, the eigenfunction corresponding to the

smallest eigenvalue is non-negative everywhere within the reactor. This is physically the

only value of importance because the flux cannot be negative in a reactor.

To achieve a physical solution, we rewrite the Helmholtz equation and insert an

eigenvalue —.
k

K

Where

v = average number of neutrons per fission

Xa = the probability of absorption per unit path length (1/cm).

For a particular value of k, this equation will have a unique solution. As will be shown

later, if k equals one the reactor is critical. If k does not equal one, the core geometry

and/or material composition must be changed. Searching for the flux when k equals one

is called the criticality search. This criticality search, using the diffusion equation, is the

basis for the development of the code.

The first step in developing the code was to solve the two dimensional, one energy

group diffusion equation using the finite central difference method. The finite central

difference method provides a satisfactory order of accuracy and is generally used as the

initial method for modeling or designing reactors. The finite difference method results in

solving a tridiagonal matrix system using a power iterative technique to solve for the flux

at criticality. The program in this thesis uses the Crout factorization method to solve the

tridiagonal system of equations. A perturbation technique is used to perturb an initial

guess of the macroscopic cross section to drive the modeled reactor to a critical level.

This perturbation will assist the user in selecting the macroscopic cross section that will

result in a critical condition. The one group model assumes that the energy of the

neutrons is equal at every spatial point within the reactor. The model, based on a

homogeneous un-reflected reactor, which is not time dependent, yields a two dimensional

solution of power versus radial position. The initial two dimensional model was

developed using FORTRAN™ and then later converted to Visual BASIC 5.0 ™.

The two dimensional one group model was expanded to a third dimension by adding

a solution in the axial direction. The output of this model provides both radial and axial

power plots in three dimensions. I used the finite central difference method to

approximate the diffusion equation. This changed the system from a pure tridiagonal to a

blocked tridiagonal system because of the additional sub and super diagonals. This

required the development of a blocked tridiagonal solver to solve the system of equations

and provide the flux at each interior mesh point. With all flux values known at the

interior points, both the axial and radial power distributions can then be plotted. The

three dimensional model was written in Visual BASIC 5.0.

The final step was to develop a two energy group three dimensional model. The

model assumes only down scatter of neutrons that are directly coupled, meaning neutrons

only scatter to the next lowest energy level. This model uses the finite central difference

method and the blocked tridiagonal solver.

Visual BASIC 5.0 was chosen because it offers many advantages over scientific

languages such as FORTRAN. It allows the programmer to build an executable file that

links automatically into simple plotting tools such as Excel. With Visual BASIC 5.0, you

can command and control Excel as well as other Microsoft Windows software. For

example, the Visual BASIC 5.0 reactor code populates an Excel spreadsheet with the

solution data and then builds the charts all from within Visual BASIC 5.0. The charts are

linked and updated to appear as an object on the Visual BASIC 5.0 form. This capability

provides the user with automated graphs of the power based upon the input parameters as

well as access to the output data on spreadsheets. This advantage precludes the user from

having to manually create the charts or plots in another computer language. These

features outweigh the advantages of FORTRAN such as computational speed and built-in

intrinsic functions. Additionally, one can export the program packaged with the runtime

dynamic link language, thus not requiring Visual BASIC.

The advancements in computer technology have made using Visual BASIC 5.0 an

alternative to scientific programs. Less than five years ago personal computers were too

slow to solve three dimensional diffusion problems using Visual BASIC 5.0. The low

cost and improvements of memory and processors allow personal computers to be

capable of solving complex numerical problems using Visual BASIC 5.0 in a fraction of

previous times.

II. Theoretical Development

Diffusion Theory

"Reactor kinetics is the area of reactor physics concerned with predicting what

happens to the neutron flux density when the balance condition associated with the

critical state is disturbed (Henry, 1986:296)." The generation of heat in a reactor system

is proportional to the fission rate, which is a function of the neutron flux. The neutrons in

a thermal reactor range in energies from 0.001 eV to about 10 MeV. To simplify the

design process of reactors, neutrons are divided into energy groups. The one group

model deals with the thermal neutrons only; however, it also accounts for those produced

from both prompt and delayed neutrons. The two-group model deals separately with both

thermal and fast neutrons.

It is common practice to approximate the exact neutron transport equation using

diffusion theory. The neutron transport equation accounts for the angular dependent

neutron density within a volume. The diffusion equation is the result of removing the

angular dependence from the transport equation.

The diffusion equation is based on Fick's Law and the equation of continuity. Fick's

law is shown in equation (1).

ax

where

Jx = the net number of neutrons passing a unit area

perpendicular to the x-direction in a unit of time

D = the diffusion coefficient (cm)

(j) = the flux (neutrons/cm3)(cm/sec)

Fick's law was originally used to predict the flow of chemicals from one region of

higher concentration to another region of lower concentration solute. The flow was

found to be equal to the negative gradient of the solute concentration. Although neutrons

do not actually flow, their behavior can be modeled using this concept (Lamarsh,

1983:192). Early reactors were designed using this technique. Today, more

sophisticated and computationally demanding methods are available to design reactor

cores.

To develop the diffusion equation one begins by using the equation of continuity.

The equation of continuity states that:

The rate of change in

number of neutrons per

volume (V)

production rate

of neutrons in V

absorption rate

of neutrons in V

leakage rate of

neutrons in V
(2)

By substituting Fick's law into the equation of continuity, the general diffusion equation

becomes:

72 . T. , . T. , dn
DV>-2a^ + vX/^ = —, (3)

dt

where equation (3) is the non-steady state diffusion equation and

D= the diffusion coefficient (cm)

V2 = the Laplacian (divergence of the gradient)

(j) = the neutron flux (neutron cm/cm3 sec)

Ea = macroscopic absorption cross section (1/cm)

Zf = macroscopic fission cross section (1/cm)

v = neutrons/fission.

Removing the time dependence results in the Helmholtz equation.

(4)

-DV2<t> + Zj = vZf<p (5)

This is the fundamental equation to be solved for the solutions to the problem statement.

The development of the boundary conditions is key to the solution of the diffusion

equation for finite cylindrically shaped reactor cores. In order to develop a physical

meaning, the total flux must be positive and real in all areas within the core. The

diffusion equation and Fick's law are not valid at physical boundaries since they

approximate the value several mean free paths inside the boundary. To account for the

physical boundaries, the diffusion method models the measured flux by assuming the flux

is zero at an extrapolated distance beyond the outer physical boundary layer of the reactor

core. The exact flux does not reduce to zero beyond the boundary; however, the

diffusion theory assumption allows for reasonable flux calculations within a few mean

free paths of the boundary (Duderstadt and Hamilton, 1976:144). See Figure 1 for a

graphical comparison of the measured flux and the diffusion theory.

The extrapolated distance for plane geometries is calculated by using equation (6).

d = 0.714 (cm) (6)

where the transport mean free path is

K=3D = ±

Diffusion Theory
«_ Surface

MeasurecL^v ^-^ Air

Flux \s

Diffusion Medium \.

\

Figure 1 Extrapolated distance at outer boundary

However, for relatively large reactors the extrapolated distance can be neglected

without significantly impacting the order of accuracy because the extrapolated distance is

on the order of centimeters or less as compared to the radius of approximately one to two

meters on average. In this model, the assumption is made that the flux is zero at the top,

bottom, and sides of the reactor core and the derivative of the axial and radial flux at the

centerline of the reactor equals zero. This is accomplished by setting the flux at the

centerline equal to the flux at the first interior mesh point away from the centerline.

The multi-group diffusion equation discretizes the range of neutron energies into

energy groups as shown in Figure 2. Notice that the grouping begins with the highest

energy group number and works toward the lowest energy group number. The highest

energy group number corresponds to the lowest energy level of the neutrons.

Group g

Aj ^G-l E'g J-V-1 *-">

Figure 2 Energy Groups

Equation (7) can be described by the energy dependent version of the diffusion

equation. The equation is based on integrating the neutron energy (averaging) over the

energy group of concern, Eg<E< Eg_i.

The rate of change

of neutrons in

Group g

Change due to

leakage

neutrons

scattering

out of group g

+

absorption in

group g

neutrons

scattering into

group g

+
source

neutrons

in group g
(7)

For the two energy group model, the energy groups are shown in Figure 3.

10

Thermal Fast

E^OeV
g=2 R=l

E,=l eV E0=10 MeV

Figure 3 Energy Spectra for Two Energy Group Model

The development of the two energy group system is based on the assumptions that all

fission neutrons are born in the fast group and that there is no up scatter from the thermal

group. The final form of the two energy group diffusion equation becomes

-V.^Vß + 1R1 fa =-(v12/, ß + v2 S/2 fa)

-V.D2V02 + Ea2 </>2 = Zsi2 Ä

(8)

(9)

where

subcripts 1 and 2 refer to groups 1 and 2 respectively

2-i m -",i 2jt S12

ESi2 = Cross section for scatter from group 1 to group 2.

11

Two Dimensional, One Energy Group Model

To develop this model, I chose to use a criticality search technique outlined in several

references (Duderstadt and Hamilton, 1976:214-226), (Clark and Hansen, 1964:175-178),

(Glasstone and Sesonske, 1981:208-213), and (Ott, 1989:349-356). This section will

derive the methodology for the criticality search and the numerical development to solve

the two dimensional, one energy group diffusion equation.

As stated earlier, the energy level of neutrons within a typical PWR ranges from

about 0.001 eV to 10 MeV. Modeling the reactor proves very complicated when

attempting to incorporate the entire energy range. Historically, attempts to solve the

diffusion equation assumed all neutrons were at the same energy level. The key to

solving the one group model is selecting the appropriate macroscopic cross section data.

The cross sections are dependent upon the neutron energy level. By choosing the

appropriate cross section, the one group model can provide quantitative as well as

qualitative analysis of the reactor behavior. The parameters chosen for this model were

based on the homogenized data from a typical reactor (Duderstadt and Hamilton,

1976:210). Certainly, nuclear reactor designers would not use the one group model for

design purposes. The value of using a one group model is its ease of calculation and

proven qualitative similarity to more rigorous models.

Criticality Solution Technique.

Determining the flux at criticality becomes an eigenvalue problem as

-V ■ DV<zKr) + Zfl0(r) = |iS^(r) (10)

12

where — is the eigenvalue. For criticality, we seek k equal to one. Rewritten in matrix
k

form, equation (10) yields

M</> = -F<f> (11)
K

where

F = VLf (1/cm)

and the operator M = -V ■ DV + Sa (1/cm).

To solve this problem, we guess an initial "source" term S(r) and k value where

S(r) = F0(r) = S(0) (r) and k = km (12)

and solve for the flux (j)m using a tridiagonal solver.

M</>W = -v-DV^(1)+zyi) =-4r^(0) (13)

After solving for the flux we must recalculate the source and k values. The source is easy

to recalculate based on known values.

Sm=F0m=vLf0
m (14)

The iterative scheme is shown in equations (15) and (16). This repetitive process yields

the flux at successive values until equation (17) is approximately true within set

tolerances.

M</>(n+1)=-^Sw (15)
K

M^=^F^ (17)

To solve for the next k iterative value, we recognize

13

M</> (n+l) ±-F</>(n)=-±-F<^+l\
;(n) r t("+1) r (18)

Solving for &("+1), we then integrate the flux over space. This is essentially averaging the

values to obtain a new eigenvalue, where

^ jS^Wr = fV'(r)*
(19)

The integration is accomplished numerically using the composite trapezoid rule

Ar f S(r)dr=^- S(a) + S(b) + 2^S(ri)
Ja 7 TT

H-l ^

(20)

where n is the number of mesh points. The iteration process continues until the

tolerances for k and the source are within a specified tolerance.

(»> _<»-!>

,(«)
(fj and/or

c(n) _ ci(n-l)

i(n) (£2
(21)

where

£,=0.00001
£2 =0.015

The tolerance setting for ex is critical to achieving low relative errors compared to the

mathematical solution. Ott recommends a tolerance of 1E-5 for most calculations (Ott,

1986; 351). See Chapter III, Program Validation for details. As the number of iterations

gets large, we expect the flux to converge to the fundamental eigenfunction (Duderstadt

and Hamilton, 1976:216-219). This will provide the correct flux mode shape to enable

power and flux calculations. Figure 4 is a flowchart of the technique used in the code to

solve for the flux and criticality based on the core material composition and geometry

input.

14

Input material
composition and
radius. Guess

initial
k and source S

Calculate flux
using tridiagonal

solver

Calculate
k"*1 and S"+1

No Convergence
test for
kandS

Completed
Yes

Yes

k>=l?
No

Figure 4 Criticality Search Technique, 2D Model

One must provide an initial guess for k and the source flux in order for the power

iteration process to converge resulting in criticality. Because it is difficult to guess a

sufficiently close guess, one must use perturbation theory. Perturbation methodology

assists the user by adjusting the macroscopic cross section until criticality is met.

Changing the macroscopic cross section by some small amount such as

2» = Zfl(r) + <£a(r), (22)

where

Zj, is the value perturbed by some small positive or negative change <£a,

yields a revised equation in matrix form.

15

M'</>'= ^7 F0 (23)
k

The perturbation in the cross section changes the diffusion operator.

M' = M+SM' (24)

where

SM=SLa(r).

We then calculate the change in k by applying the scalar product equation (23) with the

adjoint flux f of the unperturbed core obtaining equation (25).

(f,M4>') + {f,SMf) = ±(<f>',F<f>) (25)

Using the inner product of the adjoint operator, yields

(fMt) = (Myj) = (±FY,A = j(f,Ff) (26)

where, for the one group diffusion model

(j)*,F*, and M* are the adjoint values

F=F*

M=M*.

Substituting equation (26) into equation (25) yields

'1 xyft.SMf)
Kk' k) (f,F</>) '

However, this requires us to know the adjoint and perturbed fluxes that cannot be

calculated directly. We can rewrite the left-hand side in terms of reactivity.

f\ _ (f,SM</>)

(27)

Ap = T|- -; ,x (28)
k k) (f,F</>)

16

Using perturbation theory we can translate the unknowns into known values. A small

change in absorption cross section is assumed to result in a small change in flux

(Duderstadt and Hamilton, 1976:223). Expanding equation (28) provides the following.

A (f,SLa0) (?,&&) (f,SZj)(f,XaS<p)^
P (f,F</>) (f,F</>) (<f,F^)2

Using the self adjointness of the flux provides the form required to calculate the small

change in macroscopic cross section,

l<P(r)2vZf(r)d3r VLf

81a= v~ \vlf (31)
V k k

where, for criticality,

k'=l.

With a known change in the macroscopic absorption cross section, the program user can

iterate the program until criticality is achieved for the geometry and material composition

specified, if achievable. The change in the macroscopic absorption cross section can only

be accomplished physically by changing the material composition in the homogeneous

reactor core because

x.=5>tö (32>

where

i=i

n = the number of materials

Nt = the number density of the material i (neutrons/cm3)

a\ = the microscopic absorption cross section of

material / (cm2).

17

Numerical Development.

The numerical development of the one group model is based on the central difference

approximation to the diffusion equation in right circular cylinder coordinates.

r D D
(33)

Expanding <j> in a Taylor series about r

dr

dr

A2 d>

, 2 dr2

A2
| dV

, 2 dr2

+ .

+

(34)

(35)

Now adding equations (34) and (35) yields the standard central difference formula with

an order of A2.

d2</>

dr2

</>i+1-2(/>i+</>i_l

For the standard differential the central difference yields

d(f>_
dr 2A

The final form of the numerical equation becomes

-l-p(r)
h^

0i_1+(2 + h2q(r))</>i + -l + p(r)
h

</>M=-h2r(r)

(36)

(37)

(38)

where

18

h is the distance between nodes (cm)

p(r)=- (1/cm)
r;

q(r)=^ (1/cm2)
D
1 _ , , 1 neutrons-cms

r(r)=r7TvSf #>(^ —3)• kD cm cm -sec

The boundary conditions are shown in Figure 5 for a typical reactor core.

core height

J=m

Center of
core

P(0j)=P(lj)

j=l

(0,0)

P(i,m)=0 Top of core

1,3 m———ik

pi;

pi,i
#—■—#

2,3

2,2
m—■—»

P2,l

3,3

■2,3

P3,l

P(n,j)=0

-*■ radius

i=l
P(i,0)=0

i=n

Figure 5 Boundary Conditions

Using a standard tridiagonal solver rapidly provides the flux values for this system of

equations along the radius of the core.

19

Three Dimensional, One Energy Group Model

I used the same criticality search technique for this model as in the two dimensional

model; however, the numerical solution technique is quite different. Adding the third

dimension increased the boundary conditions and allowed me to develop a model that

allows the user to choose to calculate the power distribution and criticality in either a half

or a quarter of the reactor core. Duderstadt recommends using a Gauss-Seidel or a

successive relaxation method to solve the numerical equations (Duderstadt and Hamilton,

1976:191). I chose to develop and use a blocked tridiagonal solver because it reduced the

computational time and computer memory requirements over those recommended.

Criticality Solution Technique

The three dimensional model uses the same criticality iterative search technique to

solve for the flux as the two dimensional model; however, the derivation of the volume

source integration used in equation (19) to solve for k"+1 is more complicated. See

Appendix A for a complete derivation. As shown in Figure 6, the three dimensional

model uses the blocked tridiagonal solver vice the tridiagonal solver for the two

dimensional model.

20

Input material
composition and
geometry. Guess

initial
k and source S

Calculate flux
using blocked

tridiagonal solver

I
Convergence
test for flux

No

"Yes

Calculate
kntl and Sn+1

No Convergence
test for
kandS

Completed
Yes

„ Yes

k>=l?
No

Figure 6 Criticality Solution Technique

Numerical Development.

In three dimensions, the diffusion equation in right circular cylinder coordinates

becomes

fl2 2^ a_v jty av
. dr2 rdr dz D D

where the appropriate Laplacian is

i a a i a2

V =-—r-^ + + -
r dr dr r d& dz

(39)

Owing to symmetry, ——- = 0.

Using central differences and collecting terms yields

21

Ar2
+ h+ij-h-u

rlAr
+

Az2 t^=T m

and

1 , 1

Ar2 2rAr ß-i,; +
2 2„

Ar2 Az2 D

\ r
+

) V

1 •+- 1 ^

Ar 2rAr ft+ij

+^rfe-1
+ ^+i)=i7

(41)

D

where the boundary conditions are shown in Figure 7. The model provides solutions for

half of the reactor core or quarter of the reactor core owing to symmetry of the

homogeneous system.

core height
+Z P(i,m)=0

j=m

P(0,j)=P(lj)

k ^-— Top of core core height

pu P2,3 P3,3

P(n,j)=0

+Z

j=m

P(i,m)=0
 Top of core

pu ^2,2 P2,3 Pl,3 1*2,3 P3,3

j=l
Center of
core

—< r«, A\ P3.! P(0,j)=P(lj) Pl,2 1*2,2 **2,3
P(n,j)=0

j=l

—1 r—
pu

i -^

P2..

i

P3,
radius

i=l i=n

P(i,0)=P(i,l) (0,0) radius
i=l i=n

P(i,0)=0

core height
-Z

Boundary Conditions Upper Quarter Rx Boundary Conditions Rieht Half Rx

Figure 7 Boundary Conditions

To explain the method of converting the numerical equation into a system of linear

equations, I will use the sample mesh system shown in Figure 8.

22

core height ^ Top of core

m-4

Center of
core

j=l

-6- 1,3

pi,:
€) ■ #

PU

2,3 -#

■2,2

P2,l

3,3

HfF
"2,3

-II-

P3,l

-*- radius

i=l n=4

Figure 8 Example 4x4-Three Dimensional Mesh System

To convert these equations into a solvable linear algebra system, it is necessary to

convert the (i,j) indices into a single value using

l = i + (m-l-j)(n-V) (42)

where m is the number of nodes along the z-axis and n is the number of nodes along the

radius (Barden and Faires, 1997:676). This conversion results in re-numbering the

interior mesh points as shown in Figure 9.

23

core height ^Topofcore

m=4

Center of
core

j=l

P.
-o-

-*■ radius

i=l n=4

Figure 9 Relabeled Interior Mesh Points

Referring to equation (41), this system has five terms instead of the three terms used

in the two-dimension model. This corresponds to the sample 9x9 matrix shown in

equation (43). The matrix is a tridiagonal system with a sub and super diagonal. The sub

and super diagonal, in this case, contain constant and equal values in each component.

The upper and lower tridiagonal diagonals are variables that depend on the position along

the radius as shown in equation (41).

24

n p* 0 p, 0 0 0 0 0

Pi p2 pi
0 ^5 0 0 0 0

0 Pi ^3 0 0 ^6 0 0 0

p> 0 0 p* p5
0 Pi 0 0

0 p2
0 PA p5 ^6 0 ^8 0

0 0 h 0 p5 p6
0 0 p9

0 0 0 PA 0 0 Pi ^8 0

0 0 0 0 p5
0 Pi ^8 p9

0 0 0 0 0 n 0 ^8 p9

0 Bi

02 B2

01 B3

0A B,

'05 - B5

06 B6

01 Bi

0i Bs

\j>9_ W

(43)

This same pattern applies to any size matrix depending upon the number of interior

mesh points selected. The boundary conditions are incorporated into positions Pi, P4, and

P7 in the matrix.

Matrix Solution Methods.

There are several methods available to solve these types of matrix problems. One is

the Jacobi method. This method converges too slowly for practical use in large matrices

because of the number of required operations. Another method, Gauss-Seidel, is often

used to solve small to medium sized matrices. Gauss-Seidel also converges slowly and,

like the Jacobi method, requires storing every point in the matrix in computer memory.

As a result, it is slow and computationally inefficient. Successive over-relaxation (SOR)

is an improved version of the Gauss-Seidel method. It makes an over correction by

anticipating future corrections. To reduce the error by a factor of 10"p, the SOR method

requires on the order of J iterations compared to J2 for the other methods (Press,

1996:858) where

and

1 r r- — pj
3

r - the rth stage of the iteration process

J - the number of iterations.

(44)

25

Each of these methods requires filling and using the entire matrix to obtain a solution.

This is computationally inefficient when dealing with relatively large matrices. Using a

reactor size of 120 cm radius and 360 cm height and 0.5 cm node spacing requires a

171,841 x 171,841 matrix. This is a fairly large matrix and using any of the above

techniques would increase the computation time and memory requirements of the

computer.

To solve this system, I chose a blocked tridiagonal solver technique. This method

requires only storing the values in the diagonals of the tridiagonal matrix of size (m-1 x

n-1) as compared to (m-1 x n-1)2 for the Gauss-Seidel method. Using the previous 9x9

example, the system of equations in (43) becomes

"

A D *i B,

D A, D X2 = B2

D A3 X, Bi

1

(45)

where D is the sub and super diagonal with constant coefficients, Ai>2,3 are tridiagonal

matrices, Xi,2,3 are the unknown flux values at the interior mesh points, and B1,2,3 are the

solutions at each interior mesh point.

This can be further broken down into three equations that can each be solved using a

standard tridiagonal solver.

DX1+A2X2 + DX3^B2

DX2 + AiXi=Bz

(46)

26

Inverting the D diagonal (which is constant) and rearranging the equations allows

them to become

D-'^Xi =D~lBl-Xn
2

D-'AJ x;+1 = D'B . - x;_+; - x;+1 (47)

where j is the jth row along the z-axis. This allows one to solve the system only using the

main tridiagonal components. To solve the system of equations in (47), set the initial

values of xy. to zero and solve each equation in a tridiagonal solver making use of the

previous Xs value. This iterative approach is similar to the Gauss-Seidel approach

without the excess storage or computations. Once the values of Xs are within the set

tolerance of the previous xhl, then the process has converged to the solution. This

tolerance level is critical to achieving low relative errors between the old and the new

flux values. For example, setting the tolerance equal to 0.001 provides a maximum

relative error of 18 % for the axial power using a mesh spacing of one centimeter.

Changing the tolerance to 1E-6, reduces the maximum relative error to 8 %. Reducing

the tolerance does however increase the computational time dramatically. See Chapter

III, Program Validation for further details.

Three Dimensional, Two Energy Group Model

Criticality Solution Technique

The solution technique is the same as the one group homogeneous method except one

must guess an initial value for <px and (j)2 to solve for ^ in equation (8). <j\ is then used to

solve for (j)2 in equation (9). The code iterates as in the one group model solving for

27

5("+1) and k{n+l) per equations (16) and (19) and then checks for convergence per equation

(21). This is shown in Figure 10.

Input material
composition and
geometry. Guess

initial
k and source S

i
Calculate fast
flux with BTS

Note:
BTS= Blocked tridiagonal

solver

i] No Convergence
test for fast flux

Yes

Calculate thermal
flux with BTS

1
Convergence test
for thermal flux

Yes 1'
Calculate

k»+1 and S"+I

i '
No

Convergence
test for
kandS

i
,Yes

Completed
Ye <— k>=l?

No

Figure 10 Criticality Solution Technique for Two Energy Groups

There is a difference in calculating the perturbation of the cross sections. The method

is not as simple as in the one energy case because the multi-group criticality problem is

not self-adjoint. I did not include the perturbation because of the complexity of having to

change multiple parameters in both energy groups. The method is outlined in Duderstadt

and Hamilton.

Numerical Development.

The development of the numerical solution technique is very similar to the three

dimensional one group technique; however, there are now two coupled equations to

28

solve. The first equation, derived from applying central differences to equation (8), is

shown in equation (48).

1 1

Ar2 2rAr #-u +
-2 2 S A J

Rl

Ar2 Az2 D, ^ +
1 -+- 1

Ar 2rAr #+u

+ ^(^+^>=^ m

(48)

where

5 = (v1S/i^+v2I/2^2)

The program solves this equation for the fast flux, (f>x, and then solves the second coupled

equation for the thermal flux, <p2 using the blocked tridiagonal solver. The second

coupled equation, derived by applying central differences to equation (9), is

1 1
Ar2 2rAr <tw +

kD,

(49)

where

*2=0.

29

III. Program Development and Validation

Program Development

In general, the program provides much flexibility for the user. The user can choose

between a two dimensional, one energy group model, a three dimensional one energy

group model, or a three dimensional two energy group model. The program provides a

drop down Windows menu to allow the user to select various command options such as

models to run or help files to view. Within each model, the user can point the mouse

over input boxes and get definitions or additional explanations. This serves to assist the

user in understanding either the physics involved or how to proceed.

The program requires initial data input that represents a homogenized reactor core in

cylindrical geometry. It requires the user to input the reactor core dimensions and

material composition/cross sections. If the user is not sure of the material composition,

the program provides recommended input values. The values for the macroscopic cross

sections (absorption and fission), the diffusion coefficient, the number of interior mesh

points, and the initial guess values for keffective and flux are required for input. The

program will only allow for equal mesh spacing in both the axial and radial directions

and requires the core height and radius be multiples of mesh spacing. The boundary

conditions are established within the program. For all exterior points the flux is assumed

to be zero. At the center of the reactor core, the flux is set equal to the flux value at the

first interior mesh point away from the centerline. This makes use of the symmetry of the

homogeneous core and meets the requirement that the first derivative of the flux equals

zero at the center.

30

Given the initial input, the program will calculate the initial source term

value (vl,f 0°) for the right hand side of the diffusion equation at each interior mesh point.

If the user requested to solve the two dimensional simulation, the program calls a linear

finite difference solver that uses the Crout factorization method for tridiagonal linear

systems. The solver returns a vector of flux values along the radial interior mesh points.

Next, the program begins to iterate to converge to the solution. It evaluates the tolerance

between the old and the new flux values and the old and new keffective values. To calculate

the new keffective» the program integrates the old and new source terms over space and

essentially averages them as in equation (19). With the updated source and keffective, the

program iterates again. This process continues until convergence is met. Next, the

program checks if the reactor is critical. If keffective is greater than or equal to one, the

system is critical. If the reactor is not critical, the program uses perturbation theory to

provide a revised macroscopic cross section that should assist the user in achieving a

critical reactor. In either case, the data are automatically loaded onto an Excel

spreadsheet and plotted in Excel. The Excel chart is automatically updated onto the

Visual BASIC form and saved to a location provided by the user. The user of the

program does not see Excel running in the background.

For the three dimensional one energy group problem, the user has the option of

selecting to calculate the power profile for either a half or a quarter of the reactor core.

Because of the symmetry of the core geometry, the solution to the half of the reactor core

is a mirror image of the quarter core solution. The iterative processes are very similar to

the two dimensional problem; however, the solver is different. Because the numerical

analysis problem generates a blocked tridiagonal system, the solution technique changes.

31

The program builds blocked tridiagonal vectors that create a (m-1) system of equations.

It fills each diagonal component with its corresponding coefficient and then iterates

through the Crout factorization method for each tridiagonal linear system until the desired

convergence is met for the iterative solution. Next, the program updates keffective and tests

for convergence of the old and new source terms similar to the two dimensional problem.

If the reactor is not critical, the program will again recommend an adjusted value for the

macroscopic cross section and plot both the radial and axial power values in Excel.

The three dimensional, two energy group model uses the same process as the three

dimensional, one energy group model with a few modifications. In addition to the

previous input requirements, the user must provide the macroscopic scatter and removal

cross sections for the fast and thermal energy ranges as well as the fast and thermal flux

initial guesses. Using this data, the program solves for the fast flux using the blocked

tridiagonal solver and then it uses that value to solve for the thermal flux, again using the

blocked tridiagonal solver. The program iterates as before until convergence is met for

the total source term values and k.

The user can double click each Excel chart on the form and open Excel to access the

chart or the data. A complete program along with typical output data is included in

Appendices C, D, E, and F.

Operating the Code

Each window in the program is a form that allows the program user several options.

There is typically a drop down menu window structured as shown in Figure 11.

32

Typical Form

1 1 1
File View Select Model Run Help |

Print Form Reactor 2D, One
Energy Group

Exit Boundary
Conditions

3D, One
Energy Group

3D, Two
Energy Groups

Figure 11 Typical Drop Down File Menu

The initial welcome form is shown in Figure 12 below.

33

i^S! S!ü'|P"'!3! -.J*' *J

1 Pressurized Water Reactor Kinetics

'V''' *W ■ •**«•««*/.%<! ••
?■••• .;'.••• v. . . ,

^♦J..-*"*»«*-' -/ v &l^iSl§§llilillll **• J^*C^ -.1

- *.-»ö«(*^».\t .
• MM

iS^üüiili
i •<**♦:»•'<• • ^^^^^^» •• ./,.j

K:?^M- ...Jsdii N& ^?&MBa HMfetl
feTjpteM^v^l

' "*$¥

j .•*.. ^v»"1 •*/»• Ä .. .■ ',

Figure 12 Welcome Screen

The PrintForm menu function prints the current form to the default printer. The Exit

menu function exits the program. Clicking the View menu function provides two

options. The program user can either view a schematic of the reactor or the boundary

conditions as shown in Figure 13 and Figure 14 respectively. From either of them the

user can return to the previous screen by clicking the return menu. To choose one of the

three models to run, click the Select Model menu and choose the desired model. From

the chosen model, the user can return to the starting window or select from any of the

options shown. Clicking the run menu function will execute the selected module. The

help menu function will bring up a window with a help object written in Word. To view

the help information, double click the object window and scroll through the file. To close

the file and return to the previous screen, click the "x" on the windows screen.

34

rasre]

Homogeneous Reactor Core

H

Flux is assumed to
zero at the outer

physical boundary.

The derivative of the
flux is zero at the
center lines of the
reactor.

fc *;:...!$r..|

•■ :.fc ■'.-

i:-.\ > i
£••::', ': •■.-. ■<

fciio

'* '!

:• .•*■!.-', .■■•.». . .<
i .:. - ••■ft" ■

r.'W.*' .1:-,..

H^ *?*'••!

:;;.**;uy /.ij,^

ks-te

Figure 13 Reactor Schematic Form

HhWIBEBWW isgra

PA«, i

k$^-!

stt"

Flux(0,j)=
Flux(lj)

j=l
Center of
core

core height
+Z Flux(i,m)=0

^— Top of core

Jit
P 5

■A±a,±
Flux(nj)=0

core height
+Z Flux(i,m)=0

radius
i=l i=n

Flux(i;0)=FIux(i,l)

j=m
, -Top c

PM<

Flux(0j)= 'i-i,, hi Pi+i F

Flux(lj)
*W

(0,0)
i=l i=n

Flux(i,0)=0

Flux(nj)=0

radius

core height
-Z

Boundary Conditions Upper Quarter Rx Boundary Conditions Right Half Rx

^■^rtf.i

i'.Vtf

»•• I'M'.~j

f*.i

Figure 14 Boundary Condition Form

35

The program has several built in error commands that prevent the program from

crashing should the user fail to input required data or input incorrect data. For example,

if the user fails to input keffeclive, the program will anticipate and prevent the division by

zero in the code. The code will display a message explaining the error and insert

K/fecive - °-9 • While the code is certainly not yet totally failsafe, it provides error

corrections to many anticipated runtime errors.

To run the two dimensional one energy group model, the code requires input for 2a,

v2f, <|)guess, diffusion coefficient, radius, and kguess. All appropriate data must include units

of centimeters. Each of the three reactor model forms provides tips for the user when the

cursor is placed over some of the input description boxes. The user must also input the

mesh spacing between mesh points. For typical reactors a mesh spacing of 0.5 cm

provides a maximum relative error of less than two percent and runs within a few

seconds. Finally, the user must input a file name and location to save the Excel

workbook with an extension of filename.xls.

Figure 15 shows an example of the two dimensional model form. The form lets the

user know if the reactor is critical and if not provides a recommended Sa that will drive

the reactor to criticality.

36

B32S32SEEI
led: Model Run : Help

EM

«■' • r SöaSLzlä

SrillBrt.iaS" ^

fei
«,r. -f

; •••irr
^SHSffiilllllll iTOssal

J

is
rfs

kit . ,■«.**?.; .

f.:,l rs-l

rft;^: -•

v*w' i, • * »■ •. ■ * ■ - i .*,» 5A5* * fjssc.^ ill: •'*■_.;«< — • • ' • i'*.. ■ .s-*tr ' *»f^T, - . • i' • • »
X-"!.' - ■- • • •-. :>'■ . "v " ' £>{.■:■•..,.•-•;•..: -• v. *•*.'"»,*. .* ME fiT; •■ ..•• . ., - • •• '

■■■ : ■.•■-.??«■", "-.*&*-.:• • ... - = ■ ■ • ' ":''.' • ■■:'*X'-:&: ■ ■■■; ■: .'■■»-•.■'.• -J.:" ■- •" • : ? ■■ *:•■ ■.•;*s;.i;-.:..-TJ

Figure 15 2D, One Energy Group Form

It also provides a power distribution plot. To access the plot and data, double click the

chart and Excel will open the workbook containing the data and chart. Closing Excel

returns the user to the form; however, the chart will not be resized to fit the screen. The

chart will automatically resize upon running another problem.

To run the three dimensional one energy group model, input the same information

required for the two dimensional model along with the reactor height. The program

requires the user to select whether to calculate the power distribution for either a half or a

quarter of the core. The mesh spacing will be equally applied to the axial and radial

directions. Additionally, there is an option to choose between reduced relative error;

slower run times and average relative error; faster run times. These correspond to the

37

results provided in Table 5, Table 6, and Table 10. Figure 16 shows the results of

running a sample problem using half of the core.

I1.IJ.J.II.I...U1...I.I.IJ1....I.I

w
sen

•••• ••■<•::••.?•• .:•!•***. irf?*?'<-

•,&£##* if ■W&*- "•'•'Säf^«
K»/.^'^-..-.:; ':J,i)%*.. ''-'SAM

m

kag&33
Ä;;J?

•*ft>3» ;«^iL .«&. :JV.

I reactor a '- li*
iüäft* ri^y.)

FE
ässse^

Lj^Hffrl:fJMIWJJJMIIJ-.'JfJI:ll'.li

IHRHRI

■% 'i^fci M PI >&i
-#:- • * "': "•*%''; ::i#!
$?• \"^jsi^K'

■■■■%

■ *•*"* : *■••..• /J^f^'Vv*' ■i

$: Ä£"l

Figure 16 3D, One Energy Group Form

The reactor core height input corresponds to the height of either the half or quarter

reactor core selection. Again, the program will provide the criticality information.

The three dimensional two energy group model requires more information than the

previous models. The input data for both the thermal and fast energy groups must also

include 2Removal and Zscatter. Table 2 provides sample input data for two energy groups.

Additionally, the user must select the radial and axial positions to plot the power

distribution. Figure 17 displays the input box to select the radial position upon which to

plot the axial power distribution. The maximum axial power will occur at the zero

38

position for either the half or quarter core selection. For the radial power distribution, the

maximum will occur at the zero axial position for the quarter core or center axial position

for the half core. The plots are independent of one another allowing the user to select the

power distribution along any section of the core.

Like the three dimensional one energy group model, the user must choose between

reduced relative error; slower run times and average relative error; faster run times.

i

$"-' '.lA"i^ v*! M rfr--v
'•.„^i-/\ "■••v1!Hy''01 5>^'"

\ >"i''V4.,: 7?* •" *V *
{::■,'• :$Sb

M- - . ■ »< jrio-wf. ;'/*»*>>_' y.-; '?/!• *7*. ££ :'*": WsV

f"*#^vi^8ftSi^w--''ikiif' •.'• i

Figure 17 3D, Two Energy Groups Axial Choice

Figure 18 is an example of the final solution. The plots include the thermal, fast, and

total power distributions. As in the other models, the program user can access the

Excel workbook directly by double clicking either chart. The workbook will contain

the power distribution data for the radial and axial plots on separate worksheets.

39

i. 3D Two Energy Gioups [Thefmal & Faslj

Select Model RL

SlSlh&JMbt'.. PHEBIHIIlö! aislJä

Power in Reador Core

: —'-•■"• '■'■■■^r^y^:. ,:.-•.•..

it!
iS*^

■°
"'Hi' ^■--"

" „ Jäl. .:.■..:::■:. ■..■._■.■■■. ■■!

■ 1
,/ -mimmmmssM

K^-i|1|feß,',vi;3itH \ !

-*—*~~^ \
--•

^
,

SO N«

f- ."'■ •'•• V a

P;:3

te ■«.■•¥*••.■,••• i

Figure 18 3D, Two Energy Group Form

40

Program Validation

To validate the code, I tested each of the three models independently. I compared the

code's normalized power distribution to the normalized analytical solution to determine

the point-by-point relative error. For the three dimensional models, I tested and validated

the blocked tridiagonal solver using various matrices solved with Mathamatica before

testing the entire code.

Two Dimensional, One Energy Group Model.

I tested the model using data for a typical homogeneous reactor as shown in Table 1.

Table 1 One-Speed Reactor Input Data

Reactor Data

£„ 0.1532 1/cm

vlf 0.1570 1/cm

Diffusion Coefficient 9.21 cm

2,r 0.0362 1/cm

I compared the model to the flux distribution profile for an infinite right circular cylinder.

</> = J0

KR J
(50)

where

v0 = 2.405 = smallest zero of J0

R is the radius of the cylinder

r is the position along the radius.

41

Figure 19 shows the normalized flux profile for the reactor with a radius of 120 cm.

Figure 20 shows the normalized flux profile for the data from the one-group model.

Figure 21 is a combination of both. They overlap each other indicating that the one-

speed model is producing the correct fundamental flux mode shape. Using a radius of

120 cm and a mesh spacing of 0.5 cm, the maximum relative point-by-point error was

0.02.

1.2

H 1

iE 0.8

| 0.6
n
E 0.4
o
z 0.2

0

Two Dimensional, One Energy Group

50 100

Radius (cm)

- Mathematical
Solution

150

Figure 19 Flux profile of infinite right circular cylinder (Bessel J function)

42

Two Dimensional, One Energy Group

1.2

K 1

ü 0.8

| 0.6
n
E 0.4
o
z 0.2

■ Numerical Solution

50 100

Radius (cm)

150

Figure 20 Normalized flux from one-speed computer model

Two Dimensional, One Energy Group

- Mathematical
Solution

- Numerical Solution

50 100

Radius (cm)

150

Figure 21 Flux profile of Bessel J function and one-speed computer model together

43

Three Dimensional, One and Two Energy Group Models.

To test the two models, I verified the blocked tridiagonal solver and then each code

separately. I initially tested the blocked tridiagonal solver using Mathematica with a

diagonally dominant system of equations as shown in the augmented matrix (51).

5.16 1.25 0 1 0 0 0 0 0 -1.894

0.5 -5.16 1.167 0 1 0 0 0 0 -1.894

0 0.75 -5.16 0 0 1 0 0 0 -1.894

1 0 0 -5.16 1.25 0 1 0 0 -1.894

0 1 0 0.5 -5.16 1.167 0 1 0 -1.894

0 0 1 0 0.75 -5.16 0 0 1 -1.894

0 0 0 1 0 0 -5.16 1.25 0 -1.894

0 0 0 0 1 0 0.5 -5.16 1.167 -1.894

0 0 0 0 0 1 0 0.75 -5.16 -1.894

(51)

The approximate solution is

(52)

100000000 0.678681

010000000 0.678681

001000000 0.678681

000100000 0.678681

000010000 0.678681

000001000 0.678681

000000100 0.678681

000000010 0.678681

000000001 0.678681

In this case, the system resulted in a nine by nine matrix where m=4 and n=4. The

pattern and coefficients are similar to the actual pattern and coefficients generated by

numerically solving the diffusion equation using the one group data. The solution

generated by Mathematica matched the solution given by the blocked tridiagonal solver.

The blocked tridiagonal solver typically converges to the approximate solution within 10-

44

15 iterations with a tolerance of 1E-6, using mesh spaces greater than 10 centimeters.

Their agreement indicates that the solver is converging to the correct solution.

Varying the values, constant and non-constant coefficients, of the lower and upper

diagonals while maintaining diagonal dominance resulted in correct solutions as well.

This was one of the several comparisons I made, each of which agreed with the blocked

tridiagonal solver's solution.

Next, I verified that the codes produced the approximate correct power distribution

within the reactor core. The compiled program was tested using an AMD-K3 450

megahertz personal computer with 64 megabytes of random access memory. I compared

the relative maximum error of the normalized numerical solutions at each mesh point to

the normalized mathematical solution for a finite cylinder.

0(r,z) = Jc
2.405/-^ (nz^

v R
Cos

VHJ
(53)

where

H = the height of the cylinder

z = the position along the z axis (height)

For the three dimensional one group model, I used the same input data used in the

two dimensional one group model. I used the data in Table 2 as input for the three

dimensional two energy group model (Duderstadt and Hamilton, 1976:312).

45

Table 2 Two Group Diffusion Theory Constants (Table 7-2 Duderstadt)

Group
Constant

Group 1 Fast Group 2
Thermal

Ea (1/cm) 0.01207 0.1210
v2f (1/cm) 0.008476 0.18514
Sf (1/cm) 0.003320 0.07537
Diffusion
Coefficeint
(cm)

1.2627 0.3543

SigmaRemoval
(1/cm)

0.02619 0.1210

SigmaScatter
(1/cm)

0.01412 0

I originally limited the blocked tridiagonal solver to 20 iterations because of the

typical convergence within 10-15 iterations. However, this produced erroneous results

as the mesh spacing was reduced to less than six centimeters. The blocked tridiagonal

solver failed to completely converge after 20 iterations causing the large relative errors

shown in Table 3 and Table 4. Notice the relative error converges and then begins to

diverge below mesh spacings of around 4-6 centimeters. Table 3 and Table 4 show the

relative errors and approximate code running times for several test runs for half and

quarter of the core test runs.

46

Table 3 Relative Errors for Quarter Core 3D Models, Blocked Tridiagonal
Tolerance =lE-8 with Maximum of 20 Iterations

One Energy Group Two Energy Groups
Mesh

Spacing
Centimeters

Radial
Maximum
Relative

Error

Axial
Maximum
Relative

Error

Running
Time

(MimSec)

Radial
Maximum
Relative

Error

Axial
Maximum
Relative

Error

Running
Time

(Min:Sec)

30 0.1 0.1 00:08 0.1 0.1 00:16
20 0.07 0.06 00:13 0.07 0.06 00:21
15 0.04 0.05 00:21 0.04 0.05 00:32
12 0.03 0.04 00:36 0.03 0.04 00:51
10 0.02 0.03 00:52 0.02 0.03 01:21
6 0.01 0.01 02:20 0.01 0.02 03:52
5 0.008 0.03 03:20 0.008 0.005 05:52
4 0.006 0.2 05:27 0.006 0.1 09:54
3 0.005 0.7 Untimed 0.005 0.5 Untimed

Table 4 Relative Errors for Half Core 3D Models, Blocked Tridiagonal Tolerance
=lE-8 with Maximum of 20 Iterations

One Energy Group Two Energy Groups (Total Power)
Mesh

Spacing
Centimeters

Radial
Maximum
Relative

Error

Axial
Maximum
Relative

Error

Running
Time

(MimSec)

Radial
Maximum
Relative

Error

Axial
Maximum
Relative

Error

Running
Time

(Min:Sec)

30 0.1 0.0001 00:11 0.1 0.0001 00:19
20 0.07 0.00009 00:21 0.07 0.0001 00:34
15 0.04 0.00009 00:39 0.04 0.0001 00:59
12 0.03 0.00009 01:12 0.03 0.0001 01:49
10 0.02 0.00009 01:42 0.02 0.0001 02:45
6 0.01 0.004 04:41 0.01 0.0009 08:03
5 0.008 0.03 06:41 0.008 0.01 11:57
4 0.006 0.2 07:52 0.006 0.6 19:04
3 0.005 1.0 Untimed 0.005 0.4 21:37

I initially thought the divergence was due to instability of the finite central difference

method; however, Figure 22 shows that the relative error was not symmetrical.

47

1.2

3D, One Energy Group, Half Reactor

100 200 300

Height (cm)

-♦— Mathmatical Solution

-«—Numerical Solution

400

Figure 22 Intitial Test, Mesh Spacing = 3 cm

This suggested that the error was not due to instability. Increasing the maximum

number of iterations in the blocked tridiagonal solver from 20 to 1000 allowed for

complete convergence with smaller mesh sizes and corrected the error.

The tolerances set for the convergence of the multiplication factor k and the blocked

tridiagonal solver are critical to achieving useful solutions. For most cases, a k tolerance

of 1E-5 provides acceptable results (Ott, 1989:351). Table 5 and Table 6 provide a

summary of the results using a tolerance of 0.001 for the blocked tridiagonal solver and a

k tolerance of 1E-5. This tolerance setting provided maximum relative errors of less than

six percent for a mesh spacing of two centimeters when analyzing a quarter of the reactor.

Analyzing half the reactor core increased the maximum relative error and run times as

expected. I chose this setting because it yielded reasonable results with fast run times.

48

Table 5 Relative Error for Quarter Core 3D, Blocked Tridagonal Tolerance = 0.001

One Energy Group Two Energy Groups
Mesh

Spacing
Centimeters

Radial
Maximum
Relative

Error

Axial
Maximum
Relative

Error

Running
Time

(Min:Sec)

Radial
Maximum
Relative

Error

Axial
Maximum
Relative

Error

Running
Time

(MimSec)

30 0.1 0.2 00:06 0.1 0.2 00:09
20 0.07 0.1 00:07 0.07 0.2 00:09
15 0.04 0.1 00:07 0.04 0.1 00:10
12 0.03 0.1 00:09 0.03 0.1 00:11
10 0.02 0.09 00:11 0.02 0.1 00:13
6 0.01 0.07 00:20 0.01 0.1 00:33
5 0.009 0.06 00:49 0.009 0.09 00:52
4 0.007 0.04 01:32 0.008 0.08 01:36
3 0.006 0.006 03:43 0.007 0.04 03:47
2 0.006 0.05 13:56 0.007 0.02 14:13
1 0.01 0.2 =180:00 No test No test No test

Table 6 Relative Errors for Half Core 3D, Blocked Tridiagonal Tolerance = 0.001

One Energy Group Two Energy Groups
Mesh

Spacing
Centimeters

Radial
Maximum
Relative

Error

Axial
Maximum
Relative

Error

Running
Time

(MimSec)

Radial
Maximum
Relative

Error

Axial
Maximum
Relative

Error

Running
Time

(Min:Sec)

30 0.1 0.09 00:07 0.1 0.1 00:09
20 0.07 0.09 00:07 0.07 0.1 00:11
15 0.04 0.08 00:10 0.04 0.1 00:13
12 0.03 0.08 00:15 0.03 0.1 00:16
10 0.02 0.09 00:18 0.02 0.1 00:22
6 0.01 0.1 00:58 0.01 0.1 01:01
5 0.008 0.1 01:41 0.009 0.1 01:39
4 0.007 0.1 03:02 0.008 0.1 03:09
3 0.006 0.1 07:20 0.007 0.2 07:54
2 0.006 0.2 27:45 0.007 0.2 29:26
1 No test No test No test 0.01 0.3 Untimed

What impact does reducing the tolerance of the blocked tridiagonal solver have on the

maximum relative error? Table 7 and Table 8 show the results of changing the tolerance

49

to 1E-4 and 1E-6 respectively for half of the core using two energy groups. There was

not a significant reduction in the maximum relative error by changing the tolerance to 1E-

4. Reducing the tolerance to 1E-6 did not significantly reduce the error in the radial

direction; however, the error was reduced by over ten percent in the axial direction. The

trade off is doubling the run time from approximately 29 minutes as shown in Table 6 to

60 minutes as shown in Table 8.

Table 7 Half Core 3D, Blocked tridiagonal Tolerance = 1E-4

Two Energy Groups
Mesh Spacing
Centimeters

Radial Maximum
Relative Error

Axial Maximum
Relative Error

Running
Time

(Min: Sec)
2 0.006 0.2 33:42

Table 8 Half Core 3D, Blocked Tridiagonal Tolerance = 1E-6

Two Energy Groups
Mesh Spacing
Centimeters

Radial Maximum
Relative Error

Axial Maximum
Relative Error

Running
Time

(Min:Sec)
2 0.006 0.08 60:05

Reducing the tolerance to 1E-8 provided even better results as shown in Table 9.

This tolerance reduced the maximum axial error as shown in Table 6 by approximately

19 percent for the mesh spacing of one centimeter.

Table !) Half Core 3D, Blocked Tridiagonal Tolerance = 1E-8

Two Energy Groups
Mesh Spacing
Centimeters

Radial Maximum
Relative Error

Axial Maximum
Relative Error

Running
Time

(Min:Sec)
1 0.01 0.1 Several Hours

50

Figure 23 is the normalized power distribution plot compared to the normalized

mathematical solution for the reduced blocked tridiagonal tolerance of 1E-8. Although

the maximum error is about 10 percent, the error is symmetric about the center of the

reactor core.

3D, 2 Energy Groups, Half Rx

■Numerical Solution

Mathematical
Solution

 1 ! ! ! ! ! ! !

0 40 80 120 160 200 240 280 320 360

Height (cm)

Figure 23 3D, Total 2 Energy Groups, Blocked Tridiagonal Tolerance = 1E-8 with
Mesh Spacing = 1 cm

To reduce the maximum relative error even more, I set the tolerances for convergence

of the multiplication factor k and the blocked tridiagonal solver to 1E-7 and 1E-8

respectively. Table 10 is a summary of the maximum relative errors for test runs

calculating the power distribution for a half reactor core, using two energy groups. The

data indicates that the radial maximum relative error continues to reduce while the axial

error remains constant at about 0.001. As before, the running times increase significantly

as the mesh spacing reduces to one centimeter.

51

Table 10 Half Core 3D, k Tolerance =lE-7, Blocked Tridiagonal Tolerance = 1E-8

Two Energy Groups
Mesh Spacing
Centimeters

Radial Maximum
Relative Error

Axial Maximum
Relative Error

Running
Time

(Min:Sec)
30 0.1 0.001 00:10
20 0.07 0.001 00:15
15 0.04 0.001 00:25
12 0.03 0.001 00:40
10 0.02 0.001 01:04
6 0.009 0.001 04:29
5 0.007 0.001 07:55
4 0.006 0.001 16:59
3 0.005 0.001 47:30

Appendix G contains plots comparing the relative errors as indicated in Table 5 and

Table 6 using a blocked tridiagonal tolerance of 0.001 and a k tolerance of 1E-5.

The final code provides the user with the options as shown in Table 11 below. This

provides the user with the flexibility to choose between a level of maximum relative

errors and run times corresponding to Table 5, Table 6, and Table 10.

Table 11 Options for Three Dimensional Models

Tolerance for k Tolerance for blocked
Tridiagonal solver

Reduced relative error,
Increased run time

1E-7 1E-8

Average relative error,
Faster run time

1E-5 0.001

52

IV. Conclusions and Recommendations

Conclusions

The model provides the power distribution of a homogeneous unreflected reactor core

in two or three dimensions using either one or two energy groups for a steady state

reactor. Teachers can use the program to augment fundamental nuclear reactor courses

by providing students with an additional resource to enhance learning. The program

allows the user to modify the reactor dimensions and/or core composition and see the

impacts on the power distribution and criticality within the reactor core.

Reducing the allowed acceptable tolerance for convergence in the blocked tridiagonal

solver and the multiplication factor will reduce the normalized maximum relative error

for the three dimensional models. The major trade off is increasing the computational

time. Using 1E-5 and 0.01 as the convergence tolerances for the multiplication factor and

blocked tridiagonal solver respectively, the model yields a power distribution with a

maximum relative error of about four percent for a mesh spacing of three centimeters,

using two energy groups for a quarter core calculation. Using 1E-7 and 1E-8

respectively, the model yielded a maximum relative error of about one half of one percent

for the half core calculations. To achieve such a low relative error, the running times

increased from about four minutes to 48 minutes. Because this is a homogeneous system,

one should take advantage of symmetry and calculate the power distribution in a quarter

of the core.

The Visual BASIC 5.0 program is completely exportable to most Windows based

personal computers. It automatically plots the power distribution, based on the core

53

dimensions and composition input, using Excel and links the chart to the Visual BASIC

5.0 form. Additionally, it calculates the multiplication factor to determine criticality.

Recommendations

The code is flexible enough to allow for future, user-friendly improvements while the

finite central difference method and criticality search technique are the foundation for

more complex reactor codes. The model can be the basis for adding a heterogeneous

core and other modules including thermal-hydraulics, control adjustments, and depletion.

Although, the code has some built in error checks, it is not totally "crash proof.

Several additional error checks should be added as the program is used and tested by

teachers and students alike. Additionally, an improved help file and automated read input

statement should be added.

One approach to developing a heterogeneous model is to convert the unit cells of the

lattice core to homogeneous cells as shown in Figure 24. Reactor cores are constructed

of several material compositions including fuel rods, cladding, and coolant. Using the

general assumption that the net neutron current flow across cell boundaries equals zero,

one spatially averages the multigroup cross sections of the materials to obtain a group

cross section for the unit cell. This is usually done for the fast and thermal group effects.

Equation (54) defines the cell averaged group constant.

54

Hexagonal
Assembly

Circular
Assembly

Homogenized
Assembly

Figure 24 Fuel-Cell Homogenization

\ SI cell

J dE j Z(r,E)<f>(r,E)d3r

j dEJ </>(r,E)d3

(54)

After homogenizing the unit cells, control rods can be added to the homogenized

core. One can use the cell group constants along with the control rod cross sections in a

multigroup two dimensional diffusion calculation. These revised flux values can then be

used to calculate the final group constants for the homogenized fuel assembly. The final

step is to calculate the flux and power levels in the homogenized core. This can be

accomplished by dividing the core into equal lattice structures of squares or other

55

geometric shapes that take advantage of symmetry to reduce the computation

requirements.

The addition of a thermal-hydraulic module would significantly enhance the model's

capability. PWR power distributions are coupled to temperature. PWRs use water as a

coolant that typically enters the bottom of the core and leaves near the top. The coolant

decreases in density as it absorbs heat moving up through the core. The power density of

the current model predicts a symmetric power peaking profile that is not truly the case.

Because of the change in density, the axial power peak is actually slightly toward the

bottom. The average fuel and moderator temperatures can then be used to adjust the

macroscopic cross sections for use in the power distribution model.

Finally, a control adjustment and depletion module can be added. The control

adjustment module would calculate the adjustments necessary for control rod insertion or

withdrawal to maintain criticality and the depletion module would account for fuel burn

up impacts on the reactor core.

56

Appendix A. Derivation of Three Dimensional Source Integration

Let

tin PR 7"=n„ l,r(r.zy*dodz (55)

for a given homogeneous material. Integrating cp yields

r = 2n^\R<l)n(r,zydrdz. (56)

Let

In(r) = 2n^</)n(r,z)dz. (57)

Using the trapezoid rule to numerically solve the integration with respect to z, where the

trapezoid rule is

rb AY(n~1 ^
J /(*)*■=£ f(a) + f{b) + 2YJf{xi

and

(58)

yields

x(=iAx, i = 1,2,3,...n

A b

Ax = —
n

V(r)~2n
Az m—i

J=I

(59)

where

0"(r> z0) = 0 and 0"(r,O) = 0 due to boundary conditions

Zj = j'Az

Az = ^.

57

Integrating with respect to r, yields

/"
Ar n-\

I" (0)0 + r(R)R + 2^In(rj)ri
1=1

(60)

where

but from equation (57)

rt = /Ar

A R Ar = —

r(R) = 27tj(f>n(R,z)dz = 0. (61)

Simplifying and combining equations (59) and (60) results in

n-\ m-\

i=l ;=1

(62)

58

L

Appendix B. Derivation of Right Circular Cylinder Reactor Core Solution

The basic equation is

vV-—4>= v f </>
D D

(63)

where the boundary conditions are

0(r,±H) = O

Converting this into right circular cylinder coordinates results in

13^ ZA\ f&*\

r Or

d(j)
r—

V drJ
+ + B > = 0 (64)

where

l?=±(vZ,-l.).

Separating the variables and letting

0(r,z) = R(r)Z(z)

yields

^(rR'(r)Z(z))+R(r)Z"(z) + B2R(r)Z(z) = 0.
r or

(65)

Collecting the terms provides

1 (rR') Z"(z) 2

rR(r) Z{z)
(66)

Now setting the equation equal to a constant provides

59

1(Q ,g2_-Z'0Q_A2
r i?(r) Z(z)

(67)

Solving

Z"(z)+A2Z(z) = 0 (68)

where

/ 4--
yields

Z„(z) = 0« (nnz^ (69)

where

^2 n = 1,3,

Now solving the second equation

i(4
r R(r)

2 12 + 52=2 (70)

where

R(R)=Q>

-(rR'j+ju2R = 0 (71)

and

fi2=B2-A2=-(vlf-la)-
f ^2

v#y

The solution is in the form of the zeroth order Bessel functions.

60

R(r) = AJo(jur) + CY0(ßr)

However as r —> 0, Y0 (jur) —> °°, therefore C must equal zero. At the boundary

(72)

condition r = R,

R(R")=O = AJ0(JUR) (73)

only if A does not equal zero and if juR = vn, where vn is the zeros of the /0.

Therefore the eigenfunctions and eigenvalues are

Rn(r) = Jt

v* J

rt =
vR;

for n = 0,1,2,.

(74)

Ba=^(vX/-Z«) =
r„ \

vÄ; 2tf
(75)

Equation (75) represents the geometric buckling of the reactor. The general solution the

problem then becomes

where A is a normalization factor.

Cos
1' nz^ (76)

61

Appendix C. Two Dimension, One Energy Group Visual BASIC Code

Thesis code by MAJ Will Harman
This program calculates the radial flux/power profile for a typical right circular
'cylinder in two dimensions. It uses the standard diffusion equation in a one energy
group (one-speed)
homogeneous unreflected reactor core. The equation is solved by using the finite central
'difference technique. The scheme uses a power iterative technique to solve for
'flux based upon an inital guess of k effective and the flux. It finds the eigenfunction
'for the maximum eigenvalue providing the fundamental mode shape for flux.

Const mnErrDivByZero = 11, mnErrOverFlow = 6
Const mnErrBadCall = 5
Private Sub Form_Load()
Load initial values from Duderstadt page 210-211
Dim kGuess, FluxGuess, SigmaA, NueSigmaF As Double
Dim DiffusionCoefficient, Radius, h As Double
Textl = ""
Text2 = 0.157 NueSigmaF 1/cm
Text3 = 9.21 DiffusionCoefficient cm
Text4 = 120 Radius cm
Text5 = 0.5 'mesh spacing
Text6 = 0.9 TC guess
Text8 = "" 'Critical Rx?
Text9 = "" Ineffective will be calculated
TextlO = ""
Textll = ""
Textl4 =""
End Sub

Sub Kinetics()
Dim prompt 'ask user for input
Dim Valu(2) As Double
Dim kGuess As Double
Dim SigmaA As Double
'Set source document for Excel chart to name and location by user
OLE2.SourceDoc = ("Textl")
OLE2. Visible = True
'Ckeck for numerical entries
ok = 0
Forj = 0Tol

ykk = Checkin(MaskEdBox(j))
ok = ok + ykk

Nextj
If ok > 0 Then

62

MsgBox ("You must enter positive numbers")
End If
'Assign variables to input boxes
kGuess = MaskEdBox(O)
FluxGuess = MaskEdBox(2) 'neutron/cmA2
SigmaA = MaskEdBox(l) '1/cm
NueSigmaF = CDbl(Text2.Text) 1/cm
DiffusionCoefficient = CDbl(Text3.Text) 'cm
Radius = CDbl(Text4.Text) 'cm
h = CDbl(Text5.Text) 'spatial distance between nodes cm
n = Radius / h 'number of nodes along radius
DeltaR = h 'cm
DeltaZ = h 'cm
Maxlterations = 1000 'number of iterations for convergence of k
and source
Epsilonk = 0.00001 'acceptable error in k
EpsilonS = 0.015 'acceptable error in S (nueSigmaF*Flux)
kCriticalityTolerance = 0.0001
Dim Sl(), S2(), k(), Flux(), ErrorS(), FluxData() 'As Integer
ReDimSl(n)
ReDim S2(n)
ReDim Flux(n)
ReDim k(MaxIterations + 1)
ReDim ErrorS(n -1)
ReDim FluxData(n, 1)
build initial flux and source guess
Restart 1: Used in ProgramError
For i = 0 To n -1
Flux(i) = FluxGuess
Sl(i) = NueSigmaF * Flux(i)
Nexti
Restart2: Used in ProgramError
k(0) = kGuess
On Error GoTo ProgramError
test = 1 / k(0) 'Check if user input k value.
'! Outer iterations
For i = 0 To Maxlterations
Flux is the only term coming out of Call statement
Call LinearFiniteDifference(Sl, n, k(i), SigmaA, DiffusionCoefficient, h, Radius, Flux)
'Convert flux back into source for comparison with previous source
For m = 0 To n
S2(m) = NueSigmaF * Flux(m) 'convert flux to S(n+1; neutron/cmA3
Nextm
'!Calc area under curve using composite trap rule
Suml = (h/2#)*S1(0)'0
Sum2 = (h / 2#) * S2(0) '0

63

For j = 1 To n - 1
Sum2 = Sum2 + h * S2(j)
Suml = Suml+h*Sl(j)
Nextj

Integral S(n+l)/(l/k(n)*Integral S(n))
'Build array of Source errors to use in tolerance test
On Error GoTo ProgramError
k(i + 1) = k(i) * Sum2 / Suml Equation 5-274 Duderstadt
'Calculate relative error between old and new source
'!run to n-1 because S=0 at BC

For 1 = 0 To n -1
ErrorS(l) = Abs((S2(l) - Sl(l)) / S2(l)) Equation 5-275 Duderstadt
Next

Find maximum value of ErrorS()
MaxErrorS = ErrorS(O)
For 1 = 1 To n - 1
If (ErrorS(l) > MaxErrorS) Then
MaxErrorS = ErrorS(l)
End If
Nextl
'Check for tolerances
If ((Abs((k(i + 1) - k(i)) / k(i)) < Epsilonk)) And (MaxErrorS < EpsilonS) Then Equation
5-275 Duderstadt
End outer iterations check for convergence if true
kEffective = k(i + 1)
Exit For
End If
'reset S1=S2 for next iteration
Forj =0Ton
si(j) = S2(j)
Nextj
kEffective = k(i + 1)
Next i 'end outer iteration
'Check if k=l, if so k=keff=critical Rx
Numberlterations = I
MultFactor = Format(k(i), "#.#####")
If (kEffective > 1# - kCriticalityTolerance) Then
Text8 = "Yes"
Text9 = MultFactor 1c(i)
Else
Text8 = "No"
Text9 = MultFactor ' k(i)
Use perturbation to assist the user in changing SigmaA to get criticality
DeltaSigmaA = Abs(l# / kGuess -1#) * (-NueSigmaF) Equation 5-306 Duderstadt
TextlO = SigmaA + DeltaSigmaA 'adjust new SigmaA for criticality
End If

64

n

If (i < Maxlterations) Then
Text 11 = Numberlterations

Else
Textl4 = "Exceeded maxiterations before convergence"

End If

Build chart using Excel and OLE capability
Dim ExcelApp As Object
Dim ExcelChart As Object
Dim ChartTypeVal As Integer

'-4100 is the value for the MS Excel constant xBDColumn. Visual
BASIC does not understand MS Excel constants, so the value must be
'used instead.
'xlLine=4
'xlXYScatter = -4169
'xl3DSurface=-4103

Define my chart typ
ChartTypeVal = -4169
Set ExcelApp = CreateObject(" excel, application")
ExcelApp.Visible = False Will not see Excel load, build, and chart
ExcelApp .Workbooks .Add
Populate the worksheet in Excel with the power (W/cmA3)
Power conversion per Ott
For rwlndex = 0 To n

ExcelApp.Cells(rwlndex + 2, l).Value = h * rwlndex
ExcelApp.Cells(rwIndex + 2, 2).Value = Flux(rwlndex) * NueSigmaF / (2.43 * 3.1 *

10 A 10) W/cmA3
Next rwlndex
'select rows and columns in worksheet to chart Starts at Al and highlights all values
ExcelApp.Range("Al").CurrentRegion.Select
Set ExcelChart = ExcelApp.Charts.Add()
ExcelChart.Type = ChartTypeVal
ExcelChart.SeriesCollection(l).Name = "=""Power"""
With ExcelChart

.Axes(xlCategory, xlPrimary).HasTitle = True

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Radius (cm)"

.Axes(xl Value, xlPrimary).HasTitle = True

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Power (Watts/cmA3)"
End With
ExcelChart.SaveAs [Textl] 'Save chart/data per user input

Using the square brackets tells Visual Basic that this is an
MS Excel command not a Visual Basic command.

OLE2.CreateLink (Textl) Link to saved chart
OLE2.Update 'allow immediate update of excel chart
ExcelApp.Quit
Set ExcelChart = Nothing

65

Set ExcelApp = Nothing

ProgramError:
Select Case Err.Number
Case mnErrOverFlow
MsgBox ("You must guess an initial flux to get a non-trivial solution; the code will guess
1.0E10 neutrons/sec-cmA2")
FluxGuess = 10000000000#
Resume Restart 1
Case mnErrDivByZero
MsgBox ("You must input a value for k, the code will assume kguess=0.9")
kGuess = 0.9
Resume Restart2
End Select
End Sub

Sub LinearFiniteDifference(Sl, m, k, SigmaA, DiffusionCoefficient, h, Radius, Flux)

'!Solvesy(n+l)"=-l/r*y(n+l)'+SigmaA/D*y(n+l)-l/(D*k(n))*NueSigmaF:,:y(n)
'!for y(n+l). k(n) and y(n) are calculated in main program.
'Algorithm 11.3 Burden & Faires
LowerLimit = 0 'ünner radius
UpperLimit = m * h '! outer radius
alpha = 0 '!I.C. y(LowerLimit)=alpha
beta = 0 '!I.C. y(upperLimit)=beta
n = m- 1
ReDim A(n) lower diagonal
ReDim b(n) 'diagonal
ReDim C(n) 'upper diagonal
ReDim D(n) 'A.x=d The d vector
ReDim l(n)
ReDim u(n)
ReDim Z(n)
ReDim w(n + 1)
'!Set distance of first node
x = LowerLimit + h 'cm
'SBuild diagonals;
'!a(l) = w(i)+w(i-l) because flux(0)=flux(l)at interior BC
A(l) = 2 + h A 2 * q(x, SigmaA, DiffusionCoefficient) + (-1 - (h / 2#) * p(x)) No units
b(l) = -1 + (h / 2#) * p(x) 'no units
D(l) = -h A 2 * r(x, h, n, k, DiffusionCoefficient, SI) 'neutron/cmA2
For i = 2 To n -1

x = LowerLimit + i * h
A(i) = 2 + h A 2 * q(x, SigmaA, DiffusionCoefficient) 'no units
b(i) = -1 + (h / 2#) * p(x) 'no units

66

C(i) = -1 - (h / 2#) * p(x) 'no units
D(i) = -h A 2 * r(x, h, n, k, DiffusionCoefficient, SI) 'neutrons/cmA2

Next
x = UpperLimit - h
A(n) = 2 + h A 2 * q(x, SigmaA, DiffusionCoefficient) 'no units
C(n) = -1 - (h / 2#) * p(x) 'no units
D(n) = -h A 2 * r(x, h, n, k, DiffusionCoefficient, SI) + (1 - (h / 2#) * p(x)) * beta
'neutron/cmA2
'Crout Factorization for tridiagonal linear systems
'IBack substitute for solution
1(1) = A(l) 'no units
u(l) = b(l)/A(l) 'no units
Z(l) = D(l) /1(1) 'neutron/cmA2
For i = 2 To n - 1

l(i) = A(i) - C(i) * u(i -1) 'no units
u(i) = b(i) / l(i) 'no units
Z(i) = (D(i) - C(i) * Z(i - 1)) / l(i) 'neutron/cmA2

Next
l(n) = A(n) - C(n) * u(n - 1) 'no units
Z(n) = (D(n) - C(n) * Z(n -1)) / l(n) 'neutron/cmA2
'!Set solution flux values
Flux(n + 1) = beta '!Flux at outer boundary; neutron/cmA2
Flux(n) = Z(n) 'neutron/cmA2
For i = n -1 To 1 Step -1

Flux(i) = Z(i) - u(i) * Flux(i + 1) 'neutron/cmA2
Next
Flux(O) = Flux(l) '!Set BC dFlux/dr=0; neutron/cmA2
End Subroutine LinearFiniteDifference

End Sub
'!NOTE: x=radius of core in cm
Function p(x)
Real (8):: x
p = -1 / x 1/cm
End Function

Function q(x, SigmaA, DiffusionCoefficient)
q = SigmaA / DiffusionCoefficient l/cmA2
End Function

Function r(x, h, n, k, DiffusionCoefficient, SI)
'!S1 is an array filled by node position. Must convert x to nodal points.
If (x = h) Then
x = l
Elself (x = n) Then
x = n

67

Else
x = x/h
End If
r = -l/k*Sl(x)* 1/ DiffusionCoefficient 'neutron/cmA4

End Function

Function Checkin(Box)
If Len(Box) = 0 Then
Checkin = 1

End If
End Function

Private Sub mnu3D2EnergyGroups_Click()
Load TwoEnergyGroup
TwoEnergyGroup.Show
Unload k
End Sub

Private Sub mnu3DOneEnergyGroupItem_Click()
Load rxfrm
rxfrm.Show
Unload k
End Sub

Private Sub mnuExitItem_Click()
End
End Sub

Private Sub mnuHelpItem_Click()
Load Help
Help.Show
End Sub

Private Sub mnuPrintItem_Click()
k.PrintForm
End Sub

Private Sub mnuReactorItem_Click()
Load Reactor
Reactor.Show
End Sub

Private Sub mnuRunItem_Click()
Call Kinetics
End Sub

68

Private Sub mnuStartItem_Click()
Load ReactorCoreModel
ReactorCoreModel. S how
Unload k
End Sub

Private Sub Optionl_Click()
MsgBox ("Try SigmaA=0.1532 1/cm")
End Sub

69

Appendix D. Three Dimension, One Energy Group Visual Basic Code

Thesis code by MAJ Will Harman
This program calculates the radial and axial flux profile (3D) for a typical right
'circular cylinder. It uses the standard diffusion equation in a one energy group
'(one-speed)homogeneous reactor core. The equation is solved by using the finite central
'difference technique using a blocked tridiagonal solver. The scheme uses a power
iterative
'technique to solve for flux based upon an inital guess of k effective and the flux.
It finds the eigenfunction for the maximum eigenvalue providing the fundamental mode
shape for flux.

'Common error statements
Const mnSaveAsFailed = 1004
Const mnTypeMismatch = 13

Private Sub Form_Load()
Load initial values
Dim kGuess, FluxGuess, SigmaA, NueSigmaF As Double
Dim DiffusionCoefficient, Radius, h As Double
Textl = 180 half Rx hieght cm
Text2 = 0.157 NueSigmaF 1/cm
Text3 = 9.21 Diffusion Coefficient cm
Text4 =120 'Core radius cm
Text6 = ""
Text7 = 100000000000# ' * 10 A 10 'neutrons/cmA2
Text8 =""
Text9 = ""
TextlO = ""
Textll = ""
TextH = ""
build fixed selection of mesh spacing in axial and radial cm
Combol.Addltem "30"
Combol.Addltem "20"
Combol.AddItem"15"
Combol.Addltem "12"
Combol.AddItem"10"
Combol.Addltem "6"
Combol.Addltem "5"
Combol.Addltem "4"
Combol.Addltem "3"
Combol.Addltem "2"
Combol.Addltem "1"
Combo2. Addltem "Choose half reactor core" 'Select List Case 0
Combo2.AddItem "Choose quarter Rx core" 'Select List Case 1

70

Combo3.AddItem "Reduced Relative Error; Slower Run Time"
Combo3.AddItem "Average Relative Error; Faster Run Time"
End Sub

Sub KineticsO
Dim Valu(2) As Double
Dim kGuess As Double
Dim SigmaA As Double
Dim FluxGuess As Double
'Set source document for Excel chart to name and location by user
OLEl.SourceDoc = ("Text6")
OLEl.Visible = True
'Ckeck for numerical entries
ok = 0
Forj = 0Tol

ykk = Checkin(MaskEdBox(j))
ok = ok + ykk

Nextj
If ok > 0 Then
MsgBox ("You must enter positive numbers")
End If
'Check for ouput file location and name
IfText6 = ""Then
MsgBox ("You must input an output file location and name")
End If
'Assign variables to input boxes
kGuess = MaskEdBox(O)
FluxGuess = MaskEdBox(2) 'CDbl(Text7.Text) 'neutron/cmA2
SigmaA = MaskEdBox(l) 'CDbl(Textl.Text) 1/cm
NueSigmaF = CDbl(Text2.Text) 1/cm
DiffusionCoefficient = CDbl(Text3.Text) 'cm
Radius = CDbl(Text4Text) 'cm
ZHeight = CDbl(Textl.Text) 'cm
On Error GoTo ProgramError
h = CDbl(Combo 1.Text) 'spatial distance between nodes; cm
n = Radius / h 'number of nodes along radius
m = ZHeight / h 'number of nodes along z axis
DeltaR = h 'cm
DeltaZ = h 'cm
Maxlterations = 1000 'number of iterations for convergence of k and source
Provide the user with a choice of relative run times and errors
If (Combo3.Text = "Reduced Relative Error; Slower Run Time") Then
kTolerance = 0.0000001
kCriticalTol = 0.000001
Else
kTolerance = 0.00001

71

kCriticalTol = 0.0001
End If
Epsilonk = kTolerance 'acceptable error in k: Ref Ott
EpsilonS = 0.015 'acceptable error in S (nueSigmaF*Flux)
kCriticalityTolerance = kCriticalTol
Dim Sl(), S2(), k(), Flux(), ErrorS(), FluxRadial(), FluxAxial() 'As Integer
DimA(),l(),u()
ReDimSl(n-l,m-l)'S(n)
ReDimS2(n-l,m-l)'S(n+l)
ReDim k(MaxIterations + 1)
ReDim Flux(n - 1, m - 1)
ReDim ErrorS(n -1, m - 1)
ReDim FluxRadial(n, 1)
ReDim Flux Axial (m, 1)
ReDim A(n -1, m - 1) 'stores main diagonal of matrix
ReDim l(n -1, m - 1) 'stores lower diag of tridiag matrix
ReDim u(n - 1, m -1) 'stores upper diag of tridiag matrix
'Calculate initial source
For i = 0 To n - 1
Forj=0Tom-l '(m-l)/2'
Flux(i, j) = FluxGuess 'neutron/cmA2
Sl(i, j) = NueSigmaF * Flux(i, j) 'neutron/cmA3;
Nextj
Nexti

Build diagonals of the tridiagonal in the blocked system by selecting reactor
Select Case Combo2.ListIndex 'either half or quarter of Rx. Boundaries change.
Case 0 Half Rx core
For j = 1 To m -1 'j=row position along z axis

For i = 1 To n -1 'i=column position along radius
Ifi = lThen
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaA / DiffusionCoefficient
Hold2 = (1# / DeltaR A 2) -1# / (2# * DeltaR A 2) 'add in boundary condition

flux(0,j)=flux(l,j)
A(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units
Else
'no units for A(i,j)
A(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaA / DiffusionCoefficient) *

DeltaZ A 2)
End If

Nexti
Nextj

Case 1 'Quarter Rx core
For j = 1 To m - 1 'j=row position along z axis

For i = 1 To n -1 'i=column position along radius

72

If (i = 1 And j = m - 1) Then 'flux(i,j)=flux(i,j-l)=flux(i-l,j)
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaA / DiffusionCoefficient
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2) 'add in boundary condition

flux(0,j)=flux(l,j)
A(i, j) = ((Holdl + Hold2 + 1 / DeltaZ A 2) * DeltaZ A 2) 'no units

Elself i = 1 Then 'flux(i,j)=flux(i-l,j)
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaA / DiffusionCoefficient
Hold2 = (1# / DeltaR A 2) - 1# / (2# * i * DeltaR A 2) 'add in boundary condition

flux(0,j)=flux(l,j)
A(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units

Elself j = m -1 Then 'flux(i,j)=flux(i,j-l)
A(i, j) = DeltaZ A 2 * ((-2# / DeltaR A 2) - (1# / DeltaZ A 2) - SigmaA /

DiffusionCoefficient)
Else
A(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaA / DiffusionCoefficient) *

DeltaZ A 2)
End If
Nexti

Nextj
End Select
'build lower diagonal of tridiagonal matrix
For j = 1 To m - 1 'j=row position along z axis

For i = 1 To n - 2 'i=column position along radius
l(i, j) = (1# / DeltaR A 2 -1# / (2# * ((i + 1#) * DeltaR A 2))) * DeltaZ A 2 'no units
Nexti

Nextj
build upper diag. of tridiag. matrix
Forj = 1 Tom-1

For i = 1 To n - 2 'no units for u(i,j)
u(i, j) = (1# / DeltaR A 2 + 1# / (2# * (i * DeltaR A 2))) * DeltaZ A 2
Nexti

Nextj

k(0) = kGuess
'! Outer iterations
For i = 0 To Maxlterations
Flux is the only term coming out of Call statement and it is built
'so that the first column of the flux matrix equals the flux in the
'm-1 row of the Rx core.
Call ThreeDSolver(Sl, A, 1, u, n, m, k(i), SigmaA, DiffusionCoefficient, DeltaR, DeltaZ,
Flux)
build 3D S2
Select Case Combo2.ListIndex half or quarter Rx
Case 0 naif of Rx
For ii = 0 To n -1
Forj = 0 To ra - 1

73

If j = 0 Then
S2(ii, 0) = 0 BC
Elself (ii = 0 And j <> 0) Then
S2(0, j) = NueSigmaF * Flux(l, m - j) Flux(0,j)=Flux(l,j)
Else
S2(ii, j) = NueSigmaF * Flux(ii, m - j)
End If
Nextj
Next ii

Case 1 'Quarter of Rx
For ii = 0 To n -1
For j = 0 To m -1
If(ii = OAndj=0)Then
S2(0, 0) = NueSigmaF * Flux(l, m - 1)
Elself (ii = 0 And j <> 0) Then
S2(0, j) = NueSigmaF * Flux(l, m - j)
Elself (j = 0 And ii <> 0) Then
S2(ii, 0) = NueSigmaF * Flux(ii, m -1)
Else
S2(ii, j) = NueSigmaF * Flux(ii, m - j)
End If
Nextj
Next ii
End Select

Suml = 0
Sum2 = 0
Build 3D integration of S(n+1) and S(n) using composite trap, rule
Forj = 1 Tom- 1
For b = 1 To n - 1

Suml = Suml +b*Sl(b,j)
Sum2 = Sum2 + b * S2(b, j)

Nextb
Nextj
Integral S(n+l)/(l/k(n)*Integral S(n)) to find next k value
Build array of Source errors to use in tolerance test
k(i + 1) = k(i) * Sum2 / Suml Equation 5-275 Duderstadt
'Calc 3D relative error between old and new source
For ii = 1 To n -1

For j = 1 To m - 1
ErrorS(ii, j) = Abs((S2(ii, j) - Sl(ii, j)) / Abs(S2(ii, j)))
Nextj

Next ii
Find maximum value of ErrorS()
MaxErrorS = ErrorS(l, 1)

74

For ii = 1 To n -1
Forj = 1 Tom -1
If (ErrorS(ii, j) > MaxErrorS) Then
MaxErrorS = ErrorS(ii, j)
End If
Nextj
Next ii
'Check for tolerances
If ((Abs((k(i + 1) - k(i)) / k(i)) < Epsilonk)) And (MaxErrorS < EpsilonS) Then
End outer iterations check for convergence
kEffective = k(i + 1)
Exit For
End If
Reassign S2 to SI for the next iteration
For ii = 1 To m -1
Forj = 1 Ton -1
Sl(j,ii) = S2(j,ii)

Nextj
Next ii
kEffective = k(i + 1)
Next i 'end outer iteration

'Check if k=l, if so k=keff=critical Rx
Numberlterations = I
MultFactor = Format(k(i), "#.#####")
If (kEffective > 1# - kCriticalityTolerance) Then
Text8 = "Yes"
Text9 = MultFactor k(i)
Else
Text8 = "No"
Text9 = MultFactor Ts:(i)
Use perturbation to assist the user in changing SigmaA to get criticality
DeltaSigmaA = Abs(l# / kGuess -1#) * (-NueSigmaF)
TextlO = SigmaA + DeltaSigmaA
End If

Textl 1 = Numberlterations
' Textl4 = "Exceeded maxiterations before convergence"

Build Excel chart and spreadsheet
Dim ExcelApp As Object

Dim ExcelChart As Object
Dim ChartTypeVal As Integer
'-4100 is the value for the MS Excel constant xBDColumn. Visual
Basic does not understand MS Excel constants, so the value must be
\ised instead.
'xlLine=4

75

'xlXYScatter = -4169
'xl3DSurface=-4103

ChartTypeVal = -4103
Set ExcelApp = CreateObject("excel.application")
ExcelApp.Visible = False Hide the Excel appliction from the user
Excel App .Workbooks. Add
Populate the Excel spreadsheet with core power values and locations
Select Case Combo2.ListIndex Tialf or quarter Rx
Case 0 half Rx

For rwlndex = 0 To n
ExcelApp.Cells(rwIndex + 2, l).Value = h * rwlndex
For collndex = 0 To m
ExcelApp.Cells(l, collndex + 2).Value = h * collndex
If rwlndex = n Then
ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = 0
Elself collndex = m Then
ExcelApp.Cells(rwlndex + 2, collndex + 2).Value = 0
Elself collndex = 0 Then
ExcelApp.Cells(rwIndex + 2, 2).Value = 0
Else

ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = S2(rwlndex, collndex) / (2.43 *
3.1*10A10)'NueSigmaF

End If
Next collndex

Next rwlndex
Case 1 'Quarter Rx
For rwlndex = 0 To n

ExcelApp.Cells(rwIndex + 2, 1).Value = h * rwlndex
For collndex = 0 To m

ExcelApp.Cells(l, collndex + 2).Value = h * collndex
If rwlndex = n Then
ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = 0
Elself collndex = m Then
ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = 0

Elself collndex = 0 Then
ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = S2(rwlndex, collndex) / (2.43

* 3.1* 10 MO) NueSigmaF
Else

ExcelApp.Cells(rwIndex + 2, collndex + 2).Value = S2(rwlndex, collndex) / (2.43 *
3.1* 10 A 10) NueSigmaF

End If
Next collndex

Next rwlndex
End Select
'select rows and columns in worksheet to chart
ExcelApp.Range("Al").CurrentRegion.Select

76

Set ExcelChart = ExcelApp.Charts.Add()
'Add legend information
ExcelChart.Type = ChartTypeVal

With ExcelChart
.HasTitle = True
.ChartTitle.Characters.Text = "Power Plot of Reactor Core"
.Axes(xlCategory).HasTitle = True
.Axes(xlCategory).AxisTitle.Characters.Text = "Height (cm)"
.Axes(xlSeries) .HasTitle = True
.Axes(xlSeries).AxisTitle.Characters.Text = "Radius (cm)"
.Axes(xlValue).HasTitle = True
.Axes(xlValue).AxisTitle.Characters.Text = "Power (Watts/cmA3)"

End With
With ExcelChart.Axes(xlCategory)

.HasMajorGridlines = False

.HasMinorGridlines = False
End With
With ExcelChart.Axes(xlSeries)

.HasMajorGridlines = False

.HasMinorGridlines = False
End With
With ExcelChart.Axes(xlValue)

.HasMajorGridlines = True

.HasMinorGridlines = False
End With
ExcelChart. WallsAndGridlines2D = False
ExcelChart.HasLegend = False

On Error GoTo ProgramError
ExcelChart.SaveAs [Text6]
'Link Excel chart to saved name and location for update
OLEl.CreateLink (Text6)
OLE 1.Update 'allow immediate update of excel chart
ExcelApp.Quit

Set ExcelChart = Nothing
Set ExcelApp = Nothing

ProgramError:
Select Case Err.Number
Case mnTypeMismatch

MsgBox ("You must select a mesh spacing; the code will assuem 20 cm")
h = 20
Resume Next
Case mnSaveAsFailed
MsgBox ("You must provide a name and file storage location to update the plot and store
data")

77

Resume Next
End Select
End Sub

Function Checkin(Box)
IfLen(Box) = OThen
Checkin = 1

End If
End Function

Sub ThreeDSolver(Sl, A, 1, u, n, m, kEffective, SigmaA, DiffusionCoefficient, DeltaR,
DeltaZ, X2)
This 3D block tridiagonal solver uses an iterative technique similar to Gauss-Seidel.
It sets up the banded tridiagonal system based on the discretized right circular cyl
'diffusion equation and dismantles that into a blocked tridiagonal system.
Each block is then solved with a standard tridiagonal solver using initial guesses
'for the solution. The system iterates until convergence of the solution (flux at the
'inner mesh points)
ReDim b(n -1, m -1) 'stores B of A.x=B
ReDim X2(n -1, m -1) 'stores solution at mesh points
ReDim Xl(n -1, m -1) 'Stores the previous solution at mesh points
ReDim e(n - 1, m -1) 'stores rhs of block tridiag system
ReDim AA(n -1) 'Stores the main diag (jth column of A array) of block tridiag
ReDim LL(n - 1) 'Stores the lower diag (jth column of 1 array) of block tridiag
ReDim UU(n -1) 'Stores the upper diag (jth column of u array) of block tridiag
ReDim EE(n -1) 'Stores the rhs diag of block tridiag
ReDim XX(n) 'stores jth column solution vector from tridiagonal solver
ReDim ErrorX(n - 1, m - 1) holds the max error in convergence of solution in tridiag
build B vector of Ax=B. B contains the iterative guess for flux.
Uses Sl(i,m-j) to convert the (i,j) values into m-j rows for the b matrix.
For j = 1 To m -1

For i = 1 To n -1
Xl(i, j) = 0 'fill convergence test array XI with 0
X2(i, j) = 0 'fill with 0
b(i, j) = DeltaZ A 2 * (-Sl(i, m - j) / (kEffective * DiffusionCoefficient)) 'neutron/cmA2
Nexti

Nextj
'solve block tridiagonal system. See Solution Methods of my thesis.
For w = 1 To 10000

For i = 1 To n -1
e(i, 1) = b(i, 1) - X2(i, 2) 'neutron/cmA2
EE(i) = e(i, 1) 'neutron/cmA2 typical
LL(i) = l(i, 1) EL Lower diagonal of tridiagonal;no units typical
AA(i) = A(i, 1) AA main diagonal of tridiagoanl; no units typical

78

UU(i) = u(i, 1) UU upper diagonal of tridiagonal; no units typical
Nexti
Call Tridiag(n, LL, AA, UU, EE, XX) 'returns flux at row m-1 in core
For i = 1 To n - 1

X2(i, 1) = XX(i) 'neutrons/cmA2 typical
Nexti
Forj = 2To(m-2)

For i = 1 To n -1
e(i,j) = b(i,j)-X2(i,j-l)-X2(i,j + l)
EE(i) = e(i,j)
LL(i) = l(i,j)
AA(i) = A(i,j)
UU(i) = u(i,j)

Nexti
Call Tridiag(n, LL, AA, UU, EE, XX)

For i = 1 To n -1
X2(i,j) = XX(i)

Nexti
Nextj
For i = 1 To n -1

e(i, m-1) = b(i, m-1) -X2(i, m- 2)
EE(i) = e(i, m - 1)
LL(i) = l(i, m -1)
AA(i) = A(i, m - 1)
UU(i) = u(i, m - 1)

Nexti
Call Tridiag(n, LL, AA, UU, EE, XX)
For i = 1 To n -1

X2(i, m - 1) = XX(i)
Nexti

For v = 1 To n -1
For j = 1 To m - 1
ErrorX(v, j) = Abs((X2(v, j) - Xl(v, j)) / Abs(X2(v, j)))
Nextj

Next v
Find maximum value of ErrorS()
MaxErrorX = ErrorX(l, 1)
For i = 1 To n - 1
Forj = 1 Tom -1
Xl(i,j) = X2(i,j)'update XI
If (ErrorX(i, j) > MaxErrorX) Then
MaxErrorX = ErrorX(i, j)
End If
Nextj

79

Nexti
If (Combo3.Text = "Reduced Relative Error; Slower Run Time") Then
Tolerance = 0.00000001
Else
Tolerance = 0.001
End If

If (MaxErrorX < Tolerance) Then
Exit For
End If

'Set boundary conditions
Nextw
If (w > 10000) Then
MsgBox ("Exceeded block tridiagonal maxiterations before convergence")
End If
End Sub

Sub Tridiag(n, LL, AA, UU, EE, XX) TL=lower diag, AA=Diag, UU=Upper
diag,EE=A.x
'Crout Factorization for tridiagonal linear systems
'!Back substitute for solution
m = n -1
ReDim Lower(m)
ReDim Upper(m)
ReDim Z(m)
Lower(l) = AA(1) 'no units
Upper(l) = UU(1) / AA(1) 'no units
Z(l) = EE(1) / Lower(l) 'neutron/cmA2
For i = 2 To m - 1

Lower(i) = AA(i) - LL(i - 1) * Upper(i -1) 'no units
Upper(i) = UU(i) / Lower(i) 'no units
Z(i) = (EE(i) - LL(i - 1) * Z(i -1)) / Lower(i) 'neutron/cmA2

Next
Lower(m) = AA(m) - LL(m -1) * Upper(m -1) 'no units
Z(m) = (EE(m) - LL(m - 1) * Z(m -1)) / Lower(m) 'no units
'!Set solution flux values
XX(m + 1) = 0 '!Flux at outer boundary; neurton/cmA2
XX(m) = Z(m) 'neutron/cmA2
For i = m -1 To 1 Step -1

XX(i) = Z(i) - Upper(i) * XX(i + 1) neutron/cmA2
Next
XX(0) = XX(1) '!Set BC dFlux/dr=0; 'neutron/cmA2
End Sub Tridiagonal

80

Private Sub mnu2DOneEnergyGroupItem_Click()
Loadk
k.Show
Unload rxfrm
End Sub

Private Sub mnu3DTwoEnergyGroupItem_Click()
Load TwoEnergyGroup
TwoEnergyGroup.Show
Unload rxfrm
End Sub

Private Sub mnuExitItem_Click()
End
End Sub

Private Sub mnuHelpItem_Click()
Load Help
Help.Show
End Sub

Private Sub mnuPrintItem_Click()
rxfrm.PrintForm
End Sub

Private Sub mnuReactorItem_Click()
Load Reactor
Reactor.Show
End Sub

Private Sub mnuRunItem_Click()
Call Kinetics
End Sub

Private Sub mnuStartFormItem_Click()
Load ReactorCoreModel
ReactorCoreModel.Show
Unload rxfrm
End Sub

Private Sub Option l_Click()
MsgBox ("Try SigmaA=0.1532 1/cm")
End Sub

Private Sub Text5_Change()

81

End Sub

82

Appendix E. Three Dimension, Two Energy Groups Visual Basic Code

Thesis code by MAJ Will Harman
This program calculates the radial and axial Flux/Power profile (3D) for a typical right
'circular cylinder homogeneous reactor core using two energy groups. It uses the
standard
'diffusion equation. The equation is solved by using the finite central
'difference technique using blocked tridiagonal solvwer.
The scheme uses a power iterative technique to solve for Fluxl and Flux2 based upon an
'inital guess of k effective and Fluxl and Flux2. It finds the eigenfunction for the
maximum
'eigenvalue providing the fundamental mode shape for Fluxl and Flux2.

Private Sub Form_Load()
ILoad initial values
Dim kGuess, FluxlGuess, SigmaAl, NueSigmaFl As Double
Dim DiffusionCoefficientl, Radius, h As Double
Textl = 180 half Rx hieght cm
Text2 = 0.008476 NueSigmaFl 1/cm
Text3 = 1.2627 DiffusionCoefficientl cm
Text4 = 120 'Core radius cm
Text5 = 0.18514 NueSigmaF2 1/cm
Text6 =""
Text7 = 0.3543 DiffusionCoefficient2 cm
Text8 =""
Text9 = ""
TextlO = ""
Textll = ""
Textl2 = 0.121 'SigmaR2 1/cm
Textl3 = 0.02619 'SigmaRl
Textl4 = 0.01207 'SigmaAl 1/cm
Text 15 = 0.121 'SigmaA2 1/cm
Textl6 = 0.01412 'SigmaScatterl2 1/cm
Textl7 = 0 'SigmaScatter22 1/cm
build fixed selection of mesh spacing in axial and radial cm
Combol.Addltem "30"
Combol.Addltem "20"
Combol.Addltem "15"
Combol.Addltem "12"
Combol.Addltem "10"
Combol.Addltem "6"
Combol.Addltem "5"
Combol.Addltem "4"
Combol.Addltem "3"
Combol.Addltem "2"

83

Combol.Addltem "1"
Combo2.AddItem "Choose half reactor core" 'Select List Case 0
Combo2.AddItem "Choose quarter Rx core" 'Select List Case 1
Combo3.AddItem "Reduced Relative Error; Slower Run Time"
Combo3 Addltem "Average Relative Error; Faster Run Time"
End Sub

Sub Kinetics()
Dim Valu(2) As Double
Dim kGuess As Double
Dim SigmaAl As Double
Dim Flux 1 Guess As Double
Dim Flux2Guess As Double
'Set source document for Excel chart to name and location by user
OLEl.SourceDoc = ("Text6")
OLEl.Visible = True
OLE2.SourceDoc = ("Text6")
OLE2. Visible = True
'Ckeck for numerical entries
ok = 0
Forj=0Tol

ykk = Checkin(MaskEdBox(j))
ok = ok + ykk

Nextj
If ok > 0 Then
MsgBox ("You must enter positive numbers")
End If
'Check for ouput file location and name
IfText6 = ""Then
MsgBox ("You must input an output file location and name")
End If
Assign variables to input boxes
kGuess = MaskEdBox(O)
FluxlGuess = MaskEdBox(l) 'CDbl(Text7Text) 'neutron/cmA2
Flux2Guess = MaskEdBox(2)
SigmaAl = CDbl(Textl4.Text) 1/cm
SigmaA2 = CDbl(Textl5.Text) 1/cm
NueSigmaFl = CDbl(Text2.Text) 1/cm
NueSigmaF2 = CDbl(Text5.Text) 1/cm
DiffusionCoefficientl = CDbl(Text3Text) 'cm
DiffusionCoefficient2 = CDbl(Text7.Text) 'cm
SigmaRl = CDbl(Textl3.Text) 1/cm (SigmaTotal-SigmaScatter)
SigmaR2 = CDbl(Textl2.Text) 1/cm (SigmaTotal-SigmaScatter)
SigmaScatterl2 = CDbl(Textl6.Text) 1/cm
Radius = CDbl(Text4.Text) 'cm

84

ZHeight = CDbl(Textl.Text) 'cm
h = CDbl(Combol.Text) 'spatial distance between nodes; cm
n = Radius / h 'number of nodes along radius
m = ZHeight / h 'number of nodes along z axis
DeltaR = h 'cm
DeltaZ = h 'cm
Maxlterations = 1000 'number of iterations for convergence of k and source
Provide the user a choice of run times and relative error
If (Combo3.Text = "Reduced Relative Error; Slower Run Time") Then
kTolerance = 0.0000001
kCriticalTol = 0.000001
Else
kTolerance = 0.00001
kCriticalTol = 0.0001
End If
Epsilonk = kTolerance 'acceptable error in k; Ref Ott
EpsilonS = 0.015 'acceptable error in S (NueSigmaFPFluxl)
kCriticalityTolerance = kCriticalTol
Dim Sl(), S2(), k(), FluxlO, ErrorS()', FluxlRadial(), FluxlAxial() 'As Integer
Dim Flux2(), Flux2Radial(), Flux2Axial() As Integer
DimAl(),A2(),l(),u()
ReDimSl(n-l,m-l)'S(n)
ReDim S2(n - 1, m -1) 'S(n+1)
ReDim k(MaxIterations + 1)
ReDim Fluxl(n- l,m- 1)
ReDim Flux2(n - l,m- 1)
ReDim ErrorS(n - 1, m - 1)
ReDim Al(n-l,m-l) 'stores main diagonal of matrix
ReDim A2(n - 1, m -1) 'stores main diagonal of matrix
ReDim l(n -1, m -1) 'stores lower diag of tridiag matrix
ReDim u(n -1, m -1) 'stores upper diag of tridiag matrix
'Calculate initial source two D
For i = 0 To n -1
Forj=0Tom-l '(m-l)/2'
Fluxl(i, j) = FluxlGuess 'neutron/cmA2
Flux2(i, j) = Flux2Guess 'neutron/cmA2
Sl(i, j) = NueSigmaF2 * Flux2(i, j) + NueSigmaFl * Fluxl(i, j) 'neutron/cmA3;
Cos(3.141592654 * j * DeltaZ / Height) * Bessel
Nextj
Nexti

Build diagonals of the tridiagonal in the blocked system for Fluxl
Select Case Combo2.ListIndex 'either half or quarter of Rx. Boundaries change.
Case 0 Half Rx core
For j = 1 To m - 1 'j=row position along z axis

For i = 1 To n -1 'i=column position along radius

85

Ifi = lThen
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaRl / DiffusionCoefficientl
Hold2 = (1# / DeltaR A 2) - 1# / (2# * i * DeltaR A 2) 'add in boundary condition

Fluxl(0,j)=Fluxl(l,j)
Al(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units
Else
'no units for A(i,j)
Al(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaRl / DiffusionCoefficientl) *

DeltaZ A 2)
End If

Next i
Nextj

Case 1 'Quarter Rx core
For j = 1 To m - 1 'j=row position along z axis

For i = 1 To n - 1 'i=column position along radius
If (i = 1 And j = m -1) Then Fluxl(i,j)=Fluxl(i,j-l)=Fluxl(i-l,j)
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaRl / DiffusionCoefficientl
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2) 'add in boundary condition

Fluxl(0,j)=Fluxl(l,j)
Al(i, j) = ((Holdl + Hold2 + 1 / DeltaZ A 2) * DeltaZ A 2) 'no units

Elself i = 1 Then Fluxl(i,j)=Fluxl(i-lj)
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaRl / DiffusionCoefficientl
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2) 'add in boundary condition

Fluxl(0,j)=Fluxl(l,j)
Al(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units

Elself j = m - 1 Then Fluxl(i,j)=Fluxl(i,j-l)
Al(i, j) = DeltaZ A 2 * ((-2# / DeltaR A 2) - (1# / DeltaZ A 2) - SigmaRl /

DiffusionCoefficient 1)
Else
Al(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaRl / DiffusionCoefficientl) *

DeltaZ A 2)
End If
Nexti

Nextj
End Select
Build diagonal of the tridiagonal for Flux2
Select Case Combo2.ListIndex 'either half or quarter of Rx. Boundaries change.
Case 0 Half Rx core
For j = 1 To m - 1 'j=row position along z axis

For i = 1 To n -1 'i=column position along radius
Ifi = lThen
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaR2 / DiffusionCoefficient2
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2) 'add in boundary condition

Fluxl(0,j)=Fluxl(lj)
A2(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units

86

Else
'no units for A(i,j)
A2(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaR2 / DiffusionCoefficient2) *

DeltaZ A 2)
End If

Nexti
Nextj

Case 1 'Quarter Rx core
For j = 1 To m - 1 'j=row position along z axis

For i = 1 To n - 1 'i=column position along radius
If (i = 1 And j = m - 1) Then Fluxl(i,j)=Fluxl(i,j-l)=Fluxl(i-l,j)
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaR2 / DiffusionCoefficient2
Hold2 = (1# / DeltaR A 2) -1# / (2# * i * DeltaR A 2) 'add in boundary condition

Fluxl(0,j)=Fluxl(l,j)
A2(i, j) = ((Holdl + Hold2 + 1 / DeltaZ A 2) * DeltaZ A 2) 'no units
Elself i = 1 Then Fluxl(i,j)=Fluxl(i-l,j)
Holdl = (-2# / DeltaR A 2) - (2# / DeltaZ A 2) - SigmaR2 / DiffusionCoefficient2
Hold2 = (1# / DeltaR A 2) - 1# / (2# * i * DeltaR A 2) 'add in boundary condition

Fluxl(0,j)=Fluxl(l,j)
A2(i, j) = ((Holdl + Hold2) * DeltaZ A 2) 'no units
Elself j = m - 1 Then Fluxl(i,j)=Fluxl(i,j-l)
A2(i, j) = DeltaZ A 2 * ((-2# / DeltaR A 2) - (1# / DeltaZ A 2) - SigmaR2 /

DiffusionCoefficient2)
Else
A2(i, j) = (((-2# / DeltaR A 2) - 2# / DeltaZ A 2 - SigmaR2 / DiffusionCoefficient2) *

DeltaZ A 2)
End If
Nexti

Nextj
End Select
build lower diagonal of tridiagonal matrix
For j = 1 To m -1 'j=row position along z axis

For i = 1 To n - 2 'i=column position along radius
l(i, j) = (1# / DeltaR A 2 - 1# / (2# * ((i + 1#) * DeltaR A 2))) * DeltaZ A 2 'no units
Nexti

Nextj
build upper diag. of tridiag. matrix
Forj = 1 Tom-1

For i = 1 To n - 2 'no units for u(i,j)
u(i, j) = (1# / DeltaR A 2 + 1# / (2# * (i * DeltaR A 2))) * DeltaZ A 2
Nexti

Nextj

k(0) = kGuess
'! Outer iterations

87

For i = 0 To Maxlterations
Fluxl is the only term coming out of Call statement and it is built
'so that the first column of the Fluxl matrix equals the Fluxl in the
'm-1 row of the Rx core.
SolvingFlux = 1 'Selection of B vector in A.x=B
'Solve for fast flux values
Call ThreeDSolver(SolvingFlux, SI, Al, 1, u, n, m, k(i), DeltaR, DeltaZ, Fluxl, Fluxl)
SolvingFlux = 2 'Selection of B vector in A.x=B
Use fast flux values and solve for thermal values
Call ThreeDSolver(SolvingFlux, SI, A2,1, u, n, m, k(i), DeltaR, DeltaZ, Fluxl, Flux2)
huild 3D S2
Select Case Combo2.ListIndex half or quarter Rx
Case 0 half of Rx
For ii = 0 To n -1
Forj = 0 To m -1
Ifj=0Then
S2(ii, 0) = 0 BC
Elself ii = 0 Then
S2(0, j) = NueSigmaFl * Fluxl(l, m - 1) + NueSigmaF2 * Flux2(l, m - j)
Fluxl/2(0,j)=Fluxl/2(l,j)
Else
S2(ii, j) = NueSigmaFl * Fluxl(ii, m - j) + NueSigmaF2 * Flux2(ii, m - j)
End If
Nextj
Next ii

Case 1 'Quarter of Rx
For ii = 0 To n -1
Forj = 0 To m - 1
If(ii = OAndj=0)Then
S2(0, 0) = NueSigmaFl * Fluxl(l, m - 1) + NueSigmaF2 * Flux2(l, m - 1)
Elself ii = 0 Then
S2(0, j) = NueSigmaFl * Fluxl(l, m - j) + NueSigmaF2 * Flux2(l, m - j)
Elself (j = 0 And ii <> 0) Then
S2(ii, 0) = NueSigmaFl * Fluxl(ii, m - 1) + NueSigmaF2 * Flux2(ii, m - 1)
Else
S2(ii, j) = NueSigmaFl * Fluxl(ii, m - j) + NueSigmaF2 * Flux2(ii, m - j)
End If
Nextj
Next ii
End Select

Suml = 0
Sum2 = 0
Build 3D integration of S(n+1) and S(n) using composite trap, rule
Forj = 1 Tom- 1

88

For b = 1 To n -1
Suml = Suml+b*Sl(b,j)
Sum2 = Sum2 + b * S2(b, j)

Nextb
Nextj
Integral S(n+l)/(l/k(n)*Integral S(n)) to find next k value
Build array of Source errors to use in tolerance test
k(i + 1) = k(i) * Sum2 / Suml Equation 5-275 Duderstadt
'Calc 3D relative error between old and new source
For ii = 1 To n -1

Forj = 1 Tom-1
ErrorS(ii, j) = Abs((S2(ii, j) - Sl(ii, j)) / Abs(S2(ii, j)))
Nextj

Next ii
Find maximum value of ErrorS()
MaxErrorS = ErrorS(l, 1)
For ii = 1 To n - 1
For j = 1 To m -1
If (ErrorS(ii, j) > MaxErrorS) Then
MaxErrorS = ErrorS(ii, j)
End If
Nextj
Next ii
'Check for tolerances
If ((Abs((k(i + 1) - k(i)) / k(i)) < Epsilonk)) And (MaxErrorS < EpsilonS) Then
End outer iterations check for convergence
kEffective = k(i + 1)
Exit For
End If
Reassign S2 to SI for the next iteration
For ii = 1 To m -1
Forj = 1 Ton - 1
Sl(j,ii) = S2(j,ii)

Nextj
Next ii
kEffective = k(i + 1)
Next i 'end outer iteration
'Check if k=l, if so k=keff=critical Rx
Numberlterations = I
MultFactor = Format(k(i), "#.#####")
If (kEffective > 1# - kCriticalityTolerance) Then
Text8 = "Yes"
Text9 = MultFactor ^(i)
Else
Text8 = "No"
Text9 = MultFactor 'k(i)

89

MsgBox ("The system is not critical. Please try changing the core composition density"
&_

" or core geometry")
End If

Text 11 = Numberlterations
If (i > 1000) Then
MsgBox ("Exceeded maxiterations before convergence")
End If

Build Excel chart and spreadsheets
Dim ExcelApp As Object
Dim ExcelChartl As Object
Dim ExcelChart2 As Object
Dim ChartTypeVal As Integer

-4100 is the value for the MS Excel constant xBDColumn. Visual
Basic does not understand MS Excel constants, so the value must be
'used instead.
'xlLine=4
'xlXYScatter = -4169
'xl3DSurface=-4103

ChartTypeVal = -4169 '-4103
Set ExcelApp = CreateObject("excel.application")

ExcelApp.Visible = False
ExcelApp .Workbooks .Add
Allow the user to choose which node to plot the data on both radial and axial
Dim prompt 1, prompt2
promptl = "The number of interior radial mesh spaces =" & n _
& ". Please choose the mesh point between 0 and " & n & " to plot the axial power."
plotAxial = InputBox$(promptl)
prompt2 = "The number of interior axial mesh spaces =" & m _
& ". Please choose the interior mesh point between 0 and " & m & " to plot the radial
power."
plotRadial = InputBox$(prompt2)
Select Case Combo2.ListIndex half or quarter Rx
Case 0 half Rx
For rwlndex = 0 To n
Fill Excel sheet 1 with Radial power data

ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, l)Value = h * rwlndex
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 2).Value = Flux 1 (rwlndex, m -

plotRadial) * NueSigmaFl / (2.43 * 3.1 * 10 A 10) W/cmA3
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 3).Value = Flux2(rwlndex, m -

plotRadial) * NueSigmaF2 / (2.43 * 3.1 * 10 A 10) W/cmA3
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 4).Value = (Flux 1 (rwlndex, m -

plotRadial) * NueSigmaFl + Flux2(rwlndex, m - plotRadial) * NueSigmaF2) / (2.43 *
3.1*10A10)'W/cmA3

90

Next rwlndex
For collndex = 0 To m
'fill Excel sheet2 with axial power data

ExcelApp.Sheets("Sheet2").Cells(m - collndex + 2, 1).Value = h * collndex
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 2).Value = Fluxl(plotAxial,

collndex) * NueSigmaFl / (2.43 * 3.1 * 10 A 10) W/cmA3
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 3).Value = Flux2(plotAxial,

collndex) * NueSigmaF2 / (2.43 * 3.1 * 10 A 10) W/cmA3
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 4).Value = (Flux 1 (plotAxial,

collndex) * NueSigmaFl + Flux2(plotAxial, collndex) * NueSigmaF2) / (2.43 * 3.1 * 10
A 10) W/cmA3
Next collndex
Case 1 'Quarter Rx
For rwlndex = 0 To n

ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 1).Value = h * rwlndex
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 2).Value = Flux 1 (rwlndex, m -

plotRadial) * NueSigmaFl / (2.43 * 3.1 * 10 A 10) W/cmA3
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 3).Value = Flux2(rwlndex, m -

plotRadial) * NueSigmaF2 / (2.43 * 3.1 * 10 A 10) W/cmA3
ExcelApp.Sheets("Sheetl").Cells(rwIndex + 2, 4).Value = (Flux 1 (rwlndex, m -

plotRadial) * NueSigmaFl + Flux2(rwlndex, m - plotRadial) * NueSigmaF2) / (2.43 *
3.1*10A10) W/cmA3
Next rwlndex
For collndex = 0 To m

ExcelApp.Sheets("Sheet2").Cells(m - collndex + 2, l).Value = h * collndex
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 2).Value = Fluxl(plotAxial,

collndex) * NueSigmaFl / (2.43 * 3.1 * 10 A 10) W/cmA3
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 3).Value = Flux2(plotAxial,

collndex) * NueSigmaF2 / (2.43 * 3.1 * 10 A 10) W/cmA3
ExcelApp.Sheets("Sheet2").Cells(colIndex + 2, 4).Value = (Fluxl(plotAxial,

collndex) * NueSigmaFl + Flux2(plotAxial, collndex) * NueSigmaF2) / (2.43 * 3.1 * 10
A 10) W/cmA3
Next collndex
End Select
'select rows and columns in worksheet to chart
ExcelApp.Sheets("Sheetl").Range("Al").CurrentRegion.Select
Set ExcelChartl = ExcelApp.Charts.Add()
ExcelApp.Sheets("Sheet2").Range("Al").CurrentRegion.Select
ExcelChartl.Type = ChartTypeVal
ExcelChartl.SeriesCollection(l).Name = "=" "Thermal"""
ExcelChartl.SeriesCollection(2).Name = "=""Fast
ExcelChartl.SeriesCollection(3).Name = "=""Total
' ExcelChart.Location Where:=xlLocationAsObject, Name:="Sheetl"

With ExcelChartl
.HasTitle = True
.ChartTitle.Characters.Text = "Power in Reactor Core"

91

.Axes(xlCategory, xlPrimary).HasTitle = True

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Radius (cm)"

.Axes(xlValue, xlPrimary).HasTitle = True

.Axes(xlValue, xlPrimary)AxisTitle.Characters.Text = "Power (Watts/cmA3)"
End With
ExcelChartl.HasLegend = True
Build Chart 2 for Core Height profile
ExcelApp.Sheets("Sheet2").Select '.Range("Al").CurrentRegion.Select
ExcelApp.Sheets("Sheet2").Range("Al").CurrentRegion.Select
Set ExcelChart2 = ExcelApp.Charts.Add()

ExcelChart2.Type = ChartTypeVal
ExcelChart2.SeriesCollection(l).Name = "=""Thermal
ExcelChart2.SeriesCollection(2).Name = "=""Fast"""
ExcelChart2.SeriesCollection(3).Name = "=" "Total

With ExcelChart2
.HasTitle = True
.ChartTitle.Characters.Text = "Power in Reactor Core"
.Axes(xlCategory, xlPrimary).HasTitle = True
.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Core Height(cm)"
.Axes(xlValue, xlPrimary).HasTitle = True
.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Power (Watts/cmA3)"

End With
ExcelChart2.HasLegend = True
'save chart, activate chart, OLE link chart, OLE update chart for chart 1 & 2
ExcelChartl.SaveAs [Text6]
ExcelApp.Sheets("Chartl").Select 'activate chart
OLEl.CreateLink (Text6)
OLE1.Update 'allow immediate update of excel chart
ExcelApp.Sheets("Chart2").Select Activate chart
OLE2.CreateLink (Text6)
OLE2.Update
ExcelApp.Quit
Set ExcelChart = Nothing
Set ExcelApp = Nothing

End Sub

Function Checkin(Box)
IfLen(Box) = OThen
Checkin = 1

End If
End Function

Sub ThreeDSolver(SolvingFlux, SI, A, 1, u, n, m, kEffective, DeltaR, DeltaZ, Fluxl, X2)

92

This 3D block tridiagonal solver uses an iterative technique similar to Gauss-Seidel.
It sets up the banded tridiagonal system based on the discretized right circular cyl
'diffusion equation and dismantles that into a blocked tridiagonal system.
Each block is then solved with a standard tridiagonal solver using initial guesses
'for the solution. The system iterates until convergence of the solution (Fluxl at the
'inner mesh points)
SigmaScatterl2 = CDbl(Textl6.Text) '1/cm
DiffusionCoefficientl = CDbl(Text3Text) 'cm
DiffusionCoefficient2 = CDbl(Text7Text) 'cm
ReDim b(n -1, m -1) 'stores B of A.x=B
ReDim X2(n, m) 'stores solution at mesh points
ReDim Xl(n, m) 'Stores the previous solution at mesh points
ReDim e(n -1, m -1) 'stores rhs of block tridiag system
ReDim AA(n - 1) 'Stores the main diag (jth column of A array) of block tridiag
ReDim LL(n - 1) 'Stores the lower diag (jth column of 1 array) of block tridiag
ReDim UU(n -1) 'Stores the upper diag (jth column of u array) of block tridiag
ReDim EE(n -1) 'Stores the rhs diag of block tridiag
ReDim XX(n) 'stores jth column solution vector from tridiagonal solver
ReDim ErrorX(n - 1, m - 1) holds the max error in convergence of solution in tridiag
Till solutions with 0
For j = 0 To m

For i = 0 To n
Xl(i, j) = 0 'fill convergence test array XI with 0
X2(i, j) = 0 'fill with 0
Nexti

Nextj
build B vector of Ax=B. B contains the iterative guess for Fluxl.
If SolvingFlux = 1 Then
Forj = lTom-l

For i = 1 To n - 1
b(i, j) = DeltaZ A 2 * (-Sl(i, m - j) / (kEffective * DiffusionCoefficientl))

'neutron/cmA2
Nexti

Next j
Else 'SolvingFlux = 2
Forj = 1 Tom- 1

For i = 1 To n -1
b(i, j) = DeltaZ A 2 * (-SigmaScatterl2 * Fluxl(i, j) / DiffusionCoefficient2)

'neutron/cmA2
Nexti

Nextj
End If
'solve block tridiagonal system. See Solution Methods in my thesis.
For w = 1 To 100000

For i = 1 To n - 1
e(i, 1) = b(i, 1) - X2(i, 2) 'neutron/cmA2

93

EE(i) = e(i, 1) 'neutron/cmA2 typical
LL(i) = l(i, 1) LL Lower diagonal of tridiagonal;no units typical
AA(i) = A(i, 1) 'AA main diagonal of tridiagoanl; no units typical
UU(i) = u(i, 1) UU upper diagonal of tridiagonal; no units typical
Nexti
Call Tridiag(n, LL, AA, UU, EE, XX) 'returns Fluxl at row m-1 in core
For i = 1 To n -1

X2(i, 1) = XX(i) 'neutrons/cmA2 typical
Nexti
Forj = 2To(m-2)

For i = 1 To n -1
e(i,j) = b(i,j)-X2(i,j-l)-X2(i,j + l)
EE(i) = e(i,j)
LL(i) = l(i,j)
AA(i) = A(i,j)
UU(i) = u(i,j)

Nexti
Call Tridiag(n, LL, AA, UU, EE, XX)

For i = 1 To n - 1
X2(i,j) = XX(i)

Nexti
Nextj
For i = 1 To n -1

e(i, m- 1) = b(i, m-1) -X2(i, m- 2)
EE(i) = e(i, m - 1)
LL(i) = l(i, m -1)
AA(i) = A(i, m - 1)
UU(i) = u(i, m -1)

Nexti
Call Tridiag(n, LL, AA, UU, EE, XX)
For i = 1 To n -1

X2(i, m -1) = XX(i)
Nexti
For i = 0 To m - 1
X2(0,i) = X2(l,i)
Nexti

For i = 0 To n
Select Case Combo2.ListIndex 'either half or quarter of Rx. Boundaries change.
Case 0 Half Rx core
X2(i, m) = 0 'update XI
Case 1 'Quarter Rx
X2(i, m) = X2(i, m -1) 'update XI
End Select
X2(i, 0) = 0
Nexti

94

For v = 1 To n - 1
For j = 1 To m - 1
ErrorX(v, j) = Abs((X2(v, j) - XI(v, j)) / Abs(X2(v, j)))
Nextj

Next v
Find maximum value of ErrorS()
MaxErrorX = ErrorX(l, 1)
For i = 1 To n -1
For j = 1 To m -1
Xl(i,j) = X2(i,j) 'update XI
If (ErrorX(i, j) > MaxErrorX) Then
MaxErrorX = ErrorX(i, j)
End If
Nextj
Nexti
If (Combo3.Text = "Reduced Relative Error; Slower Run Time") Then
Tolerance = 0.00000001
Else
Tolerance = 0.001
End If
If (MaxErrorX < Tolerance) Then
Exit For
End If

'Set boundary conditions
Next w
If (w > 10000) Then
MsgBox ("Exceeded block tridiagonal maxiterations before convergence")
End If
End Sub

Sub Tridiag(n, LL, AA, UU, EE, XX) TL=lower diag, AA=Diag, UU=Upper
diag,EE=A.x
'Crout Factorization for tridiagonal linear systems
'!Back substitute for solution
m = n - 1
ReDim Lower(m)
ReDim Upper(m)
ReDim Z(m)
Lower(l) = AA(1) 'no units
Upper(l) = UU(1) / AA(1) 'no units
Z(l) = EE(1) / Lower(l) 'neutron/cmA2
For i = 2 To m -1

Lower(i) = AA(i) - LL(i -1) * Upper(i -1) 'no units
Upper(i) = UU(i) / Lower(i) 'no units

95

Z(i) = (EE(i) - LL(i - 1) * Z(i -1)) / Lower(i) 'neutron/cmA2
Next
Lower(m) = AA(m) - LL(m - 1) * Upper(m -1) 'no units
Z(m) = (EE(m) - LL(m - 1) * Z(m - 1)) / Lower(m) 'no units
'!Set solution Fluxl values
XX(m + 1) = 0 'IFluxl at outer boundary; neurton/cmA2
XX(m) = Z(m) 'neutron/cmA2
Fori = m- 1 To 1 Step-1

XX(i) = Z(i) - Upper(i) * XX(i + 1) 'neutron/cmA2
Next
XX(0) = XX(1) '!Set BC dFluxl/dr=0; 'neutron/cmA2
End Sub Tridiagonal

Private Sub Option l_Click()
MsgBox ("Try SigmaAl=0.1532 1/cm")
End Sub

Private Sub mnu2DOneEnergyGroupItem_Click()
Loadk
k.Show
Unload TwoEnergyGroup
End Sub

Private Sub mnu3DOneEnergyGroupItem_Click()
Load rxfrm
rxfrm.Show
Unload TwoEnergyGroup
End Sub

Private Sub mnuExitItem_Click()
End
End Sub

Private Sub mnuHelpItem_Click()
Load Help
Help.Show
End Sub

Private Sub mnuPrintItem_Click()
TwoEnergyGroup.PrintForm
End Sub

Private Sub mnuReactorItem_Click()
Load Reactor
Reactor.Show
End Sub

96

Private Sub mnuRunItem_Click()
Call Kinetics
End Sub

Private Sub mnuStartFormItem_Click()
Load ReactorCoreModel
ReactorCoreModel .Show
Unload TwoEnergyGroup
End Sub

Private Sub OLEl_Updated(Code As Integer)
OLEl.Visible = True
End Sub

Private Sub OLE2_Updated(Code As Integer)
OLE2.Visible = True
End Sub

97

Appendix F. Sample Output Charts and Data

The figures below are typical charts provided as output to the user. In addition to the

charts, the program saves the data on an Excel worksheet for later use by the program

user.

Radius (cm)

Figure 25 Two Dimensional Output with Mesh Spacing = 0.5 cm

98

Power Plot of Reactor Core

Height (em)

Figure 26 3D, One Energy Group, Half Core Plot with Mesh Spacing = 6 cm

Power Plot of Reactor Core

0.08-r
1

0.07-

0.06-

0 05- X
Powor (Walls/cm^) 3 33

\
0.03

0.02
^/vlSflSÄ^ÄffiS ̂ ~~~^~

0.0 ;4/

o <si:;
3 8

"" " s g^
Height (cm): : : ^

^B.--- - JSSXyVXTO^ -B Radius (cm)

if "Sj *'

Figure 27 3D, One Energy Group, Quarter Core Plot with Mesh Spacing = 6 cm

99

Power in Reactor Core

Radius (cm)

-Thermal

-Fast

Total

Figure 28 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups

Power in Reactor Core

 , , , , Z-^Sferi

> Thermal

HI—Fast
■ Tota|

20 40 80 100 120

Core Height(cm)

140 160 180 200

Figure 29 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups

100

Power in Reactor Core

-•—Therrnd

-B—Fest

Totd

Radius (cm)

Figure 30 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups Half Rx

Power in Reactor Core

0.06

0.04

0.02

or
JW^^ . . . ZHfi

-Thermal

-Fast

Total

50 100 150 200 250

Core Helght(cm)

300 350 400

Figure 31 3D, Output with Mesh Spacing = 6 cm, Two Energy Groups Half Rx

101

Appendix G. Relative Error Plots of Test Cases

3D, 1 Energy Group, Quarter Rx

•Numerical Solution
• Mathematical Solution

50 100

Radius (cm)

150

Figure 32 Radial Plot, Mesh Spacing = 30 cm

1.2

3D, 1 Energy Group, Quarter Rx

■ Numerical Solution
• Mathematical Solution

50 100 150

Height (cm)

200

Figure 33 Axial Plot, Mesh Spacing = 30 cm

102

3D, 1 Energy Group, Quarter Rx

1.2

-♦—Numerical Solution
-■— Mathematical Solution

50 100

Radius (cm)

150

Figure 34 Radial Plot, Mesh Spacing = 15 cm

3D, 1 Energy Group, Quarter Rx

■ Numerical Solution
• Mathematical Solution

50 100 150

Height (cm)

200

Figure 35 Axial Plot, Mesh Spacing = 15 cm

103

3D, 1 Energy Group, Quarter Rx

o
3
10
>
0)
N

"5
E
o
z

-♦—Numerical Solution

-»— Mathematical Solution

50 100

Radius (cm)

150

Figure 36 Radial Plot, Mesh Spacing = 10 cm

3D, 1 Energy Group, Quarter Rx

■ Numerical Solution
• Mathematical Solution

50 100 150

Height (cm)

200

Figure 37 Axial Plot, Mesh Spacing = 10 cm

104

3D, 1 Energy Group, Quarter Rx

■ Numerical Solution

• Mathematical Solution

50 100

Radius (cm)

150

Figure 38 Radial Plot, Mesh Spacing = 5 cm

3D, 1 Energy Group, Quarter Rx

1.2

■ Numerical Solution
• Mathematical Solution

50 100 150

Height (cm)

200

Figure 39 Axial Plot, Mesh Spacing = 5 cm

105

3D, 1 Energy Group, Quarter Rx

Z 0.2

■Numerical Solution

- Mathematical Solution

50 100

Radius (cm)

150

Figure 40 Radial Plot, Mesh Spacing = 4 cm

3D, 1 Energy Group, Quarter Rx

50 100 150

Height (cm)

■Numerical Solution
- Mathematical Solution

200

Figure 41 Axial Plot, Mesh Spacing = 4 cm

106

1.2 -1

u 1 i

I 0.8-

I 0.6-
(0
E 0.4-

Z 0.2

(

3D, 1 energy Group, Quarter Rx

^V
X —♦— Numerical Solution

—■— Mathematical Solution X x X
) 50 100 150

Radius (cm)

Figure 42 Radial Plot, Mesh Spacing = 3 cm

1.2

3D, 1 Energy Group, Quarter Rx

■Numerical Solution
- Mathematical Solution

50 100 150

Height (cm)

200

Figure 43 Axial Plot, Mesh Spacing = 3 cm

107

3D, 1 Energy Group, Quarter Rx

■ Numerical Solution
- Mathematical Solution

50 100

Radius (cm)

150

Figure 44 Radial Plot, Mesh Spacing = 2 cm

3D, 1 Energy Group, Quarter Rx

50 100 150

Height (cm)

■Numerical Solution
• Mathematical Solution

200

Figure 45 Axial Plot, Mesh Spacing = 2 cm

108

3D, 1 Energy Group, Quarter Rx

1.2

50 100

Radius(cm)

■Numerical Solution

-m— Mathematical
Solution

150

Figure 46 Radial Plot, Mesh Spacing = 1 cm

1.2

o> 1

3D, 1 Energy Group, Quarter Rx

■Numerical Solution

■ Mathematical
solution

50 100 150

Height (cm)

200

Figure 47 Axial Plot, Mesh Spacing = 1 cm

109

1.2 -1

0 1 i
3

£ 0.8-

1 0-6"
(0
E 0.4 -
i-
o
z 0.2

0-
(

3D, Total 2 Energy Groups, Half Rx

\x
—♦—Numerical Solution

—»— Mathematical Solution Nv

x
X

) 50 100 150

Radius (cm)

Figure 48 Radial Plot, Mesh Spacing = 30 cm

1.2 -1

0 1 -

| 0.8-

1 0-6"
E 0.4 -

Z 0.2 -

0 i
(

3D, Total 2 Energy Groups, Half Rx

jT "-X
/ \ —♦— Numerical Solution

—■— Mathematical Solution
/ \

/ \ I \
) 100 200 300 4(

Height (cm)

X)

Figure 49 Axial Plot, Mesh Spacing = 30

110

3D, Total 2 Energy Group, Half Rx

1.2

1 l &•
3

£ 0.8

a>
N » 0.6
a
E 0.4
o
z 0.2

•Numerical Solution

-a— Mathematical
Solution

50 100

Radius (cm)

150

Figure 50 Radial Plot, Mesh Spacing = 20 cm

3D, Total 2 Energy Groups, Half Rx

■Numerical Solution

- Mathematical
Solution

100 200 300

Height (cm)

400

Figure 51 Axial Plot, Mesh Spacing =20

111

1.2

3D, Total 2 Energy Groups, Half Rx

■Numerical Solution

- Mathematical Solution

50 100

Radius (cm)

150

Figure 52 Radial Plot, Mesh Spacing = 15 cm

1.2 -,

0 1 -

1 0.8-

E 0.4-

Z 0.2 -

0)
(

3D, Total 2 Energy Groups, half Rx

/*-"x
M Tk —♦—Numerical Solution

—•—Mathematical Solution
/ \

/ \ f \
) 100 200 300 4(

Height (cm)

DO

Figure 53 Axial Plot, Mesh Spacing = 15 cm

112

1.2 -1

<D 1 1

£ 0.8-

1 °-6"
eo
E 0.4 -
o
Z 0.2 -

0-
c

3D, Total 2 Energy Groups, Half Rx

—♦—Numerical Solution

—■— Mathematical Solution

) 50 100 150

Radius (cm)

Figure 54 Radial Plot, Mesh Spacing = 10 cm

3D, Total 2 Energy Groups, Half Rx

1.2

•Numerical Solution

Mathematical
Solution

100 200 300

Height (cm)

400

Figure 55 Axial Plot, Mesh Spacing = 10 cm

113

3D, Total 2 Energy Groups, Half Rx

•Numerical Solution

• Mathematical Solution

50 100

Radius (cm)

150

Figure 56 Radial Plot, Mesh Spacing = 5 cm

1.2

3D, Total 2 Energy Groups, Half Rx

■Numerical Solution
■ Mathematical Solution

0 100 200 300 400

Height (cm)

Figure 57 Axial Plot, Mesh Spacing = 5 cm

114

3D, Total 2 Energy Groups, Half Rx

1.2

■Numerical Solution

-a— Mathematical
Solution

50 100

Radius (cm)

150

Figure 58 Radial Plot, Mesh Spacing = 4 cm

1.2

3D, Total 2 Energy Groups, Half Rx

■Numerical Solution

■ Mathematical
Solution

0 100 200 300 400

Height (cm)

Figure 59 Axial Plot, Mesh Spacing = 4 cm

115

3D, Total 2 Energy Groups, Half Rx

1.2

■Numerical Solution

- Mathematical
Solution

50 100

Radius (cm)

150

Figure 60 Radial Plot, Mesh Spacing = 3 cm

1.2

3D, Total 2 Energy Groups, Half Rx

■ Numerical Solution
• Mathematical Solution

0 100 200 300 400

Height (cm)

Figure 61 Axial Plot, Mesh Spacing = 3 cm

116

3D, Total 2 Energy Groups, Half Rx

■Numerical Solution

nah- Mathematical
Solution

50 100

Radius (cm)

150

Figure 62 Radial Plot, Mesh Spacing = 2 cm

1.2

0)

re 0.8

<D

3D, Total 2 Energy Groups, Half Rx

■Numerical Solution

-■— Mathematical
Solution

0 100 200 300 400

Height (cm)

Figure 63 Axial Plot, Mesh Spacing = 2 cm

117

3D, Total 2 Energy Groups, Half Rx

1.2

■Numerical Solution

■ Mathematical
Solution

50 100

Radius (cm)

150

Figure 64 Radial Plot, Mesh Spacing = 1 cm

1.2

o> 1

3D, Total 2 Energy Groups, Half Rx

■Numerical Solution
Mathematical Solution

0 100 200 300 400

Height (cm)

Figure 65 Axial Plot, Mesh Spacing = 1 cm

118

Appendix H. Linking Visual BASIC and Excel

There are several references available to assist in creating embedded OLE Excel

charts within Visual BASIC; however, they do not fully explain how to chart an array of

data. This appendix provides the general procedure to chart and embed an OLE Excel

object consisting of an array of data as well provide tips to creating more complicated

charts and links.

The key to creating an embedded OLE Excel chart is to understand the OLE

commands and the Excel application commands. To set the OLE source documentation

to link the OLE to the source file, provide the name and location of the Excel file that

will contain the data generated by the Visual BASIC code.

OLE.SourceDoc = ("Text6")

In this example, "Text6" is the TextBox on the Visual BASIC form that the program user

uses to input the name and location of the Excel file. SourceDoc is a procedure that

links the OLE to the source document. To make the OLE object visible on the Visual

BASIC Form, use the following code.

OLE.Visible = True

This should be placed in the code so that the OLE object becomes visible only when

desired. Visual BASIC is object oriented. Objects have built-in procedures and settings

that allow the programmer to control the functionality of the object. To build the Excel

chart, dimension each object as shown below.

Dim ExcelApp As Object
Dim ExcelChart As Object

This will allow each of the newly defined objects to have an associated property or

method drop down window displaying the available commands in Visual BASIC.

119

To define the Excel chart type, Visual BASIC must be given the Excel constants instead

of the chart name. Some common Excel constants are given in Table 12.

Table 12 Excel Constants for Charts

Chart Type Excel Constant

xlLine 4

xlColumn 3

xlXYScatter -4169

xBDBar -4099

xl3DSurface -4103

To create a three dimensional chart, dimension the variable name for the chart type

and assign it an Excel constant value.

Dim ChartTypeVal As Integer
ChartTypeVal = -4103

Build an Excel Workbook and Worksheet using the following commands.

Set ExcelApp = CreateObject("excel.application")
ExcelApp.Visible = False
ExcelApp.Workbooks.Add

This adds a workbook to Excel and keeps the Excel code running in the background

without being visible to the program user. To see Excel run during the Visual BASIC

runtime mode, change "false" to "true". This can assist the programmer during

debugging because it allows the program user to see how the data is being added the

worksheet.

To add data to the Excel Worksheet, use a For-Next loop as shown.

120

For rwlndex = 0 to n
ExcelApp.Sheets("Sheet1").Cells(rwlndex,collndex).Value = your data

Next rwindex

This adds the data to Worksheet one in the cells corresponding to the Excel (row,

column) coordinate system. Once the data is added to the Worksheet it can then be

charted and linked to the Visual BASIC OLE. The following sample code selects the

data on the sheet, defines the chart type, adds data series and axis labels, saves the chart,

and links the chart to the OLE.

ExcelApp.Sheets("Sheet1 ").Range("A1 ").CurrentRegion.Select
Set ExcelChartl = ExcelApp.Charts.Add()
ExcelChartl Type = ChartTypeVal
ExcelChartl .SeriesCollection(l).Name = "^"Thermal"""
ExcelChartl .SeriesCollection(2).Name = "=""Fast
ExcelChartl .SeriesCollection(3).Name = "=""Total
With ExcelChartl

.HasTitle = True

.ChartTitle.Characters.Text = "Power in Reactor Core"

.Axes(xlCategory, xIPrimary).HasTitle = True

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Radius (cm)"

.Axes(xlValue, xIPrimary).HasTitle = True

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Power (Watts/cmA3)"
End With
ExcelChartl .HasLegend = True
'save chart, activate chart, OLE link chart, OLE update chart for chart 1
ExcelChartl .SaveAs [Text6]
ExcelApp.Sheets("Chart1").Select 'activates the desired chart
OLE1 .CreateLink (Text6) 'Creates the link to the name and location

'given in TextBox six
OLE1 .Update 'allow immediate update of excel chart on

'the Visual BASIC Form
ExcelApp.Quit 'Quits the application
Set ExcelChart = Nothing ' Clears the previous settings
Set ExcelApp = Nothing

This sample code produced the OLE embedded object shown in Figure 66 directly on

the Visual BASIC Form. To open Excel and access the chart and data, double click the

OLE on the Visual BASIC Form.

121

Power Plot of Reactor Core

Radius (cm)

^ffl(gWPm>!

Figure 66 Sample OLE Embedded Object

Excel contains Visual BASIC with Applications that is a limited version of Visual

BASIC. Although the Visual BASIC with Applications will not run many Visual BASIC

commands, it can assist it developing Visual Basic code needed to create embedded

charts. For example, to develop sample Visual BASIC codes use the macro command

while in Excel to record the steps in building an Excel chart and then display the code

using Visual BASIC with Applications. This will provide the general coding language to

develop variations to Excel charts. In some cases, the sample code displayed in Visual

BASIC with Applications can be copied directly into Visual BASIC.

122

Bibliography

Aitken, Peter G., Developing Solutions with Office 2000 Components and VBA, Prentice-

Hall, Inc., 2000

Burden, Richard L. and Faires, Douglas J., Numerical Analysis, Brooks/Cole Publishing

Company, 1997

Clark, Melville and Hansen, Kent F., Numerical Methods of Reactor Analysis, Academic

Press, 1964

Duderstadt, James J. and Hamilton, Louis J., Nuclear Reactor Analysis, John Wiley and

Sons, Inc., 1976

Feltus, M.A., Nuclear Engineering 431 Class Notes, Penn State Univeristy, Spring 1995

Glasstone, Samuel and Sesonske, Alexandria, Nuclear Reactor Engineering, Van

Nostrand Reinhold Company, 1981

Halvorson, Michael, Microsoft Visual Basic 6.0 Professional Step by Step, Microsoft

Press, 1998

Henry, Allan, Nuclear-Reactor Analysis, MIT Press, 1986

123

Jedruch, Jacek, Nuclear Engineering Data Bases, Standards, and Numerical Analysis,

Van Nostrand Reinhold Company, 1985

Knief, Ronald, Nuclear Engineering: Theory and Technology of Commercial Nuclear

Power. Washington, D.C.: Taylor and Francis, 1992

Larmarsh, John R. Introduction to Nuclear Engineering, Addison-Wesley Publishing

Company, November 1982

Ott, Karl O. and Neuhold, Robert J., Introductory Nuclear Reactor Dynamics, American

Nuclear Society, 1985

Ott, Karl O. and Bezella, Winfred A., Introductory Nuclear Reactor Statics, American

Nuclear Society, 1989

Press, William H. et al, Numerical Recipes in FORTRAN 77: The Art of Scientific

Computing, Cambridge University Press, 1996

124

Vita

Major William H. Harman entered undergraduate studies at Old Dominion University

where he graduated with a Bachelor of Science degree in Civil Engineering Technology

and was commissioned in the U.S. Army in December 1985. His civilian education also

includes an Associate in Applied Science in Architectural Drafting, a Master of Science

in Construction, and he is a registered Professional Engineer in California.

Before entering graduate school at the Air Force Institute of Technology, his military

career included assignments as a platoon leader and executive officer in Germany, a staff

officer and company commander at Fort Bragg, a project engineer in the Sacramento

Engineer District, and an engineer trainer and battalion operations officer in a Training

Support Brigade. Upon graduation, he will be assigned to the Defense Threat Reduction

Agency in Alexandria, Virginia where he and his family will reside.

125

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for tailing to comply with a collection of information if
it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
02-08-2001

2. REPORT TYPE
Master's Thesis

3. DATES COVERED (From - To)
Jun 2000 - Sep 2001

4. TITLE AND SUBTITLE

Modeling Pressurized Water reactor Kinetics

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Harman, William H., Major, U.S. Army

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GNE/ENP/01M-03

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT A computer model of a pressurized water reactor (PWR) was developed for use as a teaching tool in
graduate level nuclear reactor courses. The development, based on the diffusion equation, includes the
methodology for solving the steady state spatial dependence of the neutron power output in a homogeneous right
circular cylinder unreflected PWR system. This includes a two dimensional one energy group model, a three
dimensional one energy group model, and a three dimensional two energy group model. To solve the
homogeneous diffusion equation, a method was developed to search for criticality of the reactor based on the
geometry and reactor core material composition. For the one energy group models, a perturbation technique was
developed to assist the program user in modifying the macroscopic absorption coefficient to drive the reactor to
criticality. For the three dimensional models, a blocked tridiagonal solver was developed to solve the numerical
linear system of equations approximating the diffusion equation. The model was coded using Visual BASIC
5.0™. This provides a platform that is exportable to personal computers and allows direct linkage to Windows
based programs. The code automatically charts and displays the power distribution profile using Excel™ and
displays the calculated multiplication factor determining criticality.
15. SUBJECT TERMS
Pressurized water reactor, kinetics, Visual Basic, diffusion equation, one energy group, two energy groups, blocked tridiagonal solver, homogeneous, steady state, power
output, macroscopic absorption coefficient

16. SECURITY CLASSIFICATION OF:

ABSTRACT c. THIS
PAGE

u

17. LIMITATION
OF

ABSTRACT

UU

18.
NUMBER

OF
PAGES

136

19a. NAME OF RESPONSIBLE PERSON
LTC James C. Petrosky, ENP

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4600

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Form Approved
OMB No. 074-0188

	Modeling Pressurized Water Reactor Kinetics
	Recommended Citation

	/tardir/tiffs/a392679.tiff

