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Fourier propagation tool for aberration analysis
and a point spread function calculation of
systems with curved focal planes

STEPHEN C. CAIN*

Air Force Institute of Technology, Department of Electrical and Computer Engineering, 2950 Hobson Way,
Wright-Patterson AFB, OH 45433, USA
*Stephen.Cain@afit.edu

Abstract: This paper describes a new Fourier propagator for computing the impulse response
of an optical system with a curved focal plane array, while including terms ignored in Fresnel and
Fraunhofer calculations. The propagator includes a Rayleigh-Sommerfeld diffraction formula
calculation from a distant point through the optical system to its image point predicted by
geometric optics on a spherical surface. The propagator then approximates the neighboring field
points via the traditional binomial approximation of the Taylor series expansion around that field
point. This technique results in a propagator that combines the speed of a Fourier transform
operation with the accuracy of the Rayleigh-Sommerfeld diffraction formula calculation and
extends Fourier optics to cases where the receiver plane is a curved surface. Bounds on the
phase error introduced by the approximations are derived, which show it should be more widely
applicable than traditional Fresnel propagators. Guidance on how to sample the pupil and detector
planes of a simulated imaging system is provided. This report concludes by showing examples of
the diffraction patterns computed by the new technique compared to those computed using the
Rayleigh-Sommerfeld technique in order to demonstrate the utility of the propagator.

1. Introduction

Wave-optics simulation of light propagation has become an important element in the design of
optical systems [1,2]. With the emergence of curved focal plane arrays in cameras, the need
for new simulation tools to predict the performance of these systems is growing. Ray tracing
tools already available to optical designers, such as ZEMAX, have been modified to include
diffraction effects and could be adapted for use in curved focal plane cameras [3], but cannot
easily take advantage of the Fast Fourier Transform (FFT) to aid in computations with curved
detector surfaces.
Historically, the application of Fourier optics has always included a paraxial approximation.

This leads to both the Fresnel and Fraunhofer propagators [1]. The angular spectrum propagator
has also been utilized for wave propagation, but like the Fresnel and Fraunhofer methods, it has
yet to be applied to truly curved surfaces, although any of these propagators may be applied
in an approximate sense with as yet unspecified error, if the curved surface is approximated as
being made up of a collection of flat ones [4]. Fourier optics assumptions are important for
many applications where a Fourier transform operation is used to simulate the propagation of
an optical field. These applications include phase retrieval and wave optics simulations of the
atmospheric turbulence effects [5,6]. If Fourier optics can be extended to include propagation to
truly curved focal planes, the efficiencies afforded by these methods could aid in the design of
these new curved focal plane sensors.
The proposed propagation tool is not designed to replace lens design tools, but to provide

designers of adaptive optics systems a tool for simulating the effects of turbulence with the
optics of the telescope if they employ curved focal planes, due to the relatively high efficiency of
Fourier propagators compared to ray tracing codes. Currently, the propagation tools of choice in
these scenarios for flat focal planes are the digital Fresnel propagator and the angular spectrum
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propagator [2,4–5,7–9]. The Fresnel integral can be used to propagate a field arriving at the
telescope pupil from a wave that has propagated through layers of atmospheric turbulence. This
kind of propagation tool allows for optical aberrations of the telescope to be included in the
pupil function of the system if known but will not compute the telescope aberrations. This
strategy ignores the fact that many aberrations are field dependent, making the interface of a ray
tracing code with the Fresnel propagator tedious, since aberrations would have to be computed
for different tilt angles of the incoming wave. The new propagator introduced in this paper is
derived for the case where the radius of curvature of the sensor is equal to the focal length of
the system. This particular choice is useful for systems focused at infinity that may incorporate
curved focal planes to reduce the effect of aberrations.
The remainder of the paper is organized in the following way. Section 2 describes the new

hybrid Rayleigh-Sommerfeld Fourier transform propagator for curved focal planes. Section 3
includes an analysis of the new propagator’s binomial approximation and presents limitations on
its use. Section 4 compares the Rayleigh-Sommerfeld propagator to the new one in a scenario
involving an imaging system with a small F# that has a curved focal plane, where F# is the ratio
of the focal length of the system to the aperture diameter. Section 5 summarizes the findings of
the research and draws conclusions from them.

2. Fourier optics approximation of Rayleigh-Sommerfeld diffraction to a curved
surface

The impulse response of an optical system can be modeled via the Rayleigh-Sommerfeld
diffraction formula as long as the propagation distance between the source and the pupil plane is
much greater than a wavelength [1].

U(x′, y′, z) =
z
jλ

∫
x

∫
y

U(x, y, 0)
ej2πR(x,y,x′,y′)/λ

R2(x, y, x′, y′)
dxdy (1)

The Rayleigh-Sommerfeld diffraction equation relates the source field, U (x,y,0), in the pupil
to the receiver field U (x’,y’,z) in the focal plane. In Eq. (1), z is the distance between the pupil
and receiver planes in the direction of propagation, while R is the distance between a specific
point on the pupil, (x, y), and a specific point on the receiver plane, (x’,y’). The source is assumed
to be monochromatic with wavelength λ and the aperture is assumed to be finite in size with a
diameter of D meters.

The approximation to the Rayleigh-Sommerfeld diffraction formula proposed in this paper is
similar to the one proposed by Fresnel, except that the distance between the pupil plane and the
receiving plane is not constant. This leads to a distance calculation of the following form.

R(x, y, x′, y′) =
√
(x − x′)2 + (y − y′)2 + z(x′, y′)2 (2)

In this equation (x, y) represent coordinates in the pupil plane and (x’, y’) are coordinates in
the plane where the diffracted radiation pattern from the pupil is being computed (receiver plane).
If the receiving plane is a curved surface following the equation of a sphere, then z(x’, y’) is the z
coordinate of the spherical focal plane array detector with radius of curvature, S, which follows
the equation:

z(x′, y′) =
√
(S)2 − x′2 − y′2 − (S − zo), (3)

where S-zo is the difference in the radius of curvature of the curved detector and the actual vertical
distance from the center of the pupil to the center of the curved detector as shown in Fig. 1.

In order to simplify the following analysis, S-zo is set to zero and the focal length of the system
is also set equal to S, to represent telescope systems designed to image at near infinite distances.
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Fig. 1. Diagram showing how the z coordinate in the curved detector (solid arc at the top)
is computed from its (x’,y’) coordinates in Eq. (3). S is the radius of curvature of the curved
detector whose surface lies on a sphere centered at (0,0,zo -S). The oval region represents
the pupil plane containing the center of the coordinate system but not necessarily the center
of curvature of the detector unless the radius of curvature is equal to zo which is the vertical
distance between the aperture and the center of the detector.

Substituting Eq. (3) into Eq. (2) yields,

R(x, y, x′, y′) =
√
(S)2 + x2 + y2 − 2xx′ − 2yy′ (4)

Defining the following expression for Ro,2

R2
o(x, y) = (S)2 + x2 + y2 (5)

Substituting this expression into (4) and simplifying produces the following expression:

R(x, y, x′, y′) = Ro(x, y)

√
1 +
−2xx′ − 2yy′

R2
o(x, y)

(6)

Just as in the development of the Fresnel integral, the binomial approximation is utilized to
approximate the radical resulting in the following approximated value for R [1]:

R(x, y, x′, y′) ≈ Ro(x, y)
(
1 +
−2xx′ − 2yy′

2R2
o(x, y)

)
(7)

Later in Section 3, conditions for the validity of Eq. (7) are derived. These validity conditions
show that a region around the optic axis exists over which the binomial approximation is valid.
The approximated value for R is then substituted into the Rayleigh-Sommerfeld diffraction
formula in Eq. (1) while approximating R as S for all the amplitude related terms:

U(x′, y′, zo) =
1

jλ(S)

∫
x

∫
y

U(x, y, 0)ej2πRo(x,y)/λe
−j2π(x′x+y′y)

λRo(x,y) dxdy (8)

The propagation equation expressed in Eq. (8) is similar to a Fourier transform, except the
denominator of the Fourier phase [the last complex phasor in Eq. (8)] contains a term that is a
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function of the variables of integration. In order to approximate the complex phase term in a way
that will make this integral similar to a Fraunhofer integral, the deviation of it away from the
Fraunhofer phase [1] is given by:

2π
λ

(
(xx′ + yy′)
Ro(x, y)

−
(xx′ + yy′)

S

)
(9)

If this term can be shown to be much less than 1 radian, then it can be approximated as a
Fourier transform kernel and Eq. (8) can be computed using the Fast Fourier Transform as long
as the binomial approximation in Eq. (7) is valid. Factoring common terms yields and expression
for the phase error,

2π(xx′ + yy′)
λ

(
1

Ro(x, y)
−
1
S

)
(10)

A common denominator can be found for the term in parentheses, allowing for the numerator
to be expressed as the difference between S and Ro. Furthermore, as seen in Eq. (5), Ro is always
larger than S, so the magnitude of the phase error, θerr, is bounded above by:

θerr ≤
2π(xx′ + yy′)

λ(S)2
|Ro(x2, y2) − S| (11)

Since our goal is to establish an upper bound on the phase error, the difference between Ro and
S can be replaced by an approximated difference as long as the approximation yields a value for
Ro that is greater than its true value. An example of this is the binomial approximation [1] shown
below,

Ro(x, y) ≈ (S)
(
1 +

x2 + y2

2(S)2

)
(12)

The approximated value of Ro is always greater than the exact value and is easily shown to
be so by the fact that the third term in its Taylor series expansion, which is not included in the
binomial approximation is strictly negative [1]. Now substituting Eq. (12) into (11) and requiring
the phase error to be much less than 1 radian yields:����2π(xx′ + yy′)λ

���� ����x2 + y22(S)3

����<<1 (13)

Using the triangle inequality to bound Eq. (13) from above for an optical system and substituting
a discretized form for (x’,y’) in terms of pixels, nmax, that have a pitch of λ(S)/(2D), while
also substituting the maximum values that |x| and |y| can assume, yields the following validity
condition:

πnmaxD2

4(S)2
<<1 (14)

This condition can be further simplified for by bounding π/4 from above by 1 and substituting
the aperture diameter divided by the propagation distance as the F# so that Eq. (14) can be
expressed simply as:

nmax<<(F#)2 (15)

With a few notable exceptions, most astronomical telescopes possess large F#s, thus making this
technique useful for many dozens to hundreds of pixels around the center of the PSF. This is
the same criterion that was developed previously for a similar Fourier Transform propagator
based on a Rayleigh-Sommerfeld calculation developed for propagation to a flat plane [10]. The
difference between the two is in the validity of the binomial approximation, as the curved receiver
plane reduces the phase error of the third term in the Taylor series expansion, thus making the
technique proposed in this paper possess a different validity condition.
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If the PSF is larger than the validity region, then this technique cannot necessarily be used
reliably to compute the PSF of the optical system but in some cases the PSF is observed to be
accurate well outside the valid region. The validity condition for the digital Fresnel propagator
does not have the property that its phase error can be limited by the number of pixels used in the
receiver plane [10].

Equation (8) is approximated by its Nyquist sampled version by substituting a sample size for
x’ and y’ as λ(S)/2D and a sample size of L/N for sampling x and y (where L is greater than or
equal to 2D):

Ur(n,m) =
∆2s
jλ(S)

∑
k,l

Us(k, l)e
j2πRo(k,l)

λ e
−j2π(nk+ml)

N (16)

The region of validity computed in this section assumes that the binomial approximation made
in Eq. (7) is valid, which may not always be the case. In the next section, the validity of this
binomial approximation will be examined and compared to that of the Fresnel propagator.

3. Binomial approximation validity conditions

In this section, the binomial approximation will be examined to determine under what conditions
the new propagator can be utilized, while maintaining a low phase error. The binomial
approximation in general takes the form:

√
1 + b ≈ 1 + b/2 (17)

One way in which the validity of this approximation can be evaluated, is by examining the
next term in the series, b2/8, which when multiplied by the wavenumber converts it from units of
distance to optical phase:

2πb2/8λ =
2π(2xx′ + 2yy′)2

8λR4
o(x, y)

<<1 (18)

The goal is to find the conditions that make this expression less than 1 radian, thus revealing when
the approximation is valid. Choosing the value of Ro to be equal to S bounds this expression
from above, also expanding the square and substituting the maximum extent for the region of
validity in the focal plane in terms of pixels derived in Eq. (15) for x’ and y’ yields:

πn2maxλ(x + y)
2

4D2(S)
<<1 (19)

Taking the maximum extent of the aperture plane to be xmax=ymax=D/2, moving S to the right
and recalling that nmax is bounded above by F#2, the following bound for the propagation distance
is obtained.

(F#)4λ<<(S) (20)

In this expression π/4 has been bounded above by 1, thus making Eq. (20) as simple to compute
as possible. Even for systems possessing practical F#s, this condition is easy to meet.

This criterion is much less stringent than the Fresnel criterion, which even along the optic axis
requires [1]:

πD4

16λ
<<z3 (21)

In this expression, the propagation distance has to be greater than a factor related to an inverse of
the wavelength as opposed to a distance that is proportional to the wavelength. A more direct
comparison of the two criteria in Eqs. (20) and (21) can be achieved by solving both of them for
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the F# and seeing which inequality possesses a larger range of practical application. Solving for
F# in Eq. (20), which bounds the utility of the new propagator produces:

(F#)<<(S/λ)1/4 (22)

Doing the same thing for Eq. (21) which bounds the utility of the Fresnel propagator yields:(
πD
16λ

)1/3
<<(F#) (23)

Notice that the inequality goes different ways, featuring an upper limit on F# for the new
propagator and a lower limit on F# for the Fresnel propagator. So, for example, the Hubble
Space Telescope has a 2.4-meter diameter primary mirror with a 57.6-meter focal length and
collects light with a mean wavelength near 500 nm [11]. In this case, Eq. (22) would have the
left (the F#) being 24 and the right side would be evaluated at 103.6. Equation (23) would have
the left side being equal to 98.04 and the right side would again be 24. In this scenario, the
new propagator would be valid, and the Fresnel propagator would not be. Such a comparison is
completely academic; however, as the Fresnel propagator is not designed to be used with curved
focal plane sensors and the new propagator is. This fact makes a direct comparison between them
superfluous as one should never choose to use the new propagator with a flat focal plane array,
nor would it make sense to use the Fresnel propagator to propagate to a curved surface, since it
isn’t designed to do this.

4. Comparison to Rayleigh-Sommerfeld propagation

In this section, the proposed Fourier propagator is used to simulate the impulse response of an
optical system that possesses a spherical aberration that is the result of a plane wave entering
from infinity along the optic axis. This result will be compared to the impulse response computed
using the Rayleigh-Sommerfeld diffraction formula, modified to be exact for a curved receiver
plane. The optical arrangement to be simulated by the propagator is chosen to be simple enough
to realize with widely available optical components, yet the configuration is chosen to produce
an aberration that is commonly found in fast optical systems [12]. This aberration is of general
interest since it can serve to limit the resolution of an optical telescope and would interact with
atmospheric aberrations in ways difficult to predict with ray tracing techniques. Figure 2 shows
the optical arrangement in which the lens has a 5 cm diameter and has a focal length of 20 cm,
which is also equal to both the distance between the lens and the detector, S2 as well as the radius
of curvature of the curved focal plane, S. The wavelength of the incoming light is chosen to be
550 nm.

Fig. 2. Optical arrangement used to produce a spherical aberration.
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4.1. Point spread function calculations

The source field presented to the lens, Us, is computed using a simple plane wave model with a
lens transformation for a simple spherical lens added to the phase of the field [1]. The burden of
making this exact calculation is not great since no summations are involved in the execution of
this operation.

In this simulation, the lens is modeled as a simple spherical lens with a focal length of 20 cm
[1]. The total phase in the pupil utilized by the new propagator can be computed as the phase of
the lens transformation and the phase term associated with the new propagator shown in Eq. (24).

θtot(k, l) = θlens(k, l) + 2πRo(k, l)/λ, (24)

where θlens is the phase of the lens transformation. The number of points chosen to model
the pupil is 512 making the sample size in the pupil 195.31 µm. Since the pupil contains a
discontinuity, it contains infinite frequency content, so the Nyquist sampling theory cannot predict
a sufficient sample rate to avoid the aliasing of this signal. Beyond sampling the amplitude of
the pupil function, the phase of the pupil must be sampled properly in order to avoid significant
aliasing effects. All of the techniques discussed in this paper feature the addition of a phase to the
input field, Us. The combined phase of the input field, lens transformation and the propagation
field cannot contain pixel to pixel transitions greater than π radians.
This is due to the fact that this phase is used as the argument of a cosine representing the

real part of the complex exponential and the argument of a sine function which represents the
imaginary part. If the phase of the pixel to pixel transitions exceed π radians, then there will not
be at least 2 samples over each period of the real and imaginary parts of the complex sinusoid in
the phase of the pupil. The amplitude of the pupil field is modeled as a circle with a diameter of

Fig. 3. Image of the PSF simulated using the Rayleigh-Sommerfeld diffraction formula for
the arrangement shown in Fig. 2.
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5 cm. Digitally, this circle has a diameter of 256 pixels. The field Us is stored as an amplitude
array and a phase array separately.
Utilizing this pupil field, the discrete approximation of the Rayleigh-Sommerfeld diffraction

formula shown in Eq. (1) is used to compute the PSF for the arrangement shown in Fig. 2 using
a sample size in the pupil mentioned above and a discrete pixel size of 1.1 µm in the detector
plane. The amplitude and phase arrays representing Us are modified by the amplitude and phase
changes dictated by the phase term in Eq. (1) associated with the range calculation. The impulse
response of the system is computed by taking the squared magnitude of the field obtained from
Eq. (1) and normalizing it so it sums to 1 is shown in Fig. 3.
In order to compute the shape of the PSF using the new algorithm, the FFT (Fast Fourier

Transform) is utilized. Unlike in the Rayleigh-Sommerfeld calculation, the sample size cannot be
arbitrarily set but is determined by the size necessary to make the phase term in Eq. (7) resemble
the phase term realized in the FFT algorithm. This can be accomplished by setting the detector
plane sample size, ∆r, equal to [2]:

∆r =
λS2
L

, (25)

where L is the size of a plane containing the pupil. In this way L can be chosen to accommodate
a different sample size other than the critical sample period predicted by Nyquist theory by
changing the size of the pupil plane from the size of the lens. This is accomplished by zero
padding the matrix that contains the field in the pupil. For this experiment the camera detector
pixels are 1.1 µm as L is equal to 10 cm and the wavelength of the light is 550 nm.
Figure 5 shows a plot of the intensity along the center of the PSFs along the x-axis shown in

Fig. 4.

Fig. 4. Image of the PSF simulated using the new Fourier Propagator.

The percent error in the new propagator can be computed from this case by utilizing Eq. (26).
In this case the error was found to be 5.5%. Although the Rayleigh-Sommerfeld propagator is
more accurate than the new technique, the image in Fig. 3 required 7196 seconds in MATLAB to
compute, while the new propagator took just 0.061 seconds on the same machine. The machine
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Fig. 5. Plot of the normalized PSF amplitude through the middle from the Rayleigh-
Sommerfeld propagator as well as the new propagator. The PSFs were normalized to sum to
one.

used was a Lenovo Ideacenter 510A with an AMD A-12 9800 Radeon R7 3.8 Ghz processor
having 12 cores and 12 GB of RAM.

%Error =

N∑
x=1

N∑
y=1
(IRS(x, y) − IFT (x, y))2

N∑
x=1

N∑
y=1

I2RS(x, y)
× 100 (26)

In this equation, IRS, is the intensity of the PSF computed using the Rayleigh-Sommerfeld
algorithm, shown in Fig. 3, and IFT is the intensity of the PSF computed using the new algorithm,
shown in Fig. 4. The computed error is an average over central 32 by 32 pixels, where the PSFs
reside as the validity region is +/- 16 pixels.

5. Conclusions

The proposed Fourier propagator is shown to produce a diffraction pattern that is a close match
to that produced by the Rayleigh-Sommerfeld diffraction formula. The calculations in Section 3
show that the proposed propagator’s validity can be expressed in terms of the size of a region
in the detector plane. The size of that region is always a function of the F#. This is in sharp
contrast to the validity condition for the Fresnel propagator, which is based on the ratio of the
pupil diameter to the propagation distance from the pupil to the detector. If these conditions are
not met, then the Fresnel propagation is not necessarily valid for any region in the detector plane
and they seldom are for practical systems [1].
This new proposed propagation tool will have an impact on applications of Fourier optics to

systems with curved sensor arrays. It will most likely have its largest impact on applications
dealing with the simulation of atmospheric turbulence on imaging systems. The propagator allows
the aberrations from the atmosphere to interact with field dependent aberrations within a telescope
in a natural way that eliminates the need to compute telescope aberrations separately with ray
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tracing codes. Although this might be possible using the Rayleigh-Sommerfeld propagator, the
time required to execute would be unacceptable in many cases. The use of propagators designed
for use with flat planes may be utilized, but with unknown validity conditions. This kind of
modeling capability allows for system performance for a conceptual system designed to image
through turbulence to be more rapidly determined with the computational savings afforded by
the FFT algorithm.
Future research into improving this technique will be focused on extending its application

to multiple mirror telescope designs. This could be accomplished by developing a method for
computing a lens transformation for the multiple mirror configurations that captures the phase
delays along the path from the pupil entrance to the point in the detector at which the impulse
response is being computed. If this can be done, the proposed Fourier propagator could replace
traditional ray tracing codes used in the design of multiple mirror telescopes. More development
work for this approach is required and more testing would be required to validate the results for
aberrations other than spherical aberrations.
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