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Abstract 

Our nation is spending increasingly more dollars to develop software 

systems. Likewise, the Department of Defense (DoD) allocates more and more dollars to 

develop software. Consequently, the DoD needs to be able to accurately estimate what 

these systems' cost so they can develop reliable budgets. To estimate these software 

costs, the DoD relies on commercial software estimating tools. However, these tools are 

somewhat unreliable when it comes to estimating military systems, particularly 

Command, Control, and Communication Systems. 

The purpose of this study was to develop a parametric model using linear 

regression to estimate software development costs for Department of Defense Command, 

Control, and Communications systems. The developed model is unique in a few ways. 

First, the model is derived from Department of Defense command and control data. Most 

other traditional models use a broader spectrum of data to create models, and then rely on 

calibration to tailor the model for a specific use. 

Second, while traditional models require volumes of variables to create estimates, 

the developed model only requires a few key variables to estimate the amount of effort 

necessary to complete a project. The key variables were selected through analyzing 

common variables used in software cost estimating and performing regression analysis to 

focus in on the variables that have the greatest influence on expected effort. 
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PREDICTING SOFTWARE DEVELOPMENT COST 

FOR COMMAND AND CONTROL SYSTEMS 

I. Introduction 

Background 

Estimating the cost of software systems is of great concern to not only the 

Department of Defense but also all those that come in contact with producing and 

procuring software systems. The reason for this is the shear magnitude of dollars being 

expended on software projects; which equal about 2.3% of our nation's Gross Domestic 

Product (Mannering, 2001). In the United States, industry and government spent 230 

billion in 2000 on software projects (Mannering, 2001), compared with $70 billion in 

1985(Hu et al, 1998: 144). Therefore, in this growing business sector that is costing more 

and more dollars it is important to be able to accurately estimate software costs. 

Based on a survey done by Professors Lederer and Prasad, the great majority of 

respondents reported that their software estimates were dismal (only about one in four 

projects is completed at a cost reasonably close to the estimate)(DeMarco, 1995: 5).   A 

1984 study of seventy-two projects in twenty-three major U.S. companies revealed that 

the median cost overrun is about 34 percent with and average of 67 percent, and the 

average schedule slip is about 22 percent (Hu et al., 1998: 144).   Furthermore, it's not 

uncommon to see large software projects with 200 to 300 percent cost overruns and 100 

percent schedule slips (Hu et al., 1998: 144). Hu, Plant, and Hertz believe one of the top 



contributors to these massive overruns is inaccurate estimation of development cost and 

schedule, which lead to unrealistic expectation and project planning (Hu et al., 1998). 

General Issue 

Currently the DoD relies heavily on commercial software estimating tools. Some 

of the more popular models used by the DoD include the following: PRICE-S, SEER- 

SEM, and SLIM, CHECKPOINT, COCOMO II, and SAGE. These parametric models 

are popular because they are so relatively easy to use and even a novice estimator can 

quickly begin estimating programs. However, the ease of use comes with a price, the 

models don't seem to be very accurate in estimating DoD software programs (Ferens, 

1996: 29-31). 

Because of the inaccuracies of these commercial models, some suggest the 

models may be made more useful through calibration (Ferens and Christensen, 1997). 

Ferens and Christensen state, "a solution to the accuracy problem may be to calibrate the 

models to the user's environment (Ferens and Christensen, 1997, 43)."   Between the 

years 1994 to 1997 Air Force Institute of Technology (AFIT) masters students calibrated 

nine different popular models. The AFIT student research concluded that there are mixed 

results when popular models are calibrated with military data. Some models are more 

suitable than other models depending on their application, environment, and type of 

software being developed (Ferens and Christensen, 1998). 

Specific Issue 

A significant area for DoD software estimating is Battle Management Command, 

Control, and Communication (BMC3). BMC3 software is the component of weapon 



system software that communicates, assimilates, coordinates, analyzes, interprets 

information, and provides decision support for military commanders. It provides 

instantaneous situation assessment, allowing for advantageous timely position and 

decision making (Cummings et al., 1998).    The OSD CAIG has seen a significant 

increase in the complexity and size of BMC3 suites on a variety of weapons systems. 

Software development constitutes the majority of the effort in these BMC3 suites (system 

code counts range from 1 Million SLOC to 3 Million SLOC). 

In light of the increasing quantity and size of these systems, it is even more 

important to be able to accurately estimate them. However, according to the AFIT 

studies mentioned above, none of the calibration efforts effectively improved the 

commercial model's accuracy in estimating BMC3 systems (Ferens and Christensen, 

1998).    The reason for this is that BMC3 systems are significantly different from other 

systems. The Naval Center for Cost Analysis (NCCA) explains that the systems are more 

software dependent than non-BMC3 systems. Consequently, their productivity of 

software development efforts may be lower than traditional military systems. (Cummings 

et al., 1998) Therefore, the purpose of this study is to examine Battle Management 

Command, Control, and Communication (BMC3) software development efforts to 

determine key cost drivers and establish appropriate cost estimating relationships for 

these types of systems. 

As part of this study, the software development environment for historical 

systems must be taken into account. Specifically, size of the project, a variety of 

complexity variables, the schedule, differing types of programming languages, and other 

appropriate historical BMC3 suite data will be examined. 



Research Approach 

This research, through relevant literature and software cost models, will reveal 

insights concerning approaches traditionally attempted to estimate similar software 

development efforts. Data will be collected from historical systems that are similar to 

BMC3. The Space and Missile Systems Center (SMC) and the Electronic Systems 

Center (SMC) software databases contain the similar types of systems that were used in 

this analysis. The gathered data was analyzed using multivariate regression. Through a 

review of the data and detailed analysis, the cost estimating relationships for BMC3 

systems are described. 

Research Contribution 

This research is unique to recent efforts at the Air Force Institute of Technology. 

Over the past few years, AFIT's software estimating focus has been on calibrating 

commercial models. These commercial models were built using commercial databases, 

and then calibrated with military data to fit the military's needs. Conversely, this effort 

will analyze military data to build a military model to fit military needs. The results of 

this research effort will provide analysts needed insight into the life cycle costs associated 

with the development of BMC3 systems and provide them with a set of cost estimating 

relationships that will enable them to adequately cost future development efforts for 

BMC3 systems. 

Scope of Research 

The purpose of this research is to determine if development costs can be 

accurately predicted using a model that is derived solely from DoD command and control 



data. No data points other than those provided from the DoD sources mentioned above 

will be used in the research. Additionally, the model derived from this research is 

intended to estimate Command and Control projects only. Once again, the purpose of 

this model is to determine if a more accurate and useful model can be built using specific 

data that relates directly to the software program application, BMC3. 

Thesis Overview 

This chapter provides an overview to the problem DoD faces in estimating BMC3 

software systems. It is questionable whether commercial models, either "as is" or 

calibrated, fulfill the accuracy requirements desired by the DoD (Ferens and Christensen, 

1997). Bad estimates increase the frustration and tension among contractors, program 

managers, and estimators. Contractors overrun budgets, program managers set 

unrealistic goals, and estimators get labeled the "bad guys" because they create 

inaccurate estimates. Therefore it's clearly necessary that something needs to be done to 

create more accurate estimates. 

Chapter II, the Literature Review, provides a summary of the current thinking in 

the industry concerning software cost estimating. The chapter discusses important ideas 

and components to software cost models. The ideas include the basic form that many of 

today's model use. The components section include a description of the key cost driver 

that the literature feels influences the level of effort necessary to develop software 

systems. 

Chapter III, Methodology, details the steps of collecting and scrubbing the data, 

building the model through statistical techniques, and validating the proposed model. 



Chapter IV, Findings, describes the results and findings of the model building 

effort in Chapter III. Included in this chapter is the complete model and the effects each 

of the significant attributes have on the model. 

Chapter V, Conclusions and Recommendations, reviews the findings of Chapter 

IV and determines to what extent the goals set out previously in this chapter are met. 

Additionally, through the conclusions, it is apparent where further research should be 

done. Recommendations concerning future efforts are also included in this chapter. 



II. Literature Review 

Introduction 

The purpose of this chapter is not to give an all-inclusive explanation of software 

estimating. There is a multitude of books, like T. Capers Jones' Estimating Software 

Costs or Barry W. Boehm's Software Engineering Economics, which address this very 

subject. Still, this chapter will cover the basics of software cost estimating. To 

understand software estimating models it's important to understand difficulties involved 

in estimating and why estimating is necessary. It's also important to understand some of 

the key variables and assumptions that other models include in their algorithms. Then 

with knowledge of the key variables and assumptions, the creation of software models 

will make more sense. This chapter discusses how and what statistical models are used to 

create software-estimating tools. Additionally, this chapter discusses past efforts to 

improve effectiveness of software estimating (specifically in the area of Command and 

Control software systems). 

Software Cost Estimating Models 

Stutzke in his article, Software Estimating Technology: A Survey, explains there 

are two basic classes of estimation methods: experience-based estimation and parametric 

models. Experience-based models rely on estimator's knowledge and experience in the 

field; however, the weakness of this methodology is that the estimator may not correctly 

recall or apply the things he knows. Conversely, parametric models are models that are 



based on historical data. Because they are based on historical data, they tend to have a 

particular "perspective." If the data is slanted towards commercial or military data or a 

particular application, the perspective of that model will have a commercial, military, or a 

specific application's flavor. Consequently, when using parametric models, estimators 

should find the model that best fits the type of project they are estimating or make sure 

the model is properly calibrated for that particular environment (Stutzke, 1996). 

Boehm expands Stutzke's two basic categories to seven methods of software cost 

estimation. The seven methods are described in Table 1.1. 

Table 2.1. Strengths and Weaknesses of Popular Models (Boehm, 1981: 329-338) 

Method Description Strengths Weaknesses 
Algorithmic 
Models 

These methods provide one or more 
algorithms, which produce a software 
cost estimate as a function of a number 
of variables, which are considered to 
be the major cost drivers. 

Objective, 
repeatable, 
efficient, able to 
support 
sensitivity 
analysis. 

Model's data 
may not be 
representative, 
may not account 
differences. 

Expert 
Judgment 

This method involves consulting one 
or more experts, perhaps with the aid 
of an expert-consensus mechanism 
such as the Delphi technique. 

Quick, able to 
factor 
differences, such 
as new 
techniques or 
architectures. 

May be biased; 
either optimistic 
or pessimistic. 

Analogy This method involves reasoning by 
analogy with one or more completed 
projects to relate their actual cost of an 
estimate of the cost of a similar new 
project. 

Estimate is based 
on actual 
experience on a 
project. 

Project may not 
be 
representative 
of the estimated 
project. 

Parkinson A Parkinson principle ("Work expands 
to fill the available volume") is 
invoked to equate the cost estimate to 
the available resources. 

Lots of bells and 
whistles (if your 
into that sort of 
thing). 

Not particularly 
accurate and 
supports poor 
practices. 



Price-to-Win The cost estimate developed by this Wins contracts. Purely 
method is equated to the price believed subjective, 
necessary to win the job (or the based on what 
schedule believed necessary to be first the customer 
in the market with a new product, 
etc.). 

wants to hear. 

Top-Down An overall cost estimate for the project Includes all Low-level 
is derived from global properties of the system level technical 
software product. The total cost is requirements like difficulties are 
then split up among the various integration, over looked. 
components. training, and Components 

manuals. may be left out. 

Bottom-Up Each component of the software job is Looks at each May overlook 
separately estimated, and the results individual system level 
aggregated to produce an estimate for component and requirements 
the overall job. errors tend to like integration, 

balance each training, and 
other out. manuals. 

The key for estimators is to determine which of these methods is most useful in their 

particular situation. Each method has its particular strengths and weaknesses that may be 

capitalized on in a specific situation and often the models compliment each other (Boehm 

1981: 341). Still, it's important to note that not all models may produce objective 

estimates. Boehm feels the Parkinson and the Price-to-Win methods don't produce good 

objective measures of the effort required for developing software (Boehm, 1981: 341). 

In the beginning stages of a program, when little is know about a program's 

requirements, expert judgement and rules of thumb may be most useful in estimation. 

Then, when the requirements become more established, more advanced techniques may 

be employed. 



Model Building 

Throughout this paper, the focus of estimating models will lean more towards 

parametric or algorithmic models that are based on historical data. Parametric models are 

popular because they are relatively easy to use; even novice estimators can quickly begin 

estimating programs. 

Literature describing the actual techniques for building software cost estimating 

models is somewhat sparse for such a mainstream activity. The reason for this is that 

most of the commercial software costs estimating tool vendors regard their estimating 

methods and algorithms as trade secrets (Jones, 1998: 20). Nevertheless, we have a 

general idea of what most models look like. According to Caper Jones in his book, 

Estimating Software Costs, most software estimating models follow a form similar to the 

one illustrated in Figure 2.1. 

X Project 
Attributes 

ESTIMATES 

- Effort 

- Costs 

Figure 2.1. Basic cost estimating model (Jones, 1998: 6) 

Program Size Overview 

The first block in Figure 2.1, project size, is traditionally measured and reported 

in one of two ways. The first way to measure size is counting lines of code and the 

10 



second way to measure size is by counting function points. Both counting methodologies 

are described in the following paragraphs. 

Probably the most significant and important piece of data to collect is the size of a 

software development program. Size is important because it is usually the key variable in 

most estimation models. Nevertheless, one should be careful when talking about size 

because there are various ways to measure the size of a computer program. Two of the 

more popular methods are counting Source Lines of Code (SLOC) and measuring 

Function Points. Both methods are currently used within the software industry, with 

Function Points being the newer of the two measures. Size is relatively easy to compute 

and therefore is a popular if not necessary component for software cost models. Conte 

states that size is probably the most important factor for many software development 

models. He also explains that size is also important for developing a secondary factor, 

productivity (Conte, 1986: 32).   Productivity is a factor of size divided by the effort to 

build a software project, which results in a number that describes the number of man- 

hours to complete a line of code. 

Function Points. Of the two sizing methodologies, Function Point sizing is the 

newer of the two and less commonly used within the Department of Defense (DoD). 

Still, there are some avid proponents of Function Points that believe it is a superior 

method of sizing software systems. Function Points are based on external attributes of a 

software project, which consists of the following five primary elements: (1) external 

inputs, (2) external outputs, (3) external inquiries, (4) internal logical files, and (5) 

external interfaces (Jones, 1998: 303). 

11 



IFP 

Inputs 

Process 

Outputs 

X 

19+General 

Application 

Characteristics 

Function 

Points 
= 

Figure 2.2. Components of Function Points (Symons, 1991: 22) 

Function points can be extremely difficult to calculate, but are easy to understand 

because the measured attributes are externally apparent. Charles Symons explains that 

Function Points are a combination of information processing size (IPS) and general 

application characteristics (Symons, 1991). Figure 2.2 illustrates Charles Symons' basic 

structure for calculating Function Point size. 

Function Points are an interesting concept and are gaining wider acceptance in the 

estimating community. Still, the Department of Defense (DoD) hasn't jumped on board 

the Function Point bandwagon. Most of the models used by the DoD and most of their 

databases are SLOC based. This may be something the military may want to look into in 

the future; Jones contends that because of the completeness of military specification, 

DoD projects would be ideal to estimate using Function Point sizing methods. 

Source Lines of Code (SLOC). Even though it may seem simple to simply count 

the SLOC, it is more complex than it appears. The problem with counting SLOC is that 

not everybody agrees what qualifies as a line of code (Conte, 1986: 32).   An 

uncomplicated solution would be to simply count the lines or carriage returns; however, 

blank lines and comment lines probably shouldn't be included in the count. Within 

industry there are two distinctly different SLOC counting methods: physical and logical. 

12 



Physical SLOC counting is simply counting the number of carriage returns. Logical 

SLOC is determined by counting logical units (for example, an IF-THEN-ELSE 

statement is considered a logical unit). The methodology employed may make a 

significant difference. An Institute for Defense Analysis (EDA) study concluded that 

physical code counts are generally about 20% higher than logical code counts 

(Cummings et al., 1998). Within the industry, most researchers agree blank lines and 

comment lines shouldn't be included. If they were included, analysts could easily inflate 

the size of the software program (Conte, 1986: 34).   The following is a definition for 

lines of code that is commonly accepted throughout the industry: 

A line of code is any line of program text that is not 
a comment or blank line, regardless of the number of 
statements or fragments of statements on the line. This 
specifically includes all lines containing program headers, 
declarations, and executable and non-executable 
statements. (Conte, 1986: 35) 

Still, with this definition in hand there is some ambiguity concerning how or what 

to count when counting SLOC. Even with all this definitions, counting logical SLOC can 

be difficult because much of the count may be left up to interpretation. 

There are many compelling reasons why SLOC is a widely used metric. SLOC 

metrics are relatively easy to count (easier for physical lines of code). Line of Code 

measurements can easily be mathematically converted to another sizing methodology, 

including function points. Additionally SLOC is the most popular metric used in many 

of today's commercial software estimating tools (Jones, 1998: 319). 

Reuse of Code and Effective Size. The Naval Center for Cost Analysis comments 

that not only knowing the amount of source code necessary, but also knowing the 
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"condition" of the code is also important (Cummings et al., 1998).   Many developed 

software systems aren't built from the ground up. There may exist projects or programs 

that are used to create new software systems. In determining the size of a software 

system it simply wouldn't be correct to consider reused code the same as newly 

developed code. Still, reused code simply doesn't come free of charge without any added 

effort. To account for the size of projects using both new and reused code a unique 

measure is employed called "effective sizing" or "equivalent sizing." The equivalent 

SLOC (ESLOC) takes into account the fact that reused code doesn't take the same 

amount of effort to put into a program as new code. One method for determining the 

effective size of programs uses an Adaptation Adjustment Factor (AAF) that is based on 

engineering judgment of distributed effort between percent design modification (DM), 

percent code modification (CM), and percent integration and test modification (IM). For 

example the AAF may appear as follows: 

AAF = 0.4DM + 0.3CM + 0.3IM (2.1) (Boehm, 1981) 

In the example above the design requires a 40 percent redesign, code requires 30 percent 

redesign, and test requires 30 percent redesign. After calculating AAF, ESLOC is 

calculated using the following formula: 

ESLOC = New SLOC + (AAF * reused SLOC)        (2.2) (Boehm, 1981) 

The biggest drawback with the method explained above is that engineers aren't infallible 

when estimating the percentages for DM, CM and EVI. Consequently, size estimates for 

reused pieces of code may only be as good as the best guesses of your best engineers. 
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Project Attributes 

The second block illustrated in Figure 2.1, project attributes, may include (but not 

restricted to) the following information: 

1. Rate at which a project's requirements may change 
2. Developing team's experience with this kind of project 
3. The standards that will be employed, i.e. ISO, DoD 
4. Programming languages utilized 
5. Programming processes or methods 
6. Reusable code 
7. Development tools used 
8. Office dynamics/environment 
9. Schedule pressure (internal or external) 
10. Complexity of the project 

(Jones, 1998: 6) 

Then, by factoring project size and attributes, one can estimate a software project's 

schedule, effort, costs, and deliverables. 

Next to size, the most important data for software models are the projects 

attributes. These are the characteristics that make the development project unique. Each 

software development effort has special needs or attributes that will either increase or 

decrease the amount of effort necessary to complete a project. For example, it makes 

sense that a project that is inherently more difficult than normal will take more effort to 

complete. 

An important attribute that seems to make a difference is the programming 

language used to develop the project. This seems especially true when the projects are 

written in second-generation languages (2GLs) versus third-generation languages (3GLs). 

After all, 3GLs were developed to make writing and understanding programs easier 

(Cummings et al., 1998). The reason for the difference in ease of use is that 2GL 

languages are one step above machine language and are awkward to use, while 3GL 
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languages and above are closer to spoken language and easier to write and understand 

Cummings et al., 1998). Assembly language is the primary 2GL language utilized by 

past DoD projects. The NCCA completed a study to determine if productivity levels are 

affected by whether a project is written in 2GL or 3GL. They found there is a significant 

productivity difference between the two generations of language. However, they found 

that no significant difference occurred between different 3GLs(Cummings et al., 1998). 

Consequently, it seems estimators need to pay particular attention when considering 

differences in language generation. 

There are a number of other variables that are believed to have a significant effect 

on the amount of effort used to develop software. These variables fall into four basic 

categories; which include personnel, technology, processes, and environment (Jones, 

1998: 7-8).   The levels of experience the personnel have seem like a common sense 

factor. The personnel category may include factors like programming experience, 

language experience, or operating environment experience. As with everything else in 

our lives, technology may significantly influence how things are done. For example, 

technology drives whether automated tools or manual methods are used in writing code. 

Of course, programmers using automated tools would be expected to have a higher 

productivity rate than those not using them (Jones, 1998: 7).   It's also obvious that the 

processes a team uses will affect their productivity. On the other hand the environmental 

influence on productivity is not as obvious. Environmental factors include where people 

work, and the relations they have with those around them. Jones states, "surprisingly, 

access to a quiet, noise-free office environment is one of the major factors that influences 

programming productivity" (Jones, 1998: 7). 
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Another item that should be considered is the type of application the software 

provides. Military applications are notably different than commercial applications. 

Additionally, there is a lot of variety within military application; whether the software is 

used in an aircraft, ship, or in space may make a significant difference (Jones 1998, 99- 

100).   Furthermore, of all the military applications one seems to stand out, specifically 

Command and Control systems. The Naval Center for Cost Analysis (NCCA) explains 

that Command and Control systems are more software dependent than non-BMC3 

systems. Consequently, their productivity may be lower than traditional military systems 

(Cummings et al., 1998). 

Algorithmic Models 

Models that employ various algorithms derive their algorithms from statistical 

techniques. Regression analysis is a method used to determine the relationship of 

dependent variables and independent variables. In the case of software development, the 

dependent variable is the level of effort to develop computer programs and the 

independent variables are the drivers that influence the level of effort necessary for 

development. According to Conte, Dunsmore, and Shen a large number of models, both 

linear and nonlinear, have been proposed for effort estimation (Conte et al., 1986: 279). 

The following paragraphs will review both types of statistical models 

Linear Statistical Models. Linear models are popular because they employ 

equations are simple to understand and use relationships that are relatively easy to 

explain. The basic form of a linear statistical model is illustrated in equation 2.3. 

E = j30+ij3lXi       (
2-3) 
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The dependent variable, E, is the amount of effort necessary to develop software. The Xj 

are the factors or attributes believed to affect effort. The attributes or factors include 

things like size, schedule, personnel experience, complexity of the project, and many of 

the other items mentioned in previous sections (Conte et al., 1986: 279-280). 

Systems Development Corporation (SDC) developed a linear model by looking at 

104 different attributes and then narrowed them down to 14 key attributes. SDC's 14 

attributes include the following: lack of requirements, stability of design, percent math 

instructions, percent I/O instructions, number of subprograms, programming language, 

application, stand-alone program, first program on a computer, concurrent hardware 

development, random access device used, different host, number of personnel trips, and 

military development (Conte et al., 1986: 280-281). 

As shown above with the SDC model, literally hundred of attributes may affect 

effort. Many of these variables may account for the same thing and therefore may be 

accounted for in a single variable. Thus, the volumes of variables may be reduced to a 

smaller subset of variables that tell the same story. Still, one should use caution when 

using or interpreting a linear model. For example, the individual terms, x;, and their 

coefficients should not be interpreted independent of other terms in the model's equation. 

All the terms act in concert with each other to predict the estimated effort (Conte et al., 

1986: 280). Additionally, one should use caution when attempting to estimate a project 

whose attributes or expected effort is outside the range of the model's attributes (Conte et 

al., 1986: 280). 

Nonlinear Statistical Models. Conte, Dunsmore, and Shen reveal that most 

nonlinear models they've studied take on the basic form illustrated in equation 2.4. 
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E = (a + bSc)m(X) (2-4) 

As with the linear model the dependent variable, E, is the amount of effort necessary to 

develop software. The S is the estimated size of the project, usually expressed in SLOC; 

a, b, and c are constants derived by regression analysis; and m(X) is an adjustment 

multiplier that depends on one or more attributes denoted by the vector X (Conte et al., 

1986: 281). 

The problem with nonlinear models is that m(X) may be a very complicated 

function of several variables. Consequently nonlinear models tend to be harder to 

understand and more difficult to explain, especially the relationship of the cost drivers 

effect on effort. Still, most commercial models used by the DoD at least partially employ 

some type of nonlinear statistical model (Conte et al., 1986: 300). Additionally, 

nonlinear regression is too complex to lend itself to standard regression analysis 

techniques. Instead, it is more customary to have a general idea of the form of the model, 

or a baseline, and then adjust the model to fit an application's particular needs (Conte et 

al, 1986: 282). 

Commercial Models and Calibration Efforts 

Commercial Model Background. Because of the explosive growth in the software 

industry there has been an equally explosive growth of software estimating packages. 

Both organizations that procure software and those that produce software have a need to 

know the cost of developing and producing finished software systems. As of 1998 there 

are at least 50 commercial software-estimating tools (Jones 1998: 37).    It would be 
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interesting to analyze how each commercial software model estimates development costs. 

Specifically, it would be interesting to analyze the algorithms the models employ and 

how they account for various peculiarities of each development project. With this kind of 

insight, model builders could build new models on the shoulders of those that have been 

built before. Unfortunately there isn't a whole lot of insight into how many of the 

commercial models were built because the algorithms are considered trade secrets and the 

databases the models were derived from are usually proprietary (Jones, 1998: 20). 

According to Capers Jones, most of these commercial estimating tools share the 

following same basic features: 

1. Database containing hundreds of thousands of software projects 

2. Can perform size predictions 

3. Automatically adjust estimate based on tools, languages and types of products 

4. Predict quality and reliability 

5. Can predict maintenance and support costs 

6. Predict and help prevent problems 

(Jones, 1998: 5) 

Still, Jones states that because of military unique practices and characteristics in 

developing and procuring software many of the commercial tools that were developed 

using non-military data-points are incapable of accurately estimating military projects 

without calibrating the tools (Jones, 1998: 38).   Additionally, Ferens and Christensen 

commented in a recent article, "while these models (commercial models) are 

sophisticated, they do not always produce accurate results, especially in the DoD 
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environment where organizations contract with numerous and diverse software 

development companies" (Ferens and Christensen, 1997, 43). 

Calibration Background. There have been many efforts to calibrate existing 

commercial software models to make them useful in estimating military software 

projects. Ferens and Christensen state, "a solution to the accuracy problem may be to 

calibrate the models to the user's environment" (Ferens and Christensen, 1997, 43). As a 

direct result of Ferens' and Christensen's belief that calibration may help commercial 

models estimate more accurately, starting in 1994 and finishing in 1997, masters students 

at the Air Force Institute of Technology (AFIT) initiated a study of calibrating 

traditionally used models. Over the next few years AFIT calibrated nine different 

commercial models (PRICE-S, REVIC, SASET, SEER-SEM, and SLIM, SOFTCOST, 

CHECKPOINT, COCOMO II, and SAGE). Data from the Air Force's Electronic System 

Center (ESC) and Space and Missiles System Center (SMC) were gathered and used to 

calibrate the above-mentioned models. The data were stratified into various software 

development categories (including unmanned space programs, military avionics 

programs, military ground command and control programs, military mobile programs, 

missile programs, military ground signal processing programs). 

The SMC software database contains fields for over 50 items for each program in 

the database, which include: 

• General information: software level, operating environment, software 

function, development standard, contracting agency, and type of contract 

• Cost, size, and schedule information: effort in person-months, phases 

included, size (in SLOC), schedule and database size 
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• Software characteristics: 28 items, including complexity level, language, code 

mix, development method, and environmental factors. Most of these 

characteristics may be used as inputs to the REVIC, SEER-SEM, and PRICE- 

S models. 

• Maintenance information: Number of years, effort, quality, documentation, 

and number of lines of code added, deleted, and modified. 

(Stukes et al, 1999) 

The following is a basic outline of the methodology the AFIT master students 

used by the last 5 theses efforts in calibrating the various models: 

• if the data set has 8 or fewer, use all for calibration 

• 9 to 11 data points, use 8 for calibration and remainder for validation 

• if 12 or more data points, use 2/3 for calibration and 1/3 for validation 

Statistical criteria were used to determine whether the model accurately estimates 

actual costs. This criteria was used both to determine if the stand-alone model is useful 

and if calibrated model is useful. Then one could see if the calibration improves the 

effectiveness of a model. The following criteria, which was proposed by Conte, 

Dunsmore, and Shen in their book, Software Engineering Metrics and Models, (Conte et 

al., 1986: 172-176), was utilized by the AFIT students: 

Magnitude of Relative Error (MRE) = {estimate - actual\/actual     (2.5) 

Mean Magnitude of Relative Error (MMRE) = (MRE) /n (2.6) 

Root Mean Square (RMS) = [(1/n) (estimate - actual) ]    (2.7) 

Relative Root Mean Square (RRMS) = RMS / [(actual)M)] (2.8) 

Prediction Level (Pred (.25)) = k/n (2.9) 
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In the above equations, n is the number of data points in the sub set and k is number of 

data points with MRE less than .25. According to Conte, et al., a model exhibits a "good" 

fit when the following criteria are met when the models' estimated effort is compared 

with actual effort for a data set: 

• The MMRE is less than 0.25. 

• The RRMS is less than 0.25. 

• The predicted level (or estimated effort) is within 25% of actual effort 

at least 75% of the time. 

(Conte et al., 1986: 172-176) 

Calibration Results. From the AFIT studies mentioned previously, it was 

concluded that there are mixed results when commercial models are calibrated with 

military data. Some models are more suitable than other models depending on their 

application & environment & type of software being developed. Because this thesis 

effort is directed towards the Command and Control area of these calibration efforts, the 

following table shows the results of each model for Command and Control applications. 

Some of the nine models are not included in this table because there wasn't sufficient 

data to calibrate the models for the command and control application. 

Table 2.2. Results Of Calibrating And Testing Popular Models 

Author (Year) Cost Model MMRE RRMS Pred (0.25) MMRE RRMS Pred (0.25) 
Kressin (95) SLIM 0.62 n/r 0.00 0.67 n/r 0.00 
Rathmann (95) SEER-SEM 0.53 1.03 0.31 0.31 0.30 0.29 
Mertes (96) CHECKPOINT 0.19 0.15 0.50 0.17 0.16 0.50 
Marzo (97) SAGE (SMC) 0.40 0.59 0.37 0.35 0.56 0.41 
Marzo (97) SAGE (ESC) 0.38 0.68 0.27 0.37 0.53 0.22 
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As shown in Table 2.2, none of the programs listed above passed the criteria as 

established by Conte, Dunsmore, and Shen in their book, Software Engineering Metrics 

and Models. Consequently, none of the commercial products, whether they are calibrated 

or not calibrated, adequately estimate Command and Control systems based on the 

criteria. 

Conclusion 

This chapter has illustrated many of the problems and difficulties as well as the 

necessity of accurate software cost estimating. The discussion included what the 

commercial sector is doing in the field of software cost estimating, especially with 

commercial models. It was shown how these commercial models might be calibrated, 

but the calibration didn't significantly improve the accuracy of military estimates. 

Because the commercial models don't satisfactorily estimate software costs, especially in 

the area of Command and Control, it's necessary to look to other sources for software 

estimating. This chapter discussed how software models are created from historical data 

using statistical techniques. The historical data includes the key cost drivers that 

influence the level of effort necessary to develop software systems. With these key 

variables, a new model may be developed that is based totally on like systems and 

hopefully the accuracy will be of an acceptable level. After all, it makes sense that 

models that use general information will generally get you in the ballpark; possibly 

models that use specific information will get ball over the plate. 
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III. Methodology 

Methodology Introduction 

The purpose of this methodology is to build a model that may accurately predict 

the level of effort necessary to develop BMC3 software systems. Past efforts in this area 

have involved calibrating existing popular models with applicable data that is relevant to 

the type of project being estimated. Regression analysis is a technique that is used to 

determine mathematical relationships that may potentially be used to predict future 

responses. In the simplest form, data is analyzed through regression analysis, which 

creates a model that may be used to determine a predicted answer as illustrated in figure 

3.1. 

Data" Regression .»Predicted 
Answer 

Figure 3.1. Linear Regression Illustrated 

This methodology will include selecting and preparing historical data, performing 

regression analysis on that data, and using the regression to predict the development 

cost/effort of software development projects. After the model is created, the results will 

be tested and validated to determine its usefulness. Figure 3.2, the process flow diagram, 

illustrates this process and acts as an outline for the remainder of this chapter. 
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Figure 3.2. Methodology Process Flow Diagram 

Identify Potential Data Sources 

The Data for this study comes primarily from two sources, Electronic Systems 

Center (ESC) and Space and Missiles System Center (SMC). In the past, both centers 

had on going projects to collect software attributes data. The attributes the centers 

collected are based on attributes used by used software estimating models like SEER- 

SEM, PRICE-S, COCOMO, and other popular models. 

SMC Data Base. The Space and Missile Center Software Database (SWDB) was 

developed to access and display data collected and stored by SMC. The SWDB was 

developed under the direction of the USAF Space and Missile Systems Center, with 

assistance from the Space Systems Cost Analysis Group (SSCAG). The SWDB currently 

contains almost 2500 data records. Each of the records contains up to 276 of the 

development effort's attributes (Stukes & Nguyen, 1999). 

In the past, the SWDB was maintained by a contractor, however, SMC decided 

not to fund the contractor that compiled the database (Carpio, 2000). The majority of the 

records in the SWDB are inadequate in terms of completeness of information. Of the 276 
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fields for any given record, only a portion of the fields may be complete. Additionally, 

the projects and the contractors involved in each project are masked, which makes it 

impossible to verify the validity of the data. Consequently, only a small portion of the 

2500 records is useful. 

ESC Data Base. The ESC database is comprised of 52 separate projects. These 

projects include complete software projects or software sections of larger projects. When 

the sections are broken out of the 52 projects, there are 169 separate records of software 

attribute data. The collection of ESC's data dates back to 1974 when the United States 

Air Force (USAF) and MITRE joined forces to build the database. Recently ESC's 

software database keeping and maintenance was turned over to Tecolote Research, Inc. 

Tecolote migrated the data base from an Microsoft© Excel format to the Automated Cost 

Data Base (ACDB) format that is included as part of the cost estimating relationship 

library embedded in ACEIT©, a cost estimating and modeling tool created by Tecolote. 

This migration makes it easier for estimators to use the data while estimates are created in 

ACEIT©. 

Unlike the SMC database, the ESC database is currently being used and 

maintained. Consequently ESC's data appears to be more useful because of the 

completeness of the data. The ESC database is used to calibrate popular software 

estimating models like REVIC, PRICE-S, SEER-SEM, and COCOMO. Consequently, 

the parameters included in the database are similar to those included in the SMC 

database. While the SMC database includes 276 parameters, the ESC database has just 

over 60 parameters. Like the SMC's software database, many of the 60 parameters are 

not complete. 
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Data Scrub 

Scrubbing the data is an important part of the methodology because not all the 

records in the SMC and ESC databases are useful.   Each record must be checked for 

completeness. However, if all incomplete records were excluded from this analysis, there 

would only be a handful of records to perform the regression. Another cause for concern 

is that the records came from different sources and projects and each source or project 

emphasized different parameters. Still, there seems to be a common thread of relevant 

parameters that many of the records have. Consequently, when checking for 

completeness of records, only a subset of the fields will be required for inclusion in the 

analysis. This subset of fields is discussed more fully in the Data Selection section of this 

chapter. 

Additionally, the data will be reviewed for potential errors or other discrepancies 

that could influence the outcome of the analysis. Those records that have errors or 

discrepancies will be excluded from the sample. 

Data Selection 

The key to the data selection is to find that relevant thread of important variables 

while at the same time striving for a large enough sample to perform the regression 

analysis. To increase the sample size, the number of parameters included in this review 

will be reduced from all possible parameters to only the most seemingly pertinent 

parameters. The parameters selected from the databases are based on basic attributes 

explained by Capers Jones in his book, Estimating Software Costs, and mentioned in 

Chapter II of this thesis. These parameters include the following: 
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1) Rate at which a project's requirements may change 
2) Developing team's experience with this kind of project 
3) The standards that will be employed, i.e. ISO, DoD 
4) Programming languages utilized 
5) Programming processes or methods 
6) Reusable code 
7) Development tools used 
8) Office dynamics/environment 
9) Schedule pressure (internal or external) 
10) Complexity of the project 

(Jones, 1998: 6) 

The records that include the parameters that closely match the descriptions mentioned 

above are included in the analysis. Including only these key parameters, instead of all 

possible parameters, will increase the sample size; while ensuring that the most pertinent 

elements are included for consideration. 

Data Preparation 

There are two types of independent variables, quantitative and qualitative, 

included in regression analysis (McClave et al., 1998: 579).   Quantitative variables are 

measured on a natural numerical scale. For example, the variable "lines of code" is 

considered quantitative. Lines of code may be any value from zero on up to however 

many lines of code are necessary to complete a project. On the other hand, qualitative 

variables are categorical in nature. Many of the parameters mentioned above, like 

inherent difficulty or personnel attributes, are reported as being high, nominal, or low. 

These parameters are clearly qualitative. To make these qualitative variables useful in 

regression analysis, the categorical data should be converted into indicator variables that 

can be used in computer statistical models. For example, two indicator variables should 
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be created to account for the categories of high, nominal, and low. Figure 3.2 illustrates 

how the categorical data may be converted into indicator variables. 

*1 x2 

Nominal (base) 0 0 
Low 1 0 
High 0 1 

Figure 3.2. Categorization of Attribute Indicator Variables 

When the category is nominal, both the xi and %2 indicator variables are zero. When the 

category is low, the xi variable is one and X2 is zero. When the category is high, the X2 

variable is one and xj is zero. With the categorical variables thus coded and the data 

thoroughly scrubbed, the data is ready for analysis. 

Regression Analysis 

Regression is a mathematical predictive tool used to predict a future response. It 

is based upon the correlation of the independent and dependent variables. Correlation is 

a statistical relationship between two sets of measures, or metrics, in which interval 

changes in one measure are accompanied by interval changes (not necessarily the same 

interval) in the other measure (Conte et al., 1986: 144).   It should be remembered that the 

correlation may have nothing to do with cause and effect, but simply demonstrates a 

mathematical relationship between variables. Regression can be used to show potential 

cause and effect of variable, but can be verified through careful design of experiments. 

In other words, cause and effect may be verified through scientific experimentation; 

which isolates and studies the relationships of variables and their behaviors. 
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Probabilistic Models. It's possible to use multiple regression to determine a 

probabilistic model that can predict the relationship between the dependent variables and 

independent variables. Probabilistic models contain two components. The first 

component is the deterministic relationship between the independent and dependent 

variables. The next component is the random error due to random phenomena that occurs 

that can't be accounted for or explained by the model (McClave et al, 1998: 430-431). 

Probabilistic models that contain higher order terms, like x2 or ln(x), or contain more than 

one independent variable are called multiple regression models. The general form of 

multiple regression models is illustrated in equation 3.1. 

y = ß + ßiXi + ßix,■ + ... + ßtXi + e (3.1) 

where 
y = predicted response 
Xi = set of explanatory variables 
ßi = Coefficients (unknowns) 
e = error factor 

The dependent variable y is a function of the / independent variables, xj, X2,..., xt. The 

value of the betas for each independent variable determines the level of contribution of 

the variables, ßo is the y-intercept. The random error discussed above is represented by e 

(McClave et al., 1998: 500). 

This project will use regression modeling to fit the collected data to a linear 

model. The data will be fitted to the model using the least squares approach. The least 

squares approach minimizes equation 3.2. 
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SSE = I(y->02 (3'2) 

where: 

y = ß0+ßxl+ß2x2+- + ßxl (3.3) 
(McClave et al, 1998:435-436) 

The least squares approach will be used to analyze the data and create a model 

because it is unbiased, simple to use, and easy to understand. Through linear regression, 

a multitude of variables may be examined, and then reduced to the key variables that best 

predict the dependent variable (Conte et al., 1986: 280). Additionally, because the 

baseline form that is necessary for nonlinear model building isn't available, linear 

regression becomes the clear choice. Furthermore, the least squares approach is easy to 

understand it is easier to explain the relationships between the independent variables and 

the dependent variable. 

There are various approaches to completing a least squares analysis. These 

approaches include forward-stepwise regression, backwards-stepwise regression, and a 

mixture of the two (both backwards and forwards). Of the three methods, there really is 

not an approach that will yield a superior model. The three methods may or may not 

yield the same result, but the selection of a method is dependent upon the personal 

preferences of the analyst (White, 1999). One benefit of backwards-stepwise regression 

is that it considers all interactions and higher order terms of variables. These interactions 

or higher order terms may not be examined if an analyst is using forward-stepwise 

regression because the lower order terms must first be selected in order for higher order 
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or interactions of variables to be considered (White, 1999).   For this reason, this analysis 

of the variables will employ backwards-stepwise regression in review of the data. 

Modeling Assumptions. There are four basic assumptions concerning the random 

error, e, that must be adhered to for the above form of probability distribution. The 

assumptions are as follows: 

1. The mean of the probability distribution of e is zero. 
2. The variance of the probability distribution of e is constant for all 

setting of the independent variable x. 
3. The probability distribution of e is normal. 
4. The values of e associated with any two observed values of y are 

independent. 
(McClave et al, 1998:444) 

These assumptions are required to determine the level of reliability and to develop 

hypothesis tests associated with the model. 

When the final model is selected, the residuals {et - yi-y» i = 1, ...,n) may be 

tested to determine whether the assumptions are met. Creating an overlay plot of the 

residuals and examining the plots for sequential trends is a good method for testing the 

independence. If there are no apparent trends, the data is probably independent. 

Independence will also be tested using the Durbin-Watson test. According to Arthur 

Jensen, the Durbin-Watson statistic is used to test for the presence of first-order 

autocorrelation in the residuals of a regression equation. The test compares the residual 

for time period t with the residual from time period t-1 and develops a statistic that 

measures the significance of the correlation between these successive comparisons. 
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d=^-n  

Uß2) (3-4) 

where 

d = Durbin-Watson Statistic 

e = residual 

t  = time period counter 

The statistic is used to test for the presence of both positive and negative correlation in 

the residuals. The null hypothesis is that there is no significant correlation. 

The Shapiro-Wilkes test will test for normality. Shapiro-Wilkes is a statistical 

test indicating the likelihood that a sample is drawn from a normal distribution. A 

Shapiro-Wilkes test statistic that yields a small value assuming the null hypothesis, that 

the sample is drawn from a normal distribution is true. Consequently, the variables are 

considered sufficiently normal if the p-value is greater than .05. Additionally, plotting 

the residuals against the quartiles of a normal distribution is another way of testing for 

normality. 

Creating the "Full Model". The first step in creating the model is to examine all 

the variables and determine possible relationships with other variables.   The independent 

variables should be plotted graphically against the dependent variable. Trends may be 

discovered through visually examining each graph of variables. The trends may appear 

in many different forms or shapes including linear, exponential, logarithmic, or other 

relationships. Another thing that should be considered when reviewing the trends is if 

there are any data outliers. Outliers may indicate the records don't belong to this 
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particular data set or may indicate other trends that haven't been considered. Outliers 

will be a difficult to investigate in this analysis because of the way the data is masked in 

both the SMC and ESC databases. 

The data should be examined to see if there is a high degree of correlation 

between independent variables. This correlation may point towards problems with 

multicollinearity. What this means is that multiple variables are explaining the same 

phenomena. If there are significant problems with multicollinearity, redundant variables 

should be dropped from the model. 

The next step is to check the interactions between the variables. These 

interactions may be plotted against the dependent variable and trends may be revealed 

using the same process mentioned above. 

From the above analysis a full model will be created that includes all possible 

interactions discovered from the above analysis. The following represents the outline of 

the full model: 

Y = ßo + ßiX, + ßzX2 + fiXi (3.5) 

Variable and interactions will also be included in the full model and may be in the form 

of the following variables: ßjlnXj, ßuXk, ßiXmX,i, or any other shape or interaction that is 

determined from plotting the dependent variable. 

Determining Usefulness of and Removing Individual Variables. The next is to 

take the full model and reduce it, or eliminate variables that don't add to the explanation 

of the relationships of the variables. Variables will be systematically removed from the 

full model based on their relative contribution to the model and whether other variables 

explain the same relationship. This reduction will whittle away variables that appear to 
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add the least to the explanation of the model. The reduction of the variables will follow 

the following heuristics: 

1. Remove a variable or variables that appear to contribute the least to the 

model based on their p-values and multicollinearity. 

2. If the variable is included in an interaction, consider the interaction 

before considering the individual variable. 

3. If the variable is included in a high-order term, consider the higher 

order term before the lower order term. 

(White, 1999) 

After each reduction of the model, the newly reduced model will be tested to 

determine if the reduced model is statistically as good as the model before the reduction. 

The contribution of each variable or the usefulness of a variable will be 

determined through hypothesis testing. The purpose of the hypothesis testing is to 

determine whether the slope of a variable is something other than zero. Consequently, 

each ßi is examined using the following tests: 

Two-Tailed Test One-tailed Test 

H(>: ß = 0 H0: ß = 0 (3.6,3.7) 

Ha: fi*0 Ha: ß < 0 (or fi > 0)        (3.8, 3.9) 

(McClave et al., 1998: 451-452) 

For the variable to be useful, ßi should not be equal to zero if it's at two-tailed 

test. In other words, for a useful variable, the null hypothesis will be rejected. The 

hypothesis may be tested by comparing a test statistic, t, to critical values of t, ta, for a 
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given significance level, a. The significance level, a, will be a commonly used software 

metrics a, which is .05. That is, there is a 5% chance our conclusion is false(Conte et al., 

1986: 136).   The test statistic, t, is illustrated below: 

,=- ß< 
sNSSa (3.10) 

(Where the standard deviation of beta hat is estimated 
by the portion of the equation in the denominator) 

We can reach the same conclusion reached by the test statistic t by using the 

observed significance level (p-value) of the test from a computer printout. Computer 

statistical packages, like JMP or Excel, provide a p-value for each variable that may be 

used in this hypothesis testing. If the p-value is less than the desired a, the null 

hypothesis may be rejected and the variable may be considered useful (McClave et al., 

1998: 452-453). 

Model Selection and Reduction. After less useful variables are systematically 

removed from the full model based on their p-values and multicollinearity, the reduced 

model will be statistically tested to determine if the reduced model is statistically 

equivalent to the model before the reduction. The full model will be reduced until 

reductions are no longer statistically produce a model equivalent to the model before 

reduction (White, 1999). 

To determine if the reduced model is statistically as good as the model before 

reduction, the F-test will be employed. The test statistic (T.S.) for the F-test is illustrated 

in equation 3.11. 
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(SSEr-SSEf)/(ßf-ßr) 
T.S.: F =  

SSEf/dff (3.11) 

where 

SSEr = Sum of squared errors for the reduced model 

SSEf= Sum of squared errors for the model before reduction 

ßj= Number of ß parameters for the model before reduction 

ßr= Number of ß parameters for the reduced model 

dff= Degrees of freedom for the full model before reduction 

The test statistic, F, is compared to Fa. If F is less than Fathen the reduced model may 

be considered statistically equivalent to the model before reduction (White, 1999).   Fa is 

based on vj = (ßj - ßr) numerator degrees of freedom (df) and V2 = dff denominator df 

(McClave et al., 1998: 600).   Once again, the significance level, a, will be a commonly 

used software metrics a, which is .05. That is, there is a 5% chance our conclusion is 

false (Conte et al., 1986: 136). 

Model Validation 

Creating the model is just one step in the process of model building. It is also 

necessary to confirm that the model actually does what it is intended to do (predict the 

amount of effort necessary to develop BMC3 software). One popular measurement is the 

coefficient of multiple determination, R2. (McClave et al., 1998) The R2 will show the 

internal adequacy of the model. 
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Additionally, the model should be tested to see how accurately it predicts 

software development effort by using data other than the data used to build the model. 

To confirm the model's accuracy, actual historical data will test the accuracy of the 

model. The historical data may be data held out from the original data set, or new data 

from new projects. In this analysis it will be difficult to collect or create new data in a 

timely fashion, therefore, data will be held out from the original data set to test the model. 

The adequacy of the model will use the same tests used by previous AFIT theses 

mentioned in the literature review; which included the following measures: 

• The MMRE is less than 0.25. 

• The RRMS is less than 0.25. 

• The Predicted Level I (or estimated effort is within 25% of actual 

effort at least 75% of the time. 

The Coefficient of Multiple Determination (R2). The measure R2 is the 

coefficient of multiple determination. The coefficient of multiple determination 

measures the percentage of variance accounted for by the independent variables used in 

regression analysis. The measure R2 has a range from zero to one and signifies the 

amount of variance that the model accounts for. (Conte et al., 1986: 168-171) For 

example, if R2 = .85, then the model accounts for approximately 85% of the variance. 

However, the statistic R2 should be used with caution because adding variables to the 

model may artificially increase R2. Still, statistical software packages like JMP provide 

an adjusted R2 that takes into account the phenomena mentioned above. Because of the 
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large number of variables included in this model, the adjusted R will be the statistic used 

to evaluate the internal consistency of the model. 

Mean Magnitude of Relative Error (MMRE). The MMRE is a measure that is 

concerned with how well actual values and values the model estimates relate to each 

other. The MMRE is the average absolute relative error. The equation for MMRE is 

illustrated in equation 3.12. 

MMRE = -'LMREi (3 ]2) 
n>=\ v '    ' 

where 

Actual - Estimate 
MRE 

Actual 
(3.13) 

(Conte et al., 1986: 172) 

Therefore, when the MMRE is small, the model on average produces a good set of 

predictions. As mentioned in the previous section, the prior theses efforts used MMRE < 

0.25 as an indicator of a model adequately predicting effort; 0.25 will also be used in this 

analysis. 

Prediction at Level 1 (PRED(l). If k is the number of projects in a set of n projects 

whose MRE <1, then prediction at level / is defined as: 

PRED(l) = - (3.14) 
n 

Conte gives the following example, if PRED(0.25) - .83, then 83% of the predicted 

values fall within 25% of their actual values(Conte et al. 1986: 173). The AFIT theses 
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used Conte's suggestion that the acceptable criteria for an effort prediction model is 

PRED(0.25) greater than or equal to 0.75; this criteria will also be used in this analysis. 

Relative Root Mean Squared Error (RRMS). The final measure the previous 

AFIT theses used was the RRMS. The RRMS is useful in that it enables models to be 

compared in terms of the mean value of the error minimized by the regression model. To 

calculate the RRMS, first the mean squared error (MSE) should be calculated as follows: 

1   " 2 
MSE = —^(Actual, - Estimate,) (3 15) 

Next, the root mean square error (RMS) may be calculated as follows: 

RMS = J-tiActual, -Estimate,)2 (3-16) 
V n i=i 

Then the RRMS may be calculated using the two equation illustrated above. RRMS is 

defined by: 

RRMS=T^- (317) 
-T Actual, W-1') 
n ;=i 

(Conteetal. 1986:173-175) 

Once again the AFIT theses used Conte's suggestion that the acceptable criteria is RRMS 

<0.25, which will also be used in this thesis. 

Conclusion 

Through the use of multiple linear regression, a model will be created using ESC 

and SMC databases. The model will then be tested for usefulness using the techniques 

suggested by Conte, Dunsmore, and Shen in their book, Software Engineering Metrics 
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and Models. This newly created model may be compared to previously calibrated 

popular models. This comparison will show whether the calibrated models or the 

created model will most accurately estimate BMC3 software development efforts. 
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IV. Data Analysis and Model Building 

Overview 

This chapter describes the procedures and results of the analysis of the data and 

model building efforts described in Chapter III. The outline used in this chapter will 

follow the same format as the outline mentioned in Chapter III and illustrated in Figure 

4.1. The identification of potential data sources will not be discussed because it was 

already discussed thoroughly in Chapter III. 

Identify Potential 

Data Sources 

Data 

Scrub 
k. 

Data 
w w 

Selection 

v 

Model 

Validation 

Regression 

Analysis 

Data 
•^ ■^ 

Preparation 

Figure 4.1. Methodology Process Flow Diagram 

The data selection area will discuss why certain data points are chosen and why 

others are excluded. The data preparation section will discuss how the data was scrubbed 

and made useful for the purpose of regression analysis. 

Then details of the regression analysis will be presented. The regression analysis 

will demonstrate why a specific model is selected as the best possible model based on the 

available historical data. The data will be analyzed in two ways. One way involves 

looking at many of the key variables as categorical variable; throughout this paper that 

model will be referred to as the categorical model. The other way involves looking at 
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many of the key variables as continuous variable; throughout this paper that model will 

be referred to as the continuous model. 

Finally, when the "best" model is selected, it will be tested for its adequacy based 

on the criteria mentioned in the previous chapter. The criteria include examining each 

model's internal and external validity. The internal validity is reviewed by examining the 

statistics created from the regression. The external validity is examined by applying 

Conte, Dunsmore, and Shen's criteria mentioned in the previous chapter. 

Data Scrub 

The historical data used in this study came from two sources. These two sources 

include the databases from the Electronic Systems Center (ESC) and the Space and 

Missile Systems Center (SMC). The SMC database includes about 2500 software 

development records. However, many of the records within this SMC database are 

incomplete. From the 2500 records only about seven of the records were useful for this 

analysis. On the other hand, the ESC, which contains only about 276 records, has much 

more useful data. From the ESC database, the remainder of the project's record (41 

records) was collected. 

Data Selection 

The first step in selecting the applicable records includes isolating the records that 

are most like BMC3 software development efforts. Within these two databases, the 

records that are most like BMC3 efforts are the command and control software 

development efforts. Consequently, all the command and control records from both the 

databases were isolated. 
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Once the applicable records were selected, the goal in this regression analysis is to 

have the largest number of records possible to perform the analysis. The problem in this 

analysis is including as many records as possible while also including as many key 

parameters as possible. The key parameters included in this process were selected to 

represent the basic categories mentioned by Capers Jones in his book, Estimating 

Sofiware Costs. 

The key parameters include both the dependent and independent variables. The 

dependent variable is the total effort required to develop a software project. For this 

analysis, the total effort is measured in man months, or the amount of work one person 

can complete in one month. The independent variables include the following: effective 

size, actual new code, reused code, schedule months, application complexity, 

requirements volatility, timing constraint, personnel experience, programmers' language 

experience, specification level, resource allocation, modem practices experience, 

automated tool use, and programming language. Table 4.1 shows Jones' basic list of 

attributes and the variables from the databases that closely match or approximate the 

descriptions. 
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Table 4.1. Comparison of Jones' Basic Attributes and Included Variables 

Jones' Basic Attributes Included Variables 
1 Rate at which a project's 

requirements may change 
Requirements volatility 

2 Developing team's experience 
with this kind of project 

Programmer experience, 
Programmer language 
experience 

3 The standards that will be 
employed, i.e. ISO, DoD 

Specification level 

4 Programming languages 
utilized 

Percentage of Assembly 
language 

5 Programming processes or 
methods 

Modern practices experience 

6 Reusable code Effective source lines of code, 
Reused source lines of code 

7 Development tools used Automated tool use 
8 Office dynamics/environment Resource location 
9 Schedule pressure (internal or 

external) 
Schedule in man months, 
Timing constraint 

10 Complexity of the project Application complexity, 

Using these variables as selection criteria, 48 records were selected from the two 

databases, eight from the SMC database and 40 from the ESC database. However, if 

after further review one of the 48 records came under suspicion of validity. The record in 

question, reported that only 15 man months were required to develop over 15,000 lines of 

code. Based on an examination of the other records and tempered with reality, this 

record seemed highly improbable. Therefore this record was not included in the analysis. 

The records mentioned above are included in Appendix A. For the sake of 

readability and format of this thesis, only the fields that were selected from the review 

mentioned above are included in the appendix. The complete records may be viewed in 

their entirety in either the SMC and ESC database. 
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Data Preparation. 

The data was examined in two different ways. The reason two ways were used is 

that many of the independent variables are measures that are subjectively estimated by 

engineers working on a given project. Usually subjective measures like these are 

considered categorical variables in statistical analysis. On the other hand, the variables 

included in both of the databases mentioned above were derived from popular cost 

estimating models. In these models the variables are treated as continuous variables. For 

example, an estimator may determine a particular attribute has a categorical ranking of 

high, nominal, or low. Then the estimator inputs the variable in the model and the model 

uses that input to employ a numerical value based on a predetermined scale. 

Within the databases the variables are reported with the following rankings: very 

low, low, nominal, high, very high, and extremely high. Consequently, because there has 

been two ways the variables have been examined in the past, both viewpoints will be 

examined in this analysis. 

The first way the data was prepared was to take into account the categorical 

nature of the variables. Indicator variables were created to make the variables useful in 

the regression analysis. 

Because the number of records was so small, using a large number of categorical 

variables is undesirable. This is undesirable because the greater the number of variables, 

the fewer degrees of freedom allotted to the model. A small number of degrees of 

freedom increases the area in the tails of the t-distribution and reduce a model's 

precision. 
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Consequently, this analysis grouped the categorical variables mentioned above 

into just three categories, which reduced the indicator variables per category from six to 

three categories. The various low ranking were grouped into one category, the various 

high rankings were grouped into another category, and the nominal rankings were simply 

reported as nominal. After the consolidation there are only three categories; which 

included low, nominal, and high. With the categorical variables grouped into the 

previous mentioned categories, the variables were then ready to code to make useful for 

the regression analysis. This coding involved creating indicator variables for each of the 

categories. An example of the coding is demonstrated in Figure 4.2. 

*i x2 

Nominal (base) 0 0 
Low 1 0 
High 0 1 

Figure 4. 2. Illustration of indicator variables for categorical variables 

The second way the variables were examined included taking advantage of the 

comparable format of the variables collected in the two databases. Originally data or the 

variables collected were in comparable formats to many of today's popular models. Both 

of the databases included variables that are traditionally used in the COCOMO model and 

other models that use similar variables employed in the COCOMO model. 
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The COCOMO model variables that are ranked high, nominal, and low have 

corresponding numerical values that are based on scales for each the variables. 

Consequently, this study also explored the relationship of the subjective measures 

mentioned above in a continuous fashion. Therefore, this study included converting the 

subjective variables as reported into numerical values based on the values provided by 

the COCOMO model. Figure 4.3 illustrates the values the COCOMO model uses for 

each of the variables that were included in this study. 

Variable 

Application Requirement Timing Personnel Language Specification 
Complexity Volatility Constraints Experience Experience Level 

very low 0.70 n/a 1.23 1.29 1.14 0.70 
low 0.85 0.91 1.08 1.13 1.07 0.85 
nominal 1.00 1.00 1.00 1.00 1.00 1.00 
high 1.15 1.19 1.04 0.91 0.95 1.15 
very high 1.30 1.38 1.10 0.82 n/a 1.30 
extra high 1.65 1.62 n/a n/a n/a 1.65 

Resource 
Support Modern Practices Experience (based on SLOC) Automated 
Location 2k SLOC 8k SLOC 32k SLOC 128k SLOC 512k SLOC Tool Support 

very low n/a 1.25 1.30 1.35 1.40 1.45 1.24 
low n/a 1.12 1.14 1.16 1.18 1.20 1.10 
nominal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
high 1.12 0.90 0.88 0.86 0.85 0.84 0.91 
very high 1.23 0.81 0.77 0.74 0.72 0.70 0.83 
extra high 1.35 n/a n/a n/a n/a n/a n/a 

(Boehm, 1981) 

Figure 4.3. COCOMO Rating For Descriptive Variables 

Another variable that was considered during the preparation of data phase was 

the programming language variable. Based on the study mentioned in Chapter II that was 

conducted by the Naval Cost Analysis Agency, there is not a significant difference 

between different third-generation languages. However there is a significant difference 

between second and third generation languages. Consequently, the presentation of the 
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data needed to reflect the different percentages of second and third generation languages. 

Many of the projects included a variety of different languages. Still, assembly language 

is the language that seemed to make a difference in the amount of effort necessary to 

produce lines of code. Therefore, for the purpose of this regression analysis the language 

variable was expressed as a percentage of the project coded in assembly language. The 

language variable was included in both versions of the data set, which includes the 

variables presented in the categorical fashion and the continuous fashion. 

Regression Analysis 

Once the data was selected and properly prepared it was ready for the regression 

analysis. The regression analysis was performed in a computerized statistical package 

called JMP IN®. The data was looked at a number of ways, which included various 

combinations and mathematical variations of the data. The various combinations and 

mathematical variations of the data were based on observations of the data. The data 

observations were derived from completing scatter plots of many of the plausible 

combinations of the variables. For example, one of the variables that was included in the 

final model was the variable AC_H. The variable AC_H was plotted with the effective 

size, as illustrated in Figure 4.4. The scatter plot revealed a plausible trend line equation 

with an associated power. Then this variable is transformed with the power observed in 

the scatter plot and included in the full model. All scatter plots' that were considered in 

this analysis are included in Appendix B. 
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Scatter Plot of AC_H vs. Effort 
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Figure 4.4 Scatter Plot of AC_H vs. Effort 

One relationship that seems important to include in the analysis is an interaction 

between the descriptive categorical variables and the size of the project. Intuitively it 

makes sense that something like the complexity of a project or any of the other 

categorical variables would have a greater effect the larger (or smaller) a project became. 

Furthermore, when these interactive relationships were plotted in relationship to effort, 

the interactive relationship was confirmed with many of the categorical variables. 

Within the graphs in Appendix B, trend lines demonstrate the most perceptible 

relationships between the independent variables and the dependent variable. The trends 

that appeared to be the strongest were included in the full models that are illustrated in 

Tables 4.2 and 4.3. In the categorical model, Table 4.2, only the interactions that showed 

a higher level of correlation were included in the full model. These relationships 

included the scatter plots that demonstrated a trend line with an R2 greater than 0.5. 

Additionally, the scatter plots that only had a few number of records (like PE_H, RSL_H, 

AC_H, and RV_H) were not included as interactions in the full model because there were 

not enough records to reliably establish a trend. The interactions that were included in 
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the full models demonstrated in their scatter plots that there was some degree of 

diminishing returns. These diminishing returns are expressed as the power that the 

variables are raised to in the model as demonstrated in the trend lines of the scatter plots. 

Table 4.2. Definition Of Variables Included In The Categorical Model 

Term 

Norm_siz 

SLOC_N 
SLOC_R 
Sched 
ACJi 
RV_L 
RV_H 
TC_H 
PE_L 
PE_H 
LE_L 
LE_H 
SL_H 
RSL_H 
MPE_L 
MPE_H 
AT_L 
AT_H 
language 
sizeA0.75 
Achp 
Rvlp 
Tchp 
Pelp 
help 
Atlp 
Athp 
AC_H*Norm_siz 
TC_H*Norr?i_siz 
PE_L *Norm_siz 
LE_L *Norm_siz 
AT_L*Norm_siz 
ATJi*Norm_siz 
RV L*Norm_siz 

Definition 

Effective source lines of code which 
include both new and reused lines of code 
New source lines of code 
Reused source lines of code 
Schedule in man months 
High application complexity 
Low requirements volatility 
High requirements volatility 
High timing constraint 
Low programmer experience 
High programmer experience 
Low programmers' language experience 
High programmers' language experience 
High specification level 
High resource location 
Low modern practices experience 
High modern practices experience 
Low automated tool use 
High automated tool use 
Percentage of assembly language 
effective size)0'75 

(high application complexity) x (size))' 0.78 

0.89 

0.65 

0.73 

x0.80 

0.80 

(high timing constraint) x (size)) 
(low programmers' experience) x (size))' 
(low language experience) x (size))r 

(low tool use) x (size)) 
(high tool use) x (size))' 
(low requirements volatility) x (size))' 
high application complexity) x (size) 
high timing constraint) x (size) 
low programmers' experience) x (size) 
low language experience) x (size) 
low tool use) x (size) 
high tool use) x (size) 
low requirements volatility) x (size) 

0.76 
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Table 4.3. Definition Of Variables Included In The Continuous Model 

Term 
language 
Size 
SLOCN 
SLOCR 
schedule 
AC 
RV 
TC 
PE 
LE 
SL 
RSL 
MPE 
ATS 
size ac 
size rv 
size tc 
size pe 
size le 
size si 
size rsl 
size rape 
size ats 
size/sched 
ss0J5 

Size075 

AC* Size 
RV*Size 
TC*Size 
PE*Size 
LE*Size 
SL*Size 
RSL*Size 
MPE*Size 
ATS*Size 

N0.69 

Definition 
% Assembly language 
Source lines of code 
New source lines of code 
Reused source lines of code 
Number of man months 
Application complexity 
Requirements volatility 
Timing constraint 
Programmers' experience 
Language experience 
Specification level 
Resource location 
Modern practices used 
Automated tool use 
(Application complexity * size) 

0 "78 (Requirements volatility * size) ' 
(Timing constraint * size)0'74 

(Programmers' experience * size)' 
(Language experience * size) 7 

(Specification level * size)076 

(Resource location * size)0'74 

(Modem practices experience * size) 
(Automated tool use * size)0'74 

(Size/schedule) 
(Size/schedule)' 
(source lines of code) 
Application complexity * size 
Requirements volatility * size 
Timing constraint * size 
Programmers' experience * size 
Language experience * size 
Specification level * size 
Resource location * size 
Modern practices experience * size 
Automated tool use * size 

N0.70 

0.69 

■,0.75 
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Like the categorical model, the continuous model's scatter plots were examined to 

determine plausible relationships between the dependent variable and the interactions of 

the independent variables. Once again, the scatter plots demonstrated that there are 

probably, to some degree, diminishing returns in the relationships. 

Additionally, the continuous model's diminishing returns are expressed in terms 

of the power of the variables. These powers were derived from the best-fitted trend line 

for each of the scatter plots. The variables powers are illustrated in the equations of the 

trend lines in the scatter plots and then incorporated into the full model, which is 

illustrated in Table 4.3. 

Through a review of those scatter plots, the most significant relationships were 

determined and placed in the model. Scatter plot graphs were completed for both 

versions of the data set. Then and the most plausible relationships of the variables were 

included in the full model in preparation of the regression analysis. Table 4.2 and 4.3 

lists all the variables included in the full or unreduced model. Also included in the tables 

are the definitions for each of the variables. The two lists of definitions are similar in that 

they both come from the same databases. Still, there are differences. The main 

difference is that in Table 4.2 many of the explanatory variables are categorical variables 

and are designated as being either high or low (nominal is considered the baseline). On 

the other hand, the variables in Table 4.3 are continuous in nature. Additionally, when 

the variables were examined as either categorical or continuous variables there appeared 

to be differences in the importance of variables and how those variables may be 

combined. The relationships of these variables were apparent from viewing their scatter 

plots. 
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The full model for both the categorical model and the continuous model were 

built using the basic regression model format technique presented in chapter III. Each 

variable mentioned in Table 4.2 or 4.3 represents one of the Xj variables in the model. 

The coefficient, /?,-, is determined was using the least squares method in JMP EN . 

Selection of the Final Model. Once the full model was constructed, the analysis 

to select the final model was initiated. Appendix C details the analysis for the selection 

of the categorical variable model and Appendix D details the selection process for the 

continuous variable model. As illustrated in Appendices C and D, the less useful 

variables were systematically removed from the full model based on their p-values and 

possible multicollinearity. Using the heuristics mentioned in Chapter III, the largest p- 

values were removed first until no p-value over 0.05 remained. In the appendices, the 

full model is illustrated; then the variable that appears to add the least to the model is 

indicated as a candidate for removal. The candidate variable is removed from the model 

then the new statistics for the model with reduction is examined. With the newly reduced 

model's statistics, the model is tested using the F-test mentioned in Chapter III. The F- 

test is used to determine if the model is statistically equivalent to the model before 

reduction. Then the process continues until reductions can no longer be made to the 

model without affecting its equivalency. 

The model with the categorical variables (or the categorical model) went through 

23 iterations of reductions before there could be no further reductions. The first 

reduction was selected based on the Chapter Ill's heuristics and the information derived 

from the correlation matrix, which is included in Appendix E. The relationships in Table 

4.4 cause concern because of their values reported in the correlation matrix. 
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Table 4.4. List Of Problematic Terms From The Correlation Matrix 

Variables: 
Norm_siz and SLOC_N 0.8849 
Norm_siz and size0'75 0.9907 
size075 and SLOC_N 0.8753 
LE H and LE L 0.8607 

Norm^siz and SLOC_N have a large degree of correlation because the SLOC_N 

(new lines of code) is a function of normalized size (Norm_siz). The high degree of 

correlation between the size variables and size075 should be expected because size ' ' is 

the higher order term of the normalized size. LE_H and LE_L also cause some concern 

and one or the other variables should be removed during the normal course of reductions. 

The reductions outlined in Appendix C start with the removal of two variables, 

SLOC_N and SLOC_R. SLOC_N and SLOC_R were removed first for two reasons. 

First, they had high p-values. Second, There is a high degree of correlation between 

SLOC_N and Norm_siz, therefore, one of these two variables should be removed. 

Normal size captures both the information of SLOC_N and SLOC_R, consequently, both 

SLOC_N and SLOC_R were removed. The remainder of the reductions strictly followed 

the heuristics mentioned in Chapter III. The variable with the highest p-value was 

removed provided that it isn't a lower order term or one of the terms included in an 

interaction. 

The model with the continuous variables (or continuous model) went through 18 

iterations of reductions before its reductions were no longer statistically equivalent. The 

continuous model reductions are illustrated in Appendix D. SLOC_N and SLOC_R were 

the first two variables removed from the continuous model for the same reason 
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mentioned above for the categorical model. The correlation matrix that is included in 

appendix E revealed that the size variables, Norm_siz and SLOC_N, had a high degree of 

correlation with all the interaction terms. In the table in Appendix E, these relationships 

are highlighted. It makes sense that there would be a high degree of correlation because 

these interaction variables include size as a multiplier. Additionally, Appendix E reveals 

that there is a high degree of correlation between the interactive terms and other 

interactive terms. This too makes sense because all the interactive terms contain the 

same variable, Norm_siz. This correlation will have to be tolerated if the interactive 

variables are to be included as part of the model. Like the categorical model, the 

continuous model followed the heuristics mentioned in Chapter III for each of the 

reductions. 

The significance level used in both model reduction analyses was 0.05 as 

suggested in Chapter III. Through this process the simplest model and hopefully the 

easiest to explain model was produced. 

Results of the Reduced Categorical Model. The reduction of the categorical 

model produced a simplified model that included ten separate variables. Of these 

variables, there were two continuous variable, effective size and schedule, and four 

separate categorical variables. From the four categorical variables four interactions were 

derived. The final reduced model is illustrated below in equation 4.1. The graphical 

results of the least squares line for the equations are presented in Figure 4.3. The line in 

Figure 4.3 illustrates the calculated least squares line and points are the plots of the actual 

and predicted values of each record used to create the model. 
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Effort = -0.000435(Norm_siz) + 4.0452889(Sched) - 457.0239(AC_H) 
-17.96349(RV_L) - 262.667'l(TCJi) - 321.2767(AT_L) 
+ 0.589285l(achp) - 0.026304(AC_H*Norm_siz) 
+ 0.0137056(TC_H*Norm_siz) - 0.007164(RV_L*Norm_siz) 
+296.21152 

(4.1) 
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Figure 4.3.   Graph of Least Squares Line of Categorical Model 

The model has an R2 of 0.7599 and an adjusted R2 of 0.6933, which accounts for 

the degrees of freedom within the model. In other words, this model accounts for about 

69% of the variance in the least squared regression. 

Two of the key assumptions that must be met to use the least squares method go 

hand-in-hand; these being the random error's mean of the probability is zero and the 

probability distribution is normal. Normality was tested by examining the distribution of 
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y's for the residuals of the model; Figure 4.4 is a graph of those residuals. At first glance, 

the graph appears to have some problems with normality. However, there are two 

Residual Effort J 
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Figure 4.4 Histogram of Categorical model residuals 

significant outliers. Those outliers are records 28 and 38 from the data listed in Appendix 

A. These two outliers disguise the shape of the graph and, in effect, conceal a plausible 

distribution of the residuals. Because the two databases that these records are extracted 

from are masked, it's difficult to verify these two records. Therefore, for considering the 

plausible normality of the residuals, the residuals are considered without these outliers. 

When the graph without the two outliers is examined, the residuals appear to be much 

more normally distributed. Figure 4.5 illustrates the residuals without the outliers. 

Additionally, the Shapiro-Wilkes test mentioned in Chapter III is a good indicator 

whether or not residual distributions are sufficiently normal. Chapter III mentioned that 

if the p-value of the test is greater than 0.05 the residuals are sufficiently normal. The p- 

value for this distribution is 0.163; therefore, these residuals are considered normally 
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distributed for this purpose. Because this test is robust, it may be assumed the residuals 

are normal. 
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Figure 4.5. Histogram of Categorical model residuals (less outliers) 

The independence of the variables was tested using the Durbin-Watson test. The 

test resulted in a test statistic of 2.07. Further investigation of the independence of the 

variables is difficult to conduct because of the masked nature of the data. Therefore, to 

be able to complete the regression analysis, independence of the variables is assumed. 

Results of the Reduced Continuous Model. Like the categorical model, the 

reduction of the continuous model produced a simplified model, which included 16 

separate variables. Similar to the previous model, this model includes effective size and 

schedule as variables in addition to seven other descriptive variables. Through a review 

of the interactions and observations of their scatter plots in relation to effort, there seems 

to be an interaction between size and schedule. 
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Figure 4.6. Graph of Least Squares Line of Continuous Model 

In addition to an interaction between size and schedule, six other interactions 

were observed between the descriptive variables and effective size. The final reduced 

model is presented in equation 4.2 and the equation's results are illustrated in figure 4.6. 

The line in figure 4.6 illustrates the calculated least squares line and the points are the 

plots of the actual and predicted values of each record used to create the model. 

Effort = -0.035862(Size) - 9.654109(schedule) -1017.302(AC) + 494.62747(RV) 
+ 9497.2342(TC) + 2382.1704(LE) - 1341.63(SL) - 10095.92(RSL) 
- 1543.876(MPE) - 23.82223(size tc) + 6.1262998(size si) 
+ 17.295797{size rsl) - 0.32946(size/sched) + 0.8773182(TC*Size) 
- 0.277077(SL*Size) - 0.607228(RSL*Size) + 2006.7501 

(4.2) 
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The same methods were used in the continuous model as the categorical model 

for testing the key assumption, which include testing if the random error's mean of the 

probability is zero and if the probability distribution is normal. Figure 4.7 is a graphical 

representation of the continuous model's residuals. The Shapiro-Wilkes test for 

normality returns a p-value of 0.6615. Based on the visual review of the model's residual 

graph and the Shapiro-Wilkes test, the assumption that random error's mean of the 

probability is zero and the probability distribution is normal is upheld. 
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Figure 4.7. Histogram of Continuous model residuals 

Like the categorical model, the independence of the variables was tested using the 

Durbin-Watson test. The test resulted in a test statistic of 1.59. Because the continuous 

model's data is basically the same data as the categorical model's data, further 

investigation of the independence of the variables is difficult to conduct because of the 

masked nature of the data. Therefore, like the categorical model, the independence of the 

variables is assumed. 
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Model Validation 

Model Adequacy. There are two parts to model evaluation, which include 

determining the internal and external adequacy of the models. First, as discussed in the 

previous section, the R2 and the adjusted R2 demonstrated the adequacy of the models. 

Second, the model evaluation should determine how well the model might predict effort 

for projects other than projects used to develop the model. This is accomplished by using 

data other than the data used to create the model, where both the independent and 

dependent variables are known. 

The data used to test the models were extracted from the same databases that the 

models were created from. This was possible because of the way the data used to build 

the models were originally selected. The records that were initially extracted were only 

the records that contained reported information in all the fields used to build the full 

models. Because only a portion of the actual number of records from the two databases 

was used to create the models, there were still records available to test each model. This 

is possible because when the models were reduced and had a smaller number of variables 

more records fit the criteria necessary to be included in the data set. 

The final equation for the categorical model (Equation 4.1) requires six fields of 

independent variable, plus their interactions, to predict the dependent variable, effort. 

After searching through the databases, 14 records were found that met the criteria for 

Equation 4.1. 
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Table 4.5. Tested records with actual and estimate effort for Categorical model 

Actual Estimated 
ID Sched Size <\C_H RV_ L TC_H AT_L Effort Effort 

23-1 41 216,088 1 0 1 0 5,007 3,604 
23-2 41 60,475 0 0 0 0 597 436 
42-1 54 8,127 0 0 1 1 120 39 
44-1 48 54,192 0 0 1,219 512 
50-1 69 40,702 1 0 334 893 
50-2 44 6,450 0 0 0 461 407 
50-5 63 26,933 1 0 299 641 
50-8 66 14,809 1 0 1,414 397 
50-9 66 14,817 1 0 937 397 
50-10 45 10,991 0 0 0 851 377 
50-11 56 25,212 0 0 300 498 
50-12 65 12,774 1 0 176 342 
50-13 67 21,502 1 0 213 551 
50-15 69 32,100 0 0 1,011 580 

Model Validity. Table 4.5 lists the 14 records and the values that were reported in 

the records. The independent values for each of the records were inputted into Equation 

4.1. The result of each equation is listed in the final column, estimated effort. The 

estimated effort was compared to the actual effort for each of these records. The 

estimated and actual results were evaluated using the measures suggested by Conte, 

Dunmore, and Shen (Conte et al., 1986: 168-171).   These results are reported in Table 

4.6. 

Table 4.6. Model Validity Measures 

Categorical Continuous 
Variable Variable Suggested 
Model Model Standard 

MMRE 0.73 1.45 <0.25 
RRMS 0.64 1.06 <0.25 
pred (.25) 7% 0% > 75% 
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There was also an attempt to validate the model by using the same test set and 

inputting them into popular models used by the DoD. However, these popular models 

require many more input variable than are reported in the records used for validation. 

Appendix F illustrates the required fields for five popular models used by the department 

of defense. The matrix in Appendix F lists possible input variables and then indicates 

which of those variables are required for inputs to that particular model. Also illustrated 

in Appendix F are the reported categories for each of the records used in the above 

validation. The fields that are reported by a particular record are shaded to indicate a 

response. The conclusion of this matrix provided in Appendix F is that none of the 

records used to validate the model mentioned above have enough complete fields to 

adequately test the popular models listed in the appendix. 

The continuous variable model was tested in the same way as the categorical 

variable model. The final equations for the continuous model (Equation 4.2) requires 

nine fields of independent variable, plus seven interactions, to predict the dependent 

variable, effort. After searching through the databases, six records were found that met 

the criteria for Equation 4.2. Table 4.7 lists the six records and their reported values for 

the pertinent fields. The independent values for each of the records were inputted into 

Equation 4.2. The result of each equation is listed in the final column, estimated effort. 

The estimated effort was evaluated in the same way and with the same measures as the 

categorical model. The resulting statistical measures are displayed in Table 4.7. 
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Table 4.7. Tested records with actual and estimate effort for Categorical model 

Actual Estimated 
ID Size AC LE MPE RSL SL TC RV schedule Effort Effort 

16-0 20,075 1.30 0.90 0.86 1.00 1.00 1.00 0.91 24 125 82 
18-1 35,000 1.65 0.95 1.35 1.23 1.65 1.04 1.62 30 262 (176) 
18-2 22,400 1.65 0.95 1.35 1.23 1.65 1.10 1.62 32 152 (383) 
18-3 39,500 1.65 0.95 1.35 1.23 1.65 1.10 1.62 32 301 (151) 
42-1 8,127 1.00 0.95 0.88 1.00 1.00 1.04 1.00 54 120 278 
44-1 54,192 1.30 0.85 0.74 1.00 1.30 1.00 0.82 48 1,219 801 
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V. Results and Recommendations 

Overview 

The purpose of this thesis was to develop a model that could accurately estimate 

the development costs for command and control software systems. As mentioned earlier 

in this thesis, the Department of Defense simply does not have an adequate method for 

estimating these development costs. Many efforts in the past have revolved around using 

existing Department of Defense data to calibrate popular software estimating models. 

Still, no attempt within the Air Force Institute of Technology has been made to use the 

Department of Defense data to create a model based on the in-house data. Consequently, 

the efforts described in this thesis use the in-house data to develop a model specifically 

for the purpose of estimating Department of Defense command and control software 

systems. 

The records that were selected from both the ESC and SMC databases were 

analyzed in two different ways, as mentioned in chapter 4. The descriptive variables in 

both the databases were analyzed as either categorical or continuous variables. These 

two ways of analyzing the variables, led to creating two different models. The results 

from the two different models varied. One of the models or regressions emerged as the 

more useful model, or appeared to be statistically better and made more sense. The next 

few sections will discuss the results of both models and why a one model appears to be 

better than the other. 
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Results of the Two Models 

Based on the measurements proposed by Conte, Dunsmore, and Shen; it seems to 

be clear which of the two models is better than the other. As shown in Table 5.1, the 

categorical variable model is closer to meeting the objective criteria than the continuous 

variable model. Still, it is difficult to compare the two models against each other based 

on these criteria because the data set used to measure the criteria was different for each 

version of the model. The difference occurred because of the different variables that 

were required for each version of the final models. Records were selected from the 

original databases if they had all the variables required by a particular model. The 

resulting subsets of records for each of the models contained very little overlap (only two 

records.) 

Table 5.1. Results for Categorical and Continuous Variable Models 

Categorical Continuous 
Variable Variable Suggested 
Model Model Standard 

MMRE 0.73 1.45 <0.25 
RRMS 0.64 1.06 <0.25 
pred (.25) 7% 0% > 75% 

68 



Table 5.2. Results for commonly used models 

Author (Year) Cost Model MMRE RRMS Pred (0.25) MMRE RRMS Pred (0.25) 

Kressin (95) SLIM 0.62 n/r 0.00 0.67 n/r 0.00 
Rathmann (95) SEER-SEM 0.53 1.03 0.31 0.31 0.30 0.29 
Mertes (96) CHECKPOINT 0.19 0.15 0.50 0.17 0.16 0.50 
Marzo (97) SAGE (SMC) 0.40 0.59 0.37 0.35 0.56 0.41 
Marzo (97) SAGE (ESC) 0.38 0.68 0.27 0.37 0.53 0.22 

For the same reasons as mentioned above, it was impossible to compare the 

results of the models developed from this analysis and the results of popularly used 

software estimating models. Prior AFIT theses efforts used the same criteria mentioned 

above to test the "goodness of their models. However, each of these efforts used a 

different data set to test the criteria. Therefore, it is difficult to compare the models to 

each other because of the differing data sets used to test each model. The results of the 

popular model's tests are shown in Table 5.2. 

Another way to look at the two models is to examine the outputs of the models. 

The continuous variable model had some serious problems in estimating the amount of 

effort necessary to develop software. For example, many of the estimated results were 

negative numbers. Intuitively it doesn't make a lot of sense to have negative effort to 

complete a software project. 

Additionally, when the model itself is examined, it becomes apparent why the 

model yields these atypical negative numbers. Some of the coefficients within the model 

simply don't make sense. For example, the coefficients that determine the effect of 

schedule months, resource location, and specification level are all negative. In other 

words, as these variables increase, the amount of effort necessary to complete a software 
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project decreases. Intuitively, this cannot be true; as these variables increase, the amount 

of effort necessary should also increase. These problems could possibly arise from the 

multicollinearity among the variables in this model. As demonstrated in the correlation 

matrix in appendix E, many of the variables in this model have probable multicollinearity 

due to the fact that the problematic interactive variables have very similar inputs. 

Conversely, the categorical variable model's coefficients for each of the variables 

seem to make sense intuitively. The only variable that had a questionable coefficient is 

the size variable. However, the marginal contribution of this variable is minimal and the 

true effects of size are probably captured in the terms that include size as an interactive 

variable. Additionally, the VIF as illustrated in Reduction 23 in Appendix C for the size 

variable is high, which indicates a potential problem with multicollinearity. The variable 

probably has high multicollinearity because it is included as interactive terms. 

Consequently, the size variable may be acting as a correction factor for the other size 

variables included in interactions. Still, this variable must be included because it is 

included in other interactive terms within the model. 

All the other variables' coefficients seem to act in ways that they are expected. 

Some of the variable have interactive and higher order terms and should be considered as 

a group or a family of terms. For example, the marginal influence that AC_H, 

AC_H*Norm_siz, and achp should be considered together. When all the variables of this 

family of variables are considered together, the marginal effect of these variables is that 

when application complexity for program with an effective size greater than about 13,500 

SLOC is high, the amount of effort increases as the ESLOC increases as illustrated in 

figure 5.1. 
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Figure 5.1. Marginal effect of AC_H 

Like the variable AC_H, the timing constraint variable (TC_H) also must be 

considered as a group to get the full picture of what the marginal effect of a high timing 

constraint. The point at which this family of variables crosses from negative to positive 

is at about 2,000 ESLOC as illustrated in figure 5.2. 

Figure 5.2. Marginal effect of TC_H 
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Still, the metrics that are illustrated in table 5.1 don't necessarily provide a lot of 

confidence for this model. Furthermore, the same metrics that were performed on the 

popular models don't necessarily give a lot of credence to those models either. The poor 

results of the tests for all the models may be that they are poor models, or it may be that 

the records used to test the models aren't representative of the true population of software 

development efforts. This is really the problem of trying to predict future performance or 

effort based on past efforts; which models are most applicable or will yield the best 

answer? 

Different models have different strengths and weaknesses. The preferred model 

in this thesis (the categorical variable model) has a strength of requiring only a small 

number of input variables for the model. Furthermore, it is easy to use and easy to 

understand. Still, probably the best thing to do is use a combination of models to 

estimate future performance. Boehm states that it is important to us a combination of 

techniques in order to avoid the weaknesses of any single method and to capitalize of 

their joint strengths. (Boehm, 1981: 323) 

One model may be used to develop an estimate, and another model may be used 

as a crosscheck for that estimate. Can anyone be 100% confident their estimate is 

correct? Of course not, but through a use of crosschecking models, one may be confident 

that an estimate is somewhere in the ballpark. Additionally, as differences arise in 

estimates, one can investigate why there is a difference and what it is composed of and 

try to determine which model is more accurately estimating reality. 
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Still, the model presented in this thesis should be used with caution. It seems to 

provide anomalous results when it is in either extreme of its estimating range. In other 

words, when ESLOC is extremely high or low this may not yield good results. 

Limitations 

The following items are limitations to the methodology used in this thesis and 

should be considered when evaluating the results of the analysis. 

1) One of the biggest problems with the data provided by ESC and SMC is that 

there is practically no way to confirm the data. There may be errors or other types of 

irregularities within the data, but because the projects and the contractors are masked 

from the database there can be no confirmation. Additionally, many different people 

collected the data over many different years. This could cause a lot of discrepancies, 

which may include how code is counted or what a particular person determines is a high, 

nominal, or low ranking.   When collecting data from various sources, consistency is 

paramount; still, there is no way to confirm the consistency of the data used in this 

analysis. 

2) Another limitation with this analysis is that many people within the industry 

feel that linear models cannot accurately predict the complex relationships involved in 

software development efforts (Conte, 1986: 280).   Nonlinear models are difficult to build 

and explain the relationships once they are built. On the other hand linear models are 

simpler to build and easier to explain. Therefore, through the use of higher order terms, 

this model will attempt to model the complex software development relationships. 
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3) Another concern is the applicability of data to new projects being estimated. 

As technology increases, programming languages and techniques will surely change. 

The question is whether or not the historical data from these databases can be used to 

estimate future software development efforts. When an estimator uses regression models 

they need to make sure the new project being estimated is comparable to the projects the 

model was created from. If the attributes of the new development effort are significantly 

different from the historical data, the regression model probably shouldn't be used. 

Recommendations 

Probably the biggest single obstacle this thesis effort ran into was the lack of data, 

or the lack of quality data. Both the ESC and SMC databases contain numerous records 

that described historical results of command and control software development efforts. 

Still, neither of these databases is very thorough in completing all the fields within the 

records of the databases. Additionally, the data that comprise both of these databases 

were collected over a long period of time, by different people, and probably for different 

purposes. Because of this, the consistency within the databases as far as definitions of 

the variables is suspect. Consequently, one of the greatest things that could be done in 

this area is improve the collection of data for software development efforts. 

Another thing that would be good to explore is whether programs of different 

sizes fit into different categories and consequently should be used to build different 

models. For example in the categorical variable model presented above, extremely small 

and extremely large programs seemed to yield an anomalous results. If these categories 
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do exist, it would be useful to explore where the cutoffs should be. For example, what is 

the threshold for a large or small program? 

The data collection for this thesis effort was problematic in that only a select 

number of variables were included in the analysis because of the incompleteness of many 

of the database records. This type of analysis may yield better results if more variables 

could be included in the analysis. Possibly some of the variables that were not included 

in the analysis could explain away a great deal of the prediction error. 

Still, the results from all the models presented above, both the models of this 

thesis and the popular models, are less than desirable. Many of these models are based 

upon similar types of variables, even if they're not used in the same fashion. Because of 

these results, there could be other variables, other than the variables that are currently 

being collected that may be useful in predicting software development effort. It would be 

a worthy effort to explore other possible variables that influence software cost. 

Another approach that may yield better results is examining or separating types of 

applications within command and control. For example within command-and-control 

there are different types of software development efforts. These types include graphical 

interfaces, databases, operating systems, diagnostics, message switching, 

communications, and so forth. In this thesis these categories were not separated. Future 

efforts could analyze these categories separately. 

Finally, linear regression may not be the best method to use with a complex 

subject like software development. Complex projects like software development are 

difficult to explain in simple terms. Possibly a more complex, nonlinear model made be 

more applicable in this area. Still, using a more complex model may not solve the 
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accuracy problem and at the end of the day may not be explainable or understandable to 

the users of the model. 
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APPENDICES 
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Appendix A: Records Selected from SMC and ESC Software Databases 

ID ESLOC       Effort SLOC       Reused      Months 
2517 85,341 196 76,200 13,800 48 

2510 43,437 181 43,437 21 

348 18,052 418 18,052 12 

2502 26,239 744 26,239 59 

2505 7,448 211 7,448 59 

2506 6,317 179 6,317 59 

2508 58,789 1,666 58,789 59 

2151 15,025 15,025 15 57 

3-2 56,857 406 56,857 24 

3-3 16,781 190 16,781 25 
3-4 36,688 731 36,688 28 

7-1 114,605 1,474 41,946 180,044 28 
24-1 21,300 224 21,300 19 
24-2 33,400 335 33,400 19 
24-3 3,274 81 3,274 19 
24-4 53,000 406 53,000 19 
24-5 22,000 217 22,000 19 
34-1 18,124 230 18,124 25 
34-2 27,440 178 27,440 25 
34-3 37,183 256 37,183 25 
34-4 184,006 1,000 184,006 25 
34-5 40,704 217 40,704 25 
35-0 26,200 289 26,200 25 
36-2 48,156 843 46,382 3,774 21 
36-3 20,520 336 20,520 14 
36-4 13,366 565 10,456 6,191 23 

36-5 90,930 829 86,316 9,817 25 
36-6 40,252 1,260 40,252 25 
36-7 7,599 374 3,458 8,810 25 
36-9 89,506 153 1,245 173,060 19 
39-0 46,375 469 36,915 27,029 16 

40-3 34,085 97 3,601 48,580 18 
40-4 3,330 28 2,300 2,000 18 
40-6 2,995 15 1,270 7,500 17 
42-1 8,127 120 72 8,689 54 
42-2 9,961 64 311 9,772 54 
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42-3 17,018 99 1,368 13,597 52 

44-1 54,192 1,219 54,192 48 

44-2 104,090 462 104,090 48 

44-3 71,453 181 71,453 48 

44-4 75,081 97 75,081 48 

51-1 16,375 515 16,375 75 

51-2 2,633 148 2,633 75 

51-3 22,330 604 22,330 74 

51-5 28,192 296 28,192 75 

51-6 1,359 32 1,359 74 

51-9 1,153 25 1,153 74 

51-10 31,574 928 31,574 75 

AC RV TC PE LE 

2517 Nominal Nominal Nominal High Very High 

2510 Nominal High Nominal High High 

348 Nominal Very High Extra High Nominal Very Low 

2502 High Extra High Nominal Nominal Low 

2505 High Very High Nominal Nominal Low 

2506 High Very High Nominal Nominal Low 

2508 High Very High Very High Nominal Low 

2151 Nominal Nominal High Low Extra High 

3-2 Nominal Nominal Nominal High High 

3-3 Nominal Nominal Nominal High High 

3-4 Very High Nominal Nominal High High 

7-1 High Very Low Very High Nominal Very High 

24-1 Very High Low Very High Nominal Low 
24-2 Very High Low Nominal Nominal Low 

24-3 Very High Low Very High Nominal Low 

24-4 Very High Low Very High Nominal Low 

24-5 Very High Low Very High Nominal Low 

34-1 Nominal Low Very High Low Nominal 

34-2 Nominal Low Nominal Low High 

34-3 Nominal Low Nominal Low High 

34-4 Nominal Low Very High Low Nominal 

34-5 Nominal Low Very High Low Nominal 

35-0 Very High Very Low Nominal Very Low Very Low 

36-2 Very High Nominal Nominal Nominal Extra High 

36-3 High Nominal Nominal Nominal Extra High 

36-4 Nominal Nominal Nominal Nominal Extra High 

36-5 Very High Nominal Nominal Nominal Extra High 
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34-2 Nominal High Nominal     High - 

34-3 Nominal High Nominal     High - 

34-4 Nominal High Nominal     Low - 

34-5 Nominal High Nominal     High - 
35-0 Very High Nominal Very Low   Nominal 0.07 
36-2 High Nominal Extra High High - 
36-3 High Nominal Extra High High - 
36-4 High Nominal Extra High High - 
36-5 High Nominal Extra High High - 

36-6 High Nominal Extra High High - 

36-7 High Nominal Extra High High - 

36-9 High Nominal Extra High High - 

39-0 High Nominal Extra High Very Low 0.55 

40-3 Nominal Nominal High          Low 1.00 
40-4 Nominal Nominal Very Low   Nominal 0.40 
40-6 Nominal Nominal Low            Nominal 1.00 
42-1 Nominal Nominal High           Low - 
42-2 Very High Nominal Extra High Low - 
42-3 Nominal Nominal High          Low - 
44-1 Very High Nominal Extra High High - 
44-2 Very High Nominal Extra High High 0.20 
44-3 Very High Nominal Extra High High 0.20 
44-4 Very High Nominal Extra High High 0.10 
51-1 Very High Nominal High          High 0.10 
51-2 Very High Nominal High           High 0.10 
51-3 Very High Nominal High           High 0.10 
51-5 Very High Nominal High          High 0.10 
51-6 Very High Nominal High          High 0.10 
51-9 Very High Nominal High          High 0.10 

51-10 Very High Nominal High          High 0.10 
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Appendix B. Scatter Plots of Variables vs. Effort 
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Figure B.l. Scatter Plot of AC_H vs. Effort 
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Figure B.2. Scatter Plot of RV_L vs. Effort 
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Figure B.3. Scatter Plot of RV_H vs. Effort 
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Figure B.4. Scatter Plot of TC_H vs. Effort 
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Figure B.5. Scatter Plot of PE_L vs. Effort 
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Figure B.6. Scatter Plot of PE_H vs. Effort 
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Figure B.7. Scatter Plot of LE_L vs. Effort 

150000 -, 

100000 - 

50000 - 

0 - 
C 

Scatter Plot of LE_H vs. Effort 

y = 418.26xD734: 

R2 = n J1K * 
♦   LE_H 

 Power (LE H) ♦ V 
♦ 

+  1 + -n-^7-   *   ' * 
)            200 

i            i             i 

400          600          800         10 DO 

Figure B.8. Scatter Plot of LE_H vs. Effort 
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Figure B.9. Scatter Plot of SL_H vs. Effort 
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Figure B. 10. Scatter Plot of RSL_H vs. Effort 
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Figure B. 11. Scatter Plot of MPE_L vs. Effort 
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Figure B. 12. Scatter Plot of MPE_H vs. Effort 
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Figure B.13. Scatter Plot of AT_L vs. Effort 
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Figure B.14. Scatter Plot of AT_H vs. Effort 
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Figure B.15. Scatter Plot of size vs. Effort 
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Figure B.16. Scatter Plot of AC vs. Effort 
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Figure B.17. Scatter Plot of RV vs. Effort 
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Figure B.18. Scatter Plot of TC vs. Effort 
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Figure B.19. Scatter Plot of PE vs. Effort 
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Figure B.20. Scatter Plot of LE vs. Effort 
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Figure B.21. Scatter Plot of SL vs. Effort 
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Figure B.22. Scatter Plot of RSL vs. Effort 
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Figure B.23. Scatter Plot of MPE vs. Effort 
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Figure B.24. Scatter Plot of ATS vs. Effort 
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Appendix C. Categorical Model Reductions 

Table C.1. Categorical Model FULL MODEL 
Response: Effort 
Summary of Fit 
RSquare 0.840484 
RSquare Adj 0.388522 
Root Mean Sq Error 310.251 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares F Ratio 3rob>F 
Norm_siz 1               532.149 0.0055 0.942 
SLOC_N 1               2323.21 0.0241 0.8791 remove 
SLOC_R 1                16257.2 0.1689 0.6883 remove 
Sched 1                67514.8 0.7014 0.4187 
AC_H 1                8696.89 0.0904 0.7689 
RV_L 1                453.473 0.0047 0.9464 
RV_H 1                52755.6 0.5481 0.4733 
TC_H 1                  18.806 0.0002 0.9891 
PE_L 1                17079.5 0.1774 0.681 
PE_H I                3496.39 0.0363 0.852 
LE_L I                25926.1 0.2693 0.6132 
LE_H I                913.204 0.0095 0.924 
SL_H I                23121.6 0.2402 0.6329 
RSL_H I                133.304 0.0014 0.9709 
MPE_L I                4391.67 0.0456 0.8344 
MPE_H I                2386.59 0.0248 0.8775 
AT_L I                11610.6 0.1206 0.7344 
AT_H l                144.201 0.0015 0.9698 
language I                15152.2 0.1574 0.6985 
sizeA0.75 I                   28622 0.2974 0.5955 
achp I                17219.6 0.1789 0.6798 
rvlp 8347.54 0.0867 0.7734 
tchp I                10201.8 0.106 0.7504 
pelp I                32531.7 0.338 0.5718 
lelp I                28659.7 0.2977 0.5953 
atlp I                15451.3 0.1605 0.6957 
athp I                11529.9 0.1198 0.7353 
AC_H*Norm_siz I                21383.7 0.2222 0.6459 
TC_H*Norm_siz I                10570.9 0.1098 0.7461 
PE_L*Norm_siz I                34543.2 0.3589 0.5603 
LE_L*Norm_siz I                27720.5 0.288 0.6013 
ATJ_*Norm_siz I                14723.8 0.153 0.7026 
AT_H*Norm_siz I                16468.9 0.1711 0.6864 
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RV_L*Norm_siz 1              1               8827.29 0.0917 0.7672 
Whole-Model Test 
Analysis of Variance Sum of           Mean 
Source DF      Squares         Square F Ratio 
Model 34 6086006                 179000 1.8596 
Error 12 1155068                  96256 Prob>F 
C Total 46 7241074 0.1256 

Table C.2. Categorical Model REDUCTION 1 
Response: Effort 
Summary of Fit 
RSquare 0.835487 
RSquare Adj 0.459458 
Root Mean Sq Error 291.7005 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF          Sum of Squares F Ratio   I 3rob>F 
Norm_siz 1              1                 96.593 0.0011 0.9736 
Sched 1              1                  40552 0.4766 0.5013 
AC_H 1              1                   25569 0.3005 0.5922 
RV_L 1              1                3079.71 0.0362 0.8518 
RV_H 1               1                17908.8 0.2105 0.6534 
TC_H 1              1                      6.35 0.0001 0.9932 
PE_L 1              1                787.942 0.0093 0.9247 
PE_H 1               1                143.901 0.0017 0.9678 remove 
LE_L 1              1                9856.28 0.1158 0.7386 
LE_H 1              1                10127.8 0.119 0.7352 
SL_H 1              1                56303.4 0.6617 0.4296 
RSL_H 1              1                41122.6 0.4833 0.4983 
MPE_L 1              1                18522.6 0.2177 0.648 
MPE_H 1              1                1346.19 0.0158 0.9017 
AT_L 1              1                3253.45 0.0382 0.8478 
AT_H 1              1                333.888 0.0039 0.9509 
language 1              1                4156.01 0.0488 0.8283 
sizeA0.75 1              1                834.584 0.0098 0.9225 
achp 1              1                9427.26 0.1108 0.7442 
rvlp 1              1                   16517 0.1941 0.6662 
tchp 1              1                14413.9 0.1694 0.6869 
pelp 1              1                1754.76 0.0206 0.8879 
lelp 1              1                9202.54 0.1082 0.7471 
atlp 1              1                2318.75 0.0273 0.8712 
athp 1              1                614.587 0.0072 0.9335 
AC_H*Norm_siz 1              1                5880.31 0.0691 0.7965 
TC_H*Norm_siz 1              1                35066.9 0.4121 0.5313 
PE_L*Norm_siz 1               1                1820.43 0.0214 0.8858 
LE_L*Norm_siz 1               1                  7885.2 0.0927 0.7653 
AT_L*Norm_siz 1               1                3096.45 0.0364 0.8514 
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AT_H*Norm_siz 1             1 1223.55   0.0144 0.9063 
RV_L*Norm_siz 1             1 14676.9   0.1725 0.6842 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square         F Ratio 
Model 32 6049826 189057   2.2219 
Error 14 1191249 85089 Prob>F 
C Total 46 7241074 0.057 

SSEfull 1155068 TestStat              0.18794 
Betafull 34 
dffull 12 F2.12                     3.88529 
SSEred 1191249 
Betared 32 Conclude:           Reduced at least as good 

Table C.3. Categorical Model REDUCTION 2 
Response: Effort 
Summary of Fit 
RSquare 0.835467 
RSquare Adj 0.495433 
Root Mean Sq Error 281.8265 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source                       Nparm     DF Sum of Squares F Ratio   I Drob>F 
Norm_siz                                1 1                169.973 0.0021 0.9637 
Sched                                     1 1               41586.6 0.5236 0.4804 
AC_H                                        1 1                  32202 0.4054 0.5339 
RV_L                                        1 1                  2966.2 0.0373 0.8494 
RV_H                                        1 1                18044.8 0.2272 0.6405 
TC_H                                        1 1                  10.589 0.0001 0.9909 
PE_L                                        1 1                874.426 0.011 0.9178 
LE_L                                           1 1                10205.3 0.1285 0.725 
LE_H                                          1 1                10175.9 0.1281 0.7254 
SL_H                                          1 1                78862.3 0.9929 0.3348 
RSL_H                                        1 1                43831.9 0.5519 0.469 
MPE_L                                       1 1                18732.3 0.2358 0.6342 
MPEJH                                       1 1                1361.61 0.0171 0.8976 
AT_L                                           1 1                3111.02 0.0392 0.8458 
AT_H                                          1 1                528.126 0.0066 0.9361 
language                                 1 1                4013.95 0.0505 0.8252 
sizeA0.75                                 1 1                816.795 0.0103 0.9206 
achp                                        1 1                12499.8 0.1574 0.6972 
rvlp                                          1 1                17402.4 0.2191 0.6465 
tchp                                         1 1                14748.4 0.1857 0.6727 
pelp                                         1 1                2105.02 0.0265 0.8729 
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lelp 11992.2 0.151 0.7031 
atlp 2175.1 0.0274 0.8708 
athp 486.831 0.0061 0.9386 remove 
AC_H*Norm. _siz 7968.74 0.1003 0.7558 
TC_H*Norm. _siz 38460.7 0.4842 0.4972 
PE_L*Norm_ siz 1874.23 0.0236 0.88 
LE_L*Norm_ siz 9759.54 0.1229 0.7308 
AT_L*Norm_ siz 2953.34 0.0372 0.8497 
ATJ-TNorm. _siz 1081.47 0.0136 0.9087 
RV_L*Norm_ _siz 15219.8 0.1916 0.6678 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 31 6049682                 195151 2.457 
Error 15 1191393                  79426 Prob>F 
C Total 46 7241074 0.034 

SSEfull 1191249 Test Stat 0.00169 
Betafull 32 
dffull 14 F1.14 4.60011 
SSEred 1191393 
Betared 31 Conclude: Reduced at least as good 

Table C.4. Categorical Model REDUCTION 3 
Response: Effort 
Summary of Fit 
RSquare 0.8354 
RSquare Ad 0.526775 
Root Mean Sq Error 272.9331 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm      DF Sum of Squares F Ratio   I Drob>F 
Norm_siz 1161.92 0.0156 0.9022 
Sched 57577.9 0.7729 0.3923 
AC_H 32711.1 0.4391 0.517 
RV_L 2557.17 0.0343 0.8553 
RV_H 20651.5 0.2772 0.6057 
TC_H 505.537 0.0068 0.9354 
PE_L 6698.17 0.0899 0.7681 
LE_L 42643.7 0.5725 0.4603 
LE_H 9757.14 0.131 0.7222 
SL_H I                79094.8 1.0618 0.3181 
RSL_H I                47267.8 0.6345 0.4374 
MPE_L I                18309.5 0.2458 0.6268 
MPEJH I                1109.02 0.0149 0.9044 remove 
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AT_L I                  4459.8 0.0599 0.8098 
AT_H I                27331.8 0.3669 0.5532 
language I                5947.84 0.0798 0.7811 
sizeA0.75 I                3186.46 0.0428 0.8388 
achp I                12864.9 0.1727 0.6832 
rvlp I                19391.3 0.2603 0.6169 
tchp I                19021.9 0.2554 0.6202 
pelp I                  7494.1 0.1006 0.7552 
lelp I                40718.7 0.5466 0.4704 
atlp I                2245.88 0.0301 0.8643 
ACJ-TNorm_siz I                8262.88 0.1109 0.7434 
TC_H*Norm_siz I                   52017 0.6983 0.4157 
PE_L*Norm_siz I                4602.34 0.0618 0.8069 
LE_L*Norm_siz I                26326.9 0.3534 0.5605 
AT_L*Norm_siz I                  3493.3 0.0469 0.8313 
AT_H*Norm_siz I                29391.8 0.3946 0.5388 
RV_L*Norm_siz 1                16713.8 0.2244 0.6421 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 30 6049195                201640 2.7068 
Error 16 1191880                   74492 Prot»F 
C Total 46 7241074 0.0195 

SSEfull 1191393 Test Stat 0.00613 
Betafull 31 
dffull 15 F1.15 4.54307 
SSEred 1191880 
Betared 30 Conclude:           Reduced at least as good 

Table C.5. Categorical Model REDUCTION 4 
Response: Effort 
Summary of Fit 
RSquare 0.835247 
RSquare Adj 0.554198 
Root Mean Sq Error 264.9072 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm DF Sum of Squares F Ratio   Prot»F 
Norm siz 1826.34     0.026 0.8737 
Sched 60791.4   0.8663    0.365 
AC H 87393.7    1.2454      0.28 
RV L 3077.5   0.0439  0.8366 
RV H 20046.7   0.2857 0.5999 
TC H I                1086.16   0.0155 0.9025 
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PE_L 5862.8 0.0835 0.776 
LE_L 44147.2 0.6291 0.4386 
LE_H 8791.46 0.1253 0.7277 
SL_H 78053.3 1.1123 0.3064 
RSL_H 50732.2 0.7229 0.407 
MPE_L 20517.4 0.2924 0.5957 
AT_L 5247.38 0.0748 0.7878 
AT_H I                44181.2 0.6296 0.4384 
language 5632.28 0.0803 0.7804 
sizeA0.75 2394.01 0.0341 0.8556 remove 
achp I                54516.3 0.7769 0.3904 
rvlp I                19992.3 0.2849 0.6004 
tchp I                17969.6 0.2561 0.6193 
pelp I                6446.76 0.0919 0.7655 
lelp I                39846.1 0.5678 0.4614 
atlp I                3969.84 0.0566 0.8148 
AC_H*Norm_siz 1                38388.2 0.547 0.4696 
TC_H*Norm_siz 1                50917.4 0.7256 0.4062 
PE_L*Norm_siz I                3519.24 0.0501 0.8255 
LE_L*Norm_siz I                   25318 0.3608 0.556 
AT_L*Norm_siz I                5853.45 0.0834 0.7762 
AT_H*Norm_siz I                38721.2 0.5518 0.4677 
RV_L*Norm_siz 1                17185.6 0.2449 0.627 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 29 604808( 3                208555 2.9719 
Error 17 119298! 9                  70176Prob>F 
C Total 46 724107' 4 0.0108 

SSEfull 1191880 Test Stat 0.01489 
Betafull 30 
dffull 16 F1.16 4.494 
SSEred 1192989 
Betared 29 Conclude:           Reduced at least as good 

Table C.6. Categoric al Model REDUCTION 5 
Response: Effort 
Summary of Fit 
RSquare 0.834916 
RSquare Adj 0.57812 
Root Mean Sq Error 257.7017 
Mean of Response 416.766 
Observations 47 
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Effect Test 
Source Nparm    DF Sum of Squares F Ratio   Prob>F 
Norm_siz I               1563.49 0.0235 0.8798 
Sched I               64165.5 0.9662 0.3387 
AC_H I                347619 5.2344 0.0345 
RV_L I               3403.11 0.0512 0.8235 
RV_H I               17729.8 0.267 0.6117 
TC_H I               4146.03 0.0624 0.8055 
PE_L I               6151.53 0.0926 0.7644 
LE_L I               41834.6 0.6299 0.4377 
LE_H I                10500.9 0.1581 0.6956 
SL_H I               75867.5 1.1424 0.2993 
RSL_H I               83736.1 1.2609 0.2762 
MPE_L 1               23801.8 0.3584 0.5569 
AT_L I                11913.4 0.1794 0.6769 
AT_H I               54176.9 0.8158 0.3783 
language I               4280.43 0.0645 0.8025remove 
achp I                344825 5.1924 0.0351 
rvlp I                19626.3 0.2955 0.5934 
tchp I                15606.4 0.235 0.6337 
pelp I               5718.86 0.0861 0.7725 
lelp I                   37468 0.5642 0.4623 
atlp I                11438.1 0.1722 0.683 
AC_H*Norm_siz I                244670 3.6842 0.0709 
TC_H*Norm_siz I                  49760 0.7493 0.3981 
PE_L*Norm_siz I               2768.85 0.0417 0.8405 
LE_L*Norm_siz I                  22924 0.3452 0.5641 
AT_L*Norm_siz I                15976.3 0.2406 0.6297 
AT_H*Norm_siz I                   66245 0.9975 0.3312 
RV_L*Norm_siz I                16780.5 0.2527 0.6213 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF     Squares Square F Ratio 
Model 28 6045692 I                215918 3.2513 
Error 18 119538: 3                 66410Prob>F 
C Total 46 724107' X 0.0057 

SSEfull 1192989 Test Stat 0.03411 
Betafull 29 
dffull 17 F1.17 4.45132 
SSEred 1195383 
Betared 28 Conclude:           Reduced at least as good 
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Table C.7. Categorical Model REDUCTION 6 
Response: Effort 
Summary of Fit 
RSquare 0.834325 
RSquare Adj 0.598893 
Root Mean Sq Error 251.2771 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prot»F 
Norm_siz 1093.1 0.0173 0.8967 
Sched 61094.2 0.9676 0.3376 
AC_H 370284 5.8645 0.0256 
RV_L 8657.47 0.1371 0.7153 
RV_H 14545.1 0.2304 0.6367 
TC_H 7352.98 0.1165 0.7367 
PE_L 5840.79 0.0925 0.7643 
LE_L 41289.3 0.6539 0.4287 
LE_H 11724 0.1857 0.6714 
SL_H 71779.2 1.1368 0.2997 
RSL_H 79700.2 1.2623 0.2752 
MPE_L 25430 0.4028 0.5332 
AT_L 13259 0.21 0.652 
AT_H 58374.6 0.9245 0.3484 
achp 353124 5.5927 0.0288 
rvlp 28020.6 0.4438 0.5133 
tchp 13709.7 0.2171 0.6465 
pelp 4970.82 0.0787 0.7821 remove 
lelp 33464.2 0.53 0.4755 
atlp 15833.9 0.2508 0.6223 
ACJH*Norm_siz 248626 3.9377 0.0618 
TC_H*Norm_siz 48145.1 0.7625 0.3934 
PE_L*Norm_siz 2243.58 0.0355 0.8525 
LE_L*Norm_siz 19088.5 0.3023 0.5888 
AT_L*Norm_siz 20824.6 0.3298 0.5725 
AT_H*Norm_siz 66127.1 1.0473 0.319 
RV_L*Norm_siz 24148.4 0.3825 0.5436 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 27 6041411 223756 3.5438 
Error 19119966C J                 63140Prob>F 
C Total 46 724107^ \ 0.003 

SSEfull 1195383 Test Stat 0.06445 
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Betafull 28 
dffull 18 F1.18 4.41386 
SSEred 1199663 
Betared 27 Conclude:           Reduced at least as good 

Table C.8. Categorical Model REDUCTION 7 
Response: Effort 
Summary of Fit 
RSquare 0.833639 
RSquare Adj 0.617369 
Root Mean Sq Error 245.4215 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prob>F 
Norm_siz I               16810.6 0.2791 0.6031 
Sched 56144.4 0.9321 0.3458 
AC_H 366891 6.0913 0.0227 
RV_L I               16027.2 0.2661 0.6116 
RV_H I               10451.9 0.1735 0.6814 
TC_H I               6554.67 0.1088 0.7449 
PE_L I               1369.39 0.0227 0.8817 
LE_L I               37247.7 0.6184 0.4409 
LE_H I               8848.57 0.1469 0.7056 
SL_H I               75095.7 1.2468 0.2774 
RSL_H I               74908.9 1.2437 0.278 
MPE_L I               20715.8 0.3439 0.5641 
AT_L I               8900.63 0.1478 0.7047 
AT_H I               53793.8 0.8931 0.3559 
achp I                349271 5.7988 0.0258 
rvlp I               37780.7 0.6273 0.4377 
tchp 16739 0.2779 0.6039 
lelp 36806.1 0.6111 0.4435 
atlp 10971.8 0.1822 0.6741 
AC_H*Norm_siz 246650 4.095 0.0566 
TC_H*Norm_siz I               53745.4 0.8923 0.3561 
PE_L*Norm_siz 6551.98 0.1088 0.745 remove 
LE_L*Norm_siz 23945.8 0.3976 0.5355 
AT_L*Norm_siz 16837.7 0.2795 0.6028 
AT_H*Norm_siz 61259.5 1.0171 0.3253 
RV_L*Norm_siz 32936.9 0.5468 0.4682 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 26 603644" 232171 3.8546 
Error 20120463^ X                 60232 Prob>F 
C Total 46 724107^ X 0.0015 
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SSEfull 1199663 Test Stat 0.07873 
Betafull 27 
dffull 19 F1.19 4.38075 
SSEred 1204634 
Betared 26 Conclude:          Reduced at least as good 

Table C.9. Categorical Model REDUCTION 8 
Response: Effort 
Summary of Fit 
RSquare 0.832734 
RSquare Adj 0.633608 
Root Mean Sq Error 240.1573 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prob>F 
Norm_siz I               18592.8 0.3224 0.5762 
Sched I              54383.2 0.9429 0.3426 
AC_H I                374719 6.497 0.0187 
RV_L 33729.1 0.5848 0.4529 
RV_H I               12054.9 0.209 0.6522 
TC_H I               4845.41 0.084 0.7748 
PE_L I               5498.28 0.0953 0.7605 remove 
LE_L I               30819.4 0.5344 0.4729 
LE_H 15000.9 0.2601 0.6154 
SL_H 68773.4 1.1924 0.2872 
RSL_H I               68545.7 1.1885 0.288 
MPE_L I               40432.9 0.701 0.4119 
AT_L I               14414.5 0.2499 0.6223 
AT_H 48283 0.8371 0.3706 
achp I                342747 5.9427 0.0238 
rvlp 55493.3 0.9622 0.3378 
tchp 14380.2 0.2493 0.6227 
lelp 31299.9 0.5427 0.4695 
atlp 21722.9 0.3766 0.546 
AC_H*Norm_siz 240135 4.1636 0.0541 
TC_H*Norm_siz 48688.7 0.8442 0.3686 
LE_L*Norm_siz 20370.5 0.3532 0.5587 
AT_L*Norm_siz I               30502.9 0.5289 0.4751 
AT_H*Norm_siz 55234.8 0.9577 0.3389 
RV_L*Norm_siz I               48259.1 0.8367 0.3707 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 25 602988« 3               241196 4.1819 
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Error 
C Total 

21 1211186 
46 7241074 

57676 Prob>F 
0.0007 

SSEfull 
Betafull 
dffull 
SSEred 
Betared 

1204634 
26 
20 

1211186 
25 

TestStat 0.10878 

F1.20 4.35125 

Conclude: Reduced at least as good 

Response: 
Summary of Fit 
RSquare 
RSquare Adj 
Root Mean Sq Error 
Mean of Response 
Observations 

Effect Test 
Source 
Norm_siz 
Sched 
AC_H 
RV_L 
RV_H 
TC_H 
LE_L 
LE_H 
SL_H 
RSL_H 
MPE_L 
AT_L 
AT_H 
achp 
rvlp 
tchp 
lelp 
atlp 
AC_H*Norm_siz 
TC_H*Norm_siz 
LE_L*Norm_siz 
AT_L*Norm_siz 
AT_H*Norm_siz 
RV_L*Norm_siz 

Whole-Model Test 
Analysis of Variance 
Source 

Table C.10. 
Effort 

Categorical Model REDUCTION 9 

0.831975 
0.648674 
235.1677 

416.766 
47 

Nparm 

DF 

DF         Sum of Squares F Ratio   F 3rob>F 
1             1               13916.3 0.2516 0.6209 
1             1                 58914 1.0653 0.3132 
1              1                369479 6.6809 0.0169 
1              1               28230.8 0.5105 0.4824 
1              1               15827.2 0.2862 0.598 
1              1               6281.84 0.1136 0.7393 
1              1               52168.8 0.9433 0.342 
1              1               13352.7 0.2414 0.628 remove 
1              1               80147.1 1.4492 0.2414 
1              1               67018.1 1.2118 0.2829 
1              1               35358.6 0.6394 0.4325 
1              1               22307.6 0.4034 0.5319 
1              1               61118.9 1.1051 0.3045 
1              1                339930 6.1466 0.0213 
1              1               51928.9 0.939 0.3431 
1              1               13984.4 0.2529 0.6201 
1              1               32391.8 0.5857 0.4522 
1              1               31466.4 0.569 0.4587 
1              1                236166 4.2703 0.0508 
1              1               47995.2 0.8678 0.3617 
1              1               20202.8 0.3653 0.5518 
1              1               41920.1 0.758 0.3934 
1              1               80052.1 1.4475 0.2417 
1              1               45085.3 0.8152 0.3764 

Sum of          Mean 
Squares        Square F Ratio 
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Model 24 6024390                251016 4.5389 
Error 22 1216684                  55304 Prot»F 
C Total 46 7241074 0.0003 

SSEfull 1211186              TestStat 0.09533 

Betafull 25 
dffull 21                F1.21 4.32479 
SSEred 1216684 
Betared 24              Conclude:           Reduced at least as good 

Table C.11. Categorical Model REDUCTION 10 
Response: Effort 
Summary of Fit 
RSquare 0.830131 
RSquare Adj 0.660261 
Root Mean Sq Error 231.2571 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF         Sum of Squares F Ratio   Prot»F 
Norm_siz 1             1              8060.19 0.1507 0.7014 
Sched 1             1              96168.9 1.7982 0.193 
AC_H 1              1                394667 7.3797 0.0123 
RV_L 1              1               29365.2 0.5491 0.4662 
RV_H 1              1               22492.5 0.4206 0.5231 
TC_H 1              1               8780.54 0.1642 0.6891 
LE_L 1              1               45630.2 0.8532 0.3652 
SL_H 1              1               84789.4 1.5854 0.2206 
RSL_H 1              1               54809.5 1.0249 0.3219 
MPE_L 1              1               22374.3 0.4184 0.5242 
AT_L 1              1                  29415 0.55 0.4658 
AT_H 1              1               67303.1 1.2585 0.2735 
achp 1              1                341333 6.3825 0.0189 
rvlp 1              1               51639.3 0.9656 0.336 
tchp 1              1               17664.3 0.3303 0.5711 remove 
lelp 1              1               30816.7 0.5762 0.4555 
atlp 1              1               47747.8 0.8928 0.3545 
AC_H*Norm_siz 1              1                234830 4.391 0.0473 
TC_H*Norm_siz 1              1               57107.1 1.0678 0.3122 
LE_L*Norm_siz 1              1               18072.4 0.3379 0.5667 
AT_L*Norm_siz 1              1               60580.1 1.1328 0.2982 
AT_H*Norm_siz 1              1               91827.3 1.717 0.203 
RV_L*Norm_siz 1              1               44359.1 0.8295 0.3719 
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Whole-Model Test 
Analysis of Variance Sum of          Mean 
Source DF      Squares        Square F Ratio 
Model 23 6011038                261349 4.8869 
Error 23 1230037                 53480 Prob>F 
C Total 46 7241074 0.0002 

SSEfull 1216684              TestStat 0.24144 
Betafull 24 
dffull 22               F1,22 4.30094 
SSEred 1230037 
Betared 23              Conclude:           Reduced at least as good 

Table C.12. Categorical Model REDUCTION 11 
Response: Effort 
Summary of Fit 
RSquare 0.827691 
RSquare Adj 0.669741 
Root Mean Sq Error 228.0078 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF         Sum of Squares F Ratio   Prob>F 
Norm_siz 1             1               13359.4 0.257 0.6168 
Sched 1             1                115613 2.2239 0.1489 
AC_H 1              1                395432 7.6063 0.0109 
RV_L 1              1               93814.6 1.8046 0.1917 
RV_H 1              1               17588.3 0.3383 0.5662 
TC_H 1              1                193315 3.7185 0.0657 
LE_L 1              1               35807.2 0.6888 0.4148 
SL_H 1              1               83221.3 1.6008 0.2179 
RSL_H 1              1               53305.5 1.0254 0.3214 
MPE_L 1              1                  14368 0.2764 0.6039 remove 
AT_L 1              1               18909.9 0.3637 0.5521 
AT_H 1              1                109959 2.1151 0.1588 
achp 1              1                328399 6.3169 0.0191 
rvlp 1              1                130583 2.5118 0.1261 
lelp 1              1               16774.9 0.3227 0.5753 
atlp 1              1               42471.4 0.817 0.3751 
ACJH*Norm_siz 1              1                222389 4.2777 0.0496 
TC_H*Norm_siz 1              1                660332 12.7017 0.0016 
LE_L*Norm_siz 1              1               6860.56 0.132 0.7196 
AT_L*Norm_siz 1              1               56109.3 1.0793 0.3092 
AT_H*Norm_siz 1              1                127028 2.4434 0.1311 
RV_L*Norm_siz 1              1                114779 2.2078 0.1503 
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Whole-Model Test 
Analysis of Variance Sum of          Mean 
Source DF      Squares        Square F Ratio 
Model 22 5993373                272426 5.2402 
Error 241247701                 51988Prob>F 
C Total 46 7241074                            < :.0001 

SSEfull 1230037              TestStat 0.3303 
Betafull 23 
dffull 23               F1,23 4.27934 
SSEred 1247701 
Betared 22              Conclude:           Reduced at least as good 

Table C.13. Categorical Model REDUCTION 12 
Response: Effort 
Summary of Fit 
RSquare 0.825707 
RSquare Adj 0.679301 
Root Mean Sq Error 224.6837 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF         Sum of Squares F Ratio   Prob>F 
Norm_siz 1             1               12058.8 0.2389 0.6293 
Sched 1              1                170636 3.3801 0.0779 
AC_H 1              1                401042 7.9441 0.0093 
RV_L 1              1               95238.1 1.8865 0.1818 
RV_H 1              1               15718.5 0.3114 0.5818 remove 
TC_H 1              1                302574 5.9936 0.0217 
LE_L 1              1               77503.9 1.5353 0.2268 
SL_H 1              1               79539.9 1.5756 0.221 
RSL_H 1              1               40266.3 0.7976 0.3803 
AT_L 1              1               20085.4 0.3979 0.5339 
AT_H 1              1                106291 2.1055 0.1592 
achp 1              1                314425 6.2284 0.0195 
rvlp 1              1                119067 2.3586 0.1372 
lelp 1              1               19617.4 0.3886 0.5387 
atlp 1              1               40318.5 0.7987 0.38 
AC_H*Norm_siz 1              1                208807 4.1362 0.0527 
TC_H*Norm_siz 1              1                859671 17.029 0.0004 
LE_L*Norm_siz 1              1               8162.69 0.1617 0.691 
AT_L*Norm_siz 1              1                  52141 1.0328 0.3192 
AT_H*Norm_siz 1              1                123816 2.4526 0.1299 
RV_L*Norm_siz 1              1                103001 2.0403 0.1656 
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Whole-Model Test 
Analysis of Variance Sum of          Mean 
Source DF      Squares        Square F Ratio 
Model 21 5979005               284715 5.6398 
Error 251262069                 50483 Prob>F 
C Total 46 7241074                            <.0001 

SSEfull 1247701               TestStat 0.27637 
Betafull 22 
dffull 24                F1,24 4.25968 
SSEred 1262069 
Betared 21              Conclude:          Reduced at least as good 

Table C.14. Categorical Model REDUCTION 13 
Response: Effort 
Summary of Fit 
RSquare 0.823536 
RSquare Adj 0.687795 
Root Mean Sq Error 221.6883 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF         Sum of Squares F Ratio   Prob>F 
Norm_siz 1             1               15784.2 0.3212 0.5758 
Sched 1             1                163783 3.3326 0.0794 
AC_H 1              1                385578 7.8456 0.0095 
RV_L 1              1                102665 2.089 0.1603 
TC_H 1              1                287278 5.8454 0.0229 
LE_L 1              1               62414.6 1.27 0.2701 
SL_H 1              1               64014.2 1.3025 0.2642 
RSL_H 1              1               27859.1 0.5669 0.4583 
AT_L 1              1               11499.4 0.234 0.6326 
AT_H 1              1                113904 2.3177 0.14 
achp 1              1                300657 6.1177 0.0202 
rvlp 1              1                108757 2.213 0.1489 
lelp 1              1               16047.6 0.3265 0.5726 remove 
atlp 1              1               28551.5 0.581 0.4528 
AC_H*Norm_siz 1              1                197020 4.0089 0.0558 
TC_H*Norm_siz 1              1                845619 17.2064 0.0003 
LE_L*Norm_siz 1              1               6815.19 0.1387 0.7126 
ATJ_*Norm_siz 1              1               38964.6 0.7928 0.3814 
AT_H*Norm_siz 1              1                109627 2.2307 0.1473 
RV_L*Norm_siz 1              1               92843.7 1.8892 0.181 
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Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 20 5963287                298164 6.0669 
Error 261277788                  49146Prot»F 
C Total 46 7241074                             <.0001 

SSEfull 1262069 Test Stat 0.31136 
Betafull 21 
dffull 25 F1.25 4.2417 
SSEred 1277788 
Betared 20 Conclude:          Reduced at least as good 

Table C.15. Categorical Model REDUCTION 14 
Response: Effort 
Summary of Fit 
RSquare 0.82132 
RSquare Adj 0.695582 
Root Mean Sq Error 218.906 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prob>F 
Norm_siz I                2190.1 0.0457   0.8323 
Sched I                176246 3.6779   0.0658 
AC_H I                381910 7.9698   0.0088 
RV_L I                114623 2.392   0.1336 
TC_H I                338959 7.0735     0.013 
LE_L I                  51089 1.0661     0.311 
SL_H I               51711.2 1.0791   0.3081 
RSL_H !               21465.1 0.4479    0.509 remove 
AT_L I               11332.1 0.2365   0.6307 
AT_H I                137144 2.8619   0.1022 
achp I                289136 6.0337   0.0208 
rvlp I                114761 2.3949   0.1334 
atlp I               32877.6 0.6861   0.4148 
ACJ-TNorm_siz I                186095 3.8835   0.0591 
TC_H*Norm_siz I              1027815 21.4486<.0001 
LE_L*Norm_siz I               67702.9 1.4128   0.2449 
AT_L*Norm_siz I               44239.5 0.9232   0.3452 
AT_H*Norm_siz I                118382 2.4704   0.1277 
RV_L*Norm_siz I               97402.3 2.0326   0.1654 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
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Model 19 594723S 313013 6.532 

Error 271293835 47920 Profc»F 

C Total 46 7241074 I                           < .0001 

SSEfull 1277788 Test Stat 0.32653 
Betafull 20 
dffull 26 F1.26 4.2252 
SSEred 1293835 
Betared 19 Conclude:           Reduced at least as good 

Table C.16. Categorical Model REDUCTION 15 
Response: Effort 
Summary of Fit 
RSquare 0.818356 
RSquare Adj 0.701584 
Root Mean Sq Error 216.7372 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prob>F 
Norm_siz 1119.4 0.0238   0.8784 
Sched 165808 3.5297   0.0707 
AC_H 360594 7.6763   0.0098 
RV_L 93213.6 1.9843   0.1699 
TC_H 354091 7.5379   0.0104 
LE_L 65928.3 1.4035   0.2461 
SL_H 32358 0.6888   0.4136 
AT_L 4968.4 0.1058   0.7474 
AT_H 184271 3.9227   0.0575 
achp 268893 5.7242   0.0237 
rvlp 93342.5 1.9871   0.1697 
atlp 17728.6 0.3774    0.544 remove 
AC_H*Norm_siz 164706 3.5062   0.0716 
TC_H*Norm_siz 1047236 22.2935<.0001 
LE_L*Norm_siz 52676.4 1.1214   0.2987 
AT_L*Norm_siz 26839 0.5713     0.456 
AT_H*Norm_siz I                117533 2.502   0.1249 
RV_L*Norm_siz I               76072.7 1.6194   0.2136 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 18 592577' \                329210 7.0082 
Error 28131530( D                 46975 Prob>F 
C Total 46 724107' \                           <.0001 
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SSEfull 1293835 Test Stat 0.44794 
Betafull 19 
dffull 27 F1.27 4.21001 
SSEred 1315300 
Betared 18 Conclude:          1 Reduced at least as good 

Table C.17. Categorical Model REDUCTION 16 
Response: Effort 
Summary of Fit 
RSquare 0.815907 
RSquare Adj 0.707991 
Root Mean Sq Error 214.398 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares 1 r Ratio   Prot»F 
Norm_siz 1                   7653 0.1665 0.6862 
Sched 1                150724 3.279 0.0805 
AC_H I                395511 8.6043 0.0065 
RV_L I               75792.3 1.6489 0.2093 
TC_H I                336363 7.3176 0.0113 
LE_L I               52829.3 1.1493 0.2925 
SL_H I               41336.2 0.8993 0.3508 remove 
AT_L I                 2248.2 0.0489 0.8265 
AT_H I                169328 3.6837 0.0648 
achp I                332020 7.2231 0.0118 
rvlp I               97640.7 2.1242 0.1557 
AC_H*Norm_siz I                190859 4.1521 0.0508 
TC_H*Norm_siz I              1035282 22.5225<.0001 
LE_L*Norm_siz I               43964.9 0.9565 0.3362 
AT_L*Norm_siz I               52108.5 1.1336 0.2958 
AT_H*Norm_siz I                119351 2.5965 0.1179 
RV_L*Norm_siz I               73586.1 1.6009 0.2159 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 17 590804! 5                347532 7.5605 
Error 29133302! 3                 45967 Prob»F 
C Total 46 724107' X                           <.0001 

SSEfull 1315300 Test Stat 0.3774 
Betafull 18 
dffull 28 F1.28 4.19598 
SSEred 1333029 
Betared 17 Conclude:          I Reduced at least as good 
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Tabled8. Categori cal Model REDUCTION 17 
Response: Effort 
Summary of Fit 
RSquare 0.810199 
RSquare Adj 0.708971 
Root Mean Sq Error 214.0378 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prob>F 
Norm_siz I                5821.9    0.1271 0.724 
Sched I                236141     5.1545 0.0305 
AC_H I                360761     7.8748 0.0087 
RV_L I               51962.8    1.1343 0.2954 
TC_H I                328903    7.1794 0.0119 
LE_L I               41503.3    0.9059 0.3488 
AT_L I                     29.5    0.0006 0.9799 
AT_H I                162761     3.5528 0.0692 
achp I                314465    6.8642 0.0137 
rvlp I               84979.5      1.855 0.1833 
AC_H*Norm_siz I                176759    3.8583 0.0588 
TCJ-TNorm_siz I              1047392 22.8627<.0001 
LE_L*Norm_siz I               35080.1     0.7657 0.3885 remove 
AT_L*Norm_siz I               36378.6    0.7941 0.38 
AT_H*Norm_siz 97339.6    2.1248 0.1553 
RV_L*Norm_siz 63026.6    1.3758 0.2501 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square         F Ratio 
Model 16 586670« 3                366669    8.0038 
Error 30137436; 5                 45812Prob>F 
C Total 46 724107' 1                           <.0001 

SSEfull 1333029 Test Stat              0.89927 
Betafull 17 
dffull 29 F1.29                    4.18297 
SSEred 1374365 
Betared 16 Conclude:           Reduced at least as good 

Tabled9. Categori cal Model REDUCTION 18 
Response: Effort 
Summary of Fit 
RSquare 0.805354 
RSquare Adj 0.711171 
Root Mean Sq Error 213.2275 
Mean of Response 416.766 
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Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prot»F 
Norm_siz 24730.5 0.5439 0.4664 
Sched 201659 4.4354 0.0434 
AC_H 325711 7.1638 0.0118 
RV_L 48637.5 1.0698 0.309 
TC_H 297424 6.5417 0.0156 
LE_L 6996.9 0.1539 0.6975 remove 
AT_L 13211.2 0.2906 0.5937 
AT_H 133719 2.9411 0.0963 
achp 288072 6.336 0.0172 
rvlp 90049.8 1.9806 0.1693 
AC_H*Norm_siz 163029 3.5857 0.0676 
TC_H*Norm_siz 1029135 22.6353<.0001 
AT_L*Norm_siz 12877.8 0.2832 0.5984 
AT_H*Norm_siz 62503.5 1.3747 0.2499 
RV_L*Norm_siz 69162.8 1.5212 0.2267 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 15 5831629                388775 8.5509 
Error 31 1409445                  45466 Prot»F 
C Total 46 7241074                             <.0001 

SSEfull 1374365 Test Stat 0.76574 
Betafull 16 
dffull 30 F1.30 4.17089 
SSEred 1409445 
Betared 15 Conclude:          Reduced at least as good 

Table C.20. Categorical Model REDUCTION 19 
Response: Effort 
Summary of Fit 
RSquare 0.804388 
RSquare Adj 0.718808 
Root Mean Sq Error 210.3897 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares I = Ratio Prob>F 
Norm_siz 1              20086.9 0.4538 0.5054 
Sched 1                203129 4.5891 0.0399 
AC_H 1                323985 7.3194 0.0108 
RV_L 1               44453.1 1.0043 0.3238 
TC_H 1                293276 6.6256 0.0149 
AT_L 1               34709.6 0.7842 0.3825 
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AT_H 146721 3.3147     0.078 
achp 281408 6.3575   0.0169 
rvlp 83451.4 1.8853   0.1793 
AC_H*Norm. _siz 157672 3.5621   0.0682 
TC_H*Norm. _siz 1023466 23.1219<.0001 
AT_L*Norm_ siz 8576.2 0.1938  0.6628remove 
AT_H*Norm„ _siz 56505.7 1.2766   0.2669 
RV_L*Norm_ _siz 62909.2 1.4212     0.242 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 14 5824632 >                416045 9.3992 
Error 321416442 >                 44264 Prob>F 
C Total 46 7241074 =.0001 

SSEfull 1409445 Test Stat 0.15389 
Betafull 15 
dffull 31 F1.31 4.15962 
SSEred 1416442 
Betared 14 Conclude:          I Reduced at least as good 

Table C.21. Categorical Model REDUCTION 20 
Response: Effort 
Summary of Fit 
RSquare 0.803203 
RSquare Adj 0.725678 
Root Mean Sq Error 207.8037 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source                      Nparm     DF Sum of Squares F Ratio   Prob>F 
Norm_siz                               1 I               15707.7 0.3638   0.5506 
Sched                                    1 I                213492 4.944   0.0331 
AC_H                                      1 I                340612 7.8878   0.0083 
RV_L                                       1 I                  39089 0.9052   0.3483 
TC_H                                      1 I                284838 6.5962   0.0149 
AT_L                                       1 I                194343 4.5005   0.0415 
AT_H                                         1 I                149655 3.4657   0.0716 
achp                                      1 I                277816 6.4335   0.0161 
rvlp                                        1 I               76448.1 1.7704   0.1925 
AC_H*Norm_siz                      1 I                151587 3.5104   0.0699 
TC_H*Norm_siz                      1 I              1015914 23.5261 <.0001 
AT_H*Norm_siz                      1 I               54091.5 1.2526  0.2711 remove 
RV_L*Norm_siz                      1 !               56203.1 1.3015   0.2621 
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Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square         F Ratio 
Model 13 5816056                447389 10.3605 
Error 331425018                 43182Prob>F 
C Total 46 7241074                             <.0001 

SSEfull 1416442 TestStat              0.19375 
Betafull 14 
dffull 32 F1.32                    4.14909 
SSEred 1425018 
Betared 13 Conclude:          Reduced at least as good 

Table C.22. Categorical Model REDUCTION 21 
Response: Effort 
Summary of Fit 
RSquare 0.795733 
RSquare Adj 0.723639 
Root Mean Sq Error 208.5743 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prot»F 
Norm_siz 36656.3    0.8426   0.3651 
Sched 246482    5.6658     0.023 
AC_H 489521   11.2525     0.002 
RV_L 101104    2.3241   0.1366 
TC_H 289664    6.6584   0.0144 
AT_L 159686    3.6707   0.0638 
AT_H 99455.2    2.2862   0.1398remove 
achp 572919 13.1696   0.0009 
rvlp 175076    4.0244   0.0529 
AC_H*Norm_siz 415606    9.5535     0.004 
TC_H*Norm_siz 1115071  25.6319<.0001 
RVJ_*Norm_siz 138919    3.1933   0.0829 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square         F Ratio 
Model 12 576196' \               480164 11.0374 
Error 34147911C )                 43503 Prob>F 
C Total 46 724107' \                           <.0001 

SSEfull 1425018 Test Stat              1.25263 
Betafull 13 
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dffull 33 F1.33 4.13925 
SSEred 1479110 
Betared 12 Conclude: Reduced at least as good 

Table C.23. Categorical Model REDUCTION 22 
Response: Effort 
Summary of Fit 
RSquare 0.781998 
RSquare Adj 0.713484 
Root Mean Sq Error 212.372 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares - Ratio   Prob>F 
Norm_siz I              32299.6 0.7161   0.4032 
Sched 261176 5.7908   0.0215 
AC_H I                468805 10.3944   0.0027 
RV_L 100991 2.2392   0.1435 
TC_H 221426 4.9095   0.0333 
AT_L I                422600 9.3699   0.0042 
achp I                548244 12.1557   0.0013 
rvlp I                159363 3.5334   0.0685remove 
ACJ-TNorm_siz I                394953 8.7569   0.0055 
TC_H*Norm_siz I              1015927 22.5252<.0001 
RVJ_*Norm_siz I                126833 2.8121   0.1025 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 11 566250« 3                514774 11.4136 
Error 35 157856! 5                 45102Prob>F 
C Total 46 724107; X <.0001 

SSEfull 1479110 Test Stat 2.28616 
Betafull 12 
dffull 34 F1.34 4.13002 
SSEred 1578565 
Betared 11 Conclude: Reduced at least as good 

Table C.24. Categorical Model REDUCTION 23 
Response: Effort 
Summary of Fit 
RSquare 0.75999 
RSquare Adj 0.693321 
Root Mean Sq Error 219.7175 
Mean of Response 416.766 
Observations 47 
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Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prob>F 
Norm_siz I                149439 3.0955     0.087 
Sched I               219952 4.5562  0.0397remove 
AC_H I                376829 7.8058   0.0083 
RV_L I                   925.2 0.0192   0.8907 
TC_H I                185053 3.8332     0.058 
AT_L I                518000 10.73   0.0023 
achp I                460583 9.5407   0.0039 
AC_H*Norm_siz I                238745 4.9454   0.0325 
TC_H*Norm_siz I              1173824 24.315<.0001 
RV_L*Norm_siz I                307756 6.375   0.0161 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 10 5503147                550315 11.3994 
Error 361737928                  48276 Prot»F 
C Total 46 7241074                            <.0001 

SSEfull 1578565 Test Stat 3.5334 
Betafull 11 
dffull 35 F1.35 4.12135 
SSEred 1737928 
Betared 10 Conclude:          Reduced at least as good 

Table C.25. Categorical Model REDUCTION 24 
Response: Effort 
Summary of Fit 
RSquare 0.729615 
RSquare Adj 0.663845 
Root Mean Sq Error 230.0341 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares F Ratio   Prot»F 
Norm_siz I                117791 2.226   0.1442 
AC_H I               219164 4.1418     0.049 
RV_L I              31453.7 0.5944   0.4456 
TC_H I               55021.1 1.0398   0.3145 
AT_L !                591441 11.1771   0.0019 
achp I                391915 7.4064   0.0098 
AC_H*Norm_siz I                210196 3.9723   0.0537 
TC_H*Norm_siz I                956735 18.0804   0.0001 
RV_L*Norm_siz I                195895 3.702   0.0621 

Whole-Model Test 
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Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 9 5283195 587022 11.0935 
Error 371957880 52916Prob>F 
C Total 46 7241074 =c.0001 

SSEfull 1737928 Fest Stat 4.55615 
Betafull 10 
dffull 36 =1,36 4.11316 
SSEred 1957880 
Betared 9 Conclude:          ( Dannot reduce 

Table C.26. Categorical Model FINAL MODEL 
Response: Effort 
Summary of Fit 
Rsquare 0.75999 
RSquare Adj 0.693321 
Root Mean Sq Error 219.7175 
Mean of Response 416.766 
Observations 47 

Effect Test 
Source Nparm     DF Sum of Squares z Ratio   Prob>F 
Norm_siz 1880.1 0.0389   0.8447 
Sched 219952 4.5562   0.0397 
AC_H 376829 7.8058   0.0083 
RV_L 925.2 0.0192   0.8907 
TC_H 185053 3.8332     0.058 
AT_L 518000 10.73   0.0023 
Achp 460583 9.5407   0.0039 
ACJ-TNorm_siz 238745 4.9454   0.0325 
TC_H*Norm_siz 1173824 24.315<.0001 
RV_L*Norm_siz 307756 6.375   0.0161 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF      Squares Square F Ratio 
Model 10 5503147 550315 11.3994 
Error 361737928 48276 Prob>F 
C Total 46 7241074 e.0001 
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Appendix D. Continuous Model Reductions 

Table D.1. Continuous Model FULL MODEL 
Response:                 Effort 
Summary of Fit 
RSquare                     0.88634 
RSquare Adj               0.55481 
Root Mean Sq Error    264.787 
Mean of Response         408.3 
Observations                       48 

Effect Test                                              Sum of 
Source                       Nparm   DF          Squares              F Ratio   I Drob>F 
language                               1             1               8729.66 0.1245 0.7303 
Size                                        1              1               55581.7 0.7928 0.3908 
SLOCN                                    1               1                    32.37 0.0005 0.9832 remove 
SLOCR                                    1               1                    246.8 0.0035 0.9537 remove 
schedule                                 1              1                 143640 2.0487 0.1779 
AC                                          1              1                    14.68 0.0002 0.9887 
RV                                            1               1                  670.69 0.0096 0.9237 
TC                                             1               1                 125334 1.7876 0.206 
PE                                             1               1                 127033 1.8119 0.2032 
LE                                             1               1                24758.3 0.3531 0.5634 
SL                                             1               1                4662.75 0.0665 0.8009 
RSL                                          1               1                86427.1 1.2327 0.2886 
MPE                                          1               1                   161.29 0.0023 0.9625 
ATS                                          1               1                   40897 0.5833 0.4598 
size ac                                    1              1                 369.75 0.0053 0.9433 
sizerv                                       1               1                22367.6 0.319 0.5826 
sizetc                                     1              1               69831.9 0.996 0.338 
size pe                                    1              1               94873.6 1.3532 0.2673 
size le                                     1              1               41564.4 0.5928 0.4562 
size si                                     1              1                  58687 0.837 0.3783 
size rsl                                    1              1               88828.8 1.267 0.2823 
sizempe                                 1              1               6883.07 0.0982 0.7594 
sizeats                                  1             1               39453.9 0.5627 0.4676 
size/sched                              1              1                1039.45 0.0148 0.9051 
ssA.75                                       1               1                2778.76 0.0396 0.8455 
sizeA.75                                  1              1               40226.3 0.5737 0.4634 
AC*Size                                  1              1                1872.81 0.0267 0.8729 
RV*Size                                  1              1               31260.1 0.4459 0.5169 
TC*Size                                  1              1                  50603 0.7217 0.4122 
PE*Size                                  1              1               75116.7 1.0714 0.321 
LE*Size                                   1              1               54906.5 0.7831 0.3936 
SL'Size                                   1              1               68203.7 0.9728 0.3435 
RSL*Size                                1              1               95956.4 1.3686 0.2648 
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MPE*Size 1             1 24941.9 0.3557 0.562 
ATS*Size 1             1 32955.6 0.47 0.506 

Whole-Model Test 
Analysis of Variance Sum of    Mean 
Source DF         Squares Square F Ratio 
Model 35 6560628 187447 2.6735 
Error 12   841343 70112Prot»F 
C Total 47 7401970 0.0358 

Table D.2. Continuous Model REDUCTION 1: 
Response: Effort 
Summary of Fit 
RSquare 0.88602 
RSquare Adj 0.61736 
Root Mean Sq Error 245.483 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm   DF          Squares F Ratio   1 3rob>F 
language 6782.2 0.1125 0.7422 
Size 146348 2.4285 0.1415 
schedule 154304 2.5605 0.1319 
AC 282.37 0.0047 0.9464 
RV 600.22 0.01 0.9219 
TC 175523 2.9127 0.11 
PE 160484 2.6631 0.125 
LE 78316.2 1.2996 0.2734 
SL 7838.64 0.1301 0.7237 
RSL 163031 2.7054 0.1223 
MPE 196.21 0.0033 0.9553 
ATS 66374.5 1.1014 0.3117 
size ac 1765.71 0.0293 0.8665 
size rv 30241.8 0.5018 0.4903 
size tc 133045 2.2078 0.1595 
size pe 122135 2.0267 0.1765 
size le 143581 2.3826 0.145 
size si 135642 2.2509 0.1558 
size rsl 181841 3.0175 0.1043 
size mpe 35550.2 0.5899 0.4552 
size ats 58433.9 0.9697 0.3415 
size/sched 18238.9 0.3027 0.5909 
ssA75 594.77 0.0099 0.9223 remove 
sizeA.75 101517 1.6846 0.2153 
AC'Size 5297.83 0.0879 0.7712 
RVSize 44083 0.7315 0.4068 
TC*Size 109905 1.8238 0.1983 
PE*Size 100359 1.6654 0.2178 
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LE*Size 1              1                 176269 2.925 0.1093 
SL'Size 1              1                 166247 2.7587 0.1189 
RSL*Size 1              1                201015 3.3357 0.0892 
MPE*Size 1               1                 110160 1.828 0.1978 
ATS*Size 1               1                49766.8 0.8258 0.3789 

Whole-Model Test 
Analysis of Variance Sum of    Mean 
Source DF         Squares Square                F Ratio 
Model 33 6558302                198736 3.2979 
Error 14   843668                  60262 Prob>F 
C Total 47 7401970 0.0103 

SSEfull 841343               TestStat 0.01659 
Betafull 35 
dffull 12                F2.12 3.88529 
SSEred 843668 
Betared 33               Conclude:           Reduced at least as good 

Table D.3. Continuous Model REDUCTION 2: 
Response: Effort 
Summary of Fit 
RSquare 0.88594 
RSquare Adj 0.64261 
Root Mean Sq Error 237.243 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm   DF          Squares              F Ratio   1 3rob>F 
language 1              1               6295.36 0.1118 0.7427 
Size 1               1                 150930 2.6816 0.1223 
schedule 1               1                 341151 6.0612 0.0264 
AC 1               1                  180.35 0.0032 0.9556 
RV 1               1                1226.38 0.0218 0.8846 
TC 1               1                 186289 3.3098 0.0889 
PE 1               1                 179510 3.1894 0.0943 
LE 1               1                78131.6 1.3882 0.2571 
SL 1               1                13119.9 0.2331 0.6362 
RSL 1               1                 162799 2.8925 0.1096 
MPE 1               1                  321.34 0.0057 0.9408 
ATS 1               1                68294.5 1.2134 0.288 
size ac 1               1                1460.71 0.026 0.8742 remove 
size rv 1               1                34480.2 0.6126 0.446 
size tc 1               1                 132984 2.3627 0.1451 
size pe 1               1                 137863 2.4494 0.1384 
size le 1               1                 154817 2.7506 0.118 
size si 1               1                 148930 2.646 0.1246 
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size rsl 
size mpe 
size ats 
size/sched 
sizeA.75 
AC'Size 
RV'Size 
TC*Size 
PE*Size 
LE*Size 
SL'Size 
RSL'Size 
MPE*Size 
ATS*Size 

181439 
36109.5 
60486.3 
586523 
108938 

4847.52 
48787.7 
109313 
111750 
195195 
176267 
200490 
110666 

50661.7 

3.2236 
0.6416 
1.0747 

10.4207 
1.9355 
0.0861 
0.8668 
1.9422 
1.9855 
3.468 

3.1317 
3.5621 
1.9662 
0.9001 

0.0928 
0.4357 
0.3163 
0.0056 
0.1844 
0.7732 
0.3666 
0.1837 
0.1792 
0.0823 
0.0971 
0.0786 
0.1812 
0.3578 

Whole-Model Test 
Analysis of Variance 
Source 
Model 
Error 
C Total 

Sum of    Mean 
DF Squares Square 

32 6557707 
15   844263 
47 7401970 

F Ratio 
204928     3.641 

56284 Prob>F 
0.0051 

SSEfull 
Betafull 
dffull 
SSEred 
Betared 

843668 
33 
14 

844263 
32 

Test Stat 0.00987 

F1.14 4.60011 

Conclude: Reduced at least as good 

Response: 
Summary of Fit 
RSquare 
RSquare Adj 
Root Mean Sq Error 
Mean of Response 
Observations 

Effect Test 
Source 
language 
Size 
schedule 
AC 
RV 
TC 
PE 
LE 
SL 

Table D.4. 
Effort 

Continuous Model REDUCTION 3 

0.88574 
0.66437 
229.908 

408.3 
48 

Nparm   DF 
Sum of 
Squares F Ratio   Prob>F 

7554.04 0.1429 0.7104 
170899 3.2332 0.0911 
447254 8.4615 0.0103 

4046.81 0.0766 0.7856 
2967.02 0.0561 0.8157 
321188 6.0765 0.0254 
255081 4.8258 0.0431 
89093.3 1.6855 0.2126 
18415.5 0.3484 0.5633 
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RSL 233821 4.4236 0.0516 
MPE 21.85 0.0004 0.984 
ATS 103236 1.9531 0.1813 
size rv 55855.4 1.0567 0.3193 
size tc 249781 4.7255 0.0451 
size pe 208465 3.9439 0.0645 
size le 181074 3.4257 0.0827 
size si 192464 3.6412 0.0745 
size rsl 272816 5.1613 0.0372 
size mpe 39326.5 0.744 0.4011 remove 
size ats 89441.3 1.6921 0.2117 
size/sched 759654 14.3717 0.0016 
sizeA.75 117793 2.2285 0.1549 
AC*Size 84585.2 1.6002 0.224 
RV'Size 77326.2 1.4629 0.244 
TC*Size 196842 3.724 0.0716 
PE'Size 168481 3.1874 0.0932 
LE'Size 214364 4.0555 0.0612 
SL'Size 225500 4.2662 0.0555 
RSL*Size 305126 5.7726 0.0288 
MPE*Size 115944 2.1935 0.158 
ATS*Size 75263.7 1.4239 0.2502 

Whole-Model Test 
Analysis of Variance Sum of    Mean 
Source DF         Squares Square F Ratio 
Model 31 6556247 211492 4.0012 
Error 16   845724 52858 Prot»F 
C Total 47 7401970 0.0025 

SSEfull 844263               Test Stat 0.02595 
Betafull 32 
dffull 15                F1.15 4.54307 
SSEred 845724 
Betared 31               Conclude:            Reduced at least as good 

Table D.5. Continuous Model REDUCTION 4: 
Response: Effort 
Summary of Fit 
RSquare 0.88043 
RSquare Adj 0.66943 
Root Mean Sq Error 228.171 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm   DF          Squares F Ratio   Prot»F 
language 1             1 17893 0.3437 0.5654 
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Size 134104 2.5759 0.1269 
schedule 409769 7.8708 0.0122 
AC 3195.5 0.0614 0.8073 
RV 884.57 0.017 0.8978 
TC 282582 5.4278 0.0324 
PE 226091 4.3427 0.0526 
LE 54621.3 1.0492 0.3201 
SL 20927.9 0.402 0.5345 
RSL 200164 3.8447 0.0665 
MPE 86872.6 1.6686 0.2137 
ATS 65628.6 1.2606 0.2771 
size rv 37546.6 0.7212 0.4076 r 
size tc 214045 4.1114 0.0586 
size pe 184679 3.5473 0.0769 
size le 186174 3.576 0.0758 
size si 174648 3.3546 0.0846 
size rsl 251577 4.8323 0.0421 
size ats 51752.6 0.9941 0.3327 
size/sched 754687 14.496 0.0014 
sizeA.75 87607.7 1.6828 0.2119 
AC*Size 75284.7 1.4461 0.2456 
RV*Size 55581.2 1.0676 0.316 
TC'Size 167100 3.2096 0.091 
PE*Size 149169 2.8652 0.1088 
LE*Size 206387 3.9643 0.0628 
SL*Size 203198 3.903 0.0647 
RSL'Size 296007 5.6857 0.029 
MPE*Size 376572 7.2332 0.0155 
ATS'Size 38542.1 0.7403 0.4015 

Whole-Model Test 
Analysis of Variance Sum of    Mean 
Source DF         Squares Square F Ratio 
Model 30 6516920 217231 4.1726 
Error 17   885050 52062 Prob>F 
C Total 47 7401970 0.0016 

SSEfull 845724               Test Stat 0.74401 
Betafull 31 
dffull 16                F1.16 4.494 
SSEred 885050 
Betared 30               Conclude:           Reduced at least as good 

Table D.6. Continuous Model REDUCTION 5: 
Response: Effort 
Summary of Fit 
RSquare 0.87536 
RSquare Adj 0.67455 
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Root Mean Sq Error 226.397 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm   DF          Squares F Ratio   f 3rob>F 
language 17573.6 0.3429 0.5655 remove 
Size 97171.6 1.8958 0.1854 
schedule 372484 7.2672 0.0148 
AC 8370.2 0.1633 0.6909 
RV 63655.2 1.2419 0.2798 
TC 271198 5.2911 0.0336 
PE 209628 4.0899 0.0583 
LE 59789.1 1.1665 0.2944 
SL 6211.04 0.1212 0.7318 
RSL 219442 4.2814 0.0532 
MPE 96937.9 1.8913 0.1859 
ATS 92140.2 1.7977 0.1967 
size tc 279357 5.4503 0.0313 
size pe 150417 2.9347 0.1039 
size le 291479 5.6868 0.0283 
size si 137127 2.6754 0.1193 
size rsl 314859 6.1429 0.0233 
size ats 112800 2.2007 0.1552 
size/sched 718183 14.0119 0.0015 
sizeA.75 50680.2 0.9888 0.3332 
AC*Size 79740.3 1.5557 0.2283 
RV*Size 210713 4.111 0.0577 
TC'Size 189942 3.7058 0.0702 
PE*Size 113068 2.206 0.1548 
LE*Size 319532 6.2341 0.0225 
SL*Size 165985 3.2384 0.0887 
RSL'Size 375603 7.3281 0.0144 
MPE*Size 349610 6.8209 0.0177 
ATS'Size 101681 1.9838 0.176 

Whole-Model Test 
Analysis of Variance Sum of    Mean 
Source DF         Squares Square F Ratio 
Model 29 6479373 223427 4.3591 
Error 18   922597 51255Prob>F 
C Total 47 7401970 0.0009 

SSEfull 885050               Test Stat 0.72119 
Betafull 30 
dffull 17                F1.17 4.45132 
SSEred 922597 
Betared 29               Conclude:           Reduced at least as good 
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Table D.7. Continuous Mode IREDUCT ION 6: 
Response: Effort 
Summary of Fit 
Rsquare 0.87298 
RSquare Adj 0.6858 
Root Mean Sq Error 222.447 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm   DF          Squares F Ratio   Profc»F 
Size 79928.5 1.6153 0.2191 
schedule 359603 7.2672 0.0143 
AC 6370.75 0.1287 0.7237 
RV 66067.7 1.3352 0.2622 
TC 259025 5.2347 0.0338 
PE 194627 3.9332 0.062 
LE 73748.1 1.4904 0.2371 
SL 1696.15 0.0343 0.8551 
RSL 201953 4.0813 0.0577 
MPE 79386.4 1.6043 0.2206 
ATS 77189.7 1.5599 0.2268 
size tc 277286 5.6037 0.0287 
size pe 133093 2.6897 0.1175 
size le 274448 5.5463 0.0294 
size si 119840 2.4219 0.1362 
size rsl 298257 6.0275 0.0239 
size ats 97231.9 1.965 0.1771 
size/sched 725832 14.6684 0.0011 
sizeA.75 37062 0.749 0.3976 remove 
AC*Size 71347.6 1.4419 0.2446 
RV'Size 200358 4.0491 0.0586 
TC'Size 216632 4.3779 0.0501 
PE*Size 97269.1 1.9657 0.177 
LE*Size 311166 6.2884 0.0214 
SL*Size 149854 3.0284 0.098 
RSL*Size 359778 7.2708 0.0143 
MPE*Size 356821 7.211 0.0146 
ATS*Size 88416.7 1.7868 0.1971 

Whole-Model Test 
Analysis of Variance Sum of    Mean 
Source DF         Squares Square F Ratio 
Model 28 6461800 230779 4.6638 
Error 19   940171 49483 Prob>F 
C Total 47 7401970 0.0005 
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SSEfull 922597               Test Sta t 0.34286 
Betafull 29 
dffull 18                F1.18 4.41386 
SSEred 940171 
Betared 28               Conclude:           Reduced at least as good 

Table D.8. Continuous Model REDUCTION 7: 
Response: Effort 
Summary of Fit 
RSquare 0.86798 
RSquare Adj 0.68975 
Root Mean Sq Error 221.047 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm   DF          Squares F Ratio   1 3rob>F 
Size 229329 4.6934 0.0425 
schedule 324851 6.6484 0.0179 
AC 10.34 0.0002 0.9885 
RV 40180.6 0.8223 0.3753 
TC 225715 4.6195 0.044 
PE 172277 3.5258 0.0751 
LE 102986 2.1077 0.1621 
SL 29910 0.6121 0.4431 
RSL 177391 3.6305 0.0712 
MPE 44900.6 0.9189 0.3492 
ATS 71721.4 1.4678 0.2398 
size tc 252240 5.1623 0.0343 
size pe 96701 1.9791 0.1748 
size le 259343 5.3077 0.0321 
size si 123612 2.5298 0.1274 
size rsl 339846 6.9553 0.0158 
size ats 87014.7 1.7808 0.197 
size/sched 689224 14.1056 0.0012 
AC'Size 45615.8 0.9336 0.3455 remove 
RV'Size 163442 3.345 0.0824 
TC*Size 199908 4.0913 0.0567 
PE*Size 60414.4 1.2364 0.2793 
LE*Size 283999 5.8123 0.0257 
SL'Size 180735 3.6989 0.0688 
RSL'Size 417125 8.5369 0.0084 
MPE*Size 349409 7.151 0.0146 
ATS*Size 79806.4 1.6333 0.2159 

Whole-Model Test 
Analysis of Variance Sum of    Mean 
Source DF         Squares Square F Ratio 
Model 27 6424738 237953 4.8699 
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Error 20   977233                  48862 Prob>F 
C Total 47 7401970 0.0003 

SSEfull 940171                TestStat 0.74899 
Betafull 28 
dffull 19                F1.19 4.38075 
SSEred 977233 
Betared 27               Conclude:           Reduced at least as good 

Table D.9. Continuous Model REDUCTION 8: 
Response: Effort 
Summary of Fit 
RSquare 0.86181 
RSquare Adj 0.69073 
Root Mean Sq Error 220.697 
Mean of Response 408.3 
Observations 48 

Effect Test 
Source Nparm   DF          Sum of Squares F Ratio   Prob>F 
Size 1              1                 184783 3.7938 0.0649 
schedule 1              1                284122 5.8333 0.0249 
AC 1               1                 200709 4.1207 0.0552 
RV 1               1                53353.8 1.0954 0.3072 
TC 1               1                 181441 3.7252 0.0672 
PE 1               1                 157778 3.2393 0.0863 
LE 1               1                 202109 4.1495 0.0544 
SL 1               1                11596.5 0.2381 0.6306 
RSL 1               1                 150683 3.0937 0.0932 
MPE 1               1                7867.58 0.1615 0.6918 
ATS 1               1                   37315 0.7661 0.3913 
size tc 1               1                 251358 5.1606 0.0337 
size pe 1               1                93154.2 1.9125 0.1812 
size le 1               1                 236282 4.8511 0.0389 
size si 1               1                 139648 2.8671 0.1052 
size rsl 1               1                 297994 6.1181 0.022 
size ats 1               1                52881.4 1.0857 0.3093 remove 
size/sched 1               1                 710630 14.5899 0.001 
RV*Size 1               1                 167625 3.4415 0.0777 
TC*Size 1               1                 221002 4.5374 0.0452 
PE*Size 1               1                59026.4 1.2119 0.2834 
LE*Size 1               1                 247574 5.0829 0.035 
SL*Size 1               1                 184487 3.7877 0.0651 
RSL*Size 1               1                 372577 7.6493 0.0116 
MPE*Size 1               1                 343947 7.0615 0.0147 
ATS'Size 1               1                48932.2 1.0046 0.3276 
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Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF           Squares Square       F Ratio 
Model 26 6379122      245351 5.0373 
Error 21   1022848        48707 Prob>F 
C Total 47 7401970 0.0002 

SSEfull 977233 Test Stat 0.93357 
Betafull 27 
dffull 20 F1.20 4.35125 
SSEred 1022848 
Betared 26 Conclude:  Reduced at least as 

Table D.10. Continuous Model REDUCTION 9 
Response: Effort 
Summary of Fit 
RSquare 0.85467 
RSquare Adj 0.68952 
Root Mean Sq Error 221.126 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF Squares     F Ratio    Prob>F 
Size 134366 2.748 0.1116 
schedule 231428 4.733 0.0406 
AC 211097 4.3172 0.0496 
RV 90317.3 1.8471 0.1879 
TC 129558 2.6496 0.1178 
PE 140960 2.8828 0.1036 
LE I       197647 4.0421 0.0568 
SL I      3721.77 0.0761 0.7852 
RSL I         98408 2.0126 0.17 
MPE I        255.84 0.0052 0.943 
ATS I        112.26 0.0023 0.9622 
size tc I       231659 4.7377 0.0405 
size pe I      87157.4 1.7825 0.1955 
size le I       185174 3.787 0.0645 
size si I       160854 3.2897 0.0834 
size rsl I       321680 6.5787 0.0177 
size/sched I       657853 13.4539 0.0014 
RV*Size I       222491 4.5502 0.0443 
TC*Size I       230445 4.7129 0.041 
PE*Size !      58311.6 1.1925 0.2866 
LE*Size l       194705 3.9819 0.0585 
SL*Size 1       200532 4.1011 0.0552 
RSL*Size 1       526951 10.7768 0.0034 
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MPE'Size 1 292815 5.9884 0.0228 
ATS*Size 1 734.34 0.015 0.9036remove 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF           Squares Square       F Ratio 
Model 25 632624" 253050 5.1752 
Error 22 1075730        48897 Prob>F 
C Total 47 7401970 0.0001 

SSEfull 1022848 Test Stat 1.0857 
Betafull 26 
dffull 21 F1.21 4.32479 
SSEred 1075730 
Betared 25 Conclude: Reduced at least as good 

Table D.11. Continuous Model REDUCTION 1C I: 
Response: Effort 
Summary of Fit 
RSquare 0.85457 
RSquare Adj 0.70282 
Root Mean Sq Error 216.34 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF Squares     F Ratio    Prob>F 
Size 149899 3.2028 0.0867 
schedule 259786 5.5507 0.0274 
AC 233745 4.9943 0.0354 
RV 89730.7 1.9172 0.1795 
TC 155039 3.3126 0.0818 
PE 150901 3.2242 0.0857 
LE 199231 4.2568 0.0506 
SL 5007.49 0.107 0.7466 
RSL 98773 2.1104 0.1598 
MPE 302.48 0.0065 0.9366 
ATS I      7353.84 0.1571 0.6955 remove 
size tc I       237102 5.066 0.0343 
size pe I      94795.7 2.0254 0.1681 
size le I       193395 4.1321 0.0538 
size si I       243831 5.2098 0.032 
size rsl I       328786 7.0249 0.0143 
size/sched I       665931 14.2284 0.001 
RV'Size I       225007 4.8075 0.0387 
TC*Size I       232449 4.9666 0.0359 
PE*Size I      63207.1 1.3505 0.2571 
LE'Size I       203202 4.3417 0.0485 
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SL*Size 1              1 336356 7.1867 0.0133 
RSL'Size 1              1 561104 11.9887 0.0021 
MPE*Size 1              1 292570 6.2511 0.02 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF           Squares Square       F Ratio 
Model 24 6325506      263563 5.6313 
Error 23 1076464        46803 Prob»F 
C Total 47 7401970                    < .0001 

SSEfull 1075730 Test Stat 0.01502 
Betafull 25 
dffull 22 F1.22 4.30094 
SSEred 1076464 
Betared 24 Conclude: Reduced at least as good 

Table D.12. Continuous Model REDUCTION 11 : 

Response: Effort 
Summary of Fit 
RSquare 0.85358 
RSquare Adj 0.71326 
Root Mean Sq Error 212.507 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF Squares     F Ratio    Prot»F 
Size 148369 3.2855 0.0824 
schedule 303261 6.7154 0.016 
AC 300548 6.6553 0.0164 
RV 85816.7 1.9003 0.1808 
TC 220309 4.8785 0.037 
PE I       153285 3.3943 0.0778 
LE I       216740 4.7995 0.0384 
SL !        3191.7 0.0707 0.7926 
RSL I       145292 3.2173 0.0855 
MPE I      1615.35 0.0358 0.8516 
size tc I       292128 6.4689 0.0178 
size pe I      92175.2 2.0411 0.166remove 
size le I       196880 4.3597 0.0476 
size si I       268652 5.949 0.0225 
size rsl 1       437890 9.6966 0.0047 
size/sched 1       792234 17.5432 0.0003 
RV'Size 1       218229 4.8324 0.0378 
TC*Size 1       266949 5.9113 0.0229 
PE*Size 1      59414.3 1.3157 0.2627 
LE*Size 1       204968 4.5388 0.0436 
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SL*Size 1 354681 7.854 0.0099 
RSL*Size 1 687394 15.2216 0.0007 
MPE*Size 1 287798 6.373 0.0186 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF           Squares Square       F Ratio 
Model 23 6318152       274702 6.083 
Error 24 1083818         45159Prob»F 
C Total 47 7401970                    < .0001 

SSEfull 1076464 Test Stat 0.15713 
Betafull 24 
dffull 23 F1.23 4.27934 
SSEred 1083818 
Betared 23 Conclude:  Reduced at least as good 

Table D.13. Continuous Model REDUCTION 12 ■ 

Response: Effort 
Summary of Fit 
RSquare 0.84112 
RSquare Adj 0.70131 
Root Mean Sq Error 216.886 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF Squares     F Ratio    Prob»F 
Size 90843.9 1.9312 0.1769 
schedule 311118 6.6139 0.0164 
AC 254115 5.4021 0.0285 
RV 10461.1 0.2224 0.6413 
TC 184777 3.9281 0.0586 
PE 82782.1 1.7598 0.1966 
LE 126397 2.687 0.1137 
SL 303.14 0.0064 0.9367 
RSL 156256 3.3218 0.0804 
MPE 1808.51 0.0384 0.8461 
size tc 200155 4.255 0.0497 
size le 111230 2.3646 0.1367 remove 
size si 266382 5.6629 0.0253 
size rsl 359193 7.6359 0.0106 
size/sched 728645 15.49 0.0006 
RV*Size I       128485 2.7314 0.1109 
TC*Size I       174786 3.7157 0.0653 
PE*Size I       223446 4.7502 0.0389 
LE*Size I       127931 2.7196 0.1116 
SL'Size I       326600 6.9431 0.0142 
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RSL*Size 1              1 598694 12.7274 0.0015 
MPE*Size 1              1 223510 4.7515 0.0389 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF           Squares Square       F Ratio 
Model 22 6225977      282999 6.0162 
Error 25 1175993         47040 Prot»F 
C Total 47 7401970                    < .0001 

SSEfull 1083818 Test Stat 2.04112 
Betafull 23 
dffull 24 F1.24 4.25968 
SSEred 1175993 
Betared 22 Conclude: Reduced at least as good 

Table D.14. Continuous Model REDUCTION 13 ■ 

Response: Effort 
Summary of Fit 
RSquare 0.8261 
RSquare Adj 0.68564 
Root Mean Sq Error 222.505 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF Squares     F Ratio    Prot»F 
Size I       112811 2.2786 0.1432 
schedule I       298029 6.0198 0.0212 
AC I       216512 4.3732 0.0464 
RV I         60178 1.2155 0.2803 
TC I       180743 3.6507 0.0671 
PE I      43870.5 0.8861 0.3552 
LE I      30782.7 0.6218 0.4375 
SL I        460.26 0.0093 0.9239 
RSL I      82321.9 1.6628 0.2086 
MPE I      1996.85 0.0403 0.8424 
size tc I       318770 6.4387 0.0175 
size si I       270290 5.4595 0.0274 
size rsl I       248666 5.0227 0.0338 
size/sched I       732692 14.7993 0.0007 
RV*Size I       390534 7.8882 0.0093 
TC'Size I       351342 7.0966 0.0131 
PE*Size 1       134609 2.7189 0.1112 
LE'Size 1      24628.4 0.4975 0.4869 remove 
SL'Size 1       342181 6.9115 0.0142 
RSL'Size 1       494685 9.9919 0.004 
MPE'Size 1       218020 4.4037 0.0457 
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Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF           Squares Square      F Ratio 
Model 21  6114747      291178 5.8814 
Error 26 1287223         49509 Prot»F 
C Total 47 7401970                   < .0001 

SSEfull 1175993 Test Stat 2.3646 
Betafull 22 
dffull 25 F1.25 4.2417 
SSEred 1287223 
Betared 21 Conclude: Reduced at least as good 

Table D.15. Continuous Model REDUCTION 14 : 
Response: Effort 
Summary of Fit 
RSquare 0.82277 
RSquare Adj 0.69149 
Root Mean Sq Error 220.425 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF Squares     F Ratio    Prot»F 
Size 89937.1 1.851 0.1849 
schedule 278523 5.7325 0.0239 
AC 213231 4.3886 0.0457 
RV 99929.3 2.0567 0.163 
TC 161539 3.3247 0.0793 
PE 84388.1 1.7368 0.1986 
LE 253325 5.2138 0.0305 
SL 1190.79 0.0245 0.8768 
RSL 116198 2.3915 0.1336 
MPE 21695.8 0.4465 0.5097 
size tc 331321 6.8191 0.0145 
size si 246310 5.0695 0.0327 
size rsl 306737 6.3131 0.0183 
size/sched 709143 14.5953 0.0007 
RV*Size 449584 9.2532 0.0052 
TC'Size I       401060 8.2545 0.0078 
PE*Size I       178882 3.6817 0.0656remove 
SL'Size I       327897 6.7486 0.015 
RSL*Size I       528960 10.8868 0.0027 
MPE'Size I       228186 4.6964 0.0392 
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Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF          Squares Square       F Ratio 
Model 20 6090119       304506 6.2672 
Error 27 1311852         48587 Prot»F 
C Total 47 7401970                    < .0001 

SSEfull 1287223 Test Stat 0.49746 
Betafull 21 
dffull 26 F1.26 4.2252 
SSEred 1311852 
Betared 20 Conclude:  Reduced at least as good 

Table D.16. Continuous Model REDUCTION 15 
Response: Effort 
Summary of Fit 
RSquare 0.7986 
RSquare Adj 0.66194 
Root Mean Sq Error 230.739 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF Squares     F Ratio    Prob>F 
Size 79380.2 1.491 0.2322 
schedule I       178827 3.3589 0.0775 
AC I       290340 5.4534 0.0269 
RV I      32402.2 0.6086 0.4419 
TC I       173819 3.2648 0.0815 
PE I      5384.73 0.1011 0.7528 remove 
LE I       262466 4.9298 0.0347 
SL I      5886.43 0.1106 0.742 
RSL I       154734 2.9063 0.0993 
MPE I      72241.4 1.3569 0.2539 
size tc I       439226 8.2498 0.0077 
size si I       430585 8.0876 0.0082 
size rsl l       367133 6.8957 0.0138 
size/sched 1       536282 10.0728 0.0036 
RV*Size 1       351186 6.5962 0.0158 
TC*Size 1       572734 10.7575 0.0028 
SL*Size 1       519274 9.7534 0.0041 
RSL*Size 1       589057 11.0641 0.0025 
MPE*Size 1       153318 2.8797 0.1008 
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Whole-Model Test 
Analysis of Variance Sum of    Mean 
Source DF          Squares  Square      F Ratio 
Model 19 5911237       311118 5.8436 
Error 28 1490734        53240 Prot»F 
C Total 47 7401970 :.0001 

SSEfull 1311852               TestStat 3.68168 
Betafull 20 
dffull 27                F1,27 4.21001 
SSEred 1490734 
Betared 19               Conclude: Reduced at least as good 

Table D.17. Continuous Model REDUCTION 16 
Response: Effort 
Summary of Fit 
RSquare 0.79788 
RSquare Adj 0.67242 
Root Mean Sq Error 227.135 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF           Squares     F Ratio    Profc»F 
Size 1               1      73997.6 1.4343 0.2408 
schedule 1               1       173971 3.3722 0.0766 
AC 1               1       287810 5.5788 0.0251 
RV 1               1      51367.8 0.9957 0.3266 
TC 1               1       173237 3.3579 0.0772 
LE 1               1       265718 5.1505 0.0309 
SL 1               1        9308.6 0.1804 0.6741 
RSL 1               1       153433 2.9741 0.0953 
MPE 1               1      66999.6 1.2987 0.2638 
size tc 1               1       447463 8.6734 0.0063 
size si 1               1       441481 8.5574 0.0066 
size rsl 1               1       372109 7.2128 0.0118 
size/sched 1               1       545947 10.5824 0.0029 
RV*Size 1               1       369797 7.1679 0.0121 
TC*Size 1               1       589949 11.4353 0.0021 
SL'Size 1               1       520804 10.095 0.0035 
RSL*Size 1               1       593870 11.5113 0.002 
MPE*Size 1               1       153097 2.9676 0.0956 remove 

Whole-Model Test 
Analysis of Variance Sum of    Mean 
Source DF           Squares  Square       F Ratio 
Model 18 5905852       328103 6.3598 
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Error 29 1496118        51590Prob>F 
C Total 47 7401970                    < :.0001 

SSEfull 1490734 Test Stat 0.10114 
Betafull 19 
dffull 28 F1.28 4.19598 
SSEred 1496118 
Betared 18 Conclude: Reduced at least as good 

Table D.18. Continuous Model REDUCTION 17 
Response: Effort 
Summary of Fit 
RSquare 0.77719 
RSquare Adj 0.65094 
Root Mean Sq Error 234.465 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF Squares     F Ratio    Prob>F 
Size 2681.12 0.0488 0.8267 
schedule 74969.3 1.3637 0.2521 
AC 275977 5.0201 0.0326 
RV 13259.4 0.2412 0.6269 
TC 119699 2.1774 0.1505 
LE 399490 7.2669 0.0114 
SL 63398.3 1.1532 0.2914 
RSL I       183747 3.3424 0.0775 
MPE I       628995 11.4417 0.002 
size tc I       446772 8.127 0.0078 
size si I       370881 6.7465 0.0144 
size rsi I       393870 7.1647 0.0119 
size/sched I       460852 8.3831 0.007 
RV*Size I       219275 3.9887 0.0549 remove 
TC*Size I       600320 10.9201 0.0025 
SL*Size I       384002 6.9852 0.0129 
RSL'Size I       559626 10.1799 0.0033 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF           Squares Square      F Ratio 
Model 17 575275! 5      338397 6.1556 
Error 30 164921! 5        54974 Prob>F 
C Total 47 7401971 D                   <.0001 

SSEfull 1496118 Test Stat 2.96755 
Betafull 18 
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dffull 29 
SSEred 1649215 
Betared 17 

F1.29 4.18297 

Conclude:  Reduced at least as good 

Table D.19. Continuous Model REDUCTION 18 (Final Model): 
Response: Effort 
Summary of Fit 

RSquare Adj 0.61728 
Root Mean Sq Error 245.507 
Mean of Response 408.3 
Observations 48 

Effect Test Sum of 
Source Nparm     DF Squares     F Ratio    Prob>F 
Size I      28254.3 0.4688 0.4986 
schedule I       191769 3.1816 0.0843 
AC I       319078 5.2938 0.0283 
RV I       259527 4.3058 0.0464remove 
TC I       367710 6.1006 0.0192 
LE I       303311 5.0322 0.0322 
SL I       105195 1.7453 0.1961 
RSL I       510375 8.4676 0.0066 
MPE I       470802 7.811 0.0088 
size tc I       535875 8.8907 0.0055 
size si I       571404 9.4801 0.0043 
size rsl I       433843 7.1979 0.0116 
size/sched I       425029 7.0516 0.0124 
TC*Size I       645251 10.7053 0.0026 
SL*Size I       591909 9.8203 0.0038 
RSL*Size I       479071 7.9482 0.0083 

Whole-Model Test 
Analysis of Variance Sum of Mean 
Source DF           Squares Square       F Ratio 
Model 16 553348 I       345843 5.7379 
Error 31   186849( D        60274 Prob>F 
C Total 47 740197( D                   <.0001 

SSEfull 1649215 Test Stat 3.98871 
Betafull 17 
dffull 30 F1.30 4.17089 
SSEred 1868490 
Betared 16 Conclude:  Reduced at least as good 
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Appendix E. Correlation Matrices 

Table E.l. Correlations of the Categorical Model 

Variable 
Norm_siz 
SLOC_N 
SLOC_R 
Sched 
AC_H 
RV_L 
RV_H 
TC_H 
PE_L 
PEJH 
LE_L 
LE_H 
SL_H 
RSL_H 
MPE_L 
MPE_H 
AT_L 
AT_H 
language 
sizeA0.75 
achp 
rvlp 
tchp 
pelp 
lelp 
atlp 
athp 

Norm_siz 
1 

0.8849 
0.3731 

-0.1785 
-0.1963 
0.0665 

-0.1192 
-0.0574 
-0.2185 
0.3091 

-0.2793 
0.1008 
0.0138 
0.0597 

-0.1365 
-0.0452 
0.2148 
0.0384 
0.1215 
0.9907 
0.4434 
0.7353 
0.5546 
0.3431 

-0.0715 
0.5764 
0.5108 

SLOC_N   SLOC_R 

1 
-0.0949 
-0.1056 
-0.1558 
0.1133 

-0.0633 
-0.0547 
-0.1757 
0.3828 

-0.1977 
-0.0074 

-0.042 
0.1535 

-0.09 
-0.1494 
0.1627 
0.0016 

-0.0646 
0.8753 
0.3949 
0.7134 
0.4938 
0.3987 

0.005 
0.5933 
0.3332 

1 
-0.1811 
-0.0793 
-0.0352 
-0.1161 
0.0134 

-0.1412 
-0.0987 
-0.1751 
0.2062 
0.1485 

-0.1678 
-0.1008 
0.1889 
0.0539 
0.1168 
0.4254 
0.3707 
0.2048 
0.1851 
0.2449 

-0.0947 
-0.1483 
0.0062 
0.4581 

Sched 

1 
0.3117 
0.0905 

0.135 
0.2982 
0.3285 

-0.0522 
-0.1928 
0.2629 
0.4648 

-0.4356 
0.1199 
0.1593 

-0.0379 
0.1569 
-0.115 
-0.202 
0.0441 

-0.0655 
-0.0217 

0.055 
-0.12 

-0.1195 
-0.0413 

AC_H RV L RV H 

1 
0.2374 

-0.0485 
0.0512 

-0.0999 
-0.1434 

0.276 
-0.0427 
0.4298 

-0.3322 
0.1535 
0.4592 

-0.0996 
0.114 

0.2097 
-0.1972 
0.5975 
0.0043 

-0.0784 
-0.2935 
0.2274 

-0.2257 
0.079 

1 
-0.4445 
0.3926 

0.501 
-0.0783 
0.0512 

-0.1642 
-0.1315 
0.3741 

-0.1827 
0.199 

-0.0682 
0.3518 
0.3036 
0.0459 
0.1724 
0.5843 
0.2932 
0.3814 

0.017 
0.0814 
0.1923 

1 
-0.0713 
-0.3014 
-0.0431 
0.4761 

-0.3979 
0.2003 

-0.0609 
0.5053 

-0.5325 
-0.1733 
-0.4257 
-0.1374 
-0.1121 
-0.0977 
-0.2597 
-0.0218 
-0.2061 
0.4186 

-0.1301 
-0.2949 

Variable 
TC_H 
PE_L 
PE_H 
LE_L 
LE_H 
SL_H 
RSL_H 
MPEJ. 
MPE_H 

TC_H 
1 

0.3842 
-0.3423 

0.045 
-0.199 

-0.0426 
0.3373 

-0.2753 
0.2551 

PE_L 

1 
-0.4096 
-0.1936 
0.0118 

-0.2072 
0.0814 

-0.0074 
-0.0806 

PE H 

1 
-0.3215 
0.3735 

-0.0783 
-0.2874 
-0.0971 
-0.0654 

LE L 

1 
-0.8607 
-0.1412 
0.3322 
0.6059 

-0.3588 

LE H SLJH       RSL_H 

1 
0.2898 

-0.5573 
-0.5109 
0.4315 

1 
-0.5406 
0.0463 
0.2898 

1 
-0.2504 
-0.1331 
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AT_L 0.1827 0.109 0.0412 -0.1535 0.0864 -0.2972 0.0171 
AT_H 0.081 0.0918 -0.1602 -0.401 0.3478 0.3518 0.0925 
language -0.044 0.1604 0.0626 0.0097 0.0569 -0.0697 -0.2712 
sizeA0.75 -0.0901 -0.2615 0.35 -0.2882 0.1277 0.0156 0.0562 
achp -0.0614 -0.3689 0.2297 -0.0399 0.1678 0.396 -0.2434 
rvlp 0.184 0.0932 0.1764 -0.1666 -0.0516 -0.0303 0.2754 
tchp 0.645 0.1586 -0.1964 -0.002 -0.2614 -0.0823 0.3253 
pelp 0.2909 0.6839 -0.2801 -0.2211 -0.1169 -0.268 0.3275 
lelp 0.1616 -0.2537 -0.2585 0.8042 -0.6921 -0.0717 0.3458 
atlp 0.177 0.1006 0.0794 -0.111 -0.1029 -0.2908 0.2006 
athp -0.1732 -0.2006 0.1217 -0.3605 0.3396 0.3491 -0.059 

Variable MPE_L MPEJH AT_L AT_H language sizeA0.75 achp 
MPE_L 1 
MPE_H -0.6304 1 
AT_L -0.0545 0.0864 1 
AT_H -0.504 0.5284 -0.504 1 
language 0.2621 -0.0316 0.2353 -0.1866 1 
sizeA0.75 -0.153 -0.0332 0.1979 0.0474 0.1063 1 
achp -0.1015 0.4276 -0.0543 0.2149 0.2356 0.4898 1 
rvlp -0.2447 0.0732 0.1962 0.1517 0.2191 0.7074 0.4342 
tchp -0.1312 -0.0344 0.3198 -0.1028 0.1336 0.5127 0.1629 
pelp -0.1107 -0.2222 0.2838 -0.0156 0.0029 0.2975 -0.2471 
lelp 0.3987 -0.2132 -0.0159 -0.3363 -0.1435 -0.0444 0.1674 
atlp 0.0189 -0.1464 0.7506 -0.3783 0.1706 0.525 -0.097 
athp -0.3491 0.3713 -0.3491 0.6928 0.0472 0.544 0.6196 

Variable rvlp tchp pelp lelp atlp athp 
rvlp 1 
tchp 0.6614 1 
pelp 0.5337 0.5652 1 
lelp -0.0505 0.1733 -0.1864 1 
atlp 0.5084 0.5957 0.5702 -0.005 1 
athp 0.4237 0.0213 -0.0938 -0.2693 -0.2621 1 

Table E.2. Correlations of the Continuous Model 

Variable 
language 
Size 

language  Si 
1 

0.1271 

ze           Effort         SLOCN    SI 

1 

LOC R    schedule   Al r-v 

Effort 0.0029 0.4857 1 
SLOCN 
SLOCR 

-0.0591 
0.4271 

0.8855 
0.3752 

0.4575 
0.1846 

1 
-0.0914 1 

schedule -0.1024 -0.1615 0.0556 -0.0927 -0.172 1 
AC 
RV 

0.2408 
-0.3415 

0.0733 
-0.0124 

0.0729 
0.0611 

0.1163 
0.0738 

-0.0537 
-0.1692 

0.0208 
-0.2948 

1 
-0.2398 

TC -0.0522 -0.044 0.1166 -0.0277 -0.0011 0.2428 -0.1075 
PE 0.2033 -0.3659 -0.2291 -0.3766 -0.0267 -0.0713 -0.147 
LE 0.0159 -0.2887 -0.1471 -0.1846 -0.2304 -0.0943 0.0311 
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SL -0.0715 -0.0708 0.2317 -0.0799 0.0301 0.4995 0.1361 
RSL -0.2485 -0.0177 -0.1293 0.0641 -0.1539 -0.4356 -0.2212 
MPE 0.0439 -0.2363 -0.2176 -0.1138 -0.2807 0.0587 -0.3258 

ATS 0.1948 0.2625 -0.0129 0.2735 -0.028 -0.1283 -0.1085 
size ac 0.1304 0.9617 0.5121 0.8594 0.3484 -0.1728 0.2531 
size rv 0.0297 0.9672 0.5024 0.892 0.2867 -0.2307 -0.0039 
size tc 0.1152 0.9916 0.5232 0.8773 0.3749 -0.1806 0.0826 
size pe 0.1058 0.9839 0.5232 0.8618 0.3854 -0.2096 0.0561 
size le 0.0935 0.9845 0.5203 0.8851 0.3417 -0.1971 0.0783 
size si 0.122 0.9705 0.5435 0.8437 0.3987 -0.1246 0.1571 
size rsl 0.0913 0.991 0.4985 0.8871 0.3508 -0.2062 0.0722 
size mpe 0.0817 0.9612 0.4868 0.8904 0.2738 -0.1744 -0.0165 
size ats 0.1116 0.9874 0.4824 0.8971 0.318 -0.1919 0.0529 
size/sched 0.101 0.8938 0.3733 0.7239 0.4679 -0.4396 -0.0271 

ssA75 0.1002 0.8864 0.3858 0.7231 0.4548 -0.4994 0.0037 

sizeA.75 0.1113 0.99 0.5092 0.8753 0.3724 -0.1855 0.0944 

Variable RV             TC              PE              LE              SL              RSL           MPE 
RV 1 
TC 0.1303 1 
PE -0.0493 0.2606 1 
LE 0.4523 0.3713 0.5203 1 
SL -0.2264 0.1186 -0.1298 -0.1687 1 
RSL 0.5346 0.4904 0.1609 0.4214 -0.105 1 
MPE 0.3232 0.027 0.4815 0.7202 -0.1551 0.122 1 
ATS 0.2124 0.0005 0.027 0.1151 -0.2135 0.0286 0.2238 
size ac -0.0437 -0.1082 -0.4596 -0.3322 -0.0272 -0.0548 -0.3335 
size rv 0.1972 -0.0071 -0.3374 -0.1874 -0.1505 0.0934 -0.1503 
size tc 0.0154 -0.0298 -0.3894 -0.2863 -0.0757 0.0047 -0.2526 
size pe 0.0349 -0.034 -0.3221 -0.2646 -0.0983 0.0191 -0.2246 
size le 0.0617 -0.0275 -0.372 -0.2244 -0.1021 0.032 -0.1981 
size si -0.0574 -0.0864 -0.4439 -0.3523 0.0668 -0.0601 -0.3113 
size rsl 0.0379 -0.0431 -0.3889 -0.2788 -0.0905 0.0397 -0.2453 
size mpe 0.1005 -0.0477 -0.341 -0.1846 -0.1345 0.0314 -0.0598 
size ats 0.0497 -0.0357 -0.3643 -0.2572 -0.1166 0.0131 -0.1994 
size/sched 0.1264 -0.0087 -0.2103 -0.2051 -0.1944 0.1499 -0.2545 
ssA.75 0.1388 -0.0507 -0.2618 -0.2252 -0.209 0.1712 -0.2803 
sizeA.75 0.0015 -0.077 -0.4136 -0.3126 -0.0733 -0.0186 -0.2634 

Variable ATS          size ac      size rv       size tc       size pe      size le       size si 
ATS 1 
size ac 0.1941 1 
size rv 0.3432 0.9249 1 
size tc 0.2542 0.9776 0.972 1 
size pe 0.2617 0.9656 0.9749 0.9946 1 
size le 0.2777 0.9711 0.9799 0.9962 0.994 1 
size si 0.1647 0.9855 0.9256 0.9807 0.9687 0.9696 1 
size rsl 0.2591 0.9747 0.9773 0.9982 0.9941 0.9963 0.9758 
size mpe 0.321 0.9296 0.9735 0.9719 0.974 0.9829 0.9335 
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size ats 0.3739 0.9528 0.9826 0.9881 0.9847 0.9887 0.9516 
size/sched 0.3507 0.831 0.9097 0.8872 0.9036 0.886 0.8303 
ssA75 0.3187 0.8561 0.9085 0.8951 0.9111 0.8964 0.8465 

sizeA.75 0.2391 0.9829 0.9666 0.9983 0.9922 0.9938 0.9851 

Variable size rsl      size mpe   size ats     size/sched ss ;A.75        sizeA75 
size rsl 1 
size mpe 0.974 1 
size ats 0.9896 0.9769 1 
size/sched 0.8955 0.848 0.9027 1 
ssA.75 0.9043 0.8578 0.9005 0.9886 1 
sizeA.75 0.9974 0.97 0.9848 0.881 0.8929 1 
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Appendix F. Comparison of Input Requirements for Popular Models vs. Available Inputs 

Table F.l. Model Input Comparison for Record Number 23-1 
(Shaded areas are where the records have reported parameters) 

Variable Sage PRICE-S SASET REVIC Softcost 
Amount of Travel XX XX 

Application Complexity XX XX XX 

Automated Tool Support xx XX XX XX XX 

Average Staffing Level XX 

Code Delivery Requirements XX 

Common SLOC XX XX XX 

Concurrent H/W Development XX 

Contract Type XX 

COTS S/W XX 

Customer Experience XX 

Database Complexity XX 

Database size XX 

Development Methods Experience XX XX XX 

Development Model XX 

Development Standard XX 

Development System Experience XX XX XX XX 

Development System Volitility XX XX XX 

Development team XX 

Development Year XX 

Developoment System Volitility XX 

Display Requirements XX XX XX 

Embedded Development System XX 

H/W constraints XX 

H/W experience XX 

Host Virtual System XX XX 

Inherent Difficulty of Application XX XX 

Level of Complexity XX XX 

Lifecycle phase XX XX 

Man Interaction XX 

Memory Constraints XX XX XX XX XX 

Modern Practices Experience XX XX XX XX 

Modularity of S/W XX 

Months in Development XX 

Mulitiple Site Development XX XX XX XX XX 

New SLOC XX XX XX 

Number Customer Locations XX 

Number of CSCI Interfaces XX 

Number of S/W config items XX 

Number of Shifts XX 

Number of Workstation types XX 
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Operating Evironment XX 

Organizational Interface Complexity XX 

Peak Staffing XX 

Percent of Microcode XX 

Personnel Capability xx XX XX XX 

Personnel Experience XX XX XX XX 

Personnel Resources XX 

Productivity Factor XX 

Programming Language XX XX XX 

Quality Assurance Level xx XX 

Quality Assurance Level XX 

Real Time XX XX XX 

Rehosting Requirements XX XX XX XX XX 

Requirements Volitility XX XX XX XX 

Resource Dedication XX XX XX 

Resources/Support Location XX XX XX 

Reusability Requirements XX XX XX 

Reuse Impact XX 

Reused SLOC XX XX XX 

S/W documentation XX 

S/W interfaces XX 

S/W language complexity XX 

S/W requirements XX 

Schedule XX 

Scope of Support XX 

Security Level XX XX XX XX 

Software interfaces XX 

Specification Level XX XX XX 

System Architecture XX 

System Requirements XX 

Target System Experience XX XX 

Target Virtual System Experience XX XX 

Team Programmin Experience XX 

Team Programming Language Experience XX XX XX 

Technology Impacts XX 

Terminal Responses XX 

Test Level XX XX XX XX 

Timing Constraints XX XX XX XX XX 

Turnaround Time XX XX 

Use of Peer Reviews XX 

User Involvement XX 

Table F.2. Model Input Comparison for Record Number 23-2 

(Shaded areas are where the records have reported parameters) 

Variable Sage PRICE-S SASET REVIC Softcost 
Amount of Travel 
Application Complexity 
Automated Tool Support xx 
Average Staffing Level 

XX XX 

XX XX XX 

XX XX XX XX 

XX 
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Code Delivery Requirements 
Common SLOC 
Concurrent H/W Development 
Contract Type 
COTS S/W 
Customer Experience 
Database Complexity 
Database size 
Development Methods Experience 
Development Model 
Development Standard 
Development System Experience 
Development System Volitility 
Development team 
Development Year 
Developoment System Volitility 
Display Requirements 
Embedded Development System 
H/W constraints 
H/W experience 
Host Virtual System 
Inherent Difficulty of Application 
Level of Complexity 
Lifecycle phase 
Man Interaction 
Memory Constraints 
Modem Practices Experience 
Modularity of S/W 
Months in Development 
Mulitiple Site Development 
New SLOC 
Number Customer Locations 
Number of CSCI Interfaces 
Number of S/W config items 
Number of Shifts 
Number of Workstation types 
Operating Evironment 
Organizational Interface Complexity 
Peak Staffing 
Percent of Microcode 
Personnel Capability 
Personnel Experience 
Personnel Resources 
Productivity Factor 
Programming Language 
Quality Assurance Level 
Quality Assurance Level 
Real Time 
Rehosting Requirements 

xx xx        xx 

xx 

xx 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX XX XX 

XX 

XX 

XX XX XX XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX XX 

XX 

XX 

XX 

XX 

XX XX 

XX 

XX XX 

XX 

XX 

XX XX 

XX XX XX XX XX 

XX XX 

XX 

XX 

XX 

XX 

XX XX XX XX XX 

XX XX 

XX 

XX 

XX 

XX 

XX 

XX XX XX XX 

XX XX 

XX 

XX 

XX XX 

XX XX XX 

XX 

XX 

XX 

XX XX XX 

XX XX XX XX XX 
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Requirements Volitility XX XX XX XX 

Resource Dedication XX XX XX 

Resources/Support Location XX XX XX 

Reusability Requirements XX XX XX 

Reuse Impact XX 

Reused SLOC XX XX XX 

S/W documentation XX 

S/W interfaces XX 

S/W language complexity XX 

S/W requirements XX 

Schedule XX 

Scope of Support XX 

Security Level XX XX XX XX 

Software interfaces XX 

Specification Level XX XX XX 

System Architecture XX 

System Requirements XX 

Target System Experience XX XX 

Target Virtual System Experience XX XX 

Team Programmin Experience XX 

Team Programming Language Experience XX XX XX 

Technology Impacts XX 

Terminal Responses XX 

Test Level XX XX XX XX 

Timing Constraints XX XX XX XX XX 

Turnaround Time XX XX 

Use of Peer Reviews XX 

User Involvement XX 

Variable 

Table F.3. Model Input Comparison for Record Number 42-1 
(Shaded areas are where the records have reported parameters) 

 Sage PRICE-S SASET REVIC Softcost 
Amount of Travel 
Application Complexity 
Automated Tool Support 
Average Staffing Level 
Code Delivery Requirements 
Common SLOC 
Concurrent H/W Development 
Contract Type 
COTS S/W 
Customer Experience 
Database Complexity 
Database size 
Development Methods Experience 
Development Model 
Development Standard 
Development System Experience 
Development System Volitility 

xx 

XX XX 

XX XX XX 

XX XX XX XX 

XX 

XX XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX XX 

XX XX 
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Development team 
Development Year 
Developoment System Volitility 
Display Requirements 
Embedded Development System 
H/W constraints 
HAW experience 
Host Virtual System 
Inherent Difficulty of Application 
Level of Complexity 
Lifecycle phase 
Man Interaction 
Memory Constraints 
Modern Practices Experience 
Modularity of S/W 
Months in Development 
Mulitiple Site Development 
New SLOC 
Number Customer Locations 
Number of CSCI Interfaces 
Number of S/W config items 
Number of Shifts 
Number of Workstation types 
Operating Evironment 
Organizational Interface Complexity 
Peak Staffing 
Percent of Microcode 
Personnel Capability 
Personnel Experience 
Personnel Resources 
Productivity Factor 
Programming Language 
Quality Assurance Level 
Quality Assurance Level 
Real Time 
Rehosting Requirements 
Requirements Volitility 
Resource Dedication 
Resources/Support Location 
Reusability Requirements 
Reuse Impact 
Reused SLOC 
S/W documentation 
S/W interfaces 
SAA/ language complexity 
SA/V requirements 
Schedule 
Scope of Support 
Security Level 

xx 

xx 
xx 

xx 
xx 

xx 

xx 
xx 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX XX 
XX XX 

XX 

XX XX 

XX 

XX XX 
XX XX XX 

XX XX 
XX XX 
XX XX 
XX 

XX XX 
XX 
XX 
XX 
XX 

XX 

XX 

XX XX 

XX 

XX 
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Software interfaces XX 

Specification Level XX XX XX 

System Architecture XX 

System Requirements XX 

Target System Experience XX XX 

Target Virtual System Experience XX XX 

Team Programmin Experience XX 

Team Programming Language Experience XX XX XX 

Technology Impacts XX 

Terminal Responses XX 

Test Level XX XX XX XX 

Timing Constraints XX XX XX XX XX 

Turnaround Time XX XX 

Use of Peer Reviews XX 

User Involvement XX 

Variable 

Table F.4. Model Input Comparison for Record Number 44-1 
(Shaded areas are where the records have reported parameters) 

Sage PRICE-S SASET REVIC Softcost 
Amount of Travel XX XX 

Application Complexity XX XX XX 

Automated Tool Support XX XX XX XX XX 

Average Staffing Level XX 

Code Delivery Requirements XX 

Common SLOC XX XX XX 

Concurrent H/W Development XX 

Contract Type XX 

COTS S/W XX 

Customer Experience XX 

Database Complexity XX 

Database size XX 

Development Methods Experience XX XX XX 

Development Model XX 

Development Standard XX 

Development System Experience XX XX XX XX 

Development System Volitility XX XX XX 

Development team XX 

Development Year XX 

Developoment System Volitility XX 

Display Requirements XX XX XX 

Embedded Development System XX 

H/W constraints XX 

H/W experience XX 

Host Virtual System XX XX 

Inherent Difficulty of Application XX XX 

Level of Complexity XX XX 

Lifecycle phase XX XX 

Man Interaction XX 

Memory Constraints XX XX XX XX XX 

145 



Modern Practices Experience XX XX XX XX 

Modularity of S/W XX 

Months in Development XX 

Mulitiple Site Development XX XX XX XX XX 

New SLOC XX XX XX 

Number Customer Locations XX 

Number of CSCI Interfaces XX 

Number of S/W config items XX 

Number of Shifts XX 

Number of Workstation types XX 

Operating Evironment XX 

Organizational Interface Complexity XX 

Peak Staffing XX 

Percent of Microcode XX 

Personnel Capability XX XX XX XX 

Personnel Experience XX XX XX XX 

Personnel Resources XX 

Productivity Factor XX 

Programming Language XX XX XX 

Quality Assurance Level XX XX 

Quality Assurance Level XX 

Real Time XX XX XX 

Rehosting Requirements XX XX XX XX XX 

Requirements Volitility XX XX XX XX 

Resource Dedication XX XX XX 

Resources/Support Location XX XX XX 

Reusability Requirements XX XX XX 

Reuse Impact XX 

Reused SLOC XX XX XX 

S/W documentation XX 

S/W interfaces XX 

S/W language complexity XX 

S/W requirements XX 

Schedule XX 

Scope of Support XX 

Security Level XX XX XX XX 

Software interfaces XX 

Specification Level XX XX XX 

System Architecture XX 

System Requirements XX 

Target System Experience XX XX 

Target Virtual System Experience XX XX 

Team Programmin Experience XX 

Team Programming Language Experience XX XX XX 

Technology Impacts XX 

Terminal Responses XX 

Test Level XX XX XX XX 

Timing Constraints XX XX XX XX XX 

Turnaround Time XX XX 
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Use of Peer Reviews 
User Involvement 

xx 
xx 

Table F.5. Model Input Comparison for Record Number 50-1 
(Shaded areas are where the records have reported parameters) 

Variable Sage PRICE-S SASET REVIC Softcost 
Amount of Travel 
Application Complexity 
Automated Tool Support 
Average Staffing Level 
Code Delivery Requirements 
Common SLOC 
Concurrent H/W Development 
Contract Type 
COTS S/W 
Customer Experience 
Database Complexity 
Database size 
Development Methods Experience 
Development Model 
Development Standard 
Development System Experience 
Development System Volitility 
Development team 
Development Year 
Developoment System Volitility 
Display Requirements 
Embedded Development System 
H/W constraints 
H/W experience 
Host Virtual System 
Inherent Difficulty of Application 
Level of Complexity 
Lifecycle phase 
Man Interaction 
Memory Constraints 
Modern Practices Experience 
Modularity of S/W 
Months in Development 
Mulitiple Site Development 
New SLOC 
Number Customer Locations 
Number of CSCI Interfaces 
Number of S/W config items 
Number of Shifts 
Number of Workstation types 
Operating Evironment 
Organizational Interface Complexity 
Peak Staffing 

xx xx 
xx xx xx 

xx        xx xx xx xx 
xx 

XX 

XX     XX    XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX     XX XX 

XX 

XX 

XX     XX XX     XX 

XX XX     XX 

XX 

XX 

XX 

XX     XX XX 

XX 

XX 

XX 

XX XX 

XX XX 

XX     XX 

XX     XX 

XX 

XX    XX     XX    XX     XX 

XX     XX XX     XX 

XX 

XX 

XX     XX     XX    XX     XX 

XX     XX    XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 
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Percent of Microcode XX 

Personnel Capability XX XX XX XX 

Personnel Experience XX XX XX XX 

Personnel Resources XX 

Productivity Factor XX 

Programming Language XX XX XX 

Quality Assurance Level XX XX 

Quality Assurance Level XX 

Real Time XX XX XX 

Rehosting Requirements XX XX XX XX XX 

Requirements Volitility XX XX XX XX 

Resource Dedication XX XX XX 

Resources/Support Location XX XX XX 

Reusability Requirements XX XX XX 

Reuse Impact XX 

Reused SLOC XX XX XX 

S/W documentation XX 

S/W interfaces XX 

S/W language complexity XX 

S/W requirements XX 

Schedule XX 

Scope of Support XX 

Security Level XX XX XX XX 

Software interfaces XX 

Specification Level XX XX XX 

System Architecture XX 

System Requirements XX 

Target System Experience XX XX 

Target Virtual System Experience XX XX 

Team Programmin Experience XX 

Team Programming Language Experience XX XX XX 

Technology Impacts XX 

Terminal Responses XX 

Test Level XX XX XX XX 

Timing Constraints XX XX XX XX XX 

Turnaround Time XX XX 

Use of Peer Reviews XX 

User Involvement XX 

Table F.6. Model Input Comparison for Records 50-2, 5, 8,9,10,11,12,13, and 15 
(Shaded areas are where the records have reported parameters) 

Variable Sage PRICE-S SASET REVIC Softcost 
Amount of Travel 
Application Complexity 
Automated Tool Support xx 
Average Staffing Level 
Code Delivery Requirements xx 
Common SLOC xx xx        xx 
Concurrent H/W Development xx 

XX XX 

XX XX XX 

XX XX XX XX 

XX 
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Contract Type 
COTS S/W 
Customer Experience 
Database Complexity 
Database size 
Development Methods Experience 
Development Model 
Development Standard 
Development System Experience 
Development System Volitility 
Development team 
Development Year 
Developoment System Volitility 
Display Requirements 
Embedded Development System 
H/W constraints 
H/W experience 
Host Virtual System 
Inherent Difficulty of Application 
Level of Complexity 
Lifecycle phase 
Man Interaction 
Memory Constraints 
Modern Practices Experience 
Modularity of S/W 
Months in Development 
Mulitiple Site Development 
New SLOC 
Number Customer Locations 
Number of CSCI Interfaces 
Number of S/W config items 
Number of Shifts 
Number of Workstation types 
Operating Evironment 
Organizational Interface Complexity 
Peak Staffing 
Percent of Microcode 
Personnel Capability 
Personnel Experience 
Personnel Resources 
Productivity Factor 
Programming Language 
Quality Assurance Level 
Quality Assurance Level 
Real Time 
Rehosting Requirements 
Requirements Volitility 
Resource Dedication 
Resources/Support Location 

xx 
xx 

xx        xx xx 
xx 

xx 
xx 
xx 

xx 
XX XX XX XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX XX 

XX 

XX 

XX 

XX 

XX XX 

XX 

XX XX 

XX 

XX 

XX XX 

XX XX XX XX XX 

XX XX 

XX 

XX 

XX 

XX 

XX XX XX XX XX 

XX XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX XX XX XX 

XX XX 

XX 

XX 

XX XX 

XX XX XX 

XX 

XX 

XX 

XX XX XX 

XX XX XX XX XX 

XX XX XX XX 

XX XX XX 

XX XX XX 
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Reusability Requirements XX XX XX 

Reuse Impact XX 

Reused SLOC XX XX XX 

S/W documentation XX 

S/W interfaces XX 

S/W language complexity XX 

S/W requirements XX 

Schedule XX 

Scope of Support XX 

Security Level XX XX XX XX 

Software interfaces XX 

Specification Level XX XX XX 

System Architecture XX 

System Requirements XX 

Target System Experience XX XX 

Target Virtual System Experience XX XX 

Team Programmin Experience XX 

Team Programming Language Experience XX XX XX 

Technology Impacts XX 

Terminal Responses XX 

Test Level XX XX XX XX 

Timing Constraints XX XX XX XX XX 

Turnaround Time XX XX 

Use of Peer Reviews XX 

User Involvement XX 
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