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AFIT/GEE/ENV/01M-02 

ABSTRACT 

Conventional technologies for the treatment of groundwater contaminated with 

chlorinated solvents have limitations that have motivated development of innovative 

technologies. One such technology currently under development involves using 

palladium-on-alumina (Pd/Al) as a catalyst to promote dechlorination. Pd/Al catalyst 

may be used in-well as part of a re-circulating horizontal flow treatment well (HFTW) 

system. An HFTW system involves two or more dual-screened wells, with in-well 

reactors, to capture and treat contaminated groundwater without the need to pump the 

water to the surface. 

In this study, objective and fitness functions, based on system costs and TCE 

concentration requirements, were developed to optimize a dual-well HFTW system with 

in-well Pd/Al reactors in a two-aquifer remediation scenario. A genetic algorithm (GA) 

was coupled with a three dimensional numerical model of contaminant fate and transport 

to determine optimized HFTW control parameters (well location, pumping rate, and 

reactor size). The GA obtained a solution within the specified constraints, but the 

solution was an artificial solution, as contaminated groundwater in one of the two 

aquifers received no treatment. Based on these results, new objective and fitness 

functions were developed in an effort to determine the most cost effective solution to 

remove contaminant mass from the aquifer. The solution arrived at using this approach, 

while resulting in minimized values of cost per contaminant mass destroyed, produced 

unacceptably high downgradient contaminant concentration levels. We conclude that by 

specifying that only two wells could be used in the HFTW system, we overconstrained 

the problem and that a multi-well HFTW solution is required. 



OPTIMIZATION OF PALLADIUM-CATALYZED IN SITU DESTRUCTION 

OF TRICHLOROETHYLENE-CONTAMINATED GROUNDWATER 

USING A GENETIC ALGORITHM 

1.0 INTRODUCTION 

1.1 MOTIVATION 

Releases of toxic chemicals by industry over the years have greatly burdened our 

environment and threatened human health and ecosystems. This problem became evident in the 

1970s when numerous catastrophes such as Love Canal in New York and The Valley of Drums 

in Kentucky were discovered. In response, Congress passed the Comprehensive Environmental 

Response, Compensation, and Liability Act (CERCLA) in 1980 as a means to enforce cleanup of 

hazardous waste sites (LaGrega et al., 1994). The law authorized the U.S. Environmental 

Protection Agency (EPA) to coerce responsible parties to clean up contaminated sites. It also 

allowed the EPA to clean up sites and then receive reimbursement from the responsible parties 

(US General Accounting Office, 1999). The law is also known as Superfund, a term used to 

describe the funds designated for cleanup of some abandoned sites. At the time the law was 

passed, Congress and the American public did not realize the magnitude of the contamination 

and expected the sites to be cleaned up quickly (LaGrega et al., 1994). 

CERCLA established the National Priorities List (NPL), a list which contains the most 

heavily polluted sites across the nation and which is updated annually by the EPA. Once a 

facility is assigned to the NPL it must be cleaned up in accordance with CERCLA's procedures 

and standards. As of December 2000 the NPL contained 1,229 sites (US EPA, 2000), and a 

survey of the EPA database by the United States General Accounting Office (US GAO) in 1998 



showed that another 1,789 sites are potential candidates for the NPL (US GAO, 1998). 

However, these sites do not represent all the hazardous waste sites because many contaminated 

sites are not eligible for the NPL. According to the National Research Council (NRC), there are 

between 300,000 and 400,000 contaminated sites (NRC, 1994). 

Of the sites on the NPL, 120 are the responsibility of the Department of Defense (DoD), 

of which the Air Force is responsible for 37 (DERP, 1998). In DoD, the cleanup of these sites, 

along with other contaminated sites, falls under the Defense Environmental Restoration Program 

(DERP). As of 1998, the Air Force was responsible for over 6,038 sites monitored under DERP. 

The cost for this cleanup is very high; DoD projects expenditures of approximately $1.3 billion 

yearly through FY01, of which approximately $300 million will be spent by the Air Force. 

According to the NRC, the EPA estimates that approximately 80% of the contaminated 

sites have contaminated groundwater (NRC, 1994). Because groundwater provides around one- 

third of our drinking water (Masters, 1997), its contamination poses great human health risks, 

which has lead to much research in groundwater remediation technologies. Trichloroethylene 

(TCE), a chemical used by industries as a degreaser and solvent, is the most frequently found 

contaminant at hazardous waste sites (NRC, 1994). TCE has also been used widely at DoD 

facilities, where numerous industrial processes take place, and groundwater contamination by 

TCE is also prevalent. TCE is a suspected human carcinogen (Masters, 1997) that may undergo 

a series of reactions, called reductive dechlorination, which transforms it, successively, into 

dichloroethylene (DCE), vinyl chloride, ethene, and ethane. Vinyl chloride is known to be a 

human carcinogen (Masters, 1997), but ethene and ethane are virtually harmless (Maymö-Gatell 

et al., 1999). 



Commonly employed methods used to contain contaminated groundwater plumes are 

pump-and-treat systems, funnel-and-gate systems, and natural attenuation. Of these, the most 

common method is pump-and-treat (NRC, 1994), which consists of pumping the contaminated 

groundwater to the surface, where it is treated using any of a number of different methods such 

as air stripping, carbon adsorption, or biological treatment (LaGrega et al., 1994). Such systems 

may incur great costs for pumping and for the disposal of hazardous waste that may be created 

from the water treatment. Another disadvantage of pump-and-treat systems is that pumping 

contaminated water to the surface also increases health risks for those who might be exposed to 

it. 

Funnel-and-gate systems are an emerging technology that use zero-valent metals 

(typically zero-valent iron) in a subsurface trench, the "gate," to remediate water contaminated 

with chlorinated solvents. The technology is implemented by directing the plume of 

contaminated groundwater towards the reactive trench using sheet pile walls or other 

impermeable barriers, the "funnel". However, the technology is limited to certain hydrogeologic 

conditions. For instance, due to limitations on the depth to which the trench and barriers may be 

placed, the contamination must be relatively shallow. Also, since the technology is passive, 

variations in the direction of groundwater flow over time may allow the contaminant plume to 

bypass the trench. Advantages of funnel-and-gate systems include low maintenance 

requirements and the fact that the contaminant is destroyed in situ, with the attendant cost and 

safety benefits (Ferland, 2000). 

Natural attenuation is the third commonly employed method of containing contaminated 

groundwater plumes. The US EPA defines natural attenuation as follows (US EPA 1999): 

The term "monitored natural attenuation" refers to the reliance on natural attenuation 
processes (within the context of a carefully controlled and monitored clean-up approach) 



to achieve site-specific remedial objectives within a time frame that is reasonable 
compared to other methods. The "natural attenuation processes" that are at work in such 
a remediation approach include a variety of physical, chemical, or biological processes 
that, under favorable conditions, act without human intervention to reduce the mass, 
toxicity, mobility, volume, or concentration of contaminants in soil and groundwater. 
These in situ processes include biodegradation, dispersion, dilution, sorption, 
volatilization, and chemical or biological stabilization, transformation, or destruction of 
contaminants. 

Monitored natural attenuation is currently an accepted method to control plumes of fuel 

hydrocarbons such as benzene, toluene, ethylbenzene, and xylene, which have all been shown to 

degrade readily in a subsurface environment (Wiedemeier et al., 1998). Unfortunately, 

chlorinated compounds undergo reductive dechlorination only under specific aquifer conditions 

and it is the EPA's view that "significant biodegradation of chlorinated solvents sufficient to 

achieve remediation objectives within a reasonable timeframe are anticipated to occur only in 

limited circumstances" (US EPA, 1999). The main cost associated with the technology is the 

monitoring of the site. Additional disadvantages of natural attenuation include longer time 

period to achieve goals, production of TCE daughter products, and hesitance by regulators and 

the public to accept the technology (Feng, 2000). 

Because of the limitations of these conventional technologies, as well as the desire to 

reduce cost and risks, new technologies are being developed. One new technology that has the 

potential to safely and cost-effectively treat chlorinated ethene-contaminated groundwater uses a 

horizontal flow treatment well (HFTW) system with in-well palladium reactors (Figure 1.1). 

This system consists of multiple wells, some of which pump in an upflow mode and others in a 

downflow mode. These wells contain palladium reactors, which when combined with dissolved 

hydrogen gas, degrade chlorinated contaminants (Ferland, 2000). The upflow/downflow 

configuration allows for multiple passes of contaminated water through the palladium reactors, 



which permits the attainment of very low contaminant concentration downgradient of the 

treatment system. McCarty et al. (1998) completed a field evaluation using an HFTW system at 

Edwards AFB, CA. In this study the HFTW system was implemented using bioremediation to 

treat TCE. McNab et al. (2000) conducted a field experiment at Lawrence Livermore National 

Laboratories (LLNL) using an in-well palladium reactor in a single dual-screened well to 

degrade TCE. Both experiments were successful in treating TCE contaminated groundwater. 

Advantages of an HFTW system using in-well palladium reactors include: (1) reduced risk and 

cost because the contaminants are not pumped to the surface, (2) decreased concern over 

formation of harmful products because the chlorinated contaminants are completely 

dechlorinated, and (3) active control of the contaminant plume (Ferland, 2000). The primary 

goal of employing in situ containment using an HFTW system would be to ensure that 

contaminant levels downgradient of the treatment system meet regulatory standards. A model to 

simulate groundwater flow and contaminant transport by an HFTW system has been developed 

(Christ et al., 1999). 
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system with in-well reactors (Ferland, 2000). 



Before such an innovative treatment technology can be widely implemented, project 

managers must be able to model and predict system performance under specific site conditions. 

Models are tools that can be used to help designers and project managers understand how a 

technology will perform under different site and operating conditions as well as quantify the 

costs of implementation. However, a number of the parameters associated with the technology, 

such as reactor size, distance between wells, and pumping rate, must be engineered to provide 

the most effective system. Optimization methods may be used to efficiently determine those 

parameter values that yield the "best" design. The optimization is performed through the use of 

an objective function, which is a mathematical representation of the design's objective. The 

objective function defines the "best" design. In many cases, the objective function will be cost, 

and the goal of the design will be to minimize cost by varying engineered parameters. Typically, 

there will also be constraints on the design. That is, for example, the design must minimize cost 

while assuring capture of the entire contaminant plume and/or attaining a specified contaminant 

concentration downgradient of the designed system. An optimization algorithm attempts to 

determine the combination of engineered parameters that minimizes/maximizes some objective 

function within specified constraints. 

Often, the optimization algorithm is used in conjunction with a fate-and-transport model. 

A fate-and-transport model is a mathematical model that represents the movement of the 

groundwater and the contaminant in the aquifer. While searching for the optimal solution, the 

optimization algorithm will specify potential solutions (or sets of parameter values). The fate- 

and-transport model will be used to determine contaminant distribution in time and space for 

each of these potential solutions. These distributions are then used by the optimization algorithm 

to quantify how well the solution meets the objective and/or constraints. 



1.2 RESEARCH OBJECTIVES 

(1) Develop a methodology for determining how to effectively implement palladium- 

catalyzed in situ remediation under given site conditions. 

1.3 SCOPE AND OVERVIEW 

This thesis research is limited to the numerical optimization of HFTW systems with in- 

well palladium reactors to implement in situ destruction of TCE-contaminated groundwater. 

TCE is the contaminant of interest because it is the most frequently found groundwater 

contaminant at Superfund sites and it is also prevalent at many Air Force bases.    The HFTW 

system with palladium-catalyzed reactors is the technology of interest because of its great 

potential, as demonstrated in recent field studies, as well as the other advantages of the 

technology discussed previously. 

In the following chapter we will further discuss the problem of TCE-contaminated 

groundwater, the technology, the fate-and-transport model used to simulate remediation by 

HFTW systems with in-well palladium reactors, and optimization methods. 



2.0 LITERATURE REVIEW 

2.1 OVERVIEW 

In this chapter, literature pertinent to the optimization of a horizontal flow 

treatment well (HFTW) system with in-well palladium reactors for degradation of TCE- 

contaminated groundwater will be reviewed. In the first section, the problem of TCE- 

contaminated groundwater is briefly described. In the second and third sections, the 

groundwater treatment technology and models that may be applied to simulate the 

technology, respectively, are presented. In the fourth section, optimization is defined and 

general information on the subject is provided. In the fifth section, optimization 

techniques, including an in-depth look at genetic algorithms, are discussed. Finally, in 

the last section, applications of groundwater remediation technology optimization are 

reviewed. 

2.2 PROBLEM 

TCE is a suspected human carcinogen (Masters, 1997: 183) and it is the most 

commonly found contaminant in groundwater (NRC, 1994: 26). TCE may undergo a 

series of reductive dechlorination reactions that transforms it, successively, into 

dichloroethylene (DCE), vinyl chloride, ethene, and ethane as shown in Figure 2.1. Vinyl 

chloride is known to be a human carcinogen (Masters, 1997: 183), but ethene and ethane 

are harmless products (Maymö-Gatell et al, 1999).   The EPA has set a drinking water 

maximum concentration limit, or maximum contaminant level (MCL), of 5 parts per 



billion (ppb) or ug/L for TCE and 2 ppb for vinyl chloride (Masters, 1997: 271) because 

of their threat to human health. 

H     H 

(trans-DCE) 

Figure 2.1 Reductive dechlorination of TCE to ethane. 

Currently three methods are primarily used to clean up groundwater contaminated 

with these chlorinated solvents. They are pump-and-treat, natural attenuation, and 

permeable reactive barriers. However, as discussed in Chapter 1, all these technologies 

have significant drawbacks that limit their use. Two of these limitations that must be 

overcome are incomplete dechlorination, which may result in accumulation of vinyl 

chloride, and extraction of contaminated groundwater to the surface, which increases risk 

and cost. Innovative technologies that reduce or eliminate these limitations are currently 

being investigated. One emerging technology that is the subject of recent research uses 

in-well palladium reactors to catalyze the reductive dehalogenation process. 

10 



2.3 TECHNOLOGY 

In this section information on the technology is presented. First, palladium- 

catalyzed reductive dehalogenation is presented through a discussion of laboratory and 

field experiments. This is followed by a description of a horizontal flow treatment well 

(HFTW) system. 

2.3.1 PALLADIUM CATALYZED REDUCTIVE DEHALOGENATION 

A catalyst is a substance that is used in a chemical reaction to change the speed of 

the reaction. The catalyst itself does not undergo a permanent change during the reaction 

and it is not consumed (Brown et al., 1997: 521). Palladium-catalyzed reductive 

dehalogenation is a chemical process where a chlorinated hydrocarbon contaminant (e.g. 

TCE) is degraded by reacting with dissolved hydrogen gas in the presence of a palladium 

catalyst. Lowry and Reinhard (1999) performed laboratory experiments that showed 

what appears to be a direct pathway from TCE to ethane (Figure 2.2) without the 

formation of any intermediate chlorinated products, such as DCE and vinyl chloride, 

when using a palladium-on-alumina (Pd-on-Al203 or Pd/Al) catalyst. The data obtained 

in the experiment were fitted using a pseudo-first order model; that is, the rate of 

degradation of TCE, and the rate of formation of ethane, was found to be proportional to 

the concentration of TCE (C) in the system, provided there was excess dissolved 

hydrogen. Pseudo-first order degradation can be represented by the mathematical 

expression: 

11 



— = -kC (2.1) 
dt 

where k is a first order rate constant. In fact, k is a function of hydrogen concentration, 

but since hydrogen is assumed to be in excess, k may be treated as a constant. Integration 

of Equation 1 yields: 

C(0 = C0e-w (2.2) 

where C0 represents the initial concentration of TCE. 

3T   trans-DCE- 

PCE  ►TCE ►   cii-DCE ►   VC ►ethane 

ki 
1,1-DCE' 

Figure 2.2. Palladium-based catalytic degradation pathways 
for chlorinated ethenes (Ferland, 2000). 

Lowry and Reinhard (1999) also performed an experiment using metallic 

palladium as the catalyst to determine if rapid dechlorination was due to the palladium or 

if the alumina support played a role. In this experiment they found that although 

intermediate degradation products were detected, they never exceeded 3-4% of the initial 

concentration of TCE. The intermediates that were formed were also quickly degraded to 

ethane. From these results, Lowry and Reinhard (1999) concluded that the mechanism 

occurring is a complete transformation of TCE to ethane at the surface of the palladium; 

that is, the TCE molecules are sorbed to the catalyst surface, where the chlorine atoms are 

replaced with hydrogen atoms. According to Lowry and Reinhard (1999), the absence of 

intermediates when using Pd/Al as the catalyst may be due to the effects of the alumina 

support, which may be where the intermediate molecules are sorbed. This may mean that 

12 



intermediates are not detected even if present because they remain sorbed to the catalyst. 

They also determined that the pseudo-first order model for degradation of TCE, and 

formation of ethane, when using the Pd/Al catalyst, provided a good fit for the data 

collected.   However, some deviation from first order behavior was observed; the model 

slightly under predicts TCE transformation at early times and over predicts it at later 

times. According to the authors, this may be due to a decrease in catalyst activity over 

the period of the experiment. 

2.3.2 LAWRENCE LIVERMORE NATIONAL LABORATORY FIELD 
EXPERIMENT 

In a field demonstration of the technology, McNab et al. (2000) constructed a 

dual-screened treatment well with an in-well Pd/Al reactor at the Lawrence Livermore 

National Laboratory (LLNL) in order to assess performance of the technology under field 

conditions and to identify optimal operating conditions. The site at LLNL was 

contaminated with different chlorinated hydrocarbons, of which TCE was the most 

prevalent at over 3600 ppb. Radioactive tritium was also present. The presence of 

tritium complicated the use of pump-and-treat technologies because of the need to 

dispose of the tritiated water if it was pumped aboveground. Natural attenuation of the 

TCE by reductive dehalogenation was not a possibility because the groundwater was 

aerobic. Permeable reactive barriers could not be used because the depth to the water 

table was 26 meters. The system used (Figure 2.3) included two catalyst beds of Pd/Al 

spheres, a hydrogen gas injection system, and a pumping system. Both catalyst columns 

were 15 cm in diameter, with lengths of 2.5 m and 2.4 m, respectively. Both columns 

13 



contained Pd/Al spheres consisting of 1% palladium metal by weight. The first column 

was packed with 30 kg of 0.32-cm nominal diameter spheres. The column volume was 

4.418 x 10"2 m3 and the media had a porosity of approximately 0.45. The second column 

was packed with 22 kg of 0.16-cm nominal diameter spheres. The column volume was 

4.241 x 10"2 m3 and the media had a porosity of approximately 0.56. According to 

McNab et al. (2000), the two different catalyst diameters were used as a compromise 

between removal efficiency, which is higher in the second column because of the greater 

surface area provided by smaller spheres, and the need to maintain a relatively low 

pressure drop across the columns. The contaminated water was pumped into the 

treatment well through the lower screen, where it was saturated with hydrogen gas before 

going through the catalyst beds. After passing through the catalyst beds, treated water 

was discharged into the aquifer from the upper well screen. 

14 
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Figure 2.3. Reactive well configuration using catalytic 
reductive dehalogenation (McNab et al., 2000). 

The field experiment was performed using two different operating cycles, four 

hours per day and eight hours per day. Results obtained for this field experiment were 

consistent with those obtained by Lowry and Reinhard (1999) in their laboratory 

experiments. When operating for four hours per day the system achieved over 99% 

removal efficiency of TCE with an effluent concentration of 0.4 to 0.8 ppb, well below 
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the 5 ppb limit set by the EPA, and vinyl chloride was not formed. However, when 

pumping for eight hours per day, the system only achieved a 93% removal efficiency 

with a TCE effluent concentration around 250 ppb and vinyl chloride was formed in the 

process, at concentrations from about 4 to 7 ppb. The system was operated at a pumping 

rate of 4 L/min (0.24 m3/d), which yielded residence times of 5 and 6 minutes within the 

first and second catalyst columns, respectively. Hydrogen was injected at a rate of 

approximately 120 mL/min (7200 cm3/d) at 3 atm pressure in order to maintain 

saturation. 

McNab et al. (2000) suspected that the catalyst would be deactivated as time went 

on. McNab and Ruiz (1998) had previously determined that deactivation could be 

reversed by periodically removing the hydrogen supply. After the system was shut down 

each day, the catalyst was regenerated by purging it with three pore volumes of non- 

hydrogenated groundwater and then draining it to expose the catalyst to the atmosphere 

(McNab et al., 2000). The columns were also purged with deionized water at the end of 

each week and were left exposed to the atmosphere over weekends. The authors 

concluded that during the eight hours per day operation the palladium catalyst was 

deactivated through extended use, though it could be regenerated by shutting down the 

system. By trial and error, the authors eventually determined that operating the system 

between five and six hours daily produced acceptable dechlorination results. 

Catalyst deactivation decreases the effectiveness of contaminant removal. 

Fortunately, it has been shown that catalyst deactivation during TCE dechlorination is 

completely reversible by different methods, such as purging with non-hydrogenated 
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water and atmospheric exposure, or by dosing with hypochlorite (McNab et al., 2000; 

Lowry and Reinhard, 2000). 

2.3.4 HORIZONTAL FLOW TREATMENT WELL SYSTEM 

As shown in Figure 1.1, an HFTW system consists of multiple treatment wells, 

some of which pump water in a downward direction alternating with wells pumping in an 

upward direction. Each treatment well contains a reactor that allows the contaminated 

water to be treated in situ, below the ground surface. In this study, the reactor consists of 

a palladium catalyst that, in the presence of dissolved hydrogen gas, degrades chlorinated 

contaminants. The upflow/downflow configuration allows for multiple passes of 

contaminated water through the reactors, permitting the attainment of very low 

contaminant concentrations downgradient of the treatment system (Ferland, 2000: 7). 

Note, to prevent short-circuiting of flow from the injection to the extraction screens of the 

same treatment well, HFTWs should be used either where there are two aquifers 

separated by an aquitard (Figure 2.4) or in an anisotropic aquifer where vertical hydraulic 

conductivity is much lower than horizontal hydraulic conductivity (Figure 2.5). As most 

aquifers exhibit hydraulic conductivity anisotropy, HFTWs should typically be 

appropriate for use (Domenico and Schwartz, 1998). Christ et al. (1999) developed a 

model to simulate groundwater flow induced by an HFTW system. In their analytical 

model they determine the amount of water that re-circulates through the treatment wells 

for specified pumping rates, well locations, and hydrologic conditions. 
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Figure 2.4: HFTW system operating in two aquifers. 
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Figure 2.5: HFTW system operating in single aquifer 
with vertical anisotropy. 

In a field study at Edwards AFB, CA, McCarty et al. (1998) demonstrated the use 

of an HFTW system. This site was selected for its near-ideal conditions: it contains a 

TCE-contaminated groundwater plume, a relatively shallow groundwater table, relatively 

few geological heterogeneities, and sufficient hydraulic conductivity (>10"3 cm/s). The 
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site also contained two aquifers, an unconfined 8-meter thick aquifer separated from a 

confined 5-meter thick aquifer by a 2-meter thick aquitard (Figure 2.4). Both aquifers 

were contaminated with 500 to 1200 ppb of TCE. McCarty et al. (1998) evaluated in situ 

cometabolic degradation of TCE in groundwater through toluene injection, an application 

of bioremediation. The study was performed over a period of 410 days using an HFTW 

system consisting of two wells working in an upflow/downflow configuration, as 

described previously. The wells were spaced 10 meters apart at an angle of 

approximately 67.5° to the direction of regional groundwater flow (Christ et al., 1999), as 

depicted in Figure 2.6. Treatment occurred in bioactive zones that formed outside the 

injection screens of the treatment wells (Figure 2.7). In this technology, the TCE is 

cometabolically biodegraded in the bioactive zones. Based on results from aquifer tests 

and model studies, initial pumping rates for both wells were selected to be 38 L/min (54.5 

m3/d). This rate was selected because it could be obtained without excessive drawdown 

in the upper aquifer or pressure change in the lower aquifer. Modeling showed that for 

the downflow well, approximately 75% of the water pumped came from re-circulation 

(from the upflow well), while the other 25% came from upgradient regional flow. For 

the upflow well, approximately 87% of the flow came from re-circulation and the other 

13% came from upgradient regional flow. At these pumping rates and distance between 

the wells, the model approximated a width of the plume captured of approximately 80 

meters and 66 meters in the upper and lower aquifers, respectively. The model also 

predicted a removal of approximately 83% of TCE with each pass through a bioactive 

zone, and an estimated 95-97% overall removal, comparing upgradient and downgradient 

concentrations. The reason overall removal rate was greater than single-pass removal 
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was because of re-circulation of treated water in the HFTW system. In the final stage of 

the actual experiment, the flow rates were set to 25 L/min (36 m3/d) in each well instead 

of 38 L/min. Using mass balance, the experimenters were able to determine that the 

actual recycle rate was 91.5% for the downflow well and 84% for the upflow well. TCE 

removal efficiency was determined to be 86% for a single pass and approximately 97- 

98% for the system overall. This study demonstrated that implementation of an HFTW 

system can significantly increase the overall efficiency of a groundwater treatment 

system by re-circulating contaminated water. 

Figure 2.6. Plan view of HFTW system showing 
re-circulation (McCarty et al., 1998). 
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Toluene plus Peroxide Toluene plus Peroxide 

Figure 2.7. Cross-section of cometabolic TCE degradation 
HFTW system (McCarty et al., 1998). 

2.4 TECHNOLOGY MODELING 

Ferland (2000) developed an analytical model to aid in the design of HFTW 

systems with in-well palladium reactors, and Huang and Goltz (1998) developed a 

numerical model to describe contaminant transport in the subsurface. 

2.4.1 ANALYTICAL MODEL OF HFTW SYSTEM WITH IN-WELL 
PALLADIUM REACTORS 

Ferland (2000) developed an analytical model to simulate first-order degradation 

of TCE using an in-well palladium reactor in a two-well HFTW system. He assumed a 

TCE half-life degradation constant, k, based on the work of McNab et al. (2000). 
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Ferland's (2000) primary treatment objective was to achieve an overall degradation 

efficiency high enough so the downgradient concentration of TCE was below 5 ppb, the 

drinking water MCL. The secondary objective of the effort was to ensure the capture of 

the contaminated groundwater plume. 

Using Ferland's (2000) model, a project manager interested in implementing the 

technology may determine an in-well reactor volume, the required distance between 

treatment wells, and pumping rates, given a specified capture zone width and upgradient 

contaminant concentration. To apply the model, certain environmental parameters such 

as the regional groundwater Darcy velocity, the thickness of the aquifer, and the angle of 

flow of the regional groundwater relative to a line connecting the HFTW treatment wells 

must be known or assumed. Using Ferland's model, various combinations of reactor 

volume, distance between treatment wells, and treatment well pumping rates that meet 

treatment objectives could be determined. By comparing the various combinations, the 

project manager could decide how the technology could be cost-effectively implemented 

at a site. 

Note that the analytical model developed in Ferland (2000) is intended for use as 

a screening model. Due to the numerous simplifying assumptions incorporated into the 

model (e.g. aquifer homogeneity, steady-state flow and transport), use of the model to 

actually design a remediation system is limited. To better understand and simulate the 

technology under real conditions, numerical models, which do not make all the 

simplifying assumptions of analytical models, are needed. 
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2.4.2 NUMERICAL MODELING 

A number of numerical models have been developed to simulate groundwater 

flow and contaminant fate and transport. One such model was developed by Huang and 

Goltz (1998). The model is the only three-dimensional model that has been applied thus 

far to simulate the operation of an HFTW system (Garrett, 1999). MODFLOW 

(Harbaugh and McDonald, 1996) is used to simulate groundwater flow in the aquifer, 

while a fate and transport model, based on the transport model MT3D, is used to simulate 

contaminant (TCE) fate and transport in the aquifer. The three-dimensional model uses 

finite differences, and solves the partial differential equations describing TCE fate and 

transport using a self-adaptive, partial-implicit approach (Garrett, 1999). Huang and 

Goltz (1998) developed this model to simulate the in situ bioremediation technology 

implemented by McCarty et al. at Edwards AFB (see section Section 2.3.4). 

In the model, Visual MODFLOW is used to generate a finite difference grid 

(Figure 2.8). Well locations and pumping rates, initial conditions, and boundary 

conditions are specified. Hydraulic conductivity for each cell in the grid must also be 

specified. MODFLOW permits specification of hydraulic conductivity anisotropy, 

which, as noted earlier, is important when using an HFTW system. With this 

information, MODFLOW can calculate steady state hydraulic heads and velocity fields. 

Then, the velocity fields, along with contaminant initial concentrations and boundary 

conditions, can be used by the fate and transport model to determine how contaminant 

concentration varies over space and time. The model simulates physical and chemical 

transport processes such as advection, dispersion, and sorption. It may also be modified 

to simulate different types of treatment processes at the treatment wells. The model has 
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been used to simulate aerobic cometabolism (Garrett, 1999), and in this work can be 

modified to model first-order degradation through palladium-catalyzed dehalogenation. 

Figure 2.8. Example 3-D finite difference grid (Garrett, 1999). 

2.4.3 MODEL PARAMETERS 

Note that in both the analytical and numerical models described above, there are 

two types of parameters. One type, which we will call environmental parameters, 

includes such things as regional groundwater flow velocity and direction, hydraulic 

conductivity, contaminant concentrations, etc. The other type of parameters, which we 

will refer to as engineered parameters, includes such things as location and pumping rates 

of wells, and treatment technology specifications (e.g. reactor volumes and hydrogen 

injection rates). Pumping rate and reactor size determine the residence time of the 

contaminated water in the reactor. Larger reactor residence times allow for increased 

TCE removal during a single pass through the reactor. Larger residence times can be 

accomplished by increasing the size of the reactor or by decreasing the pumping rate. 

However, changing either of these two parameters could have significant effects on cost 

and/or overall efficiency for the system. An increase in flow rate decreases single-pass 
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efficiency but increases re-circulation. On the other hand, decreasing pumping rates 

would increase single-pass efficiency but decrease re-circulation. Also, increasing 

pumping rates increases operating costs, and increasing the size of the catalyst column 

would increase capital costs. Obviously, there are optimal sets of parameter values that 

achieve the required system performance most cost effectively. In the next section we 

will look at optimization methods that may be used to determine the "best" engineered 

parameters to achieve some treatment objective. 

2.5 OPTIMIZATION 

According to Merriam Webster's Collegiate Dictionary (1993), optimization is 

"the mathematical procedure involved in making something, such as a design, system, or 

decision, as fully effective as possible." Optimization usually involves determining a 

maximum or minimum of an objective function that is bounded by some constraints. A 

simple example of an optimization problem is as follows: 

Maximize: f(x, y) = x + y 
Subject To:        0<x<10 

0<y<12 

In this case the solution is evident: the maximum value of/ft y) occurs when x = 10 and 

y = 12, which yields/ft, y) =10 + 12 = 22. Based on this example, useful terminology 

may be defined (Garrett, 1999: 2-2). 

Objective - A goal toward which effort is directed. In this case the goal is to get the 

highest possible value off(x, y) given certain limitations, which are the constraints. 

Objective function - The mathematical representation of the objective. In this case 

it is: 
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Maximize: f(x, y) = x + y 

Decision Variables or Parameters - Variables included in the objective function, in 

this case x and y. 

Constraints - Limits on the values that may be assigned to the decision variables or 

on other aspects of the system, such as on the objective function or a combination 

of the decision variables. 

Subject to: 0<x<10, 0<y<12, x-y<0 

Solution - The values assigned to the decision variables that yield the optimal value 

for the objective function. In this case 

x = 10, y = 12 

Candidate Solution - A set of values assigned to the decision variables that may or 

may not be a good solution. 

Evaluation Function - A function used to determine if candidate solutions provide 

"good" values. In this case it is the same as the objective function. 

Real world problems may or may not be trivial. In any event, they must be 

studied carefully in order to ensure complete understanding of the problem at hand. The 

decision variables, the objective function, and the constraints may not initially be well 

defined, and great care must be exercised in defining them to ensure the final solution to 

the problem is useful and meaningful. 

Every problem has a solution space, or landscape, that may be obtained by 

plotting the objective function value for each possible set of parameters. Smooth 

landscapes with one or few optimal values (Figure 2.9) are generally easy to solve using 

simple optimization techniques while rugged landscapes with multiple local optimal 
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values (Figure 2.10) are usually very difficult to solve. A hill climbing algorithm is a 

search method that looks for the best solution in an area, or neighborhood, by following a 

path of the highest gradients, or changes in terrain, it can find. This type of algorithm 

would easily solve a problem with a smooth landscape. However, it would almost 

certainly get "stuck" at a local optimum, which would most likely not be the global 

optimum, in a rugged landscape. To deal with these difficult problems, heuristic search 

methods have proven useful. 

20000 

/l 

/.«=Z>,2 
Figure 2.9. Example of smooth landscape. f\ for n=2; 

-100 < xi <100 (Garrett, 1999). 
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Figure 2.10.   Example of rugged landscape. /8 for n=2; 

-500 < xi <500 (Garrett, 1999). 

2.6 MODERN HEURISTIC SEARCH METHODS 

In this section, an introduction to different types of heuristic search methods, or 

heuristics, is presented. Heuristics are "techniques which seek good (i.e., near optimal) 

solutions at a reasonable computational cost without being able to guarantee either 

feasibility or optimality, or even in many cases to state how close to optimality a 

particular feasible solution is" (Reeves and Beasley, 1992: 6). Heuristics are used to 

solve complex optimization problems and they tend to be simpler to understand than 

other methods. A category of algorithms that belongs in this category is evolutionary 
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algorithms (EAs) and a specific type of EA is genetic algorithms (GAs). The discussion 

focuses on EAs and specifically on GAs. 

2.6.1 INTRODUCTION 

When presented a complex problem, such as the optimization of a groundwater 

remediation technology, different techniques may be used to solve it. These techniques 

range from using intuition and experience to using linear or non-linear programming, 

random search methods, calculus-based search methods, evolutionary algorithms, etc. 

(Garrett, 1999: 2-14; Goldberg, 1989: 2). Although more than one technique may be 

chosen to solve a given type of problem, some techniques are faster while others may 

yield better solutions. The method used to solve a problem depends on the characteristics 

of the problem. Some problems may be easily formulated mathematically, which would 

allow for their solution using relatively simple techniques such as linear optimization. 

Other problems may require an unreasonable amount of time or computing resources to 

solve using these techniques. These problems may be solved using modern heuristic 

search methods. 

Heuristics are typically classified into several broad categories such as greedy 

construction methods, neighborhood search routines (NSR), relaxation techniques, partial 

enumeration, decomposition and partition approaches, and others (Reeves and Beasley, 

1995: 12). Some of the most common heuristic techniques can be categorized in one of 

the above categories and include: simulated annealing, a type of NSR; tabu search, 

another type of NSR; and EAs, a type of random search. These methods were developed 

as attempts to simulate naturally occurring processes, which make them fairly easy to 
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understand. For example, simulated annealing is analogous to the thermodynamic 

processes of heating and cooling steel, tabu search was motivated by attempts to imitate 

intelligent processes, specifically memory, and EAs were modeled after genetic 

structures. We will focus here on EAs, and specifically GAs, primarily because they 

have been successfully applied in the past to solve very similar problems (Garrett, 1999). 

Other reasons for our focus are the ready availability and ease of use of commercial GA 

packages. 

2.6.2 EVOLUTIONARY ALGORITHMS 

EAs are heuristic search methods inspired by biological processes of natural 

selection and evolution. These algorithms include at least the following: genetic 

algorithms, evolution strategies, evolutionary programming, and genetic programming, 

all of which are similar but possess differing characteristics and strengths (Back, 2000: 

59, Dasgupta and Michalewicz, 1997: 3). 

Over the years, creatures must evolve in order to adapt to changing environments 

and to survive. The existence of species, and of specific members within a species, is 

dictated by survival of the fittest. In general, stronger and smarter creatures are able to 

outcompete weaker ones for food and shelter, therefore they survive. This allows strong 

individuals to mate and pass on their genetic information to subsequent generations. By 

combining strong individuals, species become stronger and are able to better adapt to 

their environment by continuing to improve over time. EAs are based on the principle 

that the biological processes that result in evolution can be modeled and used to solve 

complex optimization problems. Most evolutionary algorithms maintain a population of 
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individuals, or chromosomes, that evolves over time (Garrett, 1999). Each individual 

represents a candidate solution that can be evaluated for fitness, which is a representation 

of how well that individual meets the objective function. The fitness of each individual is 

compared to that of other individuals in the population, and those individuals with better 

fitness are selected to survive and mate with each other. Mating of individuals produces 

a new generation of individuals that is, hopefully, more "fit" than its parent generation. 

The new individuals are then evaluated for fitness, and the fitter ones are selected for 

survival. The process repeats until time runs out or until the population converges on a 

single solution (Garrett, 1999: 2-22 - 2-23). The general algorithm for an EA is as 

follows (Back, 2000: 61): 

initialize the parent population; 
evaluate each individual in the parent population for fitness; 
while termination condition is not true loop 

recombine the parent population to create an offspring population; 
mutate the offspring population; 
evaluate each individual in the offspring population for fitness; 
select individuals for survival to become new parent population; 
determine termination condition; 

end loop 

As the general algorithm above indicates, most EAs are comprised of four major 

operations: recombination or reproduction, mutation, evaluation, and selection (Back, 

2000: 61). In general, the recombination operator takes two or more individuals from the 

parent population and combines them to produce one or more children. The mutation 

operator randomly changes part of a chromosome. The evaluation operator evaluates 

each individual in the population and assigns them a fitness value. And, the selection 

operator determines which individuals survive to pass on their genetic information to 
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later generations. These operators allow the population to improve while exploring the 

landscape of the problem (Garrett, 1999). 

In general, individuals in EAs are represented as a coded vector, which is their 

genetic information, or genotype. This genetic information can be decoded to provide the 

physical characteristics of the individual, which include values for each variable 

associated with it, as well as permitting calculation of fitness. These "physical" 

characteristics are known as phenotype (Fogel, 2000: 23-24). During recombination, 

individuals' genotypes are combined to form new phenotypes, which determines the 

phenotype of the new individuals. 

All types of evolutionary algorithms function on the basic use of the four 

operators described above. The primary differences between different types of EAs are 

how they represent individuals and how new individuals are generated through 

recombination and mutation. The basic principles of each are (Back, 2000: 60): 

1) Genetic algorithms. Use recombination, or crossover, as the main operator, 

while mutations are a "background operator" that is used rarely on a probabilistic 

basis. Selection is also a probabilistic operator and binary representation of 

individuals, or candidate solutions, is most common, although real-valued 

representation is also used. Population size in different generations is usually 

identical. 

2) Evolution strategies. Mutations and recombinations are the essential 

operators and mutations are normally distributed.   Selection is deterministic. 

Individuals are represented using real-valued vectors. The population size 

typically differs between generations. 
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3) Evolutionary programming. Emphasizes mutations and does not incorporate 

the recombination of individuals. Mutations are also normally distributed. 

Selection is probabilistic. Mainly used with real-valued vectors, but originally 

developed to evolve finite-state machines, or mathematical logic. 

4) Genetic Programming. Used to automatically develop computer programs. 

Each individual represents a complete computer program in a suitable 

programming language (Back and Fogel, 2000: xxvii). 

Genetic algorithms have been chosen for this effort because of their simplicity 

and availability. GAs have been used widely to solve complex engineering and science 

problems, including optimization of groundwater remediation systems. In a similar 

undertaking, Garrett (1999) developed a genetic algorithm to optimize the HFTW system 

tested by McCarty et al. (1998) (Section 2.3.4). 

2.6.3 GENETIC ALGORITHMS 

Genetic algorithms (GAs) were first developed by John Holland at the University 

of Michigan in the late 1960s and 1970s (Holland, 1975). More recently, David 

Goldberg published a book on GAs that has become widely accepted (Goldberg, 1989). 

GAs have numerous advantages. Firstly, GAs are very robust; that is, they are capable of 

solving a wide array of problems and have been used in many fields, including 

groundwater remediation (Ritzel et al., 1994; Cieniawski et al., 1995; McKinney and Lin, 

1994; Guan and Aral, 1999; Rogers et al., 1995; etc.). GAs are also very flexible. Since 

variables are typically encoded, usually in binary strings (explained in the following 

section), they can represent many different types of functions. As an example, in some 
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groundwater remediation optimization problems, a bit in a binary string is selected to 

represent whether a pumping well is turned on or off. A string of binary bits may also 

represent a real-valued number such as pumping rate or angle of flow. Because this 

representation of variables is usually coded in binary, operators can easily manipulate the 

variables (explained in the following sections). Also, this type of representation and the 

simplicity of the operators make GAs non-problem specific, which means that the same 

GA code, with minimal changes, may be used to solve many different types of problems. 

Since GAs rely on random searches, while still exploiting historical information, they can 

be expected to find a globally optimum problem solution (Goldberg, 1989: 1-2). The 

details of how they do this, using chromosomes and evolutionary operators, follows. 

2.6.3.1 CHROMOSOME REPRESENTATION 

In order to better understand how GAs work, an introduction to GA terminology 

is necessary. In GAs, each individual is known as a chromosome and is usually coded. 

A chromosome is the genotype that is manipulated by the operators. Evaluation decodes 

each chromosome into a phenotype in order to calculate a fitness value. The genotype is 

the coded space while the phenotype is in the actual space. For example, Xi = 8 is a 

phenotype value, while (1000) is the genotype for Xi. A chromosome consists of a 

number of parameter values, known as genes. For example, the values for pumping rate 

and distance between wells would each be a gene. The possible values of each gene, or 

each position in the gene, are known as alleles, and the position of a variable in a gene is 

called its locus (Eshelman, 2000: 64; Reeves, 1995: 153). 
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In order for GAs to operate on candidate solutions, the solution must be converted 

into a phenotype that can be manipulated and evaluated by the algorithm, while at the 

same time remaining understandable by the user. In general, GAs code the parameters 

that comprise a solution set. The most common way to code the parameters of a 

candidate solution is with a binary representation (Goldberg, 1989: 7). Binary 

representation consists of zeroes and ones to represent decimal numbers. The previous 

example may be used to demonstrate how binary coding works: 

Maximize:      f(x, y) = x + y 
Subject To:     0<x<10 

0<y<12 
x, y must be integers 

Binary coding for x and y is very simple, with each variable represented by four 

digits. The maximum value for x, 10, would be represented as the binary number 1010, 

and for y, 12, would be represented as the binary number 1100. Thus, the chromosome 

that represents the candidate solution x = 10, y = 12 could be represented as 1010 1100, 

or as 10101100, with the four leftmost digits representing x and the four rightmost digits 

representing y. However, in GAs this representation is not important as long as the 

evaluator can decode it. In this case, the eight bits could be arranged in any order, 

however, the representation presented above is the most common because it allows the 

user to keep better track of each gene in the chromosome. Binary representation is very 

common in GAs because of its simplicity and because of the ease with which the 

operators can manipulate binary numbers (Garrett, 1999: 2-25). 
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2.6.3.2 OPERATORS 

As in most EAs, GAs use the four basic operators of crossover, mutation, 

evaluation, and selection. The following discussion includes an overview of each of 

these operators along with some basic examples. The examples will use binary 

chromosome representation for simplicity. 

2.6.3.2.1 CROSSOVER 

Crossover is the main operator used in GAs; it is the primary means of generating 

new individuals. The crossover operator exchanges sections of "parent" chromosomes. 

Crossover is analogous to the idea of reproduction in biological processes, where 

chromosomes from two individuals are combined to form one or more individuals. 

Since individuals are chosen based on probability, as explained later in the section 

describing the selection operator, a crossover operator is most likely to combine 

chromosomes from two individuals with relatively high fitness values. By choosing the 

fittest individuals from a population to create new ones, each new generation should 

inherit the best characteristics of the previous generation, while minimizing the number 

of bad characteristics. 

Crossover operations can be done in several ways, one of the most common being 

one-point, or simple, crossover. One-point crossover involves taking two individuals 

from the parent population and, randomly, selecting a crossover point. As illustrated in 

Figure 2.11, the first offspring (Child X) is composed of the portion of Parent A to the 

left of the crossover point and the portion of Parent B to the right of the crossover point. 

Similarly, Child Y is composed of the portion to the right of the crossover point in Parent 
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A and the portion on the left of the crossover point in the Parent B. In this example the 

crossover point is after the fifth bit (Garrett, 1999). 

One-Point Crossover: 

random crossover point 

Parent A 
Parent B 

10011 
11001 

0111 
0000 

Child X      10011 0000 

Child Y      11001 0111 

Figure 2.11. One-point crossover (Garrett, 1999). 

The principles used for simple crossover can be extended to what is known as 

multiple-point crossover. This type of crossover is similar to simple crossover, but more 

than one point is chosen for crossovers. 

Another type of crossover is the uniform crossover. It involves two parents and 

generates one or two children. First, a binary string that acts as a pattern, or bit-mask, is 

randomly generated. This pattern is used to determine which child gets information from 

which parent. In the loci where the pattern's locus is a ' 1', the child gets the alleles from 

the first parent, and in the loci where the pattern is a '0', the child gets the alleles from 

the second parent as illustrated in Figure 2.12. If a second child is generated, the reverse 

is true (Garrett, 1999). 
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Uniform Crossover: 

Parent A 100111011 
Parent B 011010100 

Bit-Mask: 101101011 (Random) 

Child X 110111111 
Child Y 001010000 

Figure 2.12. Uniform crossover (Garrett, 1999). 

2.6.3.2.2 MUTATION 

Crossovers explore areas of the landscape that are included in the original 

populations. Mutation is an operation that is used in GAs mainly because some good 

genetic material may never be explored through crossover only (Goldberg, 1989: 14). 

The mutation operation involves a random modification of a chromosome and it occurs 

after a new generation is generated through crossovers. After mutations are performed on 

a population, the new individuals formed replace those that were mutated. In our 

example, or any problem represented in binary form, mutation involves changing a single 

allele at a random locus in a chromosome from 1 to 0 or from 0 to 1. The rate at which 

mutations occurs is usually set to a very low value (on the order of 0.01) because too 

many mutations may destroy good genetic information, causing the algorithm to 

essentially become a random search. However, the performance of a GA has been shown 

to be enhanced by a low rate of mutations (Garrett, 1999: 2-29). Over the years, 

researchers have developed different types of mutations (Back et al., 2000: 238). Two 

types are creep mutation and jump mutation. Jump mutations are as described above, a 
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change of an allele at a random locus on a random individual. Creep mutations involve 

increasing or decreasing the value of a random gene by one unit. As an example of creep 

mutation, the chromosome 10101010 would be mutated to 10101011 (increasing) or to 

10101000 (decreasing). 

2.6.3.2.3 EVALUATION 

The evaluation operator uses the fitness function to evaluate each individual in a 

population to determine how well the individual meets the objective function. Each 

individual is assigned a fitness value from the evaluation, which is later used for 

selection. According to Cieniawski et al. (1995: 402), the evaluation procedure is 

typically very time consuming, because there are so many evaluations that must be 

performed, one for each member of the population. Also, when dealing with real-world 

problems, each evaluation may involve complex and involved calculations or simulations 

(Garrett, 1999: 2-30). One method that may be used to decrease the amount of time 

required to run a GA is the use of parallelization, which involves using multiple 

computers to evaluate multiple individuals concurrently. 

2.6.3.2.4 SELECTION 

Once a new generation has been created from the parent generation and each 

individual has been assigned a fitness value, the selection operator is used to determine 

which individuals will be selected to survive into the subsequent generation. The most 

common method is to select a mix of members from the parent and children populations 

(Garrett, 1999:2-30-2-32). 
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Selection may be performed either through stochastic or deterministic methods. 

In a simple GA, the process is stochastic in nature, with the individuals having the 

highest fitness function values being assigned higher probabilities of survival. Another 

common method is the elitist model, a deterministic method in which the members with 

the highest fitness values are automatically chosen to survive and pass their genetic 

material on to subsequent generations (Reeves, 1995: 166). Tournament style selection is 

performed by randomly selecting a group of individuals and comparing their fitness. The 

individuals with the highest fitness from each group are selected to reproduce. These 

tournaments are repeated until enough individuals are chosen. 

After these four operations are completed and a new population is chosen, the 

process begins all over again, until a stopping criterion is met. This stopping criterion is 

usually based either on time, number of generations, or on the measured improvement in 

the solutions; that is, the difference between the Nth and the (N + l)th generations in 

satisfying the objective function falls in some pre-described range. In general a GA will 

need a good number of generations to ensure that good solutions are found. 

2.7 GAs IN GROUNDWATER REMEDIATION 

GAs and other optimization techniques have been extensively used to optimize 

groundwater monitoring and remediation technologies (Rogers et al., 1995; Ritzel et al., 

1994; Cieniawski et al., 1995; McKinney and Lin, 1994; Guan and Aral, 1999; Garrett, 

1999; Culver and Shoemaker, 1993; Dougherty and Marryott, 1991; Rogers and Dowla, 

1994; Yoon and Shoemaker, 1999). Most of these optimization efforts have been geared 

towards pump-and-treat systems or water quality monitoring systems. 
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Rogers et al. (1995) used artificial neural networks (ANNs) and a GAto minimize 

the cost of operating an existing pump-and-treat facility with 28 injection or extraction 

wells. In this endeavor their goal was to determine the cheapest way to contain the 

contaminant plume and maximize the amount of contaminant mass removed from the 

aquifer. They trained the ANN to recognize patterns for good and bad solutions from a 

groundwater flow and contaminant transport algorithm in order to significantly lower the 

running time of the algorithm. A binary GA was used in which each available pumping 

well was represented by a single bit, which represented on or off. In the end, they were 

able to find good solutions in a reasonable amount of time. In similar undertakings Aly 

and Peralta (1999) and Rogers and Dowla (1994) have also used ANNs and a GA to 

optimize a pump-and-treat groundwater cleanup system. 

Ritzel et al. (1994) used two GAs to optimize reliability and cost of a hydraulic 

containment, or pump-and-treat, system. With this algorithm they determined how many 

injection and extraction wells to install, where to install them, and how much to pump 

from each. In this problem they gave 16 locations for possible wells and allowed the GA 

to find the optimal solution. They used binary coding, with each chromosome being a 

representation of the pumping (extraction or injection) rates for all of the wells. Then 

they compared the solutions obtained using the GAs and the mixed integer chance 

constrained programming (MICCP) method, which had been used previously by Morgan 

et al. (1993). According to Morgan et al. (1993), the MICCP method they used found 

solutions that were very close to optimality. The GA used by Ritzel et al. (1994) found 

solutions that were just as good as the ones found by MICCP in a shorter period of time. 
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McKinney and Lin (1994), Guan and Aral (1999), and Vasquez et al. (2000) have also 

used GAs in other pump-and-treat optimization efforts. 

Numerous other approaches have been attempted in efforts to optimize pump-and- 

treat systems. These include: nonlinear programming (Ahlfeld et al., 1988; McKinney 

and Lin, 1994), quasi-Newton methods (Culver and Shoemaker, 1993), simulated 

annealing (Marryott et al., 1995), and combinations of these and others. 

In a similar effort, Garrett (1999) developed a real-valued parallel GAto optimize 

the operation of a two-well HFTW system established to promote in situ aerobic 

cometabolic bioremediation of TCE-contaminated groundwater. This system is the same 

one that McCarty et al. (1998) demonstrated at Edwards AFB.    The objective of the 

optimization effort was to minimize the cost of the system while achieving a 

downgradient concentration below the MCL for TCE of 5 ppb. In this system a number 

of parameters were of interest because in order for cometabolic TCE degradation to occur 

there must be plenty of dissolved oxygen in the groundwater, microorganisms, and a food 

source for the microorganisms, which was toluene in this case. The parameters 

optimized were: number of treatment wells, treatment well locations, treatment well 

pumping rates, amount of oxygen added to the water, amount of toluene added to the 

water, oxygen injection schedule, and toluene injection schedule (Garrett, 1999). 
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3.0 METHODOLOGY 

3.1 OVERVIEW 

In this chapter, the application of a GA to optimize palladium-catalyzed in situ 

dechlorination of TCE at a specific site is discussed. In the first section, a discussion of 

our initial problem formulation, including the objective, cost, and fitness functions, is 

presented. In the second section, the model selected to simulate contaminant fate and 

transport and assumptions on aquifer characteristics are discussed. In the third section, 

the genetic algorithm (GA) selected for this endeavor and its operators are discussed. In 

the fourth section a description of how the GA will be applied to the problem in the 

optimization effort is presented. Finally, in the fifth section, a revised fitness function, 

based on the cost of destroying contaminant mass, is presented. This revised fitness 

function was employed to help deal with artificial results that were obtained from using 

the GA with the originally proposed fitness function. This study is very similar to 

Garrett's (1999) study in that both involve application of horizontal flow treatment wells 

(HFTWs) to attain a specified remedial objective. Because of these similarities, this 

effort will closely resemble Garrett's (1999). The studies differ in that Garrett (1999) 

optimized a model of a bioremediation technology, in situ aerobic cometabolism, while 

we are optimizing a model of a chemical process, palladium-catalyzed dehalogenation. 

In the current study, the single-pass treatment efficiency of the palladium reactor is 

inversely related to well flow rate (since lower flow rates result in higher residence times 

in the reactor), while with the bioremediation technology single-pass treatment efficiency 

was independent of flow rate (Mandalas et al., 1998). 
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3.2 PROBLEM FORMULATION 

In order to optimize this technology, we must formulate an objective function that 

accurately represents the goals of the technology application and a fitness function that 

effectively allows the GA to determine the best solutions. This section presents a 

description of the initial fitness function developed, an explanation of its shortfalls, and a 

description of the fitness function that was ultimately used. 

3.2.1 OBJECTIVE FUNCTION 

As described in Section 2.5, the objective function is a mathematical 

representation of a goal towards which an effort is directed. In this case the effort is 

directed at cost effective containment and remediation of the contaminant plume. As 

stated in previous chapters, the EPA has set a TCE drinking water maximum contaminant 

level (MCL) of 5 ppb, or 5 ug/L (Masters, 1997). Ideally, the remediation system would 

be installed and operated to capture the entire plume of contaminant and to clean up the 

contaminated groundwater to achieve a downgradient concentration below the MCL for 

the least possible cost. 

The following objective statement is a formulation of the above-stated goals: 

Implement palladium-catalyzed in situ destruction of TCE-contaminated 

groundwater using HFTWs, at minimum cost, so as to completely capture a plume of 

TCE-contaminated groundwater so that the concentrations downgradient of the 

treatment system are within regulatory limits. 

Following the format of the example provided in Section 2.5, we can define the 

objective function as follows: 
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Minimize: Cost (3.1) 
Subj ect To:  capture of entire TCE plume 

downgradient concentrations of TCE < 5 ug/L 
specified constraints on decision parameters 

Cost is the total cost in dollars of installing and operating the system. The 

downgradient concentrations are measured at various observation wells downgradient of 

the treatment system. The decision parameter constraints define the minimum and 

maximum allowable values for the engineered parameters being optimized. These 

constraints will be discussed and specified in Sections 3.2.2 and 3.4. 

3.2.2 DECISION PARAMETERS 

In order to implement this technology at a contaminated site, a project manager 

must know which parameters are under his/her control. Likewise, he or she must 

determine which parameters may be changed in order to optimize the system. As 

described in Section 2.4.3, there are two different types of parameters associated with a 

groundwater remediation model, environmental and engineered parameters. In this 

section we will focus on the engineered parameters. 

The following engineered parameters are under the remediation manager's control 

and may be changed to affect the operation of the system: 

(1) Number of treatment wells 

(2) Location of treatment wells 

(3) Pumping rate of treatment wells 

(4) Volume of catalytic reactor 
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When formulating the solution to the problem, these variables must be defined 

mathematically and constrained. As an example, if the number of treatment wells is not 

constrained, an infinite number of wells and an infinite number of well locations would 

be possible, making the problem far too difficult to formulate and to solve. In order to 

formulate a tractable problem and impose constraints, we must have an idea of the 

situation in which we are employing the treatment system. 

In this study we are implementing the treatment system in a homogeneous aquifer 

similar to the one at Edwards AFB, CA, which is described in Section 2.3.4 (McCarty et 

al. 1998; Garrett, 1999). Garrett (1999) also applied a technology based on the Edwards 

AFB aquifer, therefore some of the parameter ranges we define will be based on Garrett 

(1999). 

As previously explained, the number of treatment wells in the system must be 

constrained in order to have a tractable problem. In this study, we will constrain the 

number of wells to two since we are attempting to determine the optimal configuration 

and pumping rates for the wells. Therefore, the number of treatment wells will not be 

considered a decision parameter. 

The location of the treatment wells is a parameter that is defined by two sub- 

parameters, horizontal distance between the wells and the angle of the wells relative to 

regional groundwater flow direction. The location of the wells is a very important 

parameter that can have significant effects on system efficiency. Changing the distance 

between the wells or the angle of flow affects the interflow between the wells, thereby 

affecting the overall efficiency of the system. 
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As discussed in Section 2.4.3, well pumping rate is another parameter that greatly 

affects the efficiency of the system because it affects interflow between the wells and 

residence time in the catalytic reactor. Therefore, it affects both single-pass efficiency 

and overall efficiency of the system. Since we are dealing with an HFTW system, in 

which treatment wells move water from one aquifer to another, pumping rates should be 

the same for both wells in order to maintain an overall water balance between the 

aquifers. Otherwise, decreases or increases in pressure in the confined aquifer and cones 

of depression or mounding in the water table aquifer may develop. 

The volume of the catalytic reactor is also a very important parameter, because it, 

along with pumping rates, determines the residence time of the contaminated water in the 

reactor, thus determining single-pass treatment efficiency. In this study the diameter of 

the column will be kept constant at 20 cm, but its length will be allowed to change. The 

volume of the reactor also has significant effects on the cost of the system, as we will see 

in the following section. 

The decision parameters that will be used in this study are: 1) distance between 

treatment wells, or well separation distance (meters); 2) angle of a line connecting the 

two treatment wells relative to the regional groundwater flow direction, or angle of flow 

(degrees); 3) pumping rate (meters3/day); and (4) length of the catalytic reactor (meters). 

All of these parameters must also have upper and lower bounds specified. We shall wait 

to define these until after we have discussed the model and other assumptions that may 

affect these constraints. 
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3.2.3 COST FUNCTION 

In this section we focus on the costs associated with installing and operating an 

HFTW system with in-well palladium reactors. Christ (1997) developed annualized cost 

equations for cleaning up TCE-contaminated groundwater using in situ cometabolic 

bioremediation, which also uses HFTWs. Garrett (1999) used these equations to develop 

his cost function in an HFTW system. Because of the numerous similarities between the 

systems, these formulas can easily be applied to our system. 

As explained by Christ (1997), there are two types of costs associated with 

groundwater cleanup systems, capital costs and operating costs. Capital costs are those 

costs associated with the initial purchase, installation, and start-up of the system, 

annualized over the expected life of the project, which we will assume to be 20 years. In 

this case capital costs include the wells, pumps, the Pd/Al catalyst, and any other 

equipment that may be needed to start-up the system. Capital costs can be defined as 

(Christ, 1997: 3-31; Garrett, 1999:3-8): 

TCC = Costc xNx f(y) (3.2) 

where 

TCC = Total capital costs annualized over y years [$/year] 

Costc = The capital/installation/initial start-up costs per well [$] 

N = Number of treatment wells 

f(y) - A function used to annualize the capital costs 

_ ix(l + iy 

(1 + 0'-i 

/' = The expected average annual interest rate = 6% 
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y = The duration of the project = 20 years 

As previously stated, we will use two wells in this optimization problem. The 

cost of installation of a well is approximately $10,000 (Mandalas, 1997:C-38)) plus the 

cost of the catalyst, which is approximately $270/kg (McNab et al., 2000). A column of 

packed, 1.6-mm nominal diameter beads of Pd/Al has an approximate density of 1.2 

g/cm3 (McNab et al., 2000), and an effective porosity of 0.42 (Lowry and Reinhard, 

2000). This means that the catalyst in a 4-m long, 20-cm diameter column would cost 

approximately $23,600. Annualized over 20 years, at an interest rate of 6%, the TCC of 

such an HFTW system would be $5860/year. 

Operating costs are costs associated with daily operation of the system and consist 

of pumping costs and other costs of running the system such as the cost of catalyst 

regeneration. In this study, regeneration costs are assumed to be insignificant compared 

to other operating costs, and will be neglected. Therefore, operating costs are defined as 

the yearly cost associated with pumping groundwater and can be mathematically 

expressed as (Christ, 1997; Garrett, 1999): 

JVC=TExNxCost^ (33) 

V 

TE= ——*(hrslday)* (days/ yr) 
1000 

V=yxH\Q 

where 

TPC = Total annual pumping costs [$/yr] 

TE = Total annual energy used by pumping [kW-hr/well-year]. 

P = Power used to lift water [kg-m2/sec3 or Watts] 
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Y = Specific gravity of water [kg/m2-s2] = 9.807 m/s2 * 1000 kg/m3 

= 9807 kg/m2-s2 

H = The effective distance that the water must be lifted [m] 

Q = Flow rate in each well [m3/s] 

N = Number of wells 

CostE = Cost of energy [$ / kW-hr] 

r| = Wire-to-water efficiency (accounts for electric power lost because not all 

electricity is converted to pumping power) 

For our study, the distance the water must be lifted is assumed to be 15m, which 

is approximately the distance from the bottom of the confined aquifer to the top of the 

water table at the Edwards AFB site. To this we must add the headlosses through the 

system, the main one being the headloss through the catalyst column. Other headlosses 

in the system due to piping, etc. are assumed small in comparison with the loss due to 

flow through the catalytic reactor. In order to calculate headloss (hdls) through the 

packed-bed catalytic reactor column of length L, we use the Hazen equation (Metcalf & 

Eddy, 1991:268): 

Ms4w^ (34) 

*    A 

where 

C = Coefficient of compactness = 1200 for a packed column 

T = Temperature of groundwater in °F = 65°F 

L = Length of the catalyst column [m] 
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dio = Effective grain diameter size [mm] = 1.6 mm 

Vh = Superficial filtration velocity (Darcy velocity) [m/d] 

Q = Pumping rate [m3/day] 

Area = Cross-sectional area of the catalyst column [m ] 

The cost of energy we will use is $0.196/kW-hr (Mandalas, 1997), and we will 

assume a value for r\ of 0.6. This wire-to-water efficiency incorporates, and is the 

product of, thermal efficiency (Em) and pump efficiency (Ep). Em typically ranges from 

0.8 to 0.95 for electric motors and Ep typically ranges from 0.6 to 0.85 (Bouwer, 

1978:184-187). In this problem we are also assuming that the system will operate 24 

hours per day, 365 days per year. 

To get an idea of what the operating costs would be for a typical system, we can 

use the information above. Given a pumping rate of 50 m3/d with a 4 m catalyst column 

we would expect headlosses through the column to be approximately 1.66 meters. 

Therefore, the power used to lift water through the column and the well would be 

approximately 94.54 Watts, which translates to 828.17 kW-hr/well-year of energy. At 

the given energy cost, operation of a two-well system would cost approximately 

$540/year. 

The equations developed for capital costs and operating cost can be combined to 

determine the total annual cost (TC) of the system, which is the cost we want to 

minimize. 

TC = TCC + TPC (3.5) 

Using the values in our example, we can show that the cost of a two well HFTW system 

with in-well palladium reactors would be approximately $6400/yr. 
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Since our objective for this problem is to minimize the cost of the system, we can 

now develop an objective function: 

minimize:    TC (3.6) 
subject to:    downgradient TCE concentrations < 5 ppb 

capture of contaminant plume 
specified constraints on decision parameters 

3.2.4 FITNESS FUNCTION 

A fitness function is the metric that the GA uses to determine which solutions are 

superior to others. Hence, the fitness function must be an accurate representation of how 

well each individual meets the objective function previously formulated. Total cost is 

measured using the equations previously formulated, while downgradient TCE 

concentration and capture of the contaminant plume are calculated by the fate and 

transport model, as described in Section 3.3. However, since we will be measuring 

whether or not a plume is captured simply by measuring downgradient concentrations 

(that is, if the plume is not captured, downgradient concentrations will clearly exceed 

regulatory limits), we will ignore the constraint and include it as part of the downgradient 

concentration constraint. We must now develop a fitness function that represents how 

well these objectives are met. 

GAs, unlike other types of optimization techniques, such as linear programming, 

are difficult to constrain numerically. Therefore, we may develop a fitness function that 

incorporates the constraints on the problem by placing weights on parameters to indicate 

their importance (Garrett, 1999). Because we are trying to minimize our cost while 

achieving downgradient TCE concentrations below a given value, we can incorporate the 
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concentration constraint in the fitness function. In this case, concentrations should be 

penalized based upon how much they exceed the desired value. Concentrations at or 

below the desired value should be given a value of zero because they meet the 

requirement. Note that there is no "reward" for being below the desired value. In order 

to combine downgradient concentrations and cost into a fitness function, we need to 

normalize both functions so we can compare them on the same scale. 

As previously mentioned, one of our objectives is to achieve TCE concentrations 

of 5 ppb (5 x 10'6 g/L), the regulatory limit, downgradient of the treatment wells. For this 

constraint, we must decide upon a proper range of normalized values. As was discussed, 

a concentration that meets the regulatory limit should have the same effect on the fitness 

function, no matter how far below the limit this solution is. However, if the 

concentration is above the limit, we must be able to differentiate between one that barely 

fails the standards, such as 10 ppb, versus one that is not anywhere near the desired 

concentration, such as 1 part per million (ppm or 10"3 g/L). Garrett (1999) defined a 

normalized penalty function (TCEadjusted) for violating the downgradient concentration 

constraint as follows: 

TCEadjusted = 0 for TCErecorded < TCEdesired 

TCE 
TCE^ted = ^rrded-l for TCErecorded > TCEdesired (3.7) 

where 

J adjusted rT/^TT recorded desired 
-*^-£desired 

TCErecorded = Max TCE concentrations downgradient of the treatment system 

6 TCEdesired = The regulatory limit, or 5 x 10" g/L 
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In the same manner we can normalize cost. In the previous section we calculated 

the annualized cost of a system as approximately $6000. We will assume this 

approximates the cost of a typical system. Therefore, we can normalize cost as follows: 

^UMdesired 

where 

Costadjusted - The normalized annual cost of a specified system for use in the 

fitness function 

Costactuai= The annualized cost of a specified system 

Costdesired= The yearly cost of a typical system, or $6000/yr 

Now that the cost and concentration functions have been scaled, we can add them 

together to calculate a fitness function that accounts for both. Therefore our fitness 

function is: 

fitness = Cost ^^+TCEadjusted (3.9) 

Looking at the cost equations (Equation 3.5), we would expect the cost portion of 

the fitness function would be relatively smooth and, therefore, easy for the GA to 

optimize. However, the downgradient concentration of TCE is determined by very 

complex relationships, which are calculated using the fate and transport model. We 

would expect the function would be rugged, requiring more time for the GA to optimize. 

If both cost and downgradient concentration are weighted the same through the entire 

optimization process, the GA will try to optimize cost, since it is easier. This could cause 

the GA to quickly minimize cost, without attaining the concentration goals (Garrett, 

1999). Hence, we must devise a solution search strategy that does not allow the GA to 

concentrate too heavily on the cost, to prevent the GA from converging on a cost 
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effective solution that does not meet the concentration requirements. Therefore, a fitness 

function that attempts to prevent this from happening must be developed. Garrett (1999) 

observed similar behavior in his study, which led him to develop a time-based fitness 

function that initially more heavily weights solutions that meet downgradient regulatory 

constraints and subsequently concentrates on lowering system cost. This function is 

defined as follows: 

fitnesstime = Costa4usted x time + TCEadjusted (3.10) 

where 

CurrentGenerationNumber 

Maximum GenerationNumber 

Hence, if the optimization consists of 100 generations, during the first generation, cost 

will be weighted 1/100th of the weight given to downgradient concentrations. As the GA 

approaches the final generations, cost and concentrations approach equal weights. 

3.3 NUMERICAL MODEL 

One of the most important steps of the modeling process is mapping the site onto 

a model grid. The importance of this lies in that it will determine not only the accuracy 

of the model, but also the computational time required, which is very important when 

using GAs because of the number of iterations required. In order to apply the model to a 

real site we must convert site characteristics into model parameters. First, the site must 

be discretized into a three-dimensional finite difference grid using Visual Modflow. 

Visual Modflow has a windows-based interface where the user may specify aquifer 

characteristics, initial conditions, boundary conditions, and other modeling parameters. 
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These parameters include location and concentration of contaminant sources, aquifer 

hydraulic conductivity, hydraulic gradient, size of the area being modeled, and grid size 

of the area. An important feature of the program is that it allows the user to specify non- 

uniform grid sizes (Figures 3.1), which allow for a very large reduction in computational 

run-time of the model. Visual Modflow may also be used to place injection and/or 

extraction wells in the aquifer model. The files generated by this program are saved in a 

format that can be read by the FORTRAN program MODFLOW. 

Figure 3.1. Non-uniform grid used in optimization. 

MODFLOW is a program whose source code is freely available (Harbaugh and 

McDonald, 1996). The program reads the files that are generated by Visual Modflow and 

uses them to calculate groundwater flow conditions in the aquifer. MODFLOW is 

capable of computing transient flow or steady-state flow conditions. In this study we are 

assuming steady flow conditions. MODFLOW also generates output files, which along 

with the parameters generated by the GA (well location, catalyst column length, etc.) are 

used by the fate and transport model, which is based on MT3D, to calculate 
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concentrations over time throughout the aquifer. The fate and transport model calculates 

these concentrations using the flow fields generated by MODFLOW and by simulating 

advection and dispersion of the contaminant through the aquifer. A reaction component 

has been added to MT3D to allow for simulation of different treatment technologies, such 

as aerobic cometabolic bioremediation (Garrett, 1999) and first order decay in a catalytic 

reactor, as used in this study. 

As previously stated, the contaminant fate and transport model determines the 

concentrations for every cell in the grid through every time step of a simulation. It does 

this by modeling advection, dispersion, and sorption of the contaminant. In our model, 

we conservatively assume the effects of sorption are negligible. 

To summarize the workings of the model, initially a site model must be developed 

using Visual Modflow. Then, the GA generates individuals (solution sets), each 

consisting of a set of engineered parameter values. The GA calls on MODFLOW to 

calculate the flow fields and the fate and transport model to calculate the contaminant 

concentrations. These concentrations are then returned to the GA in order to calculate the 

fitness value of the individual solutions. 

3.3.1 MAPPING A HYPOTHETICAL SITE ONTO A MODEL GRID 

As previously mentioned, the mapping of a hypothetical site onto a model grid is 

a very important process; therefore, we spend more time discussing the details of this 

effort. The site layout and characteristics used are based on geological conditions at 

Edwards AFB, CA as described in Section 2.3.4. Garrett (1999) also used a model based 

on this site. Four layers were used in the model. The top layer is 8 meters deep and 
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represents the vadose zone and part of the saturated zone. It is at this level that we set the 

water table for the aquifer. The second layer represents an unconfmed aquifer 8 meters 

deep. The third layer is a low permeability layer, or an aquitard, 2 meter deep that 

separates the second and fourth layers. The fourth layer is a confined aquifer that is 6 

meters deep. 

Initially, the size of the site to be modeled was chosen to be a 100 meter by 100 

meter square. It was divided into a grid of 40 columns and 40 rows of equal size, which 

totaled 1600 grid cells in each layer. However, the computation time for such a grid was 

on the order of approximately 45 minutes on an 800 MHz computer for one simulation of 

the numerical model. Since it would take over 1 day to run one generation of 50 

individuals, it was infeasible to run the GA at this resolution. Further refinement of the 

grid changed the grid to a size of 115 meters in length and 91 meters in width divided 

into 25 columns and 19 rows. The cell size ranged from 3mx3mtol0mx 10m, 

depending on location (Figure 3.2). The higher resolution cells (smaller grid sizes) are in 

the areas near the pumping wells while the lower resolution cells are at the boundaries of 

the grid (Figure 3.2). This configuration contained approximately 30% of the number of 

cells as the original, and at this resolution one run of the model took approximately 5 

minutes, which means that approximately five generations of individuals could be run 

daily. 
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Figure 3.2. Site ayout used for optimization. 

Groundwater in the model was simulated to flow from left to right using a 

hydraulic gradient of approximately 0.0043. The hydraulic conductivity was set to 2.95 

m/d in all directions in both aquifers, making this a model of a homogeneous, isotropic 

aquifer. A contamination source area was located near the leftmost boundary of the grid 

and rows of observation wells were placed in layers 2 and 4 near the rightmost boundary 

of the grid. The length of the source was set at approximately 15 m long and one cell 

wide (3 m).   This source area, through dispersion, generated contaminant plumes 

approximately 25 to 35 meters wide. The contaminant concentration was specified at 5 

mg/L, which was greater than the 1 mg/L concentration found at Edwards AFB (McCarty 

et al., 1998). The higher concentration was used to make it more difficult for the 

technology to meet downgradient requirements. At this source concentration, the 

downgradient concentration objectives could be attained with some of the well 

configurations and pumping rates tested, but not with all. A full-scale implementation of 
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this model could, depending on the width of the plume, use more than two wells. 

However, the current study is constrained to look at two-well solutions. 

3.4 GENETIC ALGORITHM SOFTWARE SELECTION 

A FORTRAN 77-coded GA was selected for this application because of its 

availability and ease of use. The GA was developed by David L. Carroll from the 

Department of Aeronautical and Astronautical Engineering at the University of Illinois at 

Urbana-Champaign. It is the only readily available FORTRAN-coded GA and it can be 

downloaded from the World Wide Web (http://www.staff.uiuc.edu/~carroll/ga.html). 

Different versions of this GA have been used previously in optimization of problems 

involving lasers (Carroll, 1996) and in medical prostate implant research (Yang et al., 

1998). In this study, Version 1.7.0 of the GA which is the latest free available version, 

was used. 

The GA is binary-coded and it is set up to maximize a function. Since our 

objective is to minimize a function, we multiplied the fitness function (Equation 3.9) by 

negative one, which essentially converts the GA to a minimization algorithm. Adapting 

the GA to our problem was straightforward. A general function is included with the GA 

so any user can test the GA before applying it to his or her problem. To adapt our 

problem to the GA we replaced this general function with our simulation model and the 

cost equations previously formulated. For each individual solution, the simulation model 

returned values for concentrations at the observations wells, which, along with the 

calculated cost, were used by the GA to determine the fitness of the individual. 
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The GA allows us to specify an initial population of individuals rather than 

having the GA randomly generate an initial population. Fifty individuals were initially 

created using a systematic combination of five values for each of the four engineered 

parameters (pumping rate, distance between wells, angle of flow, and length of catalyst 

column). Combinations of an extreme low (e.g., Q = 9.41 m3/d), a middle low (e.g., Q = 

26.23 m3/d), a middle value (e.g., Q = 45.85 m3/d), a middle high (e.g., Q = 64.07 m3/d), 

and an extreme high (e.g., Q = 81.59 m3/d) were chosen (see Appendix A). By doing 

this, we attempted to ensure the GA searched the entire solution space and did not 

converge on a local optimum. 

Either single point crossover or uniform crossover can be selected. Because we 

generated the initial population to cover the entire solution space, single point crossover 

was used. As suggested in the GA documentation (Carroll, 1998), a crossover rate of 0.7 

was selected, which means that on the average 70% of all chromosomes, or individuals, 

are combined in each generation. Two children were generated in each crossover, which 

means that both parents are replaced by the children produced. 

The GA is also coded to allow two types of mutations, jump and creep (described 

in Section 2.6.3.2.2). As suggested by Carroll, the rate of jump mutations was set to 

l/npop, or 0.02, and the rate of creep mutations was set to 2/npop, or 0.04. 

The GA driver is set for tournament selection, which is performed by randomly 

selecting a group of individuals from the population and allowing the most fit individuals 

from each group to mate (Carroll, 1996). This process continues until the initial size of 

the population is reached. Elitism, or the automatic reproduction of the chromosome 
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with the best fitness in each generation, was also used. This function prevents the loss of 

good chromosome strings (Carroll, 1996). 

Finally, as previously stated, a population of 50 individuals was originally 

generated. The population of 50 remained constant through all generations. The number 

of generations was set to 65. This value was chosen as a compromise between allowing 

the GA enough generations to converge and keeping computing time manageable. 

Garrett (1999) ran his GA for 100 generations. However, the best fitness did not 

significantly improve after approximately 60 generations and after approximately 70-75 

generations the chromosomes appeared to converge. Running the GA with a population 

of 50 for 65 generations involves over 3000 model simulations, which, if each simulation 

averages 5 minutes, would take approximately 11-12 days to finish. 

The GA also requires that a range be set for each parameter. The range of the 

values selected were as follows: 

xi: Q - Pumping Rate [m3/d] 1 < xi < 90 

x2: d - Horizontal Well Separation [m] 6 < x2 < 30 

X3: a - Angle of Flow [degrees] 0 < x3 < 360 

X4: L - Length of Catalyst Column [m] 1 < X4 < 15 

The lower limit for pumping rate was selected because the model does not run at a 

pumping rate of zero. In addition, a pumping rate of zero, or even a very small pumping 

rate, would not be very effective in capturing the contaminant plume. The upper limit 

was selected based on Garrett's (1999) work. When the pumping rate is too high, it 

causes excessive drawdown, which may cause the grid cell where the well is located to 

dry up and report a contaminant concentration of 0.0 mg/L in the cell (Garrett, 1999). 
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Comparisons of model simulations using pumping rates above 90 m /d and below 90 

m3/d did not show improvements in concentrations for the higher rates. The bounds for 

the second parameter, d, were selected solely based on characteristics of the finite 

difference grid used to model the site. The lower limit was selected to ensure that the two 

wells were not placed in contiguous cells. The upper limit was selected to ensure the 

wells were placed in the area of high resolution in the center of the grid. The angle of 

flow was selected to range across a full rotation to ensure that the best well orientation 

was selected. Finally, since we desired the technology to be applied in situ, the length of 

the catalyst column was constrained by the distance from the bottom of the confined 

aquifer to the top of the unconfmed aquifer, which is 15 meters. 

Another option that may be used with this GA is the use of a micro-GA (jx-GA). 

The u,-GA included with Carroll's software is a type of GA that uses a small population 

and, by using elitism, searches for an optimal solution. If a population of five individuals 

is chosen, the n-GA initially generates five solutions randomly, then it evaluates each of 

them and, using crossovers and mutations, generates new individuals. At the beginning 

of each new generation the five individuals are compared to each other to check for 

convergence, and if the individuals are too similar to each other, the best individual is 

kept and the other four are randomly re-generated. Therefore, this approach is like a 

combination of random search with GA. Uniform crossovers using a rate of 0.5 were 

used with the u-GA because uniform crossover is more random, and in this case we are 

trying to determine an optimal solution through a pseudo-random search rather than by 

converging to a given solution. In our problem, the (i-GA results were compared with the 
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results of the regular GA. The same model was used in each pi-GA optimization as in the 

GA optimization. 

3.5 APPLICATION OF GA TO PROBLEM 

The GA was applied using our fitness function (Equation 3.10). As previously 

described, the groundwater model returns concentration values for the observation wells, 

of which the highest is used to calculate the normalized penalty function for 

concentration. This penalty function, along with the cost, is used to calculate individual 

fitness. 

As previously shown in Figure 3.2, the center of the grid was selected as a high- 

resolution area in which the treatment wells could be placed. Since placement of the 

wells is dependent on two parameters, well separation distance and angle of flow, after 

the GA generated an individual parameter set, the grid location of the wells had to be 

calculated based on the size of the cells. The center point of the grid was used to 

determine treatment well location, using the specified values of d and a. Observation 

wells were placed downgradient of the treatment wells. A total often observation wells 

were placed in the second and fourth layers. The highest concentration observed in the 

ten wells was taken to be the concentration downgradient. 

The duration of each simulation was set to 600 days. Tests of the model showed 

that after 600 days there is not much change in concentrations through the aquifer. 

However, for methodology verification, each optimal, or near optimal, solution will be 

tested for a simulated duration of 1000 days. During verification, we will also use a 
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higher resolution (38 x 29 - Figure 3.3) grid to check the accuracy of the solution that was 

obtained based on use of a coarser grid. 

m        n 
Figure 3.3. Grid used to check accuracy of solution. 

3.6 REVISED FITNESS FUNCTION 

The initial run of the GA, using the methodology previously described, generated 

unexpected results. By the final generation, the GA had converged on solutions 

containing similar values for all the parameters. The optimal pumping rate (Q) 

converged to approximately 15-20 m3/d, the distance between the wells (d) to between 

25-30 m, the angle of flow (a) to 180 degrees (downflow well closest to the source), and 

the length of the catalyst column (L) to 3-5 m. The best solution had the following 

values: Q = 15 m3/d, d = 30 m, a = 180°, and L = 3.0 m. Unfortunately, based on these 
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results, it appears that the GA is converging on an artificial solution which, although 

minimizing the objective function, is not realistic. The u-GA optimization resulted in a 

similar finding; an optimal value for a was found to be 0° (upflow well closest to the 

source). Note that with a value of a of 180°, all the treated water discharged by the 

downflow well into the lower aquifer flows to the upflow well (interflow = 100%) 

[similarly, a value of a of 0° indicates all the treated water discharged by the upflow well 

into the upper aquifer flows to the downflow well], a = 180° means that contaminated 

water from the upper aquifer that is captured by the downflow well is treated twice (once 

in the downflow well, a second time in the upflow well), but the contaminant plume in 

the lower aquifer is not treated at all; rather it is spread out around the re-circulation zone 

between the two treatment wells [a = 0° has a similar effect in the upper aquifer]. 

Because of the location of the observation wells downgradient of the treatment wells, and 

the simulation time of 600 days, the lower aquifer plume flowing around the re- 

circulation zone did not reach the monitoring wells over the course of the simulation. In 

order to solve this problem, we attempted placing monitoring wells cross gradient of the 

treatment wells. However, even though these monitoring wells detected higher 

concentrations than the wells downgradient, concentrations were still not high enough to 

force the GA into realistic solutions. The reason for this appears to be that the 

contaminant plume did not reach steady state after 600 days because more contaminant 

was entering the system than was being degraded. A solution to this problem could be to 

add more wells to the system, however we are constrained to two wells in this study. 

Running each simulation for longer periods of time (1000-1500 days or more), would 

allow the higher concentrations of the contaminant plume in the bottom aquifer to reach 
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the observation points, thereby generating worse fitness values for those solutions. 

However, these longer simulations could not be accomplished as the computer resources 

available for this study would require two to three weeks to run such long simulations. 

Because of these problems, a new fitness function was developed with the same 

objective of optimizing system performance and cost. As previously, an objective 

statement, from which we'll develop an objective function and a fitness function, must be 

defined. A measure that can be used to account for the performance of the system is the 

amount of contaminant mass destroyed. However, the cost of the system must also be 

taken into account. A system using 15-m catalytic columns would degrade more TCE 

than one using 5-m columns, but it would also be much more expensive. Therefore, the 

following objective statement represents the stated goals: implement palladium-catalyzed 

in situ destruction of TCE-contaminated groundwater using HFTWs to destroy the 

maximum amount of TCE possible at minimum cost. As the statement indicates, this is a 

problem of both maximization (mass destroyed) and minimization (cost). To implement 

these objectives in a GA we can combine these two goals into one that reflects both of 

them. The objective chosen was to minimize the cost per TCE mass destroyed. 

Following the format of our previous objective function (Section 3.2.1), the 

objective function may be defined as follows: 

Minimize:    Cost per mass unit of TCE destroyed (3 11) 
Subject to:    Specified constraints on decision parameters 

In order to define a fitness function, we used the same cost formulation previously 

developed (Section 3.2.3). The mass of TCE destroyed in the system is a cumulative 

calculation of the mass destroyed over the simulation time period. The fate and transport 
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model performs this calculation. Therefore, the fitness function follows the same format 

as the objective function (3.11): 

fitness =      COSta«-'  (3.12) 
MassDestroyed 

where 

Costactuai = The annualized cost of a specified system [$] 

Mass Destroyed = Mass of TCE destroyed in simulation period [mg * 10] 

The unit for mass destroyed was chosen as 10 mg by trial-and-error in order that 

the magnitude be comparable to magnitude of the cost. 

With the new fitness function we used the model grid described in Section 3.3.1, 

with a 500 day simulation period, and results were tested using the model grid described 

in Section 3.5. The contamination source was set at a concentration of 5 mg/L in a 15-m 

wide area in the two aquifers. In addition, initial contaminant concentrations, also at 5 

mg/L, were designated over the entire center region of the model grid (Figure 3.4) in both 

aquifers. These initial concentrations were used to ensure that no treatment well 

configuration had an advantage of being able to destroy more mass just based on 

proximity to the contaminant source. However, this advantage may still be seen at later 

times for certain configurations because concentrations near the source area will be 

higher. To help compensate for this, the duration of the simulation was set only to 500 

days. The shorter duration also allows us to decrease computing time for the GA. Also, 

if the a values generated for the initial solutions were 180° or 0°, they were changed to 

135° and 325° respectively (Appendix A). 

In implementing the new fitness function (Equation 3.12), the same GA 

parameters as previously discussed were used (Section 3.4), and the same range of 
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values was used for the decision parameters, except that a diameter of 15 cm was used for 

the catalyst column. 

Contaminant 
Source 

HFTWs Location 
Boundary 

\ 
\ 
\ t 

m 
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N* 
Initial 

-   Concentration 
Area 

i     i   1— 

Figure 3.4. Site layout map developed for optimization. 
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4.0 RESULTS AND ANALYSIS 

4.1 OVERVIEW 

In this chapter, the results of the application of the genetic algorithm (GA) to the 

problem of optimizing palladium-catalyzed in situ destruction of TCE-contaminated 

groundwater are discussed. In the first section, a discussion of the results obtained using 

the cost per TCE mass destroyed fitness function are presented. In the second section, 

these results are analyzed. 

4.2 RESULTS OF THE GA USING THE COST/MASS FITNESS FUNCTION 

As previously discussed (Section 3.6), each simulation of the groundwater model 

was run for a duration of 500 days. Because an initial population was generated 

systematically (Section 3.4), the GA was expected to converge on a solution faster than if 

the initial population had been randomly generated. For this reason, and to save time, the 

GA was only run for 70 generations. Because of time limitations, only one full run of the 

GA was performed. This run took a total of approximately 86 CPU hours on a Pentium 

III, 650MHz processor, and 77 CPU hours on a Pentium III, 800 MHz processor. 

The best solution was found by the GA on the 23rd generation and subsequent 

generations (up to 70) did not improve the solution. The "optimal" solution was: 

Q = 35.3m3/d 

d = 30.0 m 

a = 360° = 0° 

L = 2.33 m 
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The solution resulted in: 

Costactuai = $3470 

TCE Mass Destroyed = 39.0 grams 

Fitness = (Costactuai / (TCE Mass * 100)) = 0.8898 ($ /10 mgTCE) 

where 

Costactuai = The annualized cost of a specified system ($) 

TCE Mass = Mass of TCE degraded (g) 

100 = factor to convert mass from g to 10mg units 

Figure 4.1 shows how the GA performed over the entire run. From the figure, we 

can tell that at least one of the individuals generated in the initial population had fitness 

value close to the "optimal" solution (1.081). The engineered parameters for the 

individual were: Q = 81.6 m3/d, d = 28.3 m, a = 326°, and L = 2.33. As demonstrated in 

the discussion of cost (Section 3.2.3), one of the largest factors that affect cost is the 

length of the column, L, because palladium is very expensive and the energy required to 

pump water increases as L increases. Fortunately, some of our initial solutions, including 

the best solution of the generation, had the optimal L value. Because of the elitist 

technique employed (best solution is automatically passed to the next generation), most 

of the "best" solutions in subsequent generations had a value of 2.33 for L (Figure 4.2). 

Tests of the model using different well placement configurations, and varying L, show 

that the optimal value for L for all configurations tested is between 2 and 3 meters 

(Figure 4.3), which matches the "optimal" value obtained. 
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Figure 4.3. Cost per mass removed vs. length of 
catalytic column (365 day simulation). 

Figure 4.1 also shows that the worst fitness value greatly varies over the duration 

of the GA run. The irregularity of this curve is due to mutations or crossovers that yield 

children with worse fitness than their parents. However, the frequency of these 

abnormally high fitness values decreases in the later generations because most of the 

solutions are nearing the optimal solution. Therefore, crossovers combine the genes of 

two good solutions, and if worse children are generated, these are not usually much 

worse. Because mutations are very infrequent, and not all mutations have negative 

effects on the individuals, mutations that generate significantly worse individuals are 

extremely rare. Therefore, the fitness of the "worst" individual also improves over the 

generations and converges to near the optimal value. If the GA did not allow for worse 

individuals to replace parents, we would always see the "worst" value converging 

towards the minimum fitness value, and its fitness would never deteriorate from one 
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generation to the next. The occasional bad fitness value for an individual in a population 

is also what causes the average value to slightly increase at times. 

Using the higher resolution model grid to validate the optimal solutions obtained 

provided similar results to those obtained with the lower resolution grid. The total TCE 

mass removed was 39.4 grams, which is slightly more than the mass removal calculated 

using the original grid, and the fitness was 0.8787, which is slightly lower (better) than 

originally calculated. These improved results are to be expected because in the higher 

resolution grid there is less numerical dispersion of contamination, therefore slightly 

higher concentrations of contaminant are treated in the wells. Tests of other near optimal 

solutions generated by the GA showed that the "optimal" solution determined with the 

lower resolution grid was also superior when tested with the higher resolution grid. 

4.3 ANALYSIS OF RESULTS 

The results of the optimization show a configuration similar to that of the first 

optimization attempt, when we used the concentration-based fitness function. Using both 

the concentration-based and mass-based fitness functions, the value for L was similar 

(3.00 m and 2.33 m respectively). The reason why the two values are not exactly the 

same is that in the mass-based fitness function, there is not a requirement for a 

concentration downgradient. Violating the concentration requirement in the original 

fitness function penalized the fitness function, which in essence added "cost" for 

solutions that did not meet the concentration constraints. Thus, it was advantageous to 

increase the size of the column (even though capital costs increased) so that more mass 

would be degraded and the downgradient constraint could be met. A simulation of the 
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"optimal" solution from the concentration-based optimization yielded 32.56 g of TCE 

destroyed and a fitness value of 1.1159 $/10mg TCE, which is much worse than our 

"optimal" value obtained with the mass-based fitness. 

Similarly, changing the value of Q affects both the cost and the performance of 

the system. Increasing Q decreases the residence time of the contaminated water in the 

catalytic column, but it increases the volume of water treated. An increase in this volume 

also means an increase in the mass of contaminant going through the column. Increasing 

Q also causes a minimal increase in the cost of the system (see Section 3.2.3). Likewise, 

decreasing Q has the opposite effects. In the case of the concentration-based fitness 

function, the optimal value for Q was much lower (15 m3/d) than in the mass-based 

optimization (36 m3/d). The lower value allowed for higher efficiency, so that the 

effluent concentration was adequate to meet downgradient concentration requirements. 

However, this low pumping rate did not allow for complete capture of the contaminant 

plume (Section 3.6). With the mass-based fitness function, the optimal pumping rate is 

determined as the point at which mass destruction is most cost effective. 

Based on the system configuration, we can estimate the expected downgradient 

concentrations for both "optimal" solutions using an analytical approach (Equation 2.2). 

Such a comparison would give us an idea of the effect of changes in column length and 

pumping rate on overall contaminant destruction efficiency. These results can then be 

compared to results obtained numerically with the fate and transport model. If the inflow 

concentration into the upflow treatment well is 5 mg/L (a conservative estimate), we can 

determine the outflow concentration using the engineered parameters of our solutions and 

the volume of the reactor (Sections 3.2.3 and 3.6). For the parameters of the mass-based 
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solution, we would get a residence time of 42.3 seconds (4.899 x 10   d) for each column. 

Thus, the concentration leaving the upflow treatment well would be 2.07 mg/L (since the 

single-pass efficiency would be 58.6%). Assuming this concentration enters the 

downflow well located downgradient, its effluent would be 0.857 mg/L, or 857 ug/L. 

The overall efficiency of the system, comparing upgradient and downgradient 

concentrations in the aquifer being cleaned, would be 82.9%, (though it would be 0% for 

the other aquifer (Section 3.6)). A test of the system using the fate and transport model 

showed that the TCE concentration at an observation point in the lower aquifer 

downgradient of the downflow well was 0.148 mg/L (calculated without imposing an 

initial concentration in the treatment area and using a simulation duration of 1000 days). 

This concentration, which is well above the regulatory limits, would be highly penalized 

in the concentration-based optimization and would not be close to the optimal. However, 

the solution provides the most cost-effective configuration for mass removal. The reason 

for the difference between the analytically and the numerically obtained downgradient 

concentrations (0.857 mg/L and 0.148 mg/L, respectively) is that the analytical result 

assumes an inflow of 5 mg/L rather than 1.05 mg/L, which is the inflow concentration in 

the numerical model (determined by placing a monitoring well in the same area as the 

treatment well). The inflow concentration in the numerical model is just 1.05 mg/L for 

two main reasons. First, the well pumps water from all directions, and since there are no 

initial concentrations, the water just downgradient of the treatment well is clean. When 

downgradient clean water is pumped through the treatment well it dilutes contaminated 

water being pumped from upgradient. Second, dispersion of the contaminant as it flows 
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from the source area to the treatment well also contributes to the lower initial inflow 

concentration at the treatment well. 

On the other hand, using the parameters obtained with the concentration-based 

fitness function, a residence time of 128.3 seconds (1.484 x 10"3 days) would result in 

each column. For this residence time, and assuming upgradient concentrations of 5 

mg/L, we would expect an effluent of 345.6 ug/L and 23.9 ug/L in the first (downflow) 

and second (upflow) columns, respectively, corresponding to single-pass efficiencies of 

93.1% and an overall (two-pass) efficiency of 99.5%. Atest of this system using the fate 

and transport model resulted in a concentration of 8.2 ug/L at a well directly 

downgradient of the upflow well in the upper aquifer (using a simulation duration of 

1000 days). As we can see, the solution obtained using the concentration based fitness 

function provides much higher overall efficiency. However, in both cases, one of the 

aquifers did not receive any treatment, and the contaminant plume was forced to travel 

around the re-circulation zone that was established between the two treatment wells 

(Section 3.6). In this aquifer, downgradient concentrations were an order of magnitude 

higher than downgradient concentrations in the aquifer where water was treated. 

In any case, the combination of Q and L is what determines the single-pass 

efficiency of the system. As we can see in Figures 4.2 and 4.4, the average values for L 

and Q converged to their optimal values as the GA progressed through the generations. 
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Figure 4.4. Pumping rate of the best and average individuals in each generation. 

As previously discussed (Section 3.2.2), the distance between the wells, d, and the 

angle of regional groundwater flow relative to a line connecting the two pumping wells, 

a, determine the location of the treatment wells in our model grid. One of the main 

advantages of using an HFTW system is that the contaminated water is re-circulated 

through treatment zones. However, the amount of re-circulation, or interflow, between 

the wells is dependent on the location of the wells and their pumping rates. The 

placement of the wells in the optimal solution was 360°, or 0°. This means that the 

upflow well was placed closest to the source.    Intuitively we might have thought the 

downflow well would be placed closest to the source (a = 180°) because the upper 

aquifer (Layer 2) is thicker than the lower aquifer (Layer 4) (8 and 6 m respectively), and 

therefore it contains more contaminant mass to be destroyed. However, whereas the 

lower aquifer is confined, the upper aquifer is overlaid by another layer (Layer 1), which 
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is partially saturated (Section 3.3.1). In our study, there was not a concentration source in 

this top layer, and the groundwater in it was clean. The downflow well pumps water 

from the upper aquifer, which causes drawdown near the well. This drawdown means 

that some water is pumped from the top layer into the downflow treatment well. 

Model tests with a values of 0° and 180° were performed with and without a 

contaminant source in the top layer. Trials #1 and #2 show the aquifer conditions as 

tested in our study (no source in the top layer), and trials #3 and #4 were conducted with 

a contaminant source in the top layer. As expected, when there is a contaminant source 

in the top layer, the amount of mass degraded significantly increases for a = 180° and 

remains fairly constant for a = 0°. This allows us to conclude that the downflow well 

causes enough of a drawdown in the upper layer to significantly reduce the average 

concentration entering the treatment well. Thus, for the mass-based fitness function, it is 

more desirable that the upflow treatment well be closest to the contaminant source (a = 

0°). 

Trial # Layers with 
Cont. Source 

WeU Closest to 
Source (Angle) 

TCE Mass 
Degraded (g) 

Fitness 
(S/10 g) 

1 2,4 Upflow (0°) 39.43 0.8787 
2 2,4 Downflow (180°) 35.37 0.9796 
3 1,2,4 Upflow (0°) 39.44 0.8787 
4 1,2,4 Downflow (180°) 39.64 0.8742 

Table 4.1. Fitness values and mass degradation comparisons 
for additional contaminant source area on water table 

layer (Q = 35.34 m3/d, L = 2.33 m, d =30 m). 

As mentioned in Section 3.6, an a value of 0° or 180° was expected because 

placing the pumping well as close as possible to the source area allows that particular 

well to treat water with very high concentrations, which provides more mass removal. To 

test this proposition, both wells were placed 18 meters away from the source, which is the 

distance to the source for the upflow well in the optimal solution, at an angle a = 90°, 
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using the same Q and L values from the optimal solution. The only parameter that was 

varied was the distance between the wells. As we can see in Table 4.2, the further apart 

the wells are placed, the higher the mass degraded. This indicates that the cost is 

maximized when interflow is minimized. The reason for this is because higher inflow 

concentrations into the catalyst column mean higher amounts of mass destroyed. As 

interflow increases, the amount of previously treated water being re-circulated through 

the system increases, thereby diluting the contaminant concentration in the well inflow. 

As a result, the optimal value for d obtained in the optimization was 30 m, which was the 

maximum value allowed in our study. In this configuration (a = 0°, d = 30 m), the 

amount of contaminant degraded is maximized by placing the upflow well close to the 

source and downflow well as far as possible from the upflow well. As discussed 

previously (Section 3.6), this configuration provides 100% interflow in the upper aquifer 

(from the upflow well to the downflow well), and minimal interflow in the lower aquifer 

(from the downflow well to the upflow well). Placing the wells at an angle of 0° 

minimizes interflow in the lower aquifer because the water must flow against the natural 

hydraulic gradient in order to be re-circulated. However, as previously demonstrated, 

such a configuration would result in violations of regulatory constraints downgradient of 

the treatment zone, especially in the aquifer that receives no treatment. 
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Distance 
(Meters) 

Mass Degraded 
(grams) 

Fitness 
($/10 mg) 

3 5.66 6.12246 

6 12.77 2.71364 

9 17.98 1.92686 

12 21.59 1.60503 

15 24.25 1.42885 

18 26.15 1.32504 

21 27.39 1.26497 

24 28.38 1.22097 

27 28.96 1.19668 

30 29.48 1.17541 

Table 4.2. Fitness values for well placement close to contaminant source at 
different well separation distances (Q = 35.34 m3/d,a = 90°, L = 2.33 m). 

Because this type of system seems to perform better with lower interflow between 

the wells, the ultimate solution would be to use multiple pairs of wells configured in a 

manner that both contaminated aquifers receive treatment. Different configurations could 

be used, such as a row of treatment wells (Figure 4.5) or two rows of treatment wells 

(Figure 4.6). Two rows of wells (Figure 4.6) essentially corresponds to alternating well 

pairs located using the optimal solutions obtained in this study (a = 0° and a = 180°). 

These configurations of multiple pairs of wells would provide a larger effective capture 

zone in both aquifers and would allow interflow between the wells, so as to attain 

required overall efficiencies. 
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Figure 4.5 Row of multiple pairs of treatment wells 
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Figure 4.6. Two one-pair rows of treatment wells. 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

5.1 SUMMARY 

In this study, a method for determining how to best implement palladium- 

catalyzed in situ destruction of TCE-contaminated groundwater using a pair of horizontal 

flow treatment wells (HFTWs) was developed and applied to a hypothetical contaminated 

site based on conditions at Edwards AFB, CA. In the study, an objective function was 

developed and used to define a fitness function based on treatment technology cost and 

TCE concentration requirements downgradient of the treatment zone. A genetic 

algorithm (GA) was used to determine a technology solution that optimized the fitness 

function. The GA found an artificial solution for the problem that seemed to meet the 

constraints of the objective function, but in actuality did not provide adequate clean-up of 

the aquifer. Based on these results, new objective and fitness functions were developed 

in an effort to determine the most cost effective solution to remove contaminant mass 

from the aquifer. The solution arrived at using this approach, while resulting in 

minimized values of cost per mass removed, produced unacceptably high downgradient 

contaminant concentration levels. 

The GA software that was used is a robust, user-friendly package that can be 

applied to a variety of objective/fitness functions and remediation sites with minimal user 

modifications of the software code. The contaminant fate and transport model used can 

also be modified to simulate different site conditions or treatment technologies. 

Together, these software packages can be used to enhance efforts to apply palladium- 

catalyzed in situ dechlorination using HFTWs to clean up chlorinated ethane- 

contaminated aquifers. 
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5.2 CONCLUSIONS 

A GA will determine a solution that best meets the given constraints and 

fitness function. Using the two different fitness functions that were developed, we 

arrived at solutions that were similar. Note, however, that the solution that was optimal 

using one fitness function was very poor when evaluated using the other function. If the 

objective is to destroy mass as cost-effectively as possible, the mass-based function 

would provide a very good solution. However, if there are regulatory constraints, as in 

our study, a concentration-based function would provide a better solution. 

GAs are effective optimization algorithms that can successfully be used to 

optimize groundwater treatment technologies. Even though the "optimal" solutions 

did not attain the desired downgradient concentration goals, the GA found solutions that 

optimized the fitness functions within the given constraints. Limiting the number of 

treatment wells to two did not allow for contaminant cleanup of both aquifers, which 

caused the bottom aquifer to receive no treatment. Also, the constraint placed on the 

simulation times produced spurious results, as the contaminant plume did not reach a 

steady state concentration at the downgradient monitoring wells within the time 

simulated. The simulation time was limited due to the excessive run time needed by the 

fate and transport model. The GA performed well in determining the best possible 

solution given these constraints as it ensured that the concentration downgradient of the 

treatment area was near the regulatory limits. Also, with the mass based fitness function, 

the GA demonstrated that it could find a very good solution that would minimize the cost 

per mass degraded. 
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5.3 RECOMMENDATIONS 

Optimize an HFTW system using multiple pairs of wells. Placing multiple 

pairs of wells in a row over the entire length (a = 90°) of the contaminant plume would 

ensure the capture of the entire plume. However, the distance between the wells, 

pumping rates, and length of catalyst columns must be optimized in order to achieve the 

optimal interflow that provides a balance between cost effectiveness and achievement of 

downgradient regulatory concentrations constraints. However, other configurations, such 

as multiple rows, should also be explored. Perhaps, by placing wells in pre-determined 

locations and allowing the GA to select which wells will pump (and at what pumping 

rates), an optimal configuration could be determined. Based on the relative costs of 

buying palladium for the reactors and installing wells, it may be more cost effective to 

install a large number of wells with small catalytic columns, or a small number of wells 

with larger columns. 

Incorporate catalyst deactivation and regeneration into the fate and 

transport model and optimize this model. Such an optimization would determine not 

only the optimal configuration of the wells, but also the most effective catalyst 

regeneration schedule. Catalyst deactivation is caused by natural compounds present in 

the groundwater and would vary depending on site geochemistry. Modeling this effect 

would enable the GA to determine optimal solutions for different sites and therefore 

ensure better system predictability upon implementation. 

Apply the GA/fate and transport model to other geological sites. The site 

modeled in this study, although similar to Edwards AFB, is idealized. Optimization of 
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the technology at a variety of sites would further demonstrate the potential (and 

limitations) of palladium-catalyzed in situ dechlorination using HFTWs. 

Develop a method to shorten the computational time requirements of the 

optimization. Because of the number of iterations involved in optimization using GAs, 

it takes a long period of time to generate one solution. One solution for this would be to 

use Artificial Neural Networks (ANNs) to take the place of the fate and transport model 

in the same manner as Rogers et al. (1995) (Section 2.7). Such an approach would 

involve much fewer runs of the fate and transport model, and would significantly 

decrease GA run time. It would also allow for higher resolution with the fate and 

transport model leading to more accurate results. 

Parallelize the GA code. Running this study on a cluster of parallel computers 

as Garrett (1999) could have improved the overall runtime of the optimization. Garrett 

(1999) used twelve 200 and 250MHz computers, while we only used one computer at a 

time (divided between a 650 and 800 MHz computers). His first run of 100 generations 

on those computers took approximately 6 days, while ours took 6.5 days for 70 

generations (equivalent of 9.7 days for 100 generations). However, Garrett's (1999) fate 

and transport model was more complex, requiring more time for each simulation. Had 

we used 12 parallel computers, we could have conceivably finished one run of the GA in 

less than two days. 
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APPENDIX A: INITIAL SOLUTIONS 

The initial solutions generated to "seed" the GA were generated using a nested 

phase-center design. The purpose of this design was to ensure coverage of the entire 

solution space to prevent the GA from considering only one region of the solution space. 

A phase-center design consists of combinations of selected low, middle, and high values 

for each parameter. However, because of the large range of some of our parameters, we 

chose a nested design, and used two low values and two high values for each parameter. 

These were chosen approximately as 10%, 30%, 50%, 70%, and 90% of the maximum 

value for each parameter. A total of 50 initial solutions were generated. They consisted 

of the following (number of solutions in parentheses): 

- all possible combinations of 10% and 90% values (16) 
- all parameters set to 50%, except one at 10% (4) 
- all parameters set to 50%, except one at 90% (4) 
- all parameters set to 50% (1) 
- all possible combinations of 30% and 70% values (16) 
- all parameters set to 50%, except one at 30% (4) 
- all parameters set to 50%, except one at 70% (4) 
- all parameters set to 100% (1) 

In the second GA run (using mass-based fitness function), if the initial solutions 

contained a values of 50% and 100% of the maximum (180° and 360°), these values were 

set to 135° and 325°, respectively. This was done to ensure the GA was not biased 

towards solutions containing these values from the beginning. Table A. 1 lists the initial 

solutions generated. 
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# Q d a L # Q d a L 

1 8.34 2.25 33.75 1.31 26 25.03 6.75 101.25 3.94 

2 79.96 2.25 33.75 1.31 27 62.58 6.75 101.25 3.94 

3 8.34 21.75 33.75 1.31 28 25.03 16.50 101.25 3.94 

4 79.96 21.75 33.75 1.31 29 62.58 16.50 101.25 3.94 

5 8.34 2.25 323.44 1.31 30 25.03 6.75 253.13 3.94 

6 79.96 2.25 323.44 1.31 31 62.58 6.75 253.13 3.94 

7 8.34 21.75 323.44 1.31 32 25.03 16.50 253.13 3.94 

8 79.96 21.75 323.44 1.31 33 62.58 16.50 253.13 3.94 

9 8.34 2.25 33.75 12.69 34 25.03 6.75 101.25 9.84 

10 79.96 2.25 33.75 12.69 35 62.58 6.75 101.25 9.84 

11 8.34 21.75 33.75 12.69 36 25.03 16.50 101.25 9.84 

12 79.96 21.75 33.75 12.69 37 62.58 16.50 101.25 9.84 

13 8.34 2.25 323.44 12.69 38 25.03 6.75 253.13 9.84 

14 79.96 2.25 323.44 12.69 39 62.58 6.75 253.13 9.84 

15 8.34 21.75 323.44 12.69 40 25.03 16.50 253.13 9.84 

16 79.96 21.75 323.44 12.69 41 62.58 16.50 253.13 9.84 

17 79.96 12.00 180.00a 7.00 42 62.58 12.00 180.00a 7.00 

18 8.34 12.00 180.00a 7.00 43 25.03 12.00 180.00a 7.00 

19 44.50 21.75 180.00a 7.00 44 44.50 16.50 180.00a 7.00 

20 44.50 2.25 180.00a 7.00 45 44.50 6.75 180.00a 7.00 

21 44.50 12.00 323.44 7.00 46 44.50 12.00 253.13 7.00 

22 44.50 12.00 33.75 7.00 47 44.50 12.00 101.25 7.00 

23 44.50 12.00 180.00a 12.69 48 44.50 12.00 180.00a 9.84 

24 44.50 12.00 180.00a 1.31 49 44.50 12.00 180.00a 3.94 

25 44.50 12.00 180.00a 7.00 50 89.00 24.00 360.00" 14.00 

Table A.l. Initial solutions generated for optimization effort. 
a - denotes value changed to 135° in mass-based optimization 
b - denotes value changed to 325° in mass-based optimization 
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