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Abstract 

Multi-color infrared imaging missile-warning systems require real-time detection 

techniques that can process the wide instantaneous field of regard of focal plane array sensors with 

a low false alarm rate. Current technology applies classical statistical methods to this problem and 

ignores neural network techniques. Thus the research reported here is novel in that it investigates 

the use of radial basis function (RBF) neural networks to detect sub-pixel missile signatures. An 

RBF neural network is designed and trained to detect targets in two-color infrared imagery using a 

recently developed regression tree algorithm. Features are calculated for 3 by 3 pixel sub-images in 

each color band and concatenated into a vector as input to the network. The RBF network responds 

with a value of unity to feature vectors representing missiles and with zero to vectors representing 

background. Images are thresholded prior to application to the trained RBF network to narrow the 

field of interest of the RBF network and increase missile detection speed. The RBF network-based 

technique then generates potential target locations and probabilities that the locations correspond to 

missiles. Results show that the RBF network-based technique operates in near real-time and detects 

100% of the missiles in data that was not used in training. Receiver operating characteristic (ROC) 

curves show that overly high classification thresholds can exceed the RBF network response for a 

true missile and result in non-detection. However, these ROC curves also show that adaptive 

control of the classification threshold on the RBF network output can reduce the number of false 

alarms to zero. 

Keywords:  Radial basis function neural network, two-color infrared, sub-pixel missile signature, 

regression tree, real-time. 
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A RADIAL BASIS FUNCTION NEURAL NETWORK APPROACH 

TO 

TWO-COLOR INFRARED MISSILE DETECTION 

1.  Introduction 

1.1  Background 

Surface-to-Air Missiles (SAMs) have been a significant threat to aircraft since the Soviet- 

made SA-2 Guideline and SA-3 Goa systems first appeared during the Vietnam War. These radio 

frequency (RF)-guided SAMs and their successors can be detected from their active RF emitting 

Target Acquisition (TA), Target Tracking (TT), Target Illumination (TI), or Missile Guidance 

(MG) radars. However, related missiles that operate in the infrared (ER.) portion of the 

electromagnetic spectrum are difficult to detect due to the absence of such emissions. These 

missiles passively home onto aircraft heated surfaces or engine emissions and thus do not provide 

aircraft with an indication that they are being attacked. They present the greatest unseen threat to 

civilian and military aircraft in areas of unrest around the world because they are too numerous and 

easily hidden for accurate accounting by intelligence agencies. 

The exhaust plume from the propulsion system is the only visible indication that an IR- 

guided missile is in flight. The exhaust plume is brightest at launch during missile boost phase and 

reduces considerably in the coast-to-intercept phase. Therefore, missile-warning systems have the 

best chance of detecting such a missile at launch. Existing missile-warning systems use either Pulse 

Doppler micro/millimeter-wave radar or ultraviolet (UV) sensors. Both technologies are fairly 

mature but are effective only at short ranges. 
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1.2  Research Motivation 

Fighter aircraft (especially single-seat fighters) require missile-warning systems that occupy a 

small amount of space and that autonomously detect threats, declare them to the pilot, and initiate 

countermeasures while maintaining a low false alarm rate. Cavity-backed spiral UV sensors are 

typically-too bulky to be fitted to fighters. However, the benefits of infrared sensing are being 

investigated now that advances in focal plane array (FPA) technology have led to the greater 

availability of staring infrared detectors. An FPA sensor typically consists of a two-dimensional 

mosaic of photo-detectors placed in the focal plane of an optical system. FPA sensors occupy less 

space on an aircraft while providing longer-range performance than UV sensors and potentially 

providing greater reliability than their predecessors through elimination of mechanical scanning. 

However, staring sensors impose a higher processing burden on threat detection algorithms, and the 

elimination of scanning means that a sensor must respond over its entire field-of-regard 

(Sanderson, 1996). 

Infrared sensors are typically limited in their detection capability by the presence of heavy 

background clutter, sun glints, and inherent sensor noise. However, typical threat environments also 

include false alarm generators such as burning fuels, flares, exploding ordnance, and industrial sources. 

UV-based missile warning systems have proven to be highly susceptible to these false alarms. Imaging 

infrared sensors that offer multi-spectral detection are becoming more readily available for use in 

missile-warning systems. Multi-spectral discrimination is potentially one of the most effective ways to 

improve the performance of infrared missile-warning sensors, since for combustion sources such as a 

missile exhaust plume the intensity in one band is significantly different than for a hot black body 

source such as a sun glint. Thus false alarms can be reduced and threats can be identified by 

simultaneously comparing images from different spectral bands in real-time. 
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Images collected by an FPA are similar to what a human eye might see at the selected 

wavelength. Humans recognize objects based on a-priori knowledge and intuition plus a potentially 

large amount of visual, auditory, and other data. Computers cannot replicate human processing 

power and pattern recognition capabilities. However, neural networks use 'brain-like' algorithms 

that can be trained to recognize patterns and objects, and are thus a promising technology for 

detecting targets. 

Radial basis function (RBF) neural networks constitute one such methodology. RBF neural 

networks are often motivated by the need to perform exact interpolation of a set of data points in a 

multi-dimensional space. Exact interpolation requires every input vector to be mapped exactly onto 

a corresponding target vector. The radial basis function approach introduces a set of N basis 

functions, one for each data point, which take the form <(>(||x- x"||) where (|>(.) is some non-linear 

function. The nth such function thus depends on the distance ||x- x"||, usually taken to be Euclidean 

between x and x". The output of the mapping is then taken to be a linear combination of the basis 

functions 

-     " Ä(x) = E^#||x-x"||). (1.1) 

•Both theoretical and empirical studies have shown that, in the context of the exact 

interpolation problem, many properties of the interpolating function are relatively insensitive to the 

precise form of the non-linear function $(.). However, the most common form of basis function is 

the Gaussian (Bishop, 1995) 

<t>(x) = exp (-x2/2a2), (1.2) 

where a is a parameter whose value controls the smoothness of the interpolating function. 
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1.3 Research Objectives 

The objectives of this research are as follows: 

1. Propose a method for detecting sub-pixel missile signatures in two-color infrared 

images using a Gaussian Radial Basis Function (RBF) neural network. 

2. Evaluate the performance of this detection technique by training and testing the neural 

network with data containing real missile and background signatures. 

3. Determine the near real-time effectiveness of the neural network in a real-world 

missile warning system by applying previously unseen images to the network and 

obtaining Receiver Operator Characteristic (ROC) curves. 

1.4 Thesis Organization 

Chapter 2 reviews background material necessary to understand the basic concepts and 

results of this thesis. The concepts of target detection and recognition are reviewed, followed by a 

review of neural networks in general, radial basis function neural networks, and multi-layer 

perceptron neural networks. The theory behind the paper that inspired this line of research is 

presented along with a review of similarities and differences between radial basis function 

networks and multi-layer perceptron networks. Finally, there is a brief description of the sensor 

system and data collection that provided the input training and performance testing data for this 

thesis. Chapter 3 explains the radial basis function neural network design. Also, the concept of the 

'moving window transform' method described in Chapter 2 is extended and its relationship to the 

missile detection technique is explained. Chapter 4 presents the results of training and testing the 

RBF network and describes a near real-time algorithm that significantly improves detection 

effectiveness. Finally, Chapter 5 summarizes the research effort, provides conclusions, and offers 

recommendations for further research. 



2.  Literature Review 

2.1  Basic Concepts of Target Detection and Recognition 

Pattern recognition is the scientific discipline whose goal is the classification of objects 

into a number of categories or classes. These objects can be images or signal waveforms or any 

type of measurement. In the case of an imaging infrared FPA sensor, each pixel in the image is an 

object. The process of performing target detection or recognition in its basic form on such an image 

generally consists of three stages: segmentation, feature extraction and classification. 

Segmentation is the process of assigning a label to each pixel in an image. For example, a 

set of labels may be {background, target} or {mountains, rivers, trees, roads, ... etc}. The purpose 

of segmentation is to reduce the number of pixels for further processing as well as to identify 

multiple targets in an image and their locations. After an image has been segmented into potential 

targets and background, the contiguous groups of target pixels are further processed by the feature 

extraction stage. 

The feature extraction stage computes a number of features. The selection of features for 

any pattern recognition technique greatly influences the performance of the detection system. The 

desirability of minimizing the number of features to avoid the curse of dimensionality is well 

known and will be discussed further in Section 2.7. Some example features are length-to-width 

ratio, average temperature (in infrared) or complexity (ratio of border pixels to total blob pixels). 

Once computed, the features are concatenated into a vector of numbers, which is then sent to a 

classification stage. 

The final stage in basic pattern recognition is the classifier, which assigns a label to each 

input feature vector. The labels could be {target, non-target} or {x% confidence target, non-target} 

for target detection, and {tank, truck, aircraft,... etc} for target recognition. 



2.2  Neural Networks 

Neural networks are powerful tools in non-linear statistical analysis. Artificial neural 

networks (ANN) are collections of mathematical models that emulate some of the observed 

properties of biological nervous systems and draw on analogies with adaptive biological learning. 

The key element of the ANN-paradigm is the novel structure of the information processing system. 

It is composed of a large number of highly interconnected processing elements that are analogous 

to neurons, which are tied together with weighted-connections that are analogous to synapses 

(Batelle, 1997). 

Learning in biological systems involves adjustments to the synaptic connections that exist 

between the neurons. Such adjustments are true for ANNs as well, where learning typically occurs 

by example through training or exposure to a truthed set of input/output data, where the training 

algorithm iteratively adjusts the connection weights. These connection weights store the knowledge 

necessary to solve specific problems (Batelle, 1997). 

Although ANNs have been studied since the late 1950s, it was not until the mid-1980s that 

algorithms became sophisticated enough for general applications. The advantages of ANNs lie in 

their resilience to distortions in the input data and their capability for learning. ANNs often excel at 

solving problems that are too complex for conventional technologies (e.g. problems that do not 

have an algorithmic solution or for which such a solution is too difficult to find). Some of the more 

popular ANNs include the multi-layer perceptron network (which is generally trained with the 

back-propagation-of-error algorithm), learning vector quantization, the radial basis function 

network, as well as Hopfield and Kohonen networks (Batelle, 1997). 



2.3  Radial Basis Function Neural Networks 

The radial basis function methods introduced in Chapter 1 have their origins in techniques 

for performing exact interpolation of a set of data points in a multi-dimensional space (Powell, 

1987). However, an exact interpolating function for noisy data is typically highly oscillatory 
* 

(which is undesirable), and since the number of basis functions is equal to the number of patterns in 

the data set, the mapping function may be very complex and costly to evaluate for large data sets. 

In contrast, radial basis function neural network (RBFNN) models (Broomhead, 1988) 

provide a smooth interpolating function in which the number of basis functions is determined by 

the complexity of the mapping to be represented rather than by the size of the data set. Radial basis 

function networks are non-parametric models in that they do not have a-priori knowledge of the 

underlying function that fits the data. Instead, the determination of suitable centres for the basis 

functions becomes part of the training process, and each basis function is given its own width 

parameter aj, whose value is also determined during training (i.e. the basis functions do not all have 

the same a). Finally, bias parameters are included in the linear sum that compensate for the 

difference between the average value over the data set of the basis function activations and the 

corresponding average value of the targets. With these changes to the exact interpolation formula, 

the form of the RBFNN mapping is 

M 

yk(x) = 2j a)kj0j(x) + a*,,. (2.1) 

The coko biases can be absorbed into the summation by including an extra basis function $> whose 

activation is set to 1 (Bishop, 1995). 



For the case of Gaussian basis functions 

^x) = exp(-||x-Uj||2/2a/), 

where x is the ^-dimensional input vector with elements *, to Xd, 

and fij is the vector that determines the center of basis function <fo, with juß to juJei. 

A neural network diagram as shown in Figure 1 can represent this mapping function. 

Outputs 

>i (      ■ ) ^*K ) y* 

(2.2) 

bias 

Inputs 

Figure 1. Architecture of a radial basis function neural network 
corresponding to Equation 2.1. There is only one hidden layer of 
neurons and each basis function acts like a hidden neuron. The hidden 
neurons compute the Euclidean distance between an input pattern and 
the vector represented by the links leading to each neuron. The lines 
connecting the inputs to basis function $ represent the corresponding 
elements, ftp to fiß ,of the vector /*,. The weights % are shown as lines 
from the basis functions to the output neurons. The activation of each 
output neuron is determined by a weighted sum of inputs from all 
hidden neurons. Biases are shown as weights from an extra basis 
function fo whose output is fixed at 1 (Bishop, 1995). 



Algorithms for building RBF networks often consist of two stages. The first stage selects 

the basis function centers /$ and radii q,, and the second stage estimates the weights 0%. An RBF 

center could be allocated to each input point in a training set* but without further modification this 

scheme usually produces an overly complex model that over-fits peculiarities such as noise and 
» 

training point choice. In a linear model with fixed basis functions and weights, one method for 

controlling the complexity of an RBF network is to add a penalty term to the sum-squared-error 

over the training set so that 

k m 

E = Z(tl-yfa))2+'kIiaf, (2.3) 
/=1 7=1 

where tt is the target value for output neuron / when the network is presented with input vector x,-. 

When this combined error is optimized, large components in the weight vector are 

inhibited. This procedure is ridge regression or weight decay, and X, which controls the balance 

between fitting the data and avoiding the penally, is the regularization parameter. A small value for 

X allows the model to fit the data closely without causing a large penalty, while a large value for X 

means that a close fit is sacrificed in- favor of larger weights. The parameter X has a Bayesian 

interpretation, as it is the ratio of the noise corrupting the training data to the a-priori variance of 

the weights. However, this ratio may not be available in a practical situation, and thus it is usually 

necessary to establish an effective value for X in parallel with optimizing the weights. This 

determination can be accomplished by using a model selection criterion such as Bayesian 

information criterion, generalized cross-validation, leave-one-out cross-validation, or maximum 

marginalized likelihood (Orr, 1999). 



2.4 Multi-layer Perceptron Neural Networks 

The multi-layer perceptron architecture is an extension of the perceptron developed by 

Rosenblatt (1959) to cover a variety of architectures designed-to model the human brain. Use of the 

term perceptron generally refers to a single node. Multi-layer perceptrons have more than one layer 

of nodes with the nodes fully interconnected between layers. To teach the multi-layer perceptron 

neural network to recognize a pattern, the weights and biases in the network are adjusted so that 

application of a set of inputs produces the desired set of outputs. The most popular rule for training 

a multi-layer perceptron is the back-propagation algorithm in which an initial guess is selected for 

the weight vector that is then iteratively updated in the direction of the largest rate of decrease in 

the output-to-input error (Bishop, 1995). 

A multi-layer perceptron has three distinctive characteristics (Haykin, 1999); 

1. The model of each neuron in the network includes a nonlinear activation function that 

is smooth (i.e. differentiable everywhere). A commonly used form of nonlinearity that 

satisfies this requirement is the sigmoidal nonlinearity defined by the logistic fimction 

7j=l/[l+exp(-Vj)], (2.4) 

where Vj is the weighted sum of all synaptic inputs plus the bias of neuron j and>>j is 

the neuron output. 

2. The network contains one or more layers of hidden neurons that are not part of the 

input or output of the network but that enable the network to learn complex patterns by 

extracting progressively more meaningful features from the input vectors. 

3. The network exhibits high degrees of connectivity (determined by the synapses of the 

network). A change in the connectivity of the network requires a change in the 

population of synaptic connections or weights. 

10 



2.5 Automatic Target Recognition using a Multi-layer Perception Neural Network 

Shirvaikar et cd. (1993) showed that a back-propagation-trained two-layer perceptron with 

45 hidden layer neurons was effective at automatic target recognition in high clutter thermal 

infrared imagery. The feature extraction stage was eliminated and raw gray-levels were utilized as 

inputs to the network. However, unlike the usual approach in which an entire image is the input to 

the neural network, this method used the neural network as a moving window transform. Although 

the authors used the word convolution to describe their technique, the moving window transform 

method was (in effect) a sliding of the neural network input layer over the entire image (Shirvaikar, 

1993). 

INPUT 
LAYER 

Weighted 
Interconnects 

FILTER 
RESPONSE 

HIDDEN LAYER 

Figure 2. Depiction of the moving-window neural network concept 
(Shirvaikar, 1993). The input layer of the neural network is slid over an 
entire image, 128x128,256x256, 512x512 ... etc, such that the image is 
divided into image chips, with each chip corresponding to the input 
layer of an individual neural network. The outputs of the neural 
networks are then combined produce a response that maps object 
locations from the spatial domain to the probability density domain. 
The outputs are high for target pixels and low for background pixels. 
Thus the response maps can then be thresholded to various degrees to 
mitigate false alarms in classifying the pixels as targets or background. 

11 



2.6  Relationship between Multi-layer Perceptron and Radial Basis Function Networks 

Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are the two 

most commonly used types of feed-forward networks and they have more in common than most 

neural network literature suggests. Their fundamental difference is the way in which their hidden 

units combine values coming from preceding layers in the network: MLPs use inner products, 

while RBFs use Euclidean distance. There are also differences in the customary methods for 

training MLPs and RBF networks. However, most methods for training MLPs can also be applied 

to RBF networks (Sarle, 2000). 

The MLP architecture has generally been the more popular for applications involving a 

large number of dimensions. The inputs are typically fully connected to the first hidden layer and 

each hidden layer is then fully connected to the next, with the last hidden layer fully connected to 

the outputs. Each layer typically uses a linear combination function. MLPs can also have skip-layer 

connections and direct connections from inputs to outputs. RBF networks usually have only one 

hidden layer for which the combination function is based on the Euclidean distance between the 

input vector and the weight vector (Sarle, 2000). 

RBF networks usually do not have a term equivalent to the bias term in an MLP. However, 

some types of RBFs have a width associated with each hidden unit or with the entire hidden layer, 

which instead of being added into the combination function (like a bias), is divided into the 

Euclidean distance. A similarity between RBF networks and MLPs is apparent if the combination 

function is treated as the square-of-distance divided by the width, in which case the familiar exp or 

sofimax activation functions produce members of the popular class of Gaussian RBF networks 

(Sarle, 2000). 

12 



Some important differences are as follows (Bishop, 1995): 

1. The hidden unit representations of the MLP depend on weighted linear summations of 

the inputs transformed by monotonic activation functions. Thus the activation of a 

hidden unit in an MLP is constant on surfaces that consist of parallel (rf-l)-dimensional 

hyper-planes in d-dimensional input space. In contrast, the hidden units in an RBF'use 

distance to a prototype vector followed by transformation with a (usually) localized 

function. The activation of a radial basis function is therefore constant on concentric 

(cM)-dimensional hyper-spheres (or more generally on (</-l)-dimensional hyper- 

ellipsoids). 

2. An MLP forms a distributed representation in the space of activation values for the 

hidden units, since for a given input vector many hidden values typically contribute to 

the determination of the output value. During training, the functions represented by the 

hidden units must be such that when linearly combined by the final layer of weights, 

they generate the correct outputs for a range of possible inputs. The required 

interference and cross^coupling between the hidden units results in a highly nonlinear 

network training^ process with problems of local minima or nearly flat regions in the 

error function, which arise from near cancellations in the effects of different weights. 

Such cancellation can lead to very slow convergence of the training procedure, even 

with advanced optimization strategies. In contrast, an RBF network with localized 

basis functions forms a representation in the space of hidden units that is local with 

respect to the input space, because for a given input vector only a few hidden units 

typically have significant activations. 
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3. An MLP often has many layers of weights and a complex pattern of connectivity such 

that not all weights in any given layer are present. A variety of different activation 

functions may also be used within the same network. An RBF network, on the other 

hand, generally has a simpler architecture consisting of two layers of weights in which 

the first layer contains the parameters of the basis functions and the second layer forms 

the linear combinations of the activations of the basis functions that generates the 

outputs. 

4. All the parameters in an MLP are usually determined at the same time as part of a 

single (global) training strategy involving supervised training. However, an RBF 

network is typically trained in two stages: the basis functions are determined first by 

unsupervised techniques using input data alone, and the second layer weights are 

subsequently found by fast linear supervised methods. 

2.7  Network Selection 

A Gaussian RBF network was selected for analysis in this thesis, as RBF networks have 

several advantages over MLPs. First, RBF networks can model any non-linear function using a 

single hidden layer, which removes design decisions regarding the number of layers needed. 

Second, the simple linear transformation in the output layer can be optimized fully using traditional 

linear modeling techniques, which are fast and do not suffer from problems such as local minima, 

which affect MLP training (StatSoft, 2000). 

The radial functions used by RBF networks are also preferable to the logistic or 

polynomial functions used by other methods, as their response decreases (or increases) 

monotonically with distance and radially in all dimensions from a central point. The center, 

distance scale, and precise shape (Gaussian in our case) of the radial function are all parameters of 

the model and are all fixed after the first stage of training. 
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An RBF network is non-linear if its basis functions can move or change size or if there is 

more than one hidden layer. This thesis focuses on a single-layer network with Gaussian radial 

functions that are fixed in position and size, thus avoiding .the computationally expensive non- 

linear gradient descent methods typically employed in explicitly non-linear networks (Orr, 1996). 

RBFs are more sensitive than MLPs to the curse of dimensionality and have greater 

difficulties if the number of input features is large, since each additional input feature in a network 

adds another dimension to the space in which the training data cases reside. Thus, there must be 

sufficient training points to populate an JV-dimensional space densely enough to determine its 

structure. The number of points needed for proper population grows very rapidly with 

dimensionality. For example, if an input variable is divided into M divisions, then the total number 

of cells is M1, and this factor grows exponentially with the dimensionality of the input space 

(Bishop, 1995). Since each cell must contain at least one data point, this result implies that the 

quantity of training data needed to specify the mapping also grows exponentially. However, the 

number of features is small for this thesis, whereas the amount of data is large. 

2.8  Regression Trees 

Regression trees can both estimate a model and indicate which components of the input 

vector are most relevant for the modeled relationship. The basic idea of a regression tree is the 

recursive partitioning of an input space in half, and approximating the function in each half by 

taking the average of the output value of the data in each half. Each partition is along one of the 

dimensions of the input space. Thus dimensions that carry the most information about the output 

tend to be split earliest and most often. 
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The input space is recursively divided into hyper-rectangles (as it may involve more than 

three dimensions) that enclose all the patterns in a particular node. The nodes are organized in a 

binary tree, where each branch is determined by the dimension and boundary that together 

minimize the residual error between model and data. Thus a regression tree creates a hierarchical 
> 

structure where the higher the node the coarser the-feature captured by the node. 

Using the tree analogy, the apex node corresponds to capturing the coarsest feature, which 

means that it contains all the input patterns in the data set. Progressing down the tree, each child 

node then has a subset of the input patterns of its parent, thus capturing finer and finer features 

until a terminal node (which contains a predefined minimum number of input patterns) is reached 

and cannot be split further (Orr, 1999). 

Combining trees and RBF networks was first suggested by Kubat et ah (1995) in the 

context of classification rather than regression. Essentially, each terminal node of a regression tree 

contributes one hidden neuron to the RBF network. .The center of the basis function is the center of 

the hyper-rectangle associated with the node, while the radius is the product of the half-width of the 

hyper-rectangle and a predefined scaling factor. Thus the tree sets the number, positions, and sizes 

of all potential RBFs in the network (Orr, 1999). 

Using this method, model complexity is controlled by the amount of tree pruning and 

scaling of the RBFs relative to the hyper-rectangles. There is no discussion by Kubat (1995) about 

how to control scaling and pruning to optimize model complexity for a given data set. However, an 

alternative to treating every terminal node of the tree as an RBF is to have the regression tree 

generate a set of RBFs from which the final network is selected. The burden of controlling model 

complexity is thus shifted from the tree regression to the model selection criterion introduced in 

Section 2.3 (Orr, 1999). 
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2.9  Air Force Research Laboratory's Spectral Infrared Detection System 

Dual-band infrared passive missile warning sensors have been under development at the 

Air Force Research Laboratory (AFRL) for many years where the objective has been to provide 

aircraft with cost-effective and robust detection and tracking of surface-to-air threats. The Spectral 

Infrared Detection System (SIRDS) test bed is the latest sensor developed by AFRL to evaluate and 

compare various spectral threat detection algorithms. The SIRDS optical sensor provides a 90° by 

90° field of view to a 256 by 256-element FPA together with an integrated two-color filter wheel. 

The filter wheel allows the sensor to collect images that rapidly alternate between two bands in the 

infrared spectrum. The value of multi-color discrimination has been demonstrated for scanning 

sensors, particularly in heavy clutter at short ranges (Sanderson, 1996). Figure 3 shows a simplified 

block diagram of the sensor architecture. 
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«iJlPi "m^sgp 
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Interface Display 
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Figure 3.   SIRDS Test-bed block diagram (Montgomery, 2000). 

17 



The two spectral bands used by the SIRDS and the subsequent target/background data 

collections are designated simply red and blue as shown in Figure 4. The widths of the bands are 

designed so that the photon flux is approximately equal in each band. For combustion sources such as 

a missile exhaust plume, the intensity in the blue band is significantly lower than in the red band. 

Conversely, for a hot black body source such as a sun glint, the reverse intensity relationship is true, 

thus permitting target discrimination by comparison of the intensities and intensity differences in each 

band (Montgomery, 2000). 

4.57-4.71 pm 

Threat Signature 

v/X 

3.2        3.4 3.6        3.8 4 4.2 

Wavelength [im] 

4.4 4.6 4.8 

Figure 4. Pass-bands of the SIRDS sensor, together with target and 
background spectra. The red band lies in the region of the C02 v3 band, 
and the infrared signature of a missile in the powered phase is brightest 
in the neighborhood of this band at 4.3um. The blue band lies in the 
atmospheric window just below the C02 v3 band (Montgomery, 2000). 
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The bands occupy four quadrants on the filter wheel such that in a single rotation of the wheel 

the FPA collects images in the order - redl I blue 11 redl I blue!. The responses in the red 1 and red2 

bands are riot identical, and neither are they in the bluel and blue2 bands due to material defects such 

as scratches and dust that accumulate on the different quadrants over time. The SIRDS data is 

organized in the same way as collected by the FPA. However, because the filter wheel to be used with 

a future version of the sensor consists of two regions, one for red and the other for blue, data from the 

redl and red2 bands are treated as coming from the same band, as is data from bluel and blue2. The 

current sensor can collect data at up to a 140 Hz frame rate. However, the background data used for 

training was collected at a 10 Hz frame rate during a series of test flights on 28 Aug 99. The map in 

Figure 5 shows the flight paths of the SIRDS sensor over populated areas and water and coastal 

regions along the Gulf coast and South 

Atlantic coast (DL1 and DL2), and inland 

over South Carolina (DL3), North Carolina 

(DL4), and Tennessee, Virginia and 

Kentucky (DL5). Background data for 

.training the RBF network is from DL1 and 

from the first legs of the DL3, DL4, and DL5 

data collection flights. Missile data is from 

separate flight tests (SD6 and SD8) over a 

static missile launch at the Eglin AFB 

weapons testing range. SD6 data is used to 

train the RBF network, while SD8 data is 

used to test the network and the overall 

detection algorithm. 

Figure 5.   SIRDS data collection flight paths (Sanderson 1999). 
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3.  Neural Network Design and Modeling 

3.1 Introduction 

This chapter presents the design of the .Gaussian radial basis function neural network and 

the methodology used to analyze its effectiveness. Section 3.2 discusses the overall RBF network 

design and links this design to the radial basis function neural network and regression tree methods 

introduced in Chapter 2. Section 3.3 discusses the scope of the research, including the research 

objectives, and time and resource limitations. Section 3.4 discusses the design and optimization of 

the RBF network. Section 3.5 discusses the methods used to generate responses to input stimuli 

using the RBF network. Finally, Section 3.6 discusses the overall missile detection system concept, 

links the RBF network training to its prediction capability, and considers an algorithm that applies 

images to the neural network and manipulates the output to determine probable locations of 

missiles. 

3.2 Radial Basis Function Network Overview 

The RBF network is designed using functions discussed by Orr (1999) for non-parametric 

regression using radial basis function networks. The methods included in the toolbox employ 

various model selection criterion and techniques such as forward selection, ridge regression, and 

regression trees to control model complexity and generate RBF centers and radii. This section 

concentrates on regression trees and leave-one-out cross-validation model selection criterion, as 

these techniques were chosen for this thesis. For descriptions of the other methods and alternative 

model selection criterion, see Orr (1996). 
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3.2.1   Generating the Regression Tree 

The apex node of the tree is the smallest hyper-rectangle that contains all p cases of the 

training input vector {Xi}Pj=i. Its size Sk (the half-width) and center ck in each dimension k are 

sk = 0.5 ( max(x,t) - min(^) ) (3.1) 
ieS ieS 

ct = 0.5 ( max(^) + min(Xit)). (3.2) 
ieS ieS 

The apex node is then split into a left and right subset (SL and SR) on either side of a boundary (b) 

in one of the dimensions such that 

SL= {/:*»<*} (3-3) 

SR={i:xft>*}. (3.4) 

The mean output value on either side of the split is 

<yL>=VpLZyt (3-5) 
ieSi >£. 

<ys>=l/pRT.y,, (3.6) 
•eSR 

where pL aa&pR are the number of patterns in each subset. The residual square error between model 

and data is then 

E(k, b) = \lp ( Efo - <yL>? + S(Vi - <yR>? ). (3.7) 
ieSL ISSR 

The split that minimizes this value over all possible k dimensions and b boundaries is used 

to create the child nodes. These children then become the apex for their own trees and are split 

recursively in the same manner until a node cannot be split without creating a child containing 

fewer patterns than a predefined minimum number pmin, which is a parameter of the method. Since 

the size of the regression tree does not determine the model complexity, there is no need to prune 

the tree as is normally required in recursive splitting methods (Orr, 1999). 
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3.2.2 Generating RBFs 

Each node in the tree is associated with a hyper-rectangle of input space having a center c 

and size s. To convert a hyper-rectangle into a Gaussian RBF, the center of the hyper-rectangle is 

used as the center of the RBF, and its size is multiplied by a scaling constant a to make the RBF 

radius r = as. The scaling constant is also a parameter of the method (like'minimum-members) and 

is the same value for all nodes (Orr, 1999). 

3.2.3 Selecting RBFs 

In the standard methods for subset selection, RBFs generated by the regression tree are 

treated as an unstructured collection with no distinction between RBFs associated with different 

nodes. However, intuition suggests that the best order to consider RBFs for inclusion in the model 

is large ones first and small ones last (to synthesize coarse structure before fine details). This 

intuition suggests searching for suitable RBFs by traversing the tree from top to bottom in some 

form of breadth-first search. However, the size of a hyper-rectangle (in terms of volume) on one 

level is not guaranteed to be smaller than the size of all the hyper-rectangles in the level above 

(besides its parent). Thus the algorithm has a measure of backward elimination as well as forward 

selection in order to dynamically adjust the set of suitable RBFs by replacing selected RBFs with 

their children. This procedure avoids the situation where a parent RBF blocks selection of any of its 

children who would have been chosen in preference had they been considered first (Orr, 1999). 

The algorithm depends on the concept of an active list of nodes. At any given moment in 

the selection process, only these nodes and their children are considered for inclusion or exclusion 

from the model. Every time RBFs are added or deleted from the model, the active list expands by 

replacing a node with its children. Eventually, the active list reaches the terminal nodes and the 

search is completed. 
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The steps of the algorithm are described in greater detail as follows (Orr, 1999): 

1. Initialize the active list with the apex node and the model with the RBF associated with 

this node. * - 

2. Consider, for all non-terminal nodes on the active list, the effect (on the model 

selection criterion) of adding both or just one of the children RBFs (three possible 

modifications to the model). If the parent RBF is already in the model, consider the 

effect of removing it before adding one or both children RBFs, or of just removing it (a 

further four possible modifications). 

3. Choose the modification that most decreases the model selection criterion. The total 

number of possible modifications to the model is somewhere between three and seven 

times the number of active non-terminal nodes, depending on how many of their RBFs 

are already in the model. The choice then updates the current model and removes the 

node involved from the active list, replacing it with its children. If none of the 

modifications result in a decrease in the model selection criterion, then the algorithm 

chooses one of the active nodes at random and replaces it with its children, but does 

not alter the model. » 

4. Return to step 2 until all the active nodes are terminal nodes. 
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3.2.4  Model Selection Criteria 

Model selection criteria are estimates of prediction error, which is an estimate of how well 

the trained model performs on future (unseen) inputs. The best model is the one whose estimated 

prediction error is least. The methods in the software package by Orr (1999) can be configured to 

use a variety of different model selection criteria. Four of these criteria are based on modifying the 

training set sum-squared-error to take into account the effective number of parameters in the 

model. They are: Unbiased Estimate of Variance (UEV), Final Prediction Error (FPE), Generalized 

Cross-Validation (GCV), and Bayesian Information Criterion (BIC), and are available to all 

methods. Two other model selection criteria are also offered as alternatives in certain methods: 

Leave-One-Out cross-validation (LOO) and Maximum Marginalized Likelihood (MML). Only 

LOO is discussed in this chapter; see (Orr, 1996) for descriptions of the other model selection 

criteria. 

If data points are numerous, the data set can be partitioned in several different ways and the 

prediction error averaged over the different partitions. This procedure is the basis of leave-one-out 

cross-validation, where/? patterns are split into a training set ofp - 1 and a test set of 1, and the 

squared-error on trje left-out pattern is averaged over the p possible ways of partitioning the set. 

The advantage of this criterion is that all the data can be used for training; none has to be held back 

for testing. An advantage of LOO for linear models such as RBF networks with fixed centres is that 

the prediction error can calculated analytically (Orr, 1996) as 

<o2
Loo> = yTP(diag(P))-2Py/jp, (3.8) 

where P is the projection matrix, 

P = IrHA"'HT, (3.9) 
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H is the design matrix, 

H   = 

#>(Xi) f,(Xi) <fc?(x,)        ^(xO 

$,(x2) jfa) <h(*i)          &(l2) 

' Afap) jfa,) Ufo)      0m(xp) 

A   is the variance matrix, 

(3.10) 

(3.11) A_1 = (HTH+A)-1, 

and y = \yiy2--- yP]r is the vector of training outputs. 

All the regularization parameter elements of the diagonal matrix A are zero for our case, 

since the selection process limits model complexity. Once model selection is complete, the network 

weights are calculated by solving the equation 

w = (HTH)^HTy. (3.12) 
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3.3  Scope of Research 

The objectives of this research are as follows: 

1. Propose a method for detecting sub-pixel missile signatures in two-color infrared 

images using a Gaussian Radial Basis Function (RBF) neural network. 

2. Evaluate the performance of this detection technique by training and testing the neural 

network with data containing real missile and background signatures. 

3. Determine the near real-time effectiveness of the neural network in a real-world 

missile warning system by applying previously unseen images to the network and 

obtaining Receiver Operator Characteristic (ROC) curves. 

To meet the research objectives and stay within time and resource constraints, the scope of the 

research was limited to the areas detailed in the following paragraphs. 

Eighteen gray-level intensities were initially used as the baseline feature set to cover the 

nine pixels from each of the two color bands of the SIRDS sensor (i.e., 3 by 3 element square 

windows encompassing the pixel containing the missile in the red and blue bands). However, a 

smaller set of features for training .the RBF network was produced from combinations of these 

eighteen pixel values to avert the curse of dimensionality. 

Only a subset of the data collected by the SIRDS sensor was used to train the RBF network 

due to the immense amount of data involved and the processing and memory limitations of 

computers. There are more than 7,000 distinct 3x3 windows in a single frame of SIRDS imagery. 

Therefore, a decision was made to only consider those 3x3 cases obtained from selected 150x150 

regions in two frames (consecutive red/blue pairs) from each of the background data sets. 
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Each pair of red and blue band 150x150 regions provided 2500 training cases because there 

were 50x50 distinct 3 by 3 image chips in each region. The training set was hand-selected by 

viewing frames from each data set and identifying 150x150 regions that encompassed significant 

background textures in the images. The background training cases obtained this way numbered 

10,000, which when combined with the 2,000 cases already obtained from the missile data set 

produced a 12,000x4-element input to the RBF network training algorithm. An overview of the 

data extraction methodology is shown in Figure 6. 

Data set     =       DL2 (Eglin beach), 
DL3 (South Carolina), 
DL4 (North Carolina), and 
DL5 (Virginia) 

Figure 6.   Data extraction method for the feature set. 

10000x4 element matrix 
of background features 
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3.4  RBF Network Design Parameters 

There are three main parameters in the design of an RBF network using the Orr (1999) 

Matlab functions. They are the model selection criterion, the minimum number of- members 

allowed in a node/?mj„ (which controls the depth of the regression tree), and the scaling parameter a 

(which determines the relative size between hyper-rectangles and RBFs). 

Leave-One-Out cross-validation (LOO) was chosen as the model selection criterion and 

was used with the regression tree method (rbf_rt_l) for selecting suitable RBFs. This method first 

models the data with a regression tree, then uses the nodes in the tree to determine the centers and 

radii of a set of RBFs. A subset of these RBFs is then selected by considering large RBFs before 

smaller ones and minimizing the prediction error through LOO. 

The minimum number of cases allowed in a nodepmin has some effect on performance, and 

experimentation must be performed with different sets of trial values to find one that works well on 

a given data set (Orr, 1999). The default is a single value of 5, but any value or collection of values 

down to 1 may be selected. The program grows a separate regression tree for each value of pmi„ 

entered, and each tree gives rise to a separate set of unsealed RBFs. A regression tree forpmin = 1 

takes much time to grow if presented with a large data set because the tree must keep splitting until 

there is a minimum of one case of any dimension of the feature vector in a node. 

The scaling parameter a has a significant effect on method performance, and 

experimentation must also be performed to find a value that works well. The default has two trial 

values, one and two. However, any range of scale values can be entered, leaving the program to 

choose the winning network with the lowest model selection criterion score. Experience shows that 

if the input space has a large number of dimensions, then the best scale values are usually larger 

than these (Orr, 1999). 
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3.5  Feature Saliency 

Feature saliency involves finding the features or combinations of features that carry the 

most information and which are-thus most relevant to the" target recognition solution. Feature 

saliency plays an important role in reducing complexity by reducing the dimensionality of the input 

data. 

3.5.1   Input Pre-processing 

Each training case is extracted from the flight-collected data sets such that there are 

eighteen input values per case which correspond to the pixel intensities in consecutive color bands 

as follows: 

rllrl2rl3 bllbl2bl3 

Red chip    =   r21r22r23 Blue chip   =   b21b22b23 

r31r32r33 b31b32b33 (3.13) 

Initially, all eighteen values were interleaved into a row such that the raw red and blue band 

intensities from consecutive frames are the components of a vector 

v  = 

[rll bll r33 b33 rl2 bl2 r32 b32 rl3 bl3 r31 b31 r21 bl2 r23 b23 r22 b22]   (3.14) 

The mean intensities in each band are then subtracted from the raw intensities, and the resulting 

value is divided by the maximum intensity in each band to normalize the data. 

This eighteen-dimensional vector was difficult to handle computationally, therefore the 

number of dimensions needed to be reduced. One of the simplest techniques for dimensionality 

reduction is to select a subset of the inputs and discard the remainder. However, all the inputs 

carried useful information, so a better method was to find combinations of the inputs that 

distinguished the point-source characteristics of sub-pixel missile signatures from the more 

uniform characteristics of background signatures in small (local) regions of an image. 
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3.5.2  Z scores for Dimensionality Reduction 

Z scores are a special application of transformation rules and one method of combining 

multiple inputs into a single statistic. The Z score of an item is a statistical measure that quantities 

how far and in which direction that item deviates from its distribution mean, expressed in units of 

its distribution standard deviation. The mathematics of the Z score transformation are such that if 

every item in a distribution is converted into its Z score, the scores have a mean of zero and a 

standard deviation of one. Z scores are especially informative when the distribution to which they 

refer is normal, as the distance between the mean and Z score is a fixed proportion of the area 

under the curve. The formula for converting a given value X into its corresponding Z score in a 

distribution is (Hoffman, 2000) 

Zx = (X-ux)/ax. (3.15) 

Two variations of the Z score were used for reducing the number of dimensions in the 

. input data. The Z score used by Baxley et dl. (2000) was applied to the data from red band image 

chips as follows: 

ZB = (8 * r22) / (rl l+rl2+rl3+r21+r23+r3l+r32+r33) (3.16) 

The same formula was applied to blue band image chips. 

3.53  Z score from Double-Gated Filtering Methods 

The second Z-score-like statistic came from double-gated filtering methodology (Sevigny, 

1994). In double-gated filtering, an image is scanned with a moving window that consists of two 

concentric sub-windows. The inner sub-window (the target gate) includes the center element plus 

an optional number of rings of pixels surrounding it. The outer sub-window (the background gate) 

incorporates pixels that lie on the perimeter of the moving window plus an optional number of 

inward rings. Using the Holmes method (Morin, 2000), the means and standard deviations of the 

pixel gray levels are evaluated for the two gates such that the output 
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0(x,y) = [jiT-M/°B (3.17) 

corresponds to the center of the moving window, where u.T is the mean of the pixels in the target 

gate, UB is the mean of the pixels in the background gate, and oB is the standard deviation of the 

pixels in the background gate. In order to use this method, each image chip is considered to have an 

inner sub-window with only the center pixel inside it and an outer sub-window with the remaining 

eight pixels surrounding the center as follows: 

Red chip 

rll rl2 rl3 

r2l r22 r23 

r31 r32 r33 

Blue chip 

bll bl2 bl3 

b21 b22 b23 

b31 b32 b33 (3.18) 

The second version of the Z score is then calculated for the red and blue band chips using the 

Holmes parameter as follows: 

ZH (red) =       r22 - mean(rl 1 r!2 r!3 r21 I23T3 1 r32 r33) 

standard deviation(rl 1 rl2 rl3 r21 r23 r31 r32 r33) 

(3.19) 

3.5.4  Principal Component Analysis 

Principal component analysis (related to the Karhunen-Loeve transformation) is one 

popular linear dimensionality reduction procedure for visualizing a multi-dimensional data space. 

In practice, it proceeds by first computing the means of the data values in each dimension, then 

subtracting off the means from the values. Next, the covariance matrix is calculated, and its 

eigenvectors and eigenvalues are found. Each of the eigenvectors is a principal component. 

Dimensionality reduction is then obtained by retaining the eigenvectors corresponding to the M 

largest eigenvalues and projecting the data set onto these eigenvectors to get the components of the 

transformed vectors in the new Af-dimensional space (Bishop, 1995). 
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The technique is illustrated schematically in Figure 7 for the case of reducing data in two- 

dimensions to one dimension. 

x2 

«2 Ul 

Xi 

Figure 7. Schematic illustration of principal component analysis 
applied to data in two dimensions. In a linear projection down to one 
dimension, the optimum choice of projection, in the sense of 
minimizing the sum-of-squares error, is obtained by first subtracting off 
the mean, (I*, of the data set, then projecting onto the first eigenvector 
Uj, of the covariance matrix (Bishop, 1995). 

This method can be regarded as a form of unsupervised learning since it relies on the input 

data itself without reference to the corresponding target data. However, this neglect of target 

information implies that the result can also be significantly sub-optimal in preserving the 

discriminatory capabilities of the data as shown in Figure 8. 
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Figure 8. Example of principal component analysis resulting in 
discriminatory information being discarded. Dimensionality reduction 
to one dimension using principal component analysis projects the. data 
onto the vector ui, which would remove all ability to discriminate the 
two classes Ci and C2. Full discrimination capability is preserved, 
however, if the data is projected onto the vector u2 instead (Bishop, 
1995). 

3.5.5  Automatic Relevance Determination 

The program rbfrtl by Orr (1996) has a feature that is not shared by any of his other 

RBF network training methods, but which is similar to performing a principal component analysis. 

The rbfrtl method monitors which dimensions of the input data are first to be split and how 

often each dimension is split during tree growth. These (tree) splitting statistics provide a form of 

automatic relevance determination, since they identify dimensions that are seldom split (or not 

among the first-to be split) and which thus carry less information than the dimensions that are 

frequently split. 
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3.6  RBF Network Prediction 

Once the RBF network is trained and its centers, radii, and weights are returned, the 

network is used to make predictions, i.e. to calculate the probability of a missile in any part of an 

image. The first task is to build a design matrix H. The term design matrix implies deliberate 

choice or design of the inputs of the training set; however, the inputs are usually not controlled in 

practical applications of neural networks (Orr, 1999). 

For models that are linear with respect to the weights w7, 
m 

Ax) = l,wjhj(x), (3.13) 
i=\ 

where for our case of Gaussian basis functions, 

A/x^expHx-c,)2/r/). (3.14)- 

The system of linear equations to be solved (in a least squares sense) is 

h\(xx)wx +■ Ä2(xi)w2 + ... + hm(xx)wm = Vi, 

h1(x2)wi + h2(x2)w2 + ... + hm(x2)wm = y2, 

... ...   , 

hixp^wx + h2(xp)w2 + ...+ hm(Xp)wm =yp. (3.15) 

Here the design matrix H consists of the coefficients on the left-hand side of the system of 

equations, i.e., Hv = h/xj). Orr's (1999) rbfdm Matlab function calculates H using input data, the 

RBF centers, and the RBF radii. The default configuration for rbfjdm implements Gaussian radial 

functions of the form expi-z2), where z is the distance vector. However, alternative radial functions 

include Cauchy, multi-quadratic, and inverse functions. Matrix-multiplying H with the weight 

vector w (f = H * w) then yields a predicted output from the RBF network. 
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3.7  Overall Missile Detection Concept 

The parameters of the RBF network combined with the rbfdm function enable prediction 

of the presence of missile-like signatures as shown in Figure 9. 

. Ground-truthed data 
Training Data: 
Given Xtr 

Known y^ 

Normalize the inputs. 
Apply Global Thresholding. 
Find pixels above threshold. 
Produce a feature vector, Xj, 
from the eligible image chips. 

Tree Regression 

Model Selection 

Calculate the 
Desiga Matrix 

H 

I 
Determine RBF 
centres c, radii r, 
and weights w. 

Predict the 
output 

y, = H * w 

w 

Generate a 
probability 
density map 
from the outputs 

"► Pass possible target 
locations to a 
tracking algorithm 

Figure 9. Missile detection algorithm block diagram. First, ground- 
truthed data is used to train the RBF network and obtain centers, radii, 
and weights in the feature space. Then red and blue band image chips 
are input to the RBF network in the same form as used for training. 
Global thresholding of the normalized inputs enables the algorithm to 
run in near real-time by narrowing the field of interest of the RBF 
network to only those image chips around pixels above the 
predetermined threshold. The output of the RBF network is the center 
pixel of each 3 by 3 image under test, but in a new (probability density) 
mapping in which the pixel values may vary between zero and one 
depending on how much (or little) they resemble background or 
missiles. 
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4.  Results and Analysis ] 

4.1 Introduction 

„This Chapter discusses .the simulations and results of testing the Gaussian RBF neural 

network and missile detector configuration described in Chapter 3. Section 4.2 presents plots of 

some of the raw images that were used to train and test the RBF network and discusses the 

characteristics of the features selected for training the RBF network. Also presented are sample 

plots of the data set after principal component analysis. Section 4.3 presents the RBF network 

parameters obtained from the regression-tree/leave-one-out cross-validation training process and 

discusses their significance. Section 4.4 discusses results from testing the RBF network with 

previously 'unseen' missile data. Section 4.5 describes the design of a near real-time missile 

detection algorithm to complement the RBF neural network, and it discusses the results of applying 

this algorithm to the test data. Using Receiver Operating Characteristic (ROC) curves, Section 4.6 

assesses the performance of the RBF network-based detection algorithm. Finally, Section 4.7 

summarizes the results presented in Chapter 4. 

4.2 Training Data 

Several pre-processing procedures were used on the training data to find one that could be 

performed in a timely fashion by the regression tree building and RBF network selection 

algorithms. Although the computer used was a 128-megabyte RAM Pentium III 450MHz PC, the 

problem lay in the inherently memory-intensive tree building process. The depth of the tree was 

dependent on the parameter entered for the minimum number of cases allowed in a node. 

Experimentation determined that small values of this parameter (i.e., one to ten) could only be used 

with relatively small data sets of a few hundred cases. Large data sets required (minimum case) 

parameters of 100 or greater, because otherwise the computer had insufficient memory to complete 

the tree regression. 
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The scaling parameter did not affect the depth of the tree, but greatly influenced the 

number and locations of RBFs selected. When the number of dimensions was large, such as when 

all eighteen raw pixel intensities were considered as features, the optimal RBF scaling parameter, 

was found to be ten to twenty times the size of the hyper-rectangles in the regression tree. This 

result was only obtained for a small subset of the data, however, since the computer was never able 

to build a complete tree for the entire eighteen-dimensional data set. The scaling parameters that 

worked with the available computing resources changed again when the eighteen dimensions were 

reduced to the four chosen features. Scaling factors of two to five were found to work better when 

the number of dimensions was small. The regression tree algorithm requires setting applicable 

values for these two parameters before initiating the process. Here 100 minimum members and a 

scaling factor of two were used. 

4.2.1   SIRDS Imagery 

The imagery used in this research was collected by the SIRDS 256 by 256 focal plane 

array sensor. The images were collected as a series of red 1, bluel, red2, and blue2 frames because 

the color-wheel consisted of four quadrants. In the missile data set, the featureless desert 

environment of the test range resulted in the missile being the only significant IR energy source in 

the scenes. Also, there was only one missile in each scene, so the missile-bearing pixels were 

always the ones with maximum intensity in each frame. Image chips were then extracted by 

centering a 3 by3 window on the maximum intensity pixel and using the pixel values contained in 

the window for calculating the features. Figures 10 and 11 show frames in the red 1 and red 2 

bands, and Figures 12 and 13 show frames in the blue 1 and blue 2 bands. The view in all four 

figures is straight toward the ground. 
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»ure'10.   Missile scene in the red 1 band. The black arrow points to 
; missile location in the scene. The scene is mostly featureless except 
r the missile, since the image was collected over a desert test range. 
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gure 11.   Missile scene in the red 2 band. The image from the second 
d quadrant is practically identical to the image seen in the previous 
jure from the first red quadrant. Therefore, the two quadrants were 
garded as the same color band, which simplified the detection 
oblem and allowed the use of fewer features. 
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Figure 12. Missile scene in the blue 1 band. The image in the blue 
band displays more texture than in the red band due to the abundance of 
black-body sources around the missile such as sand, which absorbs and 
re-radiates energy from the Sun at this particular wavelength. 
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Figure 13.  Missile scene in the blue 2 band. 
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As expected, images in the red bands were mostly featureless (except for the missile) due 

to the lack of any other combustion source on the test range. Images in the blue bands displayed 

more texture because black body sources such as clouds and hot sand were present in the scene. 

Figure 14 shows four consecutive intensity plots from one rotation of the color-wheel (i.e. 

consecutive redl, bluel, red2 and blue2 frames). These plots show that there is little difference 

between images from the redl and red2 quadrants and bluel and blue2 quadrants. Thus the four- 

quadrant nature of the color-wheel was ignored in favor of treating the two red quadrants as one red 

band and the two blue quadrants as one blue band, thus reducing the complexity of the problem and 

also reducing the number of features needed to characterize the data. 

Red (i) 

Red (ii) 

Figure 14.   Intensity plots of a missile scene in each color band. 
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As discussed in Section 2.9, background features were obtained from a variety of clutter 

environments over-flown by the SIRDS sensor. Figures 15 and 16 show scenes of Eglin Beach in 

the red and blue bands, respectively. 

Figure 15. Image of Eglin beach in the red band. The portion of this 
scene inside the rectangular window provided training data to the RBF 
network. The window was chosen to highlight what appeared to be a 
strip of beach towards the lower right-hand corner of the scene. The 
window deliberately excluded the strong feature towards the upper 
right-hand corner of the scene. This feature did not correlate with any 
known object on the ground and appeared to be due to glare from the 
sensor optics. 

Figure 16. Image of Eglin beach in the blue band. The anomalous 
feature discussed in Figure 15 is less evident in this image, and the 
image displays more texture than in the red band. 
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Figures 17 and 18 show scenes of the South Carolina countryside in the red and blue bands, 

respectively. 

250 

200 

Figure 17. Image of South Carolina countryside in the red band. The 
pixels inside the rectangular window were chosen for the training data 
set. 
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Figure 18.   Image of South Carolina countryside in the blue band. 

42 



Figures 19 and 20 show scenes of the North Carolina countryside in the red and blue 

bands, respectively. 
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Figure 19.  Image of North Carolina countryside in the red band. 
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Figure 20.   Image of North Carolina countryside in the blue band. 
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Figures 21 and 22 show the Virginia countryside in the red and blue bands, respectively. 
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Figure 21.  Image of Virginia countryside in the red band. 

250 

200 

150 

100 

i 
i 
I 

50 

n 
0                         50                        100                      150                      200                      250 

Figure 22.   Image of Virginia countryside in the blue band. 
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4.2.2  Feature Selection 

The eighteen raw pixel intensities from red/blue image chip pairs were the first features to 

bejested. However, the computer had insufficient memory to build the complete regression tree for 

this eighteen-dimensional feature space. Thus Z scores and Holmes parameters were investigated 

as a means of combining the inputs into more meaningful statistics and to reduce the 

dimensionality of the input space. 

The Z score was taken from work already performed by Baxley et al (2000) and 

designated as ZB. The concept of this Z score, described in Section 3.5.2, is that the center pixel is 

usually much brighter than the average of the pixels immediately surrounding it in a target image 

chip. This finding is especially valid for sub-pixel missile detection, since if light from the missile 

is incident on a very small (sub-pixel) portion of a detector element, its energy is largely 

concentrated in that one image pixel. Conversely, background clutter is usually uniformly high or 

low in intensity over small regions. Thus the .ratio of a center pixel intensity to the surrounding 

pixels average intensity should be high for target chips and low for background chips. 

The second Z-score-like statistic was the Holmes parameter, which is normally associated 

with double-gated filtering techniques. The Holmes parameter was designated ZH. The concept of 

the Holmes parameter, described in Section 3.5.3, is that two groups of pixels extracted from an 

image will differ significantly in mean intensity if one of the groups is mainly an aggregate of 

target pixels. Thus the Holmes parameter should also be high for target chips and low for 

background chips. The Holmes parameter has been shown effective for detecting extended sources 

such as in Synthetic Aperture Radar (SAR) imagery (Morin, 2000), but is adaptable to point 

sources (whereas the opposite is not usually true). 
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4.2.3   Principal Component Analysis of Features 

A row of the feature vector was arranged as [ZB_RED, ZB BLUE, ZH RED, ZHBLUE]- The 

covariance matrix of the 12,000-case feature set was 

Covariance (X*)    =     3.3996 0.1510 0.1960 0.0949 
0.1510 2.4125 0.2004 0.1149 
0.1960 0.2004 4.0751 3.2109 
0.0949 0.1149 3.2109 3.7354.                     (4.1) 

The eigenvectors and eigenvalues of the covariance matrix were 

Eigenvectors =     -0.1403 -0.9882 -0.0228 0.0573 
0.9889 -0.1369 -0.0298 0.0491 
-0.0114 0.0277 0.6890 0.7242 
-0.0472 0.0631 -0.7238 0.6855, (4.2) 

Eigenvalues =     2.3833 0 0 0 
0 3.4090 0 0 

. 0 0 0.6868 0 
0 0 0 7.1436. (4.3) 

As shown in Equations 4.2 and 4.3, the eigenvectors corresponding to the two largest eigenvalues 

were [0.0573, 0.0491, 0.7242, 0.6855]7 and [-0.9882, -0.1369, 0.0277, 0.063 if, which were the 

principal components of the Holmes parameter and Z score in the blue band, respectively. The 
* 

projection x of any vector b onto the column space of these eigenvectors was computed using 

x     =     (ATAJlATb, (4.4) 

where A    = 0.0573 0.9882 
0.0491 -0.1369 
0.7242 0.0277 
0.6855 0.0631 , 

and b = transpose(Xa.). 

The goal was to project the 4-dimensional feature space onto a 2-dimensional space for better 

visualization. The new feature space is shown in Figure 23. 
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Figure 23. Projection of the input space into two dimensions by 
principal component analysis. The axes ul and u2 correspond to the 
dimensions of the Holmes parameter and Z score for the blue bands 
respectively, as the eigenvectors of these two features corresponded to 
the two largest eigenvalues of the covariance matrix. The red data 
points represent components of the original missile features projected 
onto the new feature space and the black data points represent 
components of the background features projected onto the new space. 
There is a slight overlap between the two sets of data, but overall they 
appear to occupy different regions of the feature space. This result 
means that the features chosen have distinguishing characteristics that 
should provide a good discrimination capability to the RBF network. 
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Figure 24 shows the two-dimensional space of the red and blue band Z scores, and Figure 

25 shows the two-dimensional space of the red and blue band Holmes parameters. 

5'v.'* 

0.5 
Red 2 Score 

Figure 24. Two-dimensional space of the Z scores. Red data points represent Z 
scores of missiles and black data points represent the Z scores of background 
training cases. 

$$'-';V ■ 

2 4 8 
Red Holmes Parameter 

Figure 25. Two-dimensional space of the Holmes parameters. Red data points 
represent Holmes parameters of missiles and black data points represent Holmes 
parameters of the background training cases. Holmes parameters corresponding 
to missiles are generally large-valued and positive, whereas those corresponding 
to background are relatively small-valued and positive and negative. The distinct 
'spike' of missile data points away from the generally linear distribution is more 
apparent here than in the Z score scatter plot. These spikes are the only 
immediately apparent difference between missile signatures in the boost and 
sustain phases of the missile firing. 
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Figure 26 shows the red and blue missile Z scores as a function of time, and Figure 27 

shows the red and blue Holmes parameters as a function of time. 

BOO       100O     1200      1400      1600      1800      2000 
Time (frame nuttier) 

Figure 26. Red and blue missile Z scores versus time. Red Z scores 
are slightly higher than blue Z scores at the start of missile firing (the 
boost stage), which is when the exhaust plume is very hot. The blue Z 
score temporarily dominates after the motor cuts-out. However, the two 
features are mostly identical for the remainder of the training set, which 
indicates that the missile becomes less distinguishable from the 
background after the booster cuts-out. 

St»        1000       1200 
Time (frame n«*er) 

Figure 27. Red and blue Holmes parameters versus time. Red Holmes 
parameters are much higher than blue Holmes parameters during 
missile boost and this produces the distinct 'spike' of missile data 
points in Figure 25. The greater separation between red and blue 
Holmes parameters than red and blue Z scores during missile boost 
indicates that the Holmes parameter should be the more powerful 
feature in missile detection. 
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4.3  The RBF Network 

The RBF neural network was produced by configuring the regression tree algorithm to 

grow to a minimum of 100 input cases in a node and by scaling the size of the hyper-rectangles 

associated with each node by a factor of two. The training vector contained 12,000 cases and the 

target vector contained 12,000 elements. Each element of the target vector corresponded to one 

case in the training vector and had a value of 1.0 if the case came from the missile data set and 0.0 

if it came from a background data set. The resulting neural network consisted of 103 RBF centers 

distributed in the four-dimensional feature space with individual radii and weights associated with 

each center. The RBF centers, radii, and weights are listed in Appendix A. 

Information returned from the regression tree method indicated that the red band Z score 

was the first feature to be split and was also the most often split: 107 times. The blue band Z score 

was the second feature to be split, but it was only split once. The red and blue band Holmes 

parameters were .the third and fourth features to be split: five and two times, respectively. Orr 

(1999) suggests that the feature that is split first and/or most often split is the most relevant (and 

thus useful) feature for discrimination. However, Figure 26 shows that red Z scores are not 

significantly different from blue Z scores (even during missile boost); Therefore, the regression tree 

method needed to partition the red Z score data set much more than the other features' data sets in 

order to cluster sufficient red Z scores to discriminate between missiles and background. On the 

other hand, Figure 27 shows that red Holmes parameters are clearly higher than blue Holmes 

parameters during missile boost. Holmes parameters (alone) displayed sufficient discrimination 

between missiles and background (as found in the principal component analysis discussed in 

Section 4.2.3) and thus did not require much partitioning by the regression free method. Therefore, 

the Holmes parameter is (logically) the more useful feature for discrimination (contrary to Orr's 

conclusions about the regression tree method's automatic relevance determination). 
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4.4  Test Results 

Initially, the 3 by 3 window transform was moved over an entire test frame to apply the 

RBF network to every pixel in the scene. However, this method was slow due to the large number 

of operations needed for a 256 by 256 image. Figure 28 shows intensity plots for two frames from 

the 'unseen' missile data set used to test the RBF network. 

0      0 0      o 

Figure 28. Missile test frames. The intensity plot on the left is from 
the red band, and the plot on the right is the frame that immediately 
followed in the blue band. The missile is the sharp peak located at 
coordinate {51,125}. 

Figures 29 and 30 show the probability density and target location maps, respectively, 

obtained when the 3 by 3 window was slid over the entire image in each band and applied to the 

RBF network. 
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Figure 29. Probability density mapping from analyzing an entire test 
frame. The RBF network determined that many parts of the scene 
contained missiles with a high probability, even though the test scene 
contained one actual missile. The red spikes in the map indicate pixels 
that had an 80% or greater chance of containing a missile. The large 
number of false alarms is probably due to irregularities in the noise 
floor of the data. Pixels in noise can appear to be missiles if the mean 
of the noise around them is low enough to enhance the features 
calculated for these pixels. 
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Figure 30. Target location map from analyzing entire test frames. The 
red dots indicate pixels that were given a 95% or greater probability of 
containing a missile by the RBF network. There were 401 of these 
potential targets in this scene alone, of which only one, at coordinate 
{51, 125} and marked by the black arrow, was the true missile. 

A technique for eliminating spurious detections compares results from successive frames 

with a logical AND operation. Therefore, the next two red/blue frames in the data set were 

analyzed and their (>95%) target locations 'ANDed' with the previous target location map to 

produce the comparison mapping shown in Figure 31. 
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Figure 31. Result after two-frame registration and comparison. Target 
location maps for pixels with greater than 95% probability of 
containing missiles were compared using a logical AND operation. 
Only targets that appeared in the same locations in both maps were 
retained. The number of potential targets was reduced to 99, much less 
than the original 401 but still including too many false alarms. The 
actual missile was one of the retained targets as indicated by the black 
arrow. 
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Normalize the input data by subtracting the mean and 
dividing by the maximum pixel values in each frame. 

Apply the Global Threshold. 

Extract the 3x3 s around those 
pixels above the threshold. 

Share coordinates Extract the 3x3 s around those 
pixels above the threshold. 

Calculate the Z score and Holmes parameter features 
using the pixel values in the 3x3s from both bands. 

Apply the feature vectors to the RBF network to 
predict the probabilities for each pixel under test. 

Generate a probability density mapping of the results 
and find highly probable target locations for use by a 
tracking algorithm. 

-> 

Figure 32.  Near real-time missile detection algorithm block diagram. 
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The threshold level must be adaptable to particular situations that depend on the strength of 

noise in the data. A missile in its initial boost phase is always brighter than the average intensity of 

the image, but the missile signature may fall to near the background because of the plume 

becoming cooler once the boost phase is complete. Therefore, the threshold level must be positive 

and higher than the average intensity in an image, but not too high above the average intensity as to 

completely ignore potential targets that may be near the noise floor. Figure 33 shows that the noise 

floor rarely exceeded 0.01 in a profile of the red band test image. 
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Figure 33.    Red band test image profile.    In profile, the normalized 
intensity of the missile-bearing pixel is clearly much greater than the 
other pixels, while the normalized intensities of the background pixels 
rarely exceed 0.01. 
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Therefore, a global threshold of 0.01 (normalized intensity) was applied to the red band 

test image to remove from consideration pixels that were clearly too low in normalized intensity to 

be potential missiles. Figure 34 shows the image profile after this thresholding. 
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Figure 34. Thresholded red band test image profile. The smaller peaks 
to the left of the actual missile indicate those pixels that had normalized 
intensities that exceeded 0.01. Only these pixels and the missile-bearing 
pixel were retained for further processing to concentrate detection 
resources and increase the speed of the detection process. 
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After thresholding, only 26 pixels from the test image remained in consideration. As 

expected, the missile-bearing pixel probability was near unity, while the other pixel probabilities 

were 0.4 or lower. The resulting probability density map is shown in Figure"35. 
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Figure 35. Result after global thresholding at 0.01 normalized 
intensity. The only pixel with a probability near unity exactly 
corresponded to the missile-bearing pixel in the test image, and the 
RBF network operated in near real-time as a result of having fewer 
potential targets to analyze. 
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4.6  Receiver Operating Characteristic (ROC) Curves 

The performance of the RBF network was characterized using Receiver-Operating- 

Characteristic (ROC) curves, which plot the probability of correct detection versus the number of 

false alarms for classification thresholds from 0.05 to 1.0. These parameters were chosen since the 

RBF network had been trained to respond to missile-bearing pixels with the value 1.0, and to 

respond to background pixels with the value 0.0, where pixels with probabilities above the 

threshold were classified as missiles. Intuition suggests that probabilities above 0.8 (i.e., pixels 

with greater than an 80% chance of being a missile) were best for detecting missiles. However, the 

optimum threshold is situation specific, since missile IR signatures change with the engagement 

environment and the probability of the target pixel matching the training examples may change 

accordingly. 

The probability of correct detection can only be one or zero because there was only ever 

one missile in a scene. However, the number of false alarms associated with a correct detection can 

vary greatly depending on the classification threshold used to declare the missile. The optimum 

classification threshold occurs when the ROC curve simultaneously achieves zero false alarms and 

unity probability of correct detection. Figures 36 and 37 show ROC curves at different stages of the 

missile firing. Figure 36 shows the ROC curve for an image at the start of the missile firing, where 

the exhaust plume is very hot and the missile signature is easily distinguishable from the 

background. Figure 37 shows the ROC curve for an image after the missile motor has cut out. 

Although the two curves look identical, the positions and values of classification threshold with 

respect to false alarms is very different. 
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Figure 36. Receiver Operating Characteristic (ROC) curve during 
missile boost phase. The missile is correctly detected for classification 
thresholds up to 0.85, indicating that the RBF neural network predicted 
the presence of the missile with a high probability in this phase of the 
missile firing. The penalty for using lower classification thresholds than 
0.6 is an increase in the number of false alarms. The penalty for using a 
classification threshold higher than 0.85 is the non-detection of the 
missile. Therefore, there is a trade-off between maintaining a 100% 
probability of detection and the number of false alarms that can be 
tolerated. 
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Figure 37. ROC curve after the missile motor has cut out. The 
classification threshold at which the missile drops out of the picture is 
much lower than earlier in the missile firing because the missile 
signature has diminished so greatly that the RBF neural network no 
longer predicts the presence of the missile with high probability. A 
classification threshold higher than 0.45 at this stage of the engagement 
would result in non-detection of the missile. 
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The ROC curves showed that the optimum threshold for detecting the actual missile varied 

with time. Setting the threshold too low invited detecting many false alarms, whereas setting it too 

high resulted in omission of the actual missile. In general, missiles could be reliably detected using 

probability thresholds of 0.4 or higher at a small cost in false alarms (since the majority of 

background pixels had probabilities lower than 0.4). However, the threshold must be adaptable to 

compensate for variations in the RBF network probability estimations. 

An adaptive method could be based on the fly-out characteristics of missiles. The missile 

plume is usually very hot during launch as the motor boosts the missile off the rail and imparts a 

rapid acceleration. This boost phase may last two to three seconds, after which the motor coasts the 

missile for the remainder of the engagement along its intercept trajectory (sometimes with a final 

boost at the end of the intercept to give the missile extra impetus in the end-game). It is during the 

coast phase that the missile signature may fall to values at or below the background clutter where 

the neural network may not recognize the missile. More tests are needed to obtain data for training 

an RBF network to recognize missiles in this phase. 

63 



4.7   Summary of Results 

RBF network training took longer to complete than expected due to the complicated 

configuration rules for the regression tree, method by Orr (1999). It is unknown whether the 

network parameters obtained were the best solution to the problem (available computer resources 

limited the depth to which the regression tree could grow). The RBFs used here were developed by 

configuring the regression tree to split the input data until there were a minimum of 100 input cases 

in a single node and. by scaling the hyper-rectangles associated with each node by the factor of two. 

The optimum RBF network was determined by selecting RBFs in the tree that most decreased the 

prediction error using leave-one-out cross-validation. The resulting RBF network consisted of 103 

RBF centers representing a 12,000-case training set that consisted of 2,000 missile cases and 

10,000 background cases from infrared images of Eglin beach and South Carolina, North Carolina, 

and Virginia countryside. 

The RBF network was slow to predict responses for entire image frames due to the large 

amount of processing required. The results also contained many false alarms due to noise in the 

data. A global thresholding stage was applied (prior to the RBF network) to red band inputs to 

suppress pixels whose normalized intensities were below that expected of actual missiles, and the 

RBF network then performed faster and with fewer false alarms. ROC curves showed that the 

optimum probability threshold for detecting the actual missile varied with time. 

Overall, the RBF network, once designed and implemented in a near real-time multi-stage 

algorithm, correctly recognized missiles in two-color infrared imagery while producing a low 

number of false alarms. 
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5.  Conclusions and Recommendations 

5.1 Restatement of Research Objectives 

The objectives of this research were to: 

1. Propose a method for detecting sub-pixel missile signatures in two-color infrared 

images using Gaussian Radial Basis Function (RBF>neural networks. 

2. Evaluate the performance of this detection technique by training and testing the neural 

network with data containing real missile and background signatures. 

3. Determine the near real-time effectiveness of the neural network in a real-world 

missile warning system by applying previously unseen images to the network and 

obtaining Receiver Operator Characteristic (ROC) curves. 

5.2 Conclusions 

5.2.1     Combining Regression Trees and Radial Basis Function Neural Networks 

The use of regression trees for generating radial basis function neural networks is 

innovative. However, the tree building process is also memory intensive and limits the amount of 

training data. The resulting RBF network is also dependent on the initial configuration of the 

regression technique; the 'minimum members per node' and 'hyper-rectangle RBF scaling factors' 

greatly influence the final design. An optimal combination of these parameters is not intuitive, and 

only trial-and-error finds a workable solution for particular situations. Nevertheless, the techniques 

of Orr (1999) are consistent with the development of radial basis function neural networks and 

address the research objectives. 
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5.2.2 Z Score and Holmes Parameter 

The Z score and Holmes parameters were effective in differentiating pixels that represented 

missiles from those which contained only background; a pixel containing energy from a missile is 

significantly higher in intensity than its surrounding neighbors, whereas pixels from background 

scenes are usually uniformly high or low in intensity over a local region. The Holmes parameters 

were much larger in the red band than in the blue band during missile boost, which (probably) 

enabled the RBF network to operate as effectively as it did. The red and blue Z scores did not 

display as large a separation as the Holmes parameters during the same boost phase of the missile 

firing. Automatic relevance determination by regression trees found that the red band Z scores 

required the most partitioning to enable their use in the neural network. The red and blue band 

Holmes parameters were the last of the four features to be split by the regression tree method, 

indicating that these features were sufficiently distinct on their own for discriminating between 

missiles and background. The use of only four features (and not one feature for each of the original 

eighteen raw pixel intensities) averted the curse of dimensionality.   . 

5.2.3 Data Normalization 

Instead of compensating for variations between data sets, all data was normalized by 

subtracting the mean and dividing by the maximum pixel intensity in each image before neural 

network processing. As a result, the neural network algorithm only processes intensity ratios 

instead of high-value absolute intensities. 

5.2.4 Global Thresholding 

Global thresholding is a pre-processing stage that narrows the field of interest for the RBF 

network and concentrates detection resources in only those areas of the image that intuitively 

contain missiles. The use of normalized data also means that the level of thresholding is uniformly 

applicable to a variety of data sets even if they represent different environments. 
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5.2.5    Overall Performance 

The RBF network-based missile detection algorithm performs very well in recognizing the 

correct target in the tested images. Intentional design of the RBF network response to mimic 

probability estimation allows a mapping of the feature space to a corresponding probability density 

space from which individual pixels are clearly likely (or unlikely) to be missiles depending on their 

values between zero and one. ROC curves of the results show that the probability thresholds that 

best eliminate false alarms vary as a function of time, and thus these thresholds need to be adaptive 

to compensate for variations in missile IR signatures during typical engagements. Nevertheless, 

this research demonstrates that RBF neural networks are effective at two-color IR missile 

detection. The algorithms that performed data collection, neural network training and testing, and 

missile detection are listed in Appendix B. 
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5.3  Recommendations for Future Research 

The following are recommendations for further research: 

-   1.   The Matlab toolboxes by Orr (1999) enable 'forward selection' and 'ridge regression', 

techniques to be used as alternatives to the regression tree method considered in this 

thesis. These techniques should be investigated. 

2. The Holmes parameter clearly differentiates between missile boost and sustain phases. 

Therefore, this difference could be used to tailor the training data set to optimize the 

RBF network to detect missiles in their boost phase (where the exhaust plume is at its 

hottest and thus most recognizable from the background). The Holmes parameter 

displayed a significantly better discrimination capability than the Z score (mostly 

during the missile boost phase). Therefore, the Z score could be replaced by other 

features that characterize the plume in this phase of the missile firing as effectively as 

the Holmes parameter. However, the total number of input features to the RBF network 

should still be kept small to avert the curse of dimensionality. 

3. A neural network is only as effective as the data with which it is trained. Currently, the 

RBF network is trained to detect missiles that remain at the same ground location. A 

typical missile-warning system would not consider such a target a threat, since the 

missile does not approach the host platform. Therefore, missile fly-out data is required 

to train the RBF network to recognize the characteristics of real threats. 

4. Finally, if data with missile fly-out characteristics becomes available, a tracking 

algorithm should be designed that uses the target information provided by the detection 

algorithm developed here, which generates potential target coordinates and the 

probabilities that they correspond to missiles. 
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Appendix A 

A.1      RBF Centers:   Columns 1 through 7 

82.3781   82.3781    0.3386   82.4454   82.3781 -38.1868   0.2568     . 

55.0594  55.0594   55.0594  55.0594  55.0594   55.0594  55.0594 

1.9500   6.3244  -2.9597  -2.9597    1.6214    1.9500    1.9500 

32.5097  32.5097  32.5097  32.5097  32.5097  32.5097  32.5097 

Columns 8 through 14 

82.3781   82.3781   82.3781   82.3781   82.3781 -38.1868 -38.3718 

55.0594   55.0594   55.0594   55.0594  55.0594  66.2234 -10.8908 

2.0714   6.7744   2.0714   2.0714   2.4155 * 1.9500    1.9500 

32.5097  32.5097  -2.8484  37.2187  32.5097  32.5097  32.5097 

Columns 15 through 21 

0.0573   -0.0700   0.1150. 0.0073    0.1346    0.1433    0.0489 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 * 

1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 

Columns 22 through 28 

0.1479 82.3781 82.3781 0.3230 82.4298 82.3781 0.3913 

-10.8908 55.0594 55.0594 55.0594 55.0594 55.0594 55.0594 

1.9500 2.6599 7.0187 7.0187 7.0187 2.6599 7.0187 

32.5097 32.5097 32.5097 32.5097 32.5097 37.5518 32.5097 
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Columns 29 through 35 

0.1514 0.0630 0.1540 0.0679 0.1563 0.0720 0.1581 

-10.8908 -10.8908.-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 

1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 

32.5097  32.5097  32.5097  32.5097  32.5097  32.5097   32.5097 

Columns 36 through 42 

0.0750 0.1592 0.0774 0.1605 0.0796 0.1614 0.0813 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 

1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 

32.5097  32.5097  32.5097  32.5097  32.5097  32.5097  32.5097 

Columns 43 through 49 

0.0829   0.1630   0.0844   0.0858   0.0871    0.1650   0.0883 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 

1.9500    1.9500    1.9500    1.9500    1.9500    1.9500    1.9500 

32.5097  32.5097  32.5097   32.5097  32.5097  32.5097  32.5097 

Columns 50 through 56 

0.0894   0.0903    0.1666   0.0913    0.1671    0.0923    0.0933 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 

1.9500    1.9500    1.9500    1.9500    1.9500    1.9500    1.9500 

32.5097   32.5097   32.5097  32.5097   32.5097   32.5097   32.5097 
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Columns 57 through 63 

0.1680 0.0942 0.1685 0.0950 0.0958 0.0966 0.1696 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 

1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 

32.5097 32.5097 32.5097* 32.5097 32.5097 32.5097 32.5097 

Columns 64 through 70 

0.0972 0.0979 0.0986 0.0992 0.1709 0.4234 0.4583 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 55.0594 55.0594 

1.9500 1.9500 1.9500 1.9500 1.9500 7.0187 7.0187 

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097*32.5097 

Columns 71 through 77 

0.4992 0.5479 0.6037 0.6818 0.7721 0.8687 82.7046 • 

55.0594 55.0594 55.0594 55.0594 55.0594 55.0594 55.0594 

7.0187 7.0187 7.0187 7.0187 7.0187 7.0187 7.0187 

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 

Columns 78 through 84 

0.1712 0.1716 0.1013 0.1720 0.1723 0.1026 0.1730 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908-10.8908 -10.8908 

1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 

32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 32.5097 
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Columns 85 through 91 

0.1041 0.1734 0.1054 0.1061 0.1744 0.1751 0.1092 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 

1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 

32.5097  32.5097  32.5097  32.5097   32.5097-32.5097  32.5097 

Columns 92 through 98 

0.1760 0.1770 0.1124 0.1141 0.1812 0.1269 0.1879 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 -10.8908 

1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 1.9500 

32.5097  32.5097  32.5097  32.5097  32.5097  32.5097  32.5097 

Columns 99 through 103 

0.1354 0.1917 0.1948 0.1840 0.2031 

-10.8908 -10.8908 -10.8908 -10.8908 -10.8908 

1.9500 1.9500 1.9500 1.9500 1.9500 

32.5097  32.5097  32.5097  32.5097  32.5097 
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A.2      RBF Radii: 

Columns 1 through 7 

164.2136 164.2136    0.1346 164.0790 164.2136  76.8582   0.0290 

154.2284 154.2284 154.2284 154.2284 154.2284 154.2284 154.2284 

-   18.5681    9.8192    8.7488    8.7488   0.4134   18.5681   18.5681 

80.1342   80.1342   80.1342   80.1342   80.1342   80.1342   80.1342 

Columns 8 through 14 

164.2136 164.2136 164.2136 164.2136 164.2136  76.8582  76.4881 

154.2284 154.2284 154.2284 154.2284 154.2284 131.9004  22.3280 

0.4867    8.9192   0.4867   0.4867   0.2016   18.5681   18.5681 

80.1342   80.1342    9.4182   70.7160   80.1342   80.1342   80.1342 

Columns 15 through 21 

0.3701    0.1155    0.2546   0.0391    0.2155    0.1981   .0.0093 

22.3280  22.3280  22.3280  22.3280  22.3280  22.3280  22.3280 

18.5681   18.5681   18.5681   18.5681   18.5681   18.5681   18.5681 

80.1342   80.1342   80.1342   80.1342   80.1342   80.1342   80.1342 

Columns 22 through 28 

0.1888 164.2136 164.2136   0.1035 164.1101  164.2136   0.0331 

22.3280 154.2284 154.2284 154.2284 154.2284 154.2284 154.2284 

18.5681    0.2871    8.4305    8.4305    8.4305    0.2871    8.4305 

80.1342   80.1342   80.1342   80.1342   80.1342   70.0500   80.1342 

73 



Columns 29 through 35 

- 

0.1818 0.0051 0.1767 0.0046 0.1721 0.0036 0.1685 

22.3280 22.3280 22.3280 22.3280 22.3280. 22.3280 22.3280 

18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 

1 

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 

Columns 36 through 42 

0.0023 0.1662 0.0026 0.1636 0.0017 0.1619 0.0017 

22.3280 22.3280 22.3280 22.3280 22.3280 22.3280 22.3280 

18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 

Columns 43 through 49 

0.0015 0.1587 0.0015 0.0013 0.0013 0.1546 0.0012 

22.3280 22.3280 22.3280 22.3280 22.3280 22.3280 22.3280 

18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 • . 

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 

Columns 50 through 56 

0.0009 0.0010 0.1515 0.0010 0.1505 0.0011 0.0009 

22.3280 22.3280 22.3280 22.3280 22.3280 22.3280 22.3280 

18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 18.5681 

80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 80.1342 

• 
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Columns 57 through 63 

0.1486   0.0009   0.1477    0.0008   0.0009   0.0006   0.1454 

22.3280  22.3280  22.-3280  22.3280  22.3280  22.3280  22.3280 

18.5681   18.5681   18.5681   18.5681   18.5681   18.5681   18.5681 

80.1342   80.1342   80.1342   80.1342   80.1342   80.1342   80.1342 

Columns 64 through 70 

0.0007   0.0007   0.0006   0.0007   0.1428   0.0311    0.0385 

22.3280  22.3280  22.3280  22.3280  22.3280 154.2284 154.2284 

18.5681   18.5681   18.5681   18.5681   18.5681    8.4305    8.4305 

80.1342   80.1342   80.1342   80.1342   80.1342   80.1342   80.1342 

Columns 71 through 77 

0.0434   0.0539   0.0577   0.0986   0.0820   0.1111 163.5606   . 

154.2284 154.2284 154.2284 154.2284 154.2284 154.2284 154.2284. 

8.4305    8.4305    8.4305    8.4305    8.4305    8.4305    8.4305 

80.1342   80.1342   80.1342   80.1342   80.1342   80.1342   80.1342 

Columns 78 through 84 

0.1422   0,1414   0.0008    0.1407   0.1400   0.0005    0.1386 

22.3280  22.3280  22.3280  22.3280  22.3280  22.3280  22.3280 

18.5681   18.5681   18.5681   18.5681   18.5681   18.5681   18.5681 

80.1342   80.1342   80.1342   80.1342  80.1342 80.1342   80.1342 
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Columns 85 through 91 

0.0007   0.1379   0.0007    0.0007   0.1359   0.1343    0.0008 

22.3280  22.3280   22.3280  22.3280  22.3280  22.3280  22.3280 

18.5681   18.5681   18.5681   18.5681   18.5681   18.5681   18.5681 

80.1342   80.1342   80.1342   80.1342   80.1342   80.1342   80.1342 

Columns 92 through 98 

0.1327   0.1306   0.0014   0.0020   0.1222   0.0134   0.1087 

22.3280  22.3280  22.3280  22.3280  22.3280  22.3280  22.3280 

18.5681   18.5681   18.5681   18.5681   18.5681   18.5681   18.5681 

80.1342   80.1342   80.1342   80.1342   80.1342   80.1342   80.1342 

Columns 99 through 103 

0.0037   0.1013    0.0951    0.0029   0.0074 

22.3280  22.3280  22.3280  22.3280  22.3280 

18.5681   18.5681   18.5681   18.5681   18.5681 

80.1342   80.1342   80.1342   80.1342   80.1342 
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A.3   RBF Weights:   l.Oe+003 

lto21 22 to 42 43 to 63 64 to 84 85 to 103 

0.0008 -2.1481 0.0000 0.0000 -0.0000 

0.0250 0.0156 2.7871 0.0000 0.0202 
-0.0002 -1.0693 0.0000 0.0000 -0.0000 
-0.0042 0.0021 0.0000 0.0000 0.0000 
0.0000 -0.7011 0.0000 -0.9954 • 0.4093 
0.0147 -0.0173 2.7355 0.0005 1.0767 
-0.0001 0.0005 -0.0000 0.0009 -0.0000 
1.2521 -3.3815 0.0000 0.0007 0.8953 
-0.0543 0.0000 -0.0000 0.0006 0.8563 
-0.0550 -5.1024 -0.0070 0.0004 -0.0000 
-1.3340 0.0000 0.0000 0.0009 -0.0000 

-0.0001 -2.3199 0.1945 0.0001 1.9783 

-0.0120 0.0000 0.0000 0.0007 0.0000 

-0.0009 0.2221 0.0000 1.8049 -2.6575 
-0.0082 0.0000 -0.6141 -1.8438 -0.0000 

0.0019 1.3877 0.0000 -1.6324 1.8304 

0.2864 0.0000 -1.4453 0.0000 -0.4556 

-0.0000 3.0710 -0.0000 -0.5817. 0.0000 

-3.3314 -0.0000 0.0000 -0.9028 0.0000 
9.0486 2.2036 . -0.0000 0.0000 

0.0000 0.0000 -0.9039 -0.6729 
Table 1.  Weights associated with each RBF center 
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Appendix B 

B.l       missile_data_collection.m 

% Purpose: Read frames from the datafile one at a time,, and find the 
brightest pixel in each frame. Then extract the 3 by 3 array of pixels - 
immediately surrounding that'pixel, calculate features from the pixels, 
and arrange the features in a row vector. 

clear all; 
close all; 
i = 1; 
missile = zeros(2500,4) ; 
for m = 0:2:5000 

% read the data for the red and blue bands 
[im_red] = Idgal('sdatao ', m, 256); 
[imjDlue] = ldgal('sdata6', m+1, 256); 
% find the brightest spot in each frame and its matrix coordinate 
[rl, cl] = find(im_red==max(max(im_red))); 
[r2, c2] = find(im_blue==max(max(im_blue))); 
% if the peak intensity occurs over two pixels, pick the larger of the 
two coordinates 
yi = ceil(mean(rl)) 
xl = ceil(mean(cl)) 
y2 = ceil(mean(r2)) 
x2 = ceil(mean(c2)) 
% extract the 3x3 matrix around each pixel 
red = im_red((yl-1):(yl+1) , (xl-1) :(xl+1)); 
blue = im_blue((y2-l):(y2+l) , (x2-l):(x2 + l)); 
% correct for variations between images and normalize the dataset by 
% subtracting the mean from each value and dividing by the maximum 
max_red = zeros(3) +-max(max(im_red)); 
max_blue = zeros(3) + max(max(im_blue)); 
mean_red = zeros(3) + mean(mean(im_red)); 
mean_blue = zero's (3) + mean (mean (im_blue) ) ; 
new_red = (red - mean_red)./max_red; 
new_blue = (blue - mean_blue)./max_blue; 
% define the outer ring of pixels 
red_outer = [new_red(l,1) new_red(l,2) new_red(l,3) new_red(2,l) 

new_red(2,3). new_red(3,1) new_red(3,2) new_red(3,3)]; 
blue_outer = [new_blue(1,1) new_blue(1,2) new_blue(1,3) new_blue(2,1) 

new_blue(2,3) new_blue(3,1) new_blue(3,2) new_blue (3,3)]; 
% calculate the Z score and Holmes parameter features for training the 
neural network 

fl = new_red{2,2)/sum(red_outer); 
f2 = new_blue(2,2)/sum(blue_outer); 
f3 = (new_red(2,2) - mean(red_outer))/sqrt(var(red_outer)); 
f4 = (new_blue (2, 2) --.mean (blue_outer) )/sqrt (var (red_outer) ) ; 
missilefi,:) = [fl f2 f3 f4]; 
i = i+1; 

end 
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B.2  background_data_collection.m 

% Purpose: Read frames from background datafiles one at a' time, and take 
a 150x150 portion from a characteristic region of the image. Divide -the 
portion into 2500 (3 by 3) image chips, and arrange the data in a table. . 

clear all; 
close all; 
i* = 1; % index value ' 
background_data = zeros(2500,4); % initialize table of pixel values 
m = 2; 

% read the data for the red and blue bands 
[im_red] = ldgal('eglinbeachl', m, 256); 
[im_blue] = ldgal('eglinbeachl', m+1, 256); 
% extract the 150x150 portion of the images 
red = im_red(l:150,101:250); 
blue = imjolue(1:150,101:250) ; 
% find the maximums and means of the 256x256 images 
max_red = zeros(150) + max(max(im_red)); 
max_blue = zeros(150) + max(max(im_red)); 
mean_red = zeros(150) + mean(mean(im_red)); 
mean_blue = zeros(150) + mean(mean(im_blue)); 
% subtract the mean and divide by the maximum pixel values 
new_red = (red - mean_red)./max_red; 
new_blue = (blue - mean_blue)./max_blue; 
% divide into 3 by 3 chips and rearrange into a row vector, 
for y = 1:3:150 

for x = 1:3:150 
% define the outer ring of pixels 
red_outer = [new_red(y,x) new_red(y,x+l) new_red(y,x+2) 

new_red(y+l,x) new_red(y+l,x+2) new_red(y+2,x) 
new_red(y+2,x+l) new_red(y+2, x+2) ]; 

blue_outer = [new_blue(y,x) new_blue(y,x+1) new_blue(y,x+2) 
new_blue(y+l,x) new_blue(y+l,x+2) new_blue(y+2,x) 
new_blue(y+2,x+l) new_blue(y+2,x+2)]; 

% calculate the Z score and Holmes parameter features 
fl = new_red(y+l,x+l)/sum(red_outer); 

■f2 = new_blue(y+l,x+l)/sum(blue_outer); 
f3 = (new_red(y+l,x+l) - mean(red_outer))/sqrt(var(red_outer)); 
f4 = (new_blue(y+l,x+l) - mean(blue_outer))/sqrt(var(red_outer)); 
background_data(i,:) = [fl f2 f3 f4]; 
i = i+1; 

end 
end 

eglinbeachl = background_data; 

<i************ *********************************************************** 

%   repeat for images from the 13a, 14a and 15a data sets, then 
% combine into a single combined vector together with the missile data 
%** I,********************************************************************* 

background = [eglinbeachl;13a;14a;15a]; 
load missile 
Xtr = transpose([missile;background]); 
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B.3  rbfnn_training.nl 

%   Design and training of a gaussian radial basis function neural network 
% using Matlab Functions for Radial Basis Function Networks by Mark J.L. 
Orr, Institute for Adaptive and Neural Computation, Division of 
Informatics, Edinburgh University, Scotland, UK 

load input 
load target • 

% Configure parameters 
conf.lambda = .0000000001; 
conf.msc = ' loo'; 
conf.minmem = 100;. 
conf.scales = 2; 
conf.timer = 'optimization in progress' 

% Start the function that determines the centres and radii of a set of 
RBFs using the training data and the expected outputs 

% function [C, R, w, info, conf] = rbf_rt_l(X, y, conf) 
% 
% Hybrid radial basis function network and regression tree. 
o. 
■» 

% Solves a regression problem with inputs X and outputs y using a 
regression tree and an RBF network selected using tree-guided forward and 
backward subset selection. Returns the hidden unit centres C, their radii 
R, the hidden-to-output weights w, some additional information info and a 
fully instantiated configuration structure conf. 
% 
% X is an n-by-p matrix of inputs, where p specifies the number of cases, 
and n specifies the number of features per case. 
% y is a p-by-1 matrix of outputs. 
% C is an n-by-m matrix, where m specifies the number of RBF units, and 
each n column corresponds to * 
% one centre in the input space. 
% R is also an n-by-m matrix, where each column corresponds to a set of 
'n' scaling parameters, one for each feature, which determine the width 
of the m-th RBF unit. 
% w is either an m- or an (m+1)-dimensional vector depending on whether 
the method has included a bias unit in the network. 
% C, R, and w are used to make predictions from the network. 

[C, R, w, info, conf] = rbf rt__l (Xtr, y, conf) 
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B.4       rbfnn_testing.m 

clear  all; 
close all;' ■ ' - . ' - 

% load the radial basis function network's centre, radii and weight 
vectors 
load centres 
load radii * 
load weights 

n = 1; 

for m = 0:2:8; 
im_response = zeros(256); % create a 256x256 matrix of zeros 

% read data from consecutive red and blue bands 
[im_red] = ldgal('m:\sdata8', m, 256); 
[im_blue] = ldgal Cm: \sdata8 ', m+1, 256); 

% find the maximums and means of the images in each band 
max_red_ = zeros(256)+max(max(im_red)); 
mean_red = zeros(256)+mean(mean(im_red)); 
max_blue = zeros(256)+max(max(im_blue)); 
mean_blue = zeros(256)+mean(mean(im_blue)) ; 

% subtract off the mean and divide by the maximum' value in each image 
im_red = (im_red - mean_red)./max_red; • 
im_blue = (im_blue - mean_blue)./max_blue; 

% divide the image into overlapping 3 by 3 chips 
new_im_red = transpose(im2col(im_red, [3 3], 'sliding')); 
new_im_blue = transpose(im2col(im_blue, [3 3], 'sliding')); 

for i = 1:64516 
% define the outer gate pixels in a row vector 
red_outergate = [new_im_red(i,1) new_im_red(i,2) new_im_red(i, 3) 

new_im_red(i,4) new_im_red(i, 6) new_im_red(i,7) 
new_im_red(i,8) new_im_red(i, 9) ] ; 

blue_outergate = [new_im_blue(i,1) new_im_blue(i,2) new_im_blue(i,3) 
new_im_blue(i,4) new_im_blue(i, 6) new_im_blue(i,7) 
new_im_blue(i,8) new_im_blue(i, 9)]; 

% Derive Z-scores for each band 
fl = (8*new_im_red(i,5))/sum(red_outergate) ; 
f2 = (8*new_im_blue(i,5))/sum(blue_outergate); 

% Derive Holmes parameters for each band 
f3 = (new_im_red(i, 5)-mean(red_outergate))/sqrt(var(red_outergate)) ; 
f4 = (new_im_blue(i,5)- 

mean(blue outergate))/sqrt(var(blue_outergate)); 
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%  Generate a 4-dimensional vector from these features for input to the 
rbf network 

Xt(i, :) = [fl f2 f3 f4]; 

end "  -   .    "   - '- 

%  use the RBF network centres, radii and weights to pre'dict the outputs 
from each 3 by 3 chip 
flt = rbf_dm(transpose(Xt) , C, R); 
ft = Ht * w; . 

% rearrange the response vector into a probability density map 
im_response(2:255,2:255) = col2im(ft, [254 254], [254 254],'distinct'); 

% rescale the map with a range of 0 to. 1 
im_response(im_response<0) = 0; 
im_response (im_^response>l) = 1; 

% find the indices of the map where its elements are above a certain 
threshold 
[tgt_r, tgt_c] = find(im_response >' 0.95); 

% plot the target's possible locations on a 2-dimensional map 
figure; plot(tgt_c, tgt_r, 'r.'); axis([l 255 1 255]); grid on; 
figure; surf(im_red); shading interp; axis([l 255 1 255 0 .1]); view(2); 

% store the original image and probability density map for comparison 
analysis 
•red(:,:,n) = im_red; 
blue(:,:,n) = im_blue; 
map(:,:,n) = im_response; 

n = n + 1; 

end 
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B.5       detection_aIgorithm.m 

clear  all; 
close  all; 

load centres 
load radii 
load weights 

threshold = 0.01; 
temp_red = zeros(258); 
temp_blue = zeros(258); 
x = 0.05:.05:1; .       S 
y = zeros(1,10); 
M = 3600; 
j = 1; 

% set up the axes for an ROC curve 

% set the number of the last frame to be- analyzed 

%for m = 0:2:M; 
m = 700; 
im_response = zeros(258); % create '256x256 matrices of zeros with an 

additional border 1 pixel-wide 
% read data from consecutive red and blue bands 
[im_red] = ldgal('m:\sdata8', m, 256); 
[im_blue] = ldgal('m:\sdata8', m+1, 256); 

% find the maximums and means of the images in each band 
max_red = zeros(256)+max(max(im_red)); 
mean_red = zeros(256)+mean(mean(im_red)) ; 
max_blue = zeros(256)+max(max(im_blue)); 
mean_blue = zeros(256)+mean(mean(im_blue)); 

%.subtract off the mean and divide by the maximum value in each image 
im_red = (im_red - mean_red)./max_red; 
im_blue = (im_blue - mean_blue)./max_blue; 

temp_red(2:257,2:257) = im_red; 
temp_blue(2:257,2:257) = im_blue; 

% apply global thresholding to each image 
[r, c] = find(temp_red > threshold); 

for n = 1:length(r) 
% define the outer gate pixels in a vector 
red_outergate = [temp_red(r(n)+1,c(n)-1) temp_red(r(n)+1,c(n)) 

temp_red(r(n)+1,c(n)+1) ... 
temp_red(r(n),c(n)-1) temp_red(r(n) , c(n)+1) temp_red(r(n)- 

l,c(n)-l) temp_red(r(n)-l,c(n)) ... 
temp_red(r(n)-1,c(n)+1)]; 

blue_outergate = [tempjblue(r(n)+1,c(n)-1) temp_blue(r(n)+1,c(n)) 
temp_blue(r(n)+l,c(n)+l) ... 

temp_blue(r(n),c(n)-l) temp_blue(r(n) , c(n)+1) temp_blue(r(n) ■ 
l,c(n)-l) temp_blue(r(n)-1, c(n)) ... 

temp_blue(r(n)-1,c(n)+1)]; 
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■5 Derive Z-scores for each band 
fl = (8*temp_red(r (n) ,c(n) ).) /sum(red_outergate) ; 
f2 = (8*temp_blue(r(n),c(n)))/sum(blue_outergate); . .   . 

% Derive Holmes parameters for each band 
f3 = (temp_red(r(n),c(n))- 

mean(red_outergate))/sqrt(var(red_outergate)); 
f4 = (temp_blue(r(n),c(n))- 

mean(biue_outergate))/sqrt(var(blue_outergate)); 

%  Generate a 4-dimensional vector from these features for input to the 
rbf network 

Xt = [fl;f2;f3;f4]; 

% use the RBF network centres, radii and weights to predict the 
outputs from each 3x3 chip 

Ht = rbf_dm(Xt, C, R); 
im_response(r(n), c(n)J = Ht * w; 

end 

% remove the border pixels to return to a 256x256 array again 
im_response(l,:)=[]; im_response(:,1)=[]; im_response(257,:)=[]; 
im_response(:,257)=[]; 

%surf(im_response); shading interp; axis([0 255 0 255 0 1]); view(2); 
hold, on; 
%surf(i-m_red); shading interp; colormap(gray); axis([0 255 0 255 0 0.1]); 
view(2); figure; 

% find the number of targets that are greater than or equal to each 
probability 
for i = 1:20 

y = sum(sum(im_response >= x(i))); 
if y-1 < 0 . 

num_correctly_detected(i) = 0; 
num_false_alarms(i) = 0; 

else 
num_correctly_detected(i) = 1; 
num_false_alarms(i) = y - 1; 

end 
end 
plot(num_false_alarms,num_correctly_detected,'kx-') ; 
axis([-l max(num_false_alarms) 0 1.1]) 
xlabel('# False Alarms'); ylabel('# Correctly Detected') 
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