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a b s t r a c t

This paper explores the through-the-wall inverse scattering problem via machine learn-
ing. The reconstruction method seeks to discover the shape, location, and type of hidden
objects behind walls, as well as identifying certain material properties of the targets. We
simulate RF sources and receivers placed outside the room to generate observation data
with objects randomly placed inside the room. We experiment with two types of neural
networks and use an 80-20 train-test split for reconstruction and classification.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Detection and description of objects behind walls is an important area of research due to its obvious physical and
engineering applications. One particular approach is the use of radar frequency imaging to retrieve the properties of
an unknown object from its back-scattered fields. Previous work has used Doppler-type radar to detect and analyze
humans where there is no direct line of sight, whether it be studying human motion with standard Doppler radar [1],
noiseforms [2], or micro-Doppler radar, which looks for smaller scale movements such as arm movement [3] and
heartbeats [4]. In [5], a Support Vector Machine approach was used to discriminate between child and adult in a through-
the-wall setting. More recent work in [6,7] used a similar approach to get more detailed results, using the back-scattered
data to estimate the pose of a human figure behind a wall, or detect that the figure is walking.

In [8], locations of hidden objects behind walls were estimated by observing the time difference between signals from
an empty room and that when an object is present. Based on the physics of electromagnetic wave propagation, ellipses
with foci at the source and receiver pairs were constructed to provide the contour of the objects. In [9], a form of linear
sampling method was used for the reconstruction. Specifically, a reciprocity gap functional to the electromagnetic field
solution and the fundamental solution of the Helmholtz equation was used to derive an integral equation, the properties
of whose solution gave indication of the location of the objects. This work explores a machine learning (ML) approach for
three objectives:

(1) predicting the location of an object,
(2) classifying the shape of an object into one of a number of known possible shapes, and
(3) estimating a particular material property of an object.
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Fig. 1. Model setup.

The reconstructions use similar RF data as in [8,9], which was generated by numerically modeling the Maxwell’s equations.
We note that [8,9] used traditional inverse methods to reconstruct the shape and location of the unknown objects by
identifying points within the contours of the objects. In the ML approach here, we reconstruct the locations of the
unknown objects by identifying their geometric centers. In addition, the ML algorithms are capable of classifying different
objects and reconstructing certain material properties of the unknown objects. We present reconstruction results from
two popular ML algorithms and compare the location identification results to those reported in [8,9].

We note that using ML to detect unknown objects, or detect structural defects, is not new, see for example [10].
However, to the best of our knowledge, this is the first attempt reported in the open literature that ML is used in the
behind-the-wall setting employing the numerically simulated data from solving Maxwell’s equations. Our preliminary
results show promise that ML can significantly improve the state-of-the-art of the inverse scattering methods, and produce
estimators for characteristics that were previously nonexistent.

The rest of the paper is organized as follows. In the next section, we summarize the forward problem of data generation
with a discussion of the model setup, the mathematical formulation, and the numerical schemes. Section 3 provides
preliminaries for our machine learning approach, including preparing the data, setting the parameters, and identifying
appropriate neural networks. Section 4 shows the reconstruction results with comparisons to those of the previous
methods. Object classification is presented in Section 5, while target material property reconstruction in Section 6. We
conclude our paper with comments and suggestions for follow on research.

2. Data generation

To model the actual physical problem, we will record and use data that could be gathered from a set of antenna
transmitters and receivers. Thus, for any given simulation, we will assume that the electromagnetic waves are generated
from a source antenna (S) positioned outside of the room and the data is recorded from a (finite) set of receivers (R), also
positioned outside the room as shown in Fig. 1.

We consider a two-dimensional radar imaging problem, assuming that all materials are invariant in the z-direction.
The room is rectangular of size l by d. The walls are of a uniform thickness h, with relative electric permittivity ϵw . The
object that is to be detected is a convex domain O ⊂ [0, l] × [0, d] that has relative electric permittivity ϵo and is away
from the boundaries of the room. We assume the medium throughout is nonmagnetic, thus µr = 1. The source will be
monochromatic with frequency ω, emitting two full cycles of the wave before turning off. We observe that k = ω

√
µϵ

and λ = c0/
√

ϵrω, where k is the wavenumber, ω frequency, λ wavelength, and c0 free space speed of light.
For our experiments shown in this paper, we choose ϵw

= 80, ω = 600 MHz. The Perfectly Matched Layer (PML) used
in the numerical simulation will be placed along the exterior of the room, .5m from the walls.

Our simulated data will be obtained in two ways. The first is via simulating the solutions to the time domain
Maxwell’s equations, while the second solutions of the corresponding Helmholtz equation via Lippmann–Schwinger
integral equation. Two techniques were used because although the first technique is computationally less intensive with
constant material conductivity than the second technique, the first technique becomes computationally prohibitive when
the material conductivity parameter is varied. For this reason, we use the first technique to generate a large dataset with
a constant material parameter for building models to estimate the shape and location of an object, but we use the second
technique to generate a dataset for building models to estimate the conductivity parameter of an object. Below, we briefly
describe the two numerical schemes. The reader is referred to [8,9,11] for details.
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2.1. Maxwell’s equation

Consider Maxwell’s equations in the absence of free charges:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ E⃗
∂t =

1
ϵ
∇ × H⃗

∂H⃗
∂t = −

1
µ
∇ × E⃗

∇ · E⃗ = 0

∇ · H⃗ = 0

Since the problem is assumed invariant in the z direction, solutions to the scattering problem can be expressed as
linear combinations of the two fundamental polarizations: transverse magnetic (TM) and transverse electric. We consider
the TM case, where only the fields Ez , Hx, and Hy are non-zero. Therefore, we need only consider the following 3 partial
differential equations⎧⎪⎪⎨⎪⎪⎩

∂Ez
∂t =

1
ϵ

(
∂Hy
∂x −

∂Hx
∂y

)
∂Hx
∂t = −

1
µ

∂Ez
∂y

∂Hy
∂t =

1
µ

∂Ez
∂x

(1)

We use a finite difference scheme to approximate the Eqs. (1). For best accuracy, we use a centered difference
approximation for every derivative in (1). We observe that for general electromagnetism problems, it would be safe to
assume that the component functions of H⃗ and E⃗ are C3, thus securing the second order accuracy of the finite difference
time domain (FDTD) scheme. For material interfaces, such as objects/space and space/wall, we use an averaging method
to make these parameters continuous. Specifically, as the point (x, y) moves in or out of the object, the permittivity
changes accordingly. We construct a square S around the point (x, y) with side length equal to our grid spacing in the
Yee Scheme [12,13], with (x, y) at the center. We then define our smoothed permittivity as the average value of the
permittivity on S, namely

ϵ̃(x, y) =
1
|S|

∫
S
ϵ(r, t) dr dt.

Another issue of concern in data generation has to do with domain truncation. Since the scattering problem is infinite
in nature, we use the PML [14,15] to truncate the computational domain to avoid nonphysical reflections at the boundary.
The idea of PML is to add a layer of lossy material near the edge of the computational domain so that any waves heading
towards the boundary decay away before they get there. Since the waves have decayed, we can then put a hard boundary
at the edge of the computational domain (Ez = 0), causing a negligible reflection. It is also necessary to make the boundary
of this region with the interior reflectionless so as to not significantly change the value of the wave in the internal region.

We observe that the portion of a wave incident on an interface that is reflected at the boundary is determined by the
impedance of the material

η =

√
µ∗

ϵ∗
.

If the impedance of the material on both sides of an interface are equal, there will be no reflection at that interface, and
the entire wave will be transmitted. We know the impedance on the plain material side is

√
µ

ϵ
. In order to make the

media reflectionless, we define new permeability and permittivity such that ϵ∗
= 1 outside the PML region, while inside

the region the waves decay rapidly.

2.2. Lippmann–Schwinger equation

In the case of time-harmonic waves in the TM mode, the electric field can be expressed as

E⃗(x, t) = u⃗(x)eiωt
= (0, 0, u)eiωt ,

reducing Maxwell’s equations to⎧⎪⎪⎨⎪⎪⎩
∆u + k2u = 0 x ∈ R2

u = ui
+ us

lim
r→∞

√
r
(

∂us

∂r
− iku

)
= 0

(2)

where k2 = ω2ϵ0µ0n, n is the index of refraction, ui the incident field, us the scattered field.
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Fig. 2. Machine learning setup.

It can be shown, [16], that solution to (2) satisfies the Lippmann–Schwinger equation

u(x) = ui
− k2

∫
R2

Φx(y)m(y)u(y) dy (3)

where m := 1 − n has compact support and Φx(y) =
i
4H

(1)
0 (k|x − y|) is the fundamental solution of the free-space

Helmholtz equation

∆u + k2u = 0.

The solution of (3) anywhere in R2 can be found once we know the solution on the object (as m =
iσ
ω

= 0 away from
the object). With proper truncation of the integral to account for the singularity of Φx(x) and restrict to the grid points,
we can write Eq. (3) as a matrix equation

(I + K )u⃗ = u⃗i

and generate our needed data by solving this equation.
This data will be used to reconstruct the material parameter, k, the unknown object’s wave number.

3. Machine learning setup

For target reconstruction and classification, our data is the time series real component of the electric field profile
recorded at each of the receivers. One source and a varied number of receivers are placed at even intervals outside a
square (3 m by 3 m) room. Objects of different types and sizes are uniformly randomly placed inside the room. For
computational tractability in the data simulation, all objects are placed so that they are not touching the walls. See Fig. 2.
Data is generated by numerical simulations as described in Section 2. An 80–20 training–testing data-split is adopted.

In what follows we will use two types of algorithms for the reconstruction of unknown targets: 1. a pattern recognition
algorithm, K-Nearest Neighbors (K-NN), and 2. a Convolutional Neural Network (CNN) using Keras-TensorFlow. K-NN was
chosen because it is particularly flexible and can be easily applied to a wide range of problems, and thus provides a robust
benchmark for evaluating other machine learning methods. The CNN is designed to work well with problems where the
features are spatially related to each other. Because the receivers are evenly spaced around the perimeter of the room, their
measurements are spatially dependent on measurements of nearby receivers. The collected data also consist of a second
dimension in time. Measurements taken by the same receiver at two similar times are also correlated with each other.
Unraveling this 2-dimensional time series data into a 2-D array yields data in which each measurement is correlated with
the measurements near it in either dimension. This form of data fits the construction of a convolutional neural network
nicely.

3.1. The K-Nearest Neighbors algorithm

The K-NN is one of the simplest machine learning algorithms that can be used for both regression and classification
tasks. It is nonparametric, making it extremely flexible compared to other classical regression and classification techniques,
such as linear regression and logistic regression. Easy to interpret and quick to implement, K-NN does not require data
preparation, and often yields performance in regression and classification tasks that are difficult to beat, even compared to
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Fig. 3. Convolutional neural network structure.

some of the state-of-the-art deep learning techniques. Two of K-NN’s main shortcomings are: 1. Large amounts of densely
distributed training data are required for good performance; 2. The entire training set is required for each prediction.
See [17]. However, since the experiment uses simulated data, provided adequate computational power, arbitrarily large
amounts of data can be acquired, alleviating the first issue. The second issue is solved by simply carrying out the
experiment on a machine with sufficient resources.

3.2. Convolutional neural network structure

We observe that CNN is best suited for analyzing visual imagery. Our ‘‘image’’ for each observation is the time-series
data for all receivers, resulting in a predictor matrix of m × n, where m is the number of receivers and n, the number of
time steps. We monitor the accuracy rates of the training–testing data as the network runs through each epoch, of the
entire dataset, and terminate when either a desired accuracy is reached or the improvement stalls.

For activation function, we choose ReLU: x → max{0, x}, for its advantages of sparse neuron activation and efficiency.
For the loss layer, we choose Softmax: yi →

eyi
Σieyi

, as it is suitable for predicting a single class of a fixed number (2 in our
case) of mutually exclusive classes.

Fig. 3 shows the layer structure of our CNN in the Keras-TensorFlow framework. The convolutional and fully connected
layers are each equipped with a ReLU activation function.

4. Object reconstruction

We use K-NN for object reconstruction. The main reason for this choice is its ease of adaptation and potential for good
performance in many applications, giving it merit as a benchmark for evaluating the CNN described later. Since our data
is generated by simulation, the density of the data for training can be very large, given enough computing power. Thus
the lack of efficiency (in both time and memory), a main disadvantage of K-NN, is not of major concern.

For our experiment, each observation was obtained by setting the type of object to be placed in the room, and randomly
assigning a location within the room. Three types of objects were considered: small circle of radius 0.1 m, small rectangle
of size 0.1 m × 0.2 m, and large rectangle of size 0.3 m × 0.6 m. Data for each object were collected. Symmetries in the
data were also used; the locations of the objects were initialized to be in the top half of the room, then the simulations
run, and data for an object in the same location on the bottom half of the room were inferred by switching the readings
of the receivers appropriately. In all, over 10,000 observations were generated, taking up about 16 GB of storage.

Example 1. For this experiment, we placed 6 receivers behind the left wall, taking data at 100 time steps. This yielded
1164 observations with 6 × 100 = 600 predictors. Using k = 1 nearest neighbor, the average L2-norm distance between
predicted and actual location of a circular object with radius 0.1 m was only 0.1049 m, and the variance was 0.0501 m.
It took 0.044528 s for each run. See Fig. 4.

Example 2. In this experiment, both the sources and receivers are placed on one side of the room only. This is perhaps
more applicable given that it may only be possible to access one external wall of the room. We compare this partial
reconstruction of ML, K-NN in this case, to that of the linear sampling method (LSM). The LSM is a well known
mathematical method for solving inverse scattering problems, see [18]. Fig. 5 shows predictions by LSM of a circle object
with data from one side of the room. In this case, we see that for every point the algorithm identifies as the object, there
is a shadow cast behind it. This is expected, since without data from the other sides of the room there is no way to
determine where the object ends in that direction.
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Fig. 4. Illustration of the centers (crosses) of randomly placed circular objects with radius 0.1 m, and predictions of the centers by K-NN (dots).

Fig. 5. Illustration of the true shape and location of a circular object, and its reconstruction by LSM (red dots).

For circle objects of radius 0.1 m, K-NN returned prediction error of the same order as the radius when 24 receivers
were used, and only double that with a total of just 3 receivers placed on one side of the external wall. See Fig. 6.

We observe that placing 24 receivers evenly along all sides of the room produced better results than placing them all
on one side. This is not surprising since partial ‘‘visibility’’ from all sides often is better than a ‘‘full’’ vision from only one
side.

5. Object classification

For object classification, we experimented with both the simple pattern recognition algorithm, K-NN, and the deep
learning network, CNN via Keras-TensorFlow. The CNN network was trained with our simulated radar data.

We observe that neither K-NN nor the CNN could distinguish different shapes (rectangles versus circles) when the
difference in relative sizes (i.e. area, side length, radii) were not sufficiently large. However, when the size of one object
was increased so that the side length of the rectangular object was at least double or at most half of the radius of the
circular object, both algorithms saw significant improvements in accuracy.
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Fig. 6. Sources & receivers on one side of room by K-NN.

Fig. 7. Accuracy and loss vs. epoch.

The data for each observation were prepared in the following way: the time-series data for each of 28 evenly spaced
receivers behind the left wall of the room were put into each of 28 rows of a matrix, and the time steps were sampled
at a rate of 1/5, giving a 28 × 40 predictor matrix.

With this data, K-NN returned a 97% accuracy rate. Meanwhile, our CNN reached > 99% accuracy rate on the 20%
testing data after 100 epochs of training on the other 80% of the data. The training and validation accuracies and losses
after each of 100 total epochs, are plotted in Fig. 7.

6. Reconstruction of target material property

Our next set of experiments attempt to reconstruct the target material properties. In particular, using simulated data
obtained by numerically solving the Lippmann–Schwinger equation (3), we employed our neural networks to reconstruct
the wave number k. Our results show that K-NN does a good job of approximation in the simple case of circles of fixed
location and fixed radius, but fails when the data structure becomes more complex. Specifically, when we allow circles of
various radii to be placed at random locations, K-NN produced random results. However, our deep learning network, the
CNN via Keras-TensorFlow produced impressive results after adequate training. Fig. 8 is a plot showing the training/testing
process of predicting the target material parameter k in the range of 20 < k < 100. It shows that after 200 epochs, the
average error reaches below 6. We note that for objects with k parameters uniformly distributed between 20 and 100,
a baseline model that predicts a constant value has an optimal expected absolute error of 20, so the machine learning
model’s average absolute error of 6 units reflects a substantial improvement.

7. Conclusion

Through-the-wall object detection is an important area of research that has a wide range of physical and engineering
applications. By utilizing both a simple pattern recognition algorithm, K-NN, and a deep convolutional neural network, we
have reconstructed unknown targets behind walls using the same FDTD and LSM data used by our previous traditional
inverse methods more accurately and with less time. In addition, our ML models are capable of classifying different types of
objects and determining material properties of the targets that the other reconstruction methods do not attempt. Moving
forward, we would be interested in exploring more complex settings including multiple objects, multiple reflections, and
moving targets, to name a few.
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Fig. 8. Prediction of target material property: k.
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