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Abstract–A bomber carrying homogenous weapons sequentially engages 
ground targets capable of retaliation. Upon reaching a target, the 
bomber may fire a weapon at it. If the target survives the direct fire, it 
can either return fire or choose to hold fire (play dead). If the former 
occurs, the bomber is immediately made aware that the target is alive. If 
no return fire is seen, the true status of the target is unknown to the 
bomber. After the current engagement, the bomber, if still alive, can 
either re-engage the same target or move on to the next target in the 
sequence. The bomber seeks to maximize the expected cumulative 
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damage it can inflict on the targets. We solve the perfect and partial 
information problems, where a target always fires back and sometimes 
fires back respectively using stochastic dynamic programming. The 
perfect information scenario yields an appealing threshold based 
bombing policy. Indeed, the marginal future reward is the threshold at 
which the control policy switches and furthermore, the threshold is 
monotonic decreasing with the number of weapons left with the bomber 
and monotonic non-decreasing with the number of targets left in the 
mission. For the partial information scenario, we show via a 
counterexample that the marginal future reward is not the threshold at 
which the control switches. In light of the negative result, we provide an 
appealing threshold based heuristic instead. Finally, we address the 
partial information game, where the target can choose to fire back and 
establish the Nash equilibrium strategies for a representative two target 
scenario.  

Keywords: Attacker-Defender Game, Sequential Decision Making, Shoot-Look-Shoot, Partial 
Information  

1  Introduction 
The operational scenario is the following. A bomber with M identical weapons travels along a 
designated route/ path and sequentially encounters N enemy targets on the ground. Upon 
reaching a target, the bomber may choose to release a weapon. A weapon dropped on a target 
will destroy it with probability p, where 0 1p< < . Successful elimination of the target yields a 
known positive reward to the bomber/ Decision Maker (DM). However, we assume that the 
target is equipped with a Surface to Air Missile (SAM) launcher and so, is capable of firing back 
at the bomber. We assume the following sequence of events. The bomber acts first and fires at 
the target. If a weapon dropped on a target is unsuccessful, the target (which is still alive) can fire 
back at the bomber. We assume that the probability that the bomber is not destroyed by a round 
of return fire is given by s  <  1. After each engagement, if still alive, the bomber can either re-
engage the current target or move on to the next target in the sequence. We are interested in the 
optimal weapon allocation policy that results in maximal total expected reward for the bomber. 
We emphasize here that the actual reward accrued (realization of a random variable) is not 
known to the bomber and will perhaps be collected by some form of ground intelligence e.g., by 
checking post mission what targets were destroyed. The only exception is the perfect information 
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scenario, where the target by virtue of firing back (or not) reveals the reward yielded to the 
bomber. The bomber’s decision is clearly a function of the information regarding the target 
status (alive or dead). We consider three different but related information models in this article:  

1) Perfect information: If attacked and not destroyed, the target always fires back. Here, 
the DM is immediately made aware of the true status of the target upon observing the 
presence or lack of return fire.  

2) Partial information: If attacked and not destroyed, the target fires back with probability 
f  <  1 known to the DM. If return fire is seen, the DM knows that the target is still alive. 
However, if there is no return fire, the DM cannot distinguish between the two possible 
states (alive/dead) of the target.  

3) Partial information game: If attacked and not destroyed, the target can either choose to 
fire back or play dead (hold fire). Again, if there is no return fire, the DM cannot 
determine the true state of the target. 

1.1  Prior Work 

The framework we consider is common to military weapon target engagements [1–3], shooting 
problems [4, 5], cybersecurity [6, 7], attacker-defender games [8] and more broadly to stochastic 
sequential resource allocation [9, 10]. In sequential assignment problems of the kind considered 
herein, the decision rule usually takes the form, attack the target iff its value is no less than a 
certain threshold c, where the optimal c is to be determined. Moreover, one would expect the 
optimal threshold to be monotonic decreasing and non-decreasing in the number of remaining 
weapons and targets respectively. In other words, if the DM has more weapons in hand or less 
targets to engage, it is more likely to bomb the current target. If the probability of kill, p = 1, 
there is no need for repeated allocation to the same target and the resulting problem bears 
similarity to Revenue Management (RM) - wherein, the threshold monotonicity property is 
known to hold, e.g., see [11, 12]. Monotonicity properties A, B & C for the related Bomber 
Problem, where a bomber has to survive sequential engagements with enemy aircraft by firing a 
volley (one or more) of weapons are discussed in [13]. Note that our setup is different from the 
bomber problem in two respects. In the bomber problem, 1) a volley of weapons ( 1≥ ) is allowed 
at each decision stage and 2) the enemy aircraft shoots at the bomber regardless of whether or 
not it was shot at first. The property B states that the optimal number of weapons (salvo size) 
assigned to an enemy aircraft is nondecreasing in the number of weapons left with the bomber. 
This property, long thought to be true, remained an open problem for 43 years. Recently, it was 
shown to be false via counterexamples [14].  

To clearly distinguish this paper from our earlier work, which only considered passive targets 
with no retaliatory action, we note that:  
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1) In [15], a perfect information scenario is considered, where the DM is informed if the 
target was destroyed or not and the threshold monotonicity result has been established for 
this case.  

2) In [16], the rewards are considered to be random (as in RM) but known at decision time 
and the target status is perfectly known to the DM; the threshold monotonicity result has 
been established for this case as well.  

3) In [17], we extend the monotonicity result to the case of error-prone Battle Damage 
Assessment (BDA), where a live target is sometimes reported to be dead and vice-versa, 
i.e., the DM has access to a classifier with known Type I and II error rates. 

In military parlance, our model embraces a Shoot-Look-Shoot (SLS) approach, in that 
homogenous resources are expended by the DM one at a time with observations made in 
between that assess the outcome of the previous allocation. The analysis of SLS strategies under 
partial feedback information on the allocation outcome was first reported in [3]. A survey of the 
state of the art in SLS methods and the optimal use of information is provided in [5]. If 
additional complicating factors such as a search cost for finding a target or a scenario wherein 
resources can be replenished are considered, the monotonicity property breaks down, e.g., see [9, 
10]. A related perfect information sequential allocation game, where an attacker and a defender 
choose to expend a single resource from a finite inventory is presented in [18].  

A more elaborate partially observable Markov model where a single red engages multiple blue 
entities (possibly of different types) is provided in [19]. The authors therein analyze the optimal 
shooting strategy via generalized bandits. In contrast, our parsimonious model requires only two 
readily available parameters, the probabilities of kill for the direct and return fire. This yields a 
fairly elegant solution derived entirely from first principles.  

In this article, we present a low resolution model of the SLS scenario where the target can defend 
itself by returning fire at the DM. Our emphasis is on providing an analytical relationship under 
which it is optimal for the target to play dead. We also derive critical threshold monotonicity 
properties for the optimal policy under perfect information and show that a similar result does 
not hold for the partial information scenario. Motivated by the perfect information policy, we 
also provide an intuitive threshold based heuristic policy for the partial information case 
supported by numerical simulations.  

2  Perfect information scenario 
We assume that the bomber is equipped with M identical weapons and sequentially visits N 
targets on the ground. Under perfect information, we stipulate that if the bomber chooses to 
deploy a weapon and if the (current) target is not destroyed, the target immediately fires back at 
the bomber. We emphasize that the bomber looks to see if the target fires back or not before 
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proceeding with the next course of action (SLS approach). Let V(j,  k) indicate the optimal 
cumulative reward (value function) that can be achieved when the DM (still alive) arrives at the 
jth live target with k weapons in hand. It follows that the value function must satisfy the Bellman 
recursion:  

{ }
0,1

( , 1) max ( ( 1, )) ( , ) (1 ) ( 1, 1) ,

1, , 1, 0, , 1,

ju
V j k p r V j k qsV j k u u V j k

j N k M
=

 + = + + + + − + + 

= … − = … −
 (1) 

 where 1q p= − . The control action, u indicates whether the DM should deploy a weapon at the 
current target (u = 1) or move on to the next target (u = 0). The decision u = 1 results in the jth 
target being destroyed with probability p yielding an immediate reward of rj and a future 
expected payoff of ( 1, )V j k+ . In other words, having successfully destroyed target j, the DM 
moves on to target j + 1 with k weapons in hand. On the other hand, if it is not destroyed, the 
target fires back at the DM. In this case, the DM survives with probability s  <  1 and so, the 
corresponding expected future payoff is sV(j,  k). If u = 0 is chosen, the DM simply moves on to 
the next target in the sequence and the corresponding expected future payoff is ( 1, 1)V j k+ + .  

In lieu of (1), the optimal firing policy is given by:  

{ }
0,1

( , 1) arg max ( ( 1, )) ( , ) (1 ) ( 1, 1) ,

1, , 1, 0, , 1.

j
u

j k p r V j k qsV j k u u V j k

j N k M

µ
=

 + = + + + + − + + 

= … − = … −
 (2) 

 If the DM runs out of ammunition, there is no more reward to be gained i.e., the boundary 
condition:  

( ,0) 0, .V j j= ∀  (3) 

 Furthermore, if the DM is alive at the last target (known to be alive) and has k  >  0 weapons at 
hand, it is always optimal to fire a weapon and so, the Bellman recursion (1) collapses to:  

1

0

( , ) ( , 1),

( , ) ( ) 1 ( ) , 1, , .
1

N
k

i kN
N

i

V N k pr qsV N k
prV N k pr qs qs k M

qs

−

=

= + −

 ⇒ = = − = … −∑
 (4) 

 It is clear that the optimal value function can be easily computed using backward Dynamic 
Programming. The problem is tractable so long as M, N are small as can be expected in a realistic 
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military engagement. In this article, we are interested more in the structure of the optimal 
solution. In particular, we are interested in showing that a (monotonic) thresholding policy is 
optimal.  

2.1  Threshold firing policy 

If the bomber chooses to move on to the next target, the expected reward is ( 1, 1)V j k+ + . On 
the other hand, if it chooses to deploy a weapon at the current target j, it must either destroy the 
target or evade the return fire to remain alive. So, the bomber will survive the current 
engagement with probability p + qs and thereafter, it will receive the reward ( 1, )V j k+  from 
downstream targets. Hence, the marginal future reward is given by,  

1( ) : ( 1, 1) ( ) ( 1, ), 1, , ( 1).j k V j k p qs V j k j N+∆ = + + − + + = … −  (5) 

 Suppose 1( )j k+∆  is a monotonically decreasing function of k for all 1, , ( 1)j N= … − . Let ( )jκ  
be the smallest non negative integer k such that 1( )j jpr k+≥ ∆  for all 1, , ( 1)j N= … − . The 
following result shows that, under this assumption, a thresholding policy is optimal for the DM.  

Proposition 1. If 1( )j k+∆  is a monotonically decreasing function of k, we have for all j  <  N,  

0, ( ),
( , )

1,  otherwise.
k j

j k
κ

µ
≤

= 


 

Proof. From the definition of 1( )j k+∆  and ( )jκ , we have:  

1 1( ), ( ) and ( ), ( ).j j j jpr k k j pr k k jκ κ+ +< ∆ < ≥ ∆ ≥  (6) 

 From the Bellman recursion (1), we have: ( , ) ( 1, )V j k V j k≥ + . Therefore, it follows that:  

( ( 1, )) ( , ) ( ) ( 1, ).j jp r V j k qsV j k pr p qs V j k+ + + ≥ + + +  (7) 

 Combining (6) and (7), we can write:  

( ( 1, )) ( , ) ( 1, 1), ( ).jp r V j k qsV j k V j k k jκ+ + + ≥ + + ∀ ≥  (8) 

 In light of (8), the Bellman recursion (1) yields:  
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( , 1) ( ( 1, )) ( , ), ( ),jV j k p r V j k qsV j k k jκ+ = + + + ∀ ≥  (9) 

 ( , 1) 1, ( ).j k k jµ κ⇒ + = ∀ ≥  (10) 
  
We shall show that ( , 1) 0, ( )j k k jµ κ+ = ∀ < , by induction on k. Recall that:  

( ) ( 1, ) ( 1, 1), ( ).jpr p qs V j k V j k k jκ+ + + < + + ∀ <  (11) 

 If ( ) 0jκ = , there is nothing left to prove. So, suppose ( ) 0jκ > . From the Bellman recursion 
(1), we have:  

{ }
0,1

( ,1) max (1 ) ( 1,1) ( 1,1),ju
V j pr u u V j V j

=
= + − + = +  (12) 

 where (12) follows from (11) applied to the case k = 0. So, we have: ( ,1) 0jµ = .  

Suppose ( , ) ( 1, )V j h V j h= +  for some ( )h jκ< . The Bellman recursion (1) yields:  

{ }
{ }

0,1

0,1

( , 1) max ( ( 1, )) ( , ) (1 ) ( 1, 1)

max ( ) ( 1, ) (1 ) ( 1, 1)

( 1, 1).
( , 1) 0.

ju

ju

V j h p r V j h qsV j h u u V j h

pr p qs V j h u u V j h

V j h
j hµ

=

=

 + = + + + + − + + 

 = + + + + − + + 

= + +
⇒ + =

 (13) 

where (13) follows from applying (11) to the case k = h. Moreover, from (9) and (13), we can 
write:  

( 1, ( ) 1) ( 1, ( )) ( , ( ))

( 1, ( )) ( 1, ( ))

( ) ( 1, ( )).

j

j

j

V j j p r V j j qsV j j

p r V j j qsV j j

pr p qs V j j

κ κ κ

κ κ

κ

 + + = + + + 
 = + + + + 

= + + +

 (14) 

 □  

Combining (9), (13) and (14), we have:  
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( 1, 1), ( )
( , 1) ( ) ( 1, ), ( )

( ( 1, )) ( ,
 

), ( ).
j

j

V j k k j
V j k pr p qs V j k k j

p r V j k qsV j k k j

κ
κ

κ

 + + <
+ = + + + =
 + + + >

 (15) 

Therefore, the corresponding optimal policy satisfies:  

0, ( )
( , 1)

1, (
 

).
k j

j k
k j

κ
µ

κ
<

+ =  ≥
 (16) 

The above result tells us that 1 out of ( 1)k +  weapons is dropped on the current target j iff the 
immediate expected reward, prj is greater than or equal to the marginal future reward, 1( )j k+∆ . 
So, the marginal future reward is the threshold at which the bomber’s control switches. In line 
with previous results on the related discrete bomber problem, one would expect the optimal 
threshold to be monotonic decreasing in k and monotonic non-increasing in j. These intuitive 
monotonicity properties are indeed true under our model as shown below.  

Theorem 1. For 1, ,j N= … , ( )j k∆  is a monotonic decreasing function of k.  

Proof. We prove the result by backward induction on j. From (4) and (5), we have:  

1

( ) ( , 1) ( ) ( , )

1 ( ) ( )(1 ( ) )
1

(1 ) ( ) .
1

N

k kN

kN

k V N k p qs V N k
pr qs p qs qs

qs
pr q s p qs

qs

+

∆ = + − +

 = − − + − −

 = − + −

 (17) 

( )N k∆  is clearly a decreasing function of k given that 0 , 1q s< < . Let us suppose that 1( )j k+∆  is 
a decreasing function of k for some 1j N< − . As before, let ( )jκ  be the smallest 0,1,k =   
such that 1( )j jpr k+≥ ∆ . By definition, ( ) ( , 1) ( ) ( , )j k V j k p qs V j k∆ = + − +  and so, we have 
from (15):  

1( ) ( ), ( ),j jk k k jκ+∆ = ∆ <  (18) 
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( ( )) .j jj prκ∆ =  (19) 

 For ( ) 0k jκ= − > , we have by repeated application of (15):  

1

0 0

( , 1) ( ) ( ) ( ) ( 1, ( )) ( ) ( 1, ).i i
j

i i

V j k pr qs qs p qs V j j p qs V j k iκ
−

= =

+ = + + + + + −∑ ∑
 

  (20) 

 So, we can write:  

1 1

1
0 0

( ) ( , 1) ( ) ( , )

( ) ( 1) ( ) (1 ) ( ) , ( ).

j

i i
j j

i i

k V j k p qs V j k

p qs k i pr qs q s qs k jκ
− −

+
= =

∆ = + − +

 
= ∆ − − + + − > 

 
∑ ∑
 


 (21) 

 We proceed to show that ( )j k∆  as prescribed by (18), (19) and (21) is a decreasing function of 
k. By our induction argument, 1( ) ( )j jk k+∆ = ∆  decreases as k goes from 0 to ( ) 1jκ − . From the 
definition of ( )jκ , we have: 1( ( ) 1)j jpr jκ+< ∆ −  and so,  

1( ( )) ( ( ) 1) ( ( ) 1).j j j jj pr j jκ κ κ+∆ = < ∆ − = ∆ −  (22) 

 From (21), we have:  

1

1

( ( ) 1) ( ( )) [ (1 )]

( ( ))
j j j

j j j

j p j pr qs q s

pr p j pr

κ κ

κ

+

+

∆ + = ∆ + + −

 = + ∆ − 
 (23) 

( ( )),j jκ≤ ∆  (24) 

 since 1( ( ))j jj prκ+∆ ≤  as per the definition of ( )jκ . For ( )k jκ>  we again employ (21) and 
after some algebraic manipulations get,  

1

1 1 1
0

( 1) ( ) ( ) ( ( )) ( ) ( ) ( 1)

0,

i
j j j j j j

i

k k p qs j pr p qs k i k iκ
−

+ + +
=

   ∆ + − ∆ = ∆ − + ∆ − − ∆ − −   

<

∑




 (25) 
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 since 1 1( ) ( 1)j jk i k i+ +∆ − < ∆ − −  per the induction argument and 1( ( ))j jj prκ+∆ ≤ . Hence, 
( )j k∆  is a decreasing function of k. □  

Remark 1. We note from (23) that strict monotonicity is guaranteed for ( )j k∆  as a function of k 
so long as 1( ( ))j jpr jκ+> ∆ .  

Next, we show that the threshold function is monotonic non-decreasing with the number of 
targets left in the mission.  

Theorem 2. For any k, ( )j k∆  is a monotonic non-increasing function of j.  

Proof. From (18) in Theorem 1, we have:  

1( ) ( ), 0, , ( ) 1.j jk k k jκ+∆ = ∆ = … −  (26) 

 From (22) in Theorem 1 and the definition of ( )jκ , we have:  

1( ( )) ( ( )).j j jj pr jκ κ+∆ = ≥ ∆  (27) 

 Recall that for ( ), ( )jk j kκ> ∆  is given by (21). From Theorem 1, 1 1( 1) ( ), 0j jk i k i+ +∆ − − > ∆ ≥  
and so we have:  

( )

1 1

1
0 0

1

1 1

( ) ( ) ( ) ( ) (1 ) ( )

1 ( ) 1 ( )( )[1 (1 )] ( ) (1 )
1 1

1 ( )( ) ( ) ( ) (1 )
1

i i
j j j

i i

j j

j j j

k k p qs pr qs q s qs

qs qsk q s s pr qs q s
qs qs

qsk pr k qs q s
qs

− −

+
= =

+

+ +

 
∆ > ∆ + + − 

 
 − −

= ∆ − − + + + − − − 
 −

= ∆ + − ∆ + − − 

∑ ∑
 



 





 (28) 

1( ), ( ) 0.j k k jκ+> ∆ = − >  (29) 

 In the above, (29) follows from the definition of ( )jκ , i.e., 1( ), ( )j jpr k k jκ+> ∆ > . From (26), 
(27) and (29), the result follows. □  
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Given the monotonicity result in Theorem 1, we can compute the optimal threshold at which the 
control switches via a direct backward linear recursion without resorting to the computationally 
prohibitive non-linear Bellman recursion (1). Indeed, we can combine (18), (19) and (21) to get 
the backward recursion: j N∀ < ,  

1

1 1

1
0 0

( ), ( ),
( ) , ( ),

( ) ( 1) ( ) (1 ) ( ) .

 
j

j j

i i
j j

i i

k k j
k pr k j

p qs k i pr qs q s qs

κ
κ

+

− −

+
= =


∆ <∆ = =
   ∆ − − + + −   
∑ ∑
 



 (30) 

Recall that ( )jκ  is the smallest 0,1,k =   such that 1( )j jpr k+≥ ∆  for all j  <  N and the 
boundary condition:  

( ) (1 ) ( ) , 0.
1

kN
N

prk q s p qs k
qs

 ∆ = − + ≥ −
 (31) 

 The backward recursion (30) yields the marginal reward values Δj and the corresponding 
threshold values ( )jκ  for 1, , ( 1)j N= … − . The optimal firing policy for all j  <  N is prescribed 
by:  

0, ( ),
( , )

1,  otherw e.
 

is
k j

j k
κ

µ
≤

= 


 (32) 

At the last target, it is always optimal to fire a weapon and so, ( , ) 0, 0N k kµ = ∀ > . To visualize 
the central result, we have computed and plotted the marginal future reward function ( )j k∆  (top 
plot) and ( )jκ  values (bottom plot) at which the control switches for six different sets of 
problem parameters in Fig. 1. For illustration, we picked N = 5 targets. The other randomly 
chosen problem parameters, p, s and rj for different j are shown in the plots. The key takeaway is 
the dual monotonicity property of the marginal reward function. In the next section, we 
investigate if a similar threshold monotonicity property extends to the partial information case, 
when the target action is random.  

3  Partial information scenario 
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In this section, we introduce an additional complexity in that the target, if attacked and not 
destroyed, fires back with probability 1f ≤  known to the bomber. Suppose the DM is alive and 
initially facing a target known to be alive. Further suppose that subsequently 1m ≥  contiguous 
shots are fired at the target with no return fire seen. Let mP  indicate the corresponding a 
posteriori probability that the target is still alive after the stated sequence of events. We apply the 
conditional expectation theorem as follows. Let the events:  

A : The target is alive after m rounds of contiguous firing and  

B : No return fire was seen immediately after the mth round of firing. 

It follows from the definition earlier that,  

( | ) ( )( | ) .
( )m

Prob ProbProb
Prob

= =
B A AA B

B
P  (33) 

 We note that ( | ) 1Prob f= −B A  is the probability that a live target holds fire. For the target to 
be alive after m rounds, it must have been alive after m – 1 rounds and it must be missed by the 
mth shot. So, 1( ) mProb q−=A P . In addition, if the target must fire back, the corresponding 
probability is given by 1m qf−P . It follows that the complementary event B  satisfies: 

1( ) 1 mProb qf−= −B P . Thus, the one step Bayes’ update formula for the a posteriori probability is 
given by:  

1

1

(1 ) .
1
m

m
m

q f
qf

−

−

−
=

−
PP

P
 (34) 

 For m = 0, we stipulate that 0 1=P . Note that this reflects the situation when the DM arrives for 
the first time at a live target or immediately after the DM survives a round of return fire from the 
target. In either case, the DM knows that the target is alive prior to any further engagement.  

3.1  Partial information sequential engagement 

Suppose the DM is alive and initially facing (live) target j with k weapons in hand. Further 
suppose that 0m ≥  contiguous shots have been fired at j with no return fire seen thus far. Let 

( , | )V j k m  indicate the optimal expected cumulative reward i.e., value function, that can be 
achieved thereafter. As before, let the control action, u = 1 indicate that a shot is fired at the 
current target j and u = 0 indicate that the DM moves on to the next target in the sequence. If the 
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DM chooses u = 1, it will observe the event y = 0, 1 indicating the absence or presence of return 
fire. In accordance with the SLS framework, we assume that the DM waits (looks) after firing a 
shot to see if there is return fire. Note that the target not firing back could indicate one of two 
things: 1) the target was destroyed or 2) the target was not destroyed and it did not fire back. 
These two states are indistinguishable to the DM. Indeed, we have the probability:  

( 1) ,mProb y qf= = P  (35) 

 where, as before, 1q p= − . In other words, for the target to fire back, it must be alive and 
choose to fire back. It follows that the value function must satisfy the Bellman recursion:  

{
}

0,1
( , 1| ) max ( 1) ( , | 0) ( 0) ( , | 1)

(1 ) ( 1, 1| 0) , 0, , ( 1), 1, , ( 1).

m ju
V j k m p r Prob y sV j k Prob y V j k m u

u V j k k M j N
=

 + = + = + = + 

+ − + + = … − = … −

P
 (36) 

  In (36), u = 1 yields an expected immediate reward of m jp rP  and the expected future payoff for 
the two outcomes y = 0, 1 are given by: ( , | 1)V j k m +  and ( , | 0)sV j k  respectively. Indeed, if u 
= 1 and y = 1, the bomber must survive the return fire to yield any future reward, hence the factor 
s in front of ( , | 0)V j k . If u = 1 and y = 0, an additional (contiguous) shot has been fired at j with 
no return fire and so, the corresponding expected future payoff is ( , | 1)V j k m + . As before, u = 0 
results in the DM moving on to the next target with the corresponding expected future payoff 

( 1, 1| 0)V j k+ + . Substituting for Prob(y) from (35), we have:  

{
}

0,1
( , 1| ) max ( , | 0) [1 ] ( , | 1)

(1 ) ( 1, 1| 0) , 0, , ( 1), 1, , ( 1).

m j m mu
V j k m p r qfsV j k qf V j k m u

u V j k k M j N
=

 + = + + − + 

+ − + + = … − = … −

P P P
 (37) 

 The optimal firing policy is therefore given by:  

{
}

0,1
( , 1| ) arg max ( , | 0) [1 ] ( , | 1)

(1 ) ( 1, 1| 0) , 0, , ( 1), 1, , ( 1).

m j m m
u

j k m p r qfsV j k qf V j k m u

u V j k k M j N

µ
=

 + = + + − + 

+ − + + = … − = … −

P P P
 (38) 

  If the DM is alive and at the last target (which may still be alive) and has k  >  0 weapons at 
hand, it is clearly optimal to deploy a weapon since there is no payoff in retaining weapons. 
Indeed, for any , 0k m ≥ :  
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( , 1| ) ( , | 0) (1 ) ( , | 1),m N m mV N k m p r qfsV N k qf V N k m+ = + + − +P P P  (39) 

 with the boundary condition ( ,0 | ) 0V N m =  for any 0m ≥ .  

As before, we are interested in determining if the optimal policy is threshold based and if it has 
desirable monotonicity properties. Motivated by the perfect information result, we define the 
corresponding (equivalent) partial information marginal future reward:  

( ) : ( , 1| 0) ( ) ( , | 0), ,j k V j k p qa V j k j∆ = + − + ∀  (40) 

 where 1 (1 )a f s= − − . For the case of f = 1 (perfect information), we have shown that the 
marginal future reward is the threshold at which the bomber’s control switches and furthermore, 
the threshold exhibits desirable monotonicity properties in both k and j. Unfortunately, for the 
partial information setup, a similar analysis does not work. In other words, we show that the 
marginal future reward (40) is not the threshold at which the bomber’s control switches. We do 
so via a counterexample for the special case of an invincible bomber, i.e., s = 1.  

3.2  Invincible bomber counterexample 

For the special case s = 1, the partial information Bellman recursion (37) is given by:  

( ){
}

0,1
( , 1| ) max ( , | 0) 1 ( , | 1)

(1 ) ( 1, 1| 0) .

m j m mu
V j k m p r qfV j k qf V j k m u

u V j k
=

 + = + + − + 

+ − + +

P P P
 (41) 

  Repeating the steps (6)-(9) in Proposition 1, one can show that the corresponding optimal 
policy satisfies:  

1( , 1| ) 1, ( ).m j jj k m p r kµ ++ = ≥ ∆P  (42) 

 Note that for s = 1, 1( ) ( 1, 1| 0) ( 1, | 0)j k V j k V j k+∆ = + + − +  and is therefore identical to the 
perfect information marginal reward defined earlier (5). So, it is not unreasonable to expect the 
marginal future reward to be the threshold at which the bomber’s control switches. Indeed, we 
have the partial result in (42) that gives us a sufficient condition for bombing the current target. 
Unfortunately, it is no longer the case that ( , 1| ) 0j k mµ + = , if 1( )m j jp r k+< ∆P . Suppose we 
have two targets, i.e., N = 2 and the DM is at the first target with 1m k= = . We will show that 
there exists r1 for which it is optimal to bomb the current target even though the immediate 
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expected payoff is less than the marginal future reward (40). In other words, (1, 2 |1) 0µ =  even 
though 1 1 2 (1)p r < ∆P .  

Lemma 1.  

1 1 2 1 1 2 2 2
2

1 22

(1) but (1, 2 |1) 0,  if ( , ),
1 1 where:  and .

1 1

p r r L r L r
qf qfL L

pf qf f

µ< ∆ = ∈

− −
= =

− − −

P
 (43) 

 Proof. First we note that it can easily be shown that 1 21 L L< <  so we can always pick r1 from 
the non-empty interval 1 2 2 2( , )L r L r . From the a posteriori probability update (34), we have:  

1
2

(1 ) .
1

q f q
qf L
−

= =
−

P  (44) 

 
2

1
12

1

(1 ) 1 .
(1 ) 1

q f qf L
qf pf qf

+ −
⇒ = =

+ − −
P

P
 (45) 

 From the Bellman recursion (41), we can write:  

2(2, | ) (2, 1| 0) (1 ) (2, 1| 1)m m mV k m p r qfV k qf V k m= + − + − − +P P P  (46) 

2(2,1| 0)V pr⇒ =  (47) 

 By repeated application of (46), we have:  

2

2 2 1 2

2 2 2 2

(2, 2 | 0) (2,1| 0) (1 ) (2,1|1)
(1 )[ ]

(1 ) (1 ).

V pr qfV qf V
pr qfpr qf p r
pr qfpr pq f r pr q

= + + −
= + + −
= + + − = +

P  (48) 

 So, we can write:  

2 2(1) (2,2 | 0) (2,1| 0) .V V pqr∆ = − =  (49) 

 Since 1 2 2r L r< , we can write:  
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1 1 1 2 2 2 2 (1).p r p L r pqr< = = ∆P P  (50) 

 From the Bellman recursion (41), we have:  

1 10,1
(1,1| 0) max{ (1 ) (2,1| 0)} .

u
V pru u V pr

=
= + − =  (51) 

 2 1 20,1
(1,1| 2) max{ (1 ) (2,1| 0)} .

u
V p ru u V pr

=
= + − =P  (52) 

 

( )1 1 1 10,1

1 1 1 2
0,1

1 1 1 1 2 2
0,1

1
0,1

(1, 2 |1) max{ (1,1| 0) 1 (1,1| 2) (1 ) (2,2 | 0)}

(1,2 |1) arg max{ [ (1,1| 0) (2,1| 0)] (1 ) (1)}

arg max{ [ ] (1 ) }

(1arg max

u

u

u

u

V p r q fV q f V u u V

p ru q f V V u u

p ru pq f r r u u pqr

qru

µ
=

=

=

=

 = + + − + − 

⇒ = + − + − ∆

= + − + −

+
= +

P P P

P P

P P

{ }1
2 1 1 2

0,11

) (1 ) arg max (1 ) 1.
(1 ) u

f r u ru u L r
qf =

 
− = + − = + 

P
P

 (53) 

  Note that (52) follows from (50) since 2 1<P P  and so, 2 1 1 1 2 2p r p r pqr pr< < <P P . □  

So, we conclude that for the partial information scenario, a thresholding policy similar to the 
perfect information case cannot be established. We emphasize that we have only shown that the 
marginal future reward (40) is not the threshold at which the optimal policy switches. It is quite 
likely that the optimal bombing policy is a thresholding policy with desirable monotonicity 
properties but we do not have a definitive proof either way at this time. However, in light of the 
negative result established herein, we propose a threshold based heuristic for the partial 
information case.  

3.3  Threshold based heuristic 

Motivated by the perfect information threshold policy, we propose the following threshold based 
heuristic policy for the partial information scenario. For any j  <  N, let ( , )j mκ  be the smallest 

0,1,k =   such that 1( )m j jp r k+≥ ∆P  for all 1, , ( 1)j N= … − , where the approximate marginal 

reward ( )j k∆  is computed according to:  

This article is protected by copyright. All rights reserved.



1

1 1

1
0 0

( ), ( ,0),
( ) , ( ,0),

( ) ( 1) ( ) (1 ) ( ) , ( ,0)

 

0.

j

j j

i i
j j

i i

k k j
k pr k j

p qa k i pr qa q a qa k j

κ
κ

κ

+

− −

+
= =


∆ <∆ = =
   ∆ − − + + − = − >   
∑ ∑
 



 

 

 

 (54) 

The boundary condition is given by:  

( ) (1 ) ( ) .
1

kN
N

prk q a p qa
qa

 ∆ = − + −
  (55) 

 The threshold based heuristic policy for all 1, , ( 1)j N= … −  is prescribed by:  

0, ( , ),
( , 1| )

1,
 

 otherwise.
k j m

j k m
κ

µ
<

+ = 



  (56) 

At the last (possibly alive) target, it is always optimal to bomb: ( , 1| ) 1, , 0.N k m k mµ + = ≥  Note 
that equations (54)-(56) closely mirror the perfect information equations (30)-(32) and they 
coincide when f = 1. Indeed, for 1f a s= ⇒ =  and the heuristic policy prescribed above is 
optimal. Furthermore, the approximate marginal reward function defined herein is not arbitrary 
in that it equals the exact marginal reward at least for the last target. In other words,  

( ) ( ) ( , 1| 0) ( ) ( , | 0).N Nk k V N k p qa V N k∆ = ∆ = + − +  (57) 

 Lemma 2.  

1

0

( , | 0) ( ) .
k

NV N k pr qa
−

=

= ∑ 



 (58) 

  

Proof. We shall prove the result by induction on k. From (39), we immediately have: 
( ,1| 0) NV N pr= . Assume that for any ;1t t k≤ < ,  
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1

0

( , | 0) ( ) .
t

NV N t pr qa
−

=

= ∑ 



 (59) 

 We proceed to show that:  

1

0

( , | 0) ( ) .
k

NV N k pr qa
−

=

= ∑ 



 (60) 

 Indeed, we have from the Bellman recursion (39) applied to the last target:  

[ ]

2

0

1 1 1

( , | 0) ( , 1| 0) (1 ) ( , 1|1)

( )

(1 ) ( , 2 | 0) (1 ) ( , 2 | 2)

N

k

N N

N

V N k pr qfsV N k qf V N k

pr qfs pr qa

qf p r qfsV N k qf V N k

−

=

= + − + − −

 
= +  

 
+ − + − + − −

∑ 



P P P

 (61) 

[ ]

2

0

1

1 ( )

(1 ) ( , 2 | 0) (1 )(1 ) ( , 2 | 2)

k

N

N

pr qfs qa

q f pr qfsV N k qf qf V N k

−

=

 
= + 

 
+ − + − + − − −

∑ 



P
 (62) 

2

0

3

1
0

1 ( )

(1 ) 1 ( ) (1 )(1 ) ( , 2 | 2)

k

N

k

N

pr qfs qa

q f pr qfs qa qf qf V N k

−

=

−

=

 
= + 

 
 

+ − + + − − − 
 

∑

∑









P
 (63) 

2 3

0 0

4
2 2 1 1

0

1 ( ) (1 ) 1 ( )

(1 ) 1 ( ) (1 )

k k

N N

k
k k

N N

pr qfs qa q f pr qfs qa

q f pr qfs qa q f pr

− −

= =

−
− −

=

   
= + + − +   

   
 

+ − + + + − 
 

∑ ∑

∑

 

 







 (64) 

2
1 1

2 0

(1 ) 1 ( ) (1 ) .
k m

k m k m k k
N N

m

pr q f qfs qa pr q f
−

− − − −

= =

 
= − + + − 

 
∑ ∑ 



 (65) 
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 In the above derivation, we have repeatedly used the induction assumption (59) for 1t k≤ − . We 
have also used the probability update equation (34):  

1
0

1
1

0

(1 ) , 0 and 1.
1

[1 ] (1 ) , 0.

m
m

m
m

m m
m i

i

q f m
qf

qf q f m

−

−

−

=

−
= > =

−

⇒ − = − >∏

PP P
P

P P
 (66) 

 Finally, we have used the boundary condition: 1( ,1| 1) k NV N k p r−− = P  to arrive at (65). Note 
however that, 1 1 (1 )f fs f s a− + = − − =  and so, we can write:  

1 1 1
1

0 1 1

2 2

0 0

2 2

0 0

( ) 1 ( ) 1 ( ) (1 )

1 (1 ) ( ) ( )

1 ( ) (1 ) ( ) .

k k k

k k

k k

qa qa q qa f fs

q f qa fs qa

qfs qa q f qa

− − −
−

= = =

− −

= =

− −

= =

= + = + − +

 
= + − + 

 
 

= + + − 
 

∑ ∑ ∑

∑ ∑

∑ ∑

  

  

 

 

 

 

 (67) 

 By repeated application of (67) to the underbraced expression, we get:  

1 2
1 1

0 2 0

( ) (1 ) 1 ( ) (1 )
k k m

k m k m k k

m

qa q f qfs qa q f
− −

− − − −

= = =

 
= − + + − 

 
∑ ∑ ∑ 

 

 (68) 

 So, upon comparing (65) and (68), we conclude that:  

1

0

( , | 0) ( ) .
k

NV N k pr qa
−

=

= ∑ 



 (69) 

 □  

It immediately follows that the marginal reward for the last target:  
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{ }

{ }

1

( ) ( , 1| 0) ( ) ( , | 0)

1 ( ) [ ] 1 ( )
1

1 1 ( )
1

(1 ) ( ) ,
1

N

k kN

kN

kN

k V N k p qa V N k
pr qa p qa qa

qa
pr p qa qa

qa
pr q a p qa

qa

+

∆ = + − +

 = − − + − −

 = − − − −

 = − + −

 (70) 

 which by definition equals the approximate marginal future reward, ( )N k∆ . To summarize, we 
have shown via a counterexample that the threshold based heuristic policy is sub-optimal for f  <  
1. We have also shown that it is optimal when f = 1. In the absence of theoretical bounds on the 
quality of the heuristic policy, we perform a numerical study instead. Towards this end, we first 
compute the value yielded by implementing the heuristic policy. Let ( , 1| )V j k m+  denote the 
value yielded to the DM when it implements the threshold heuristic. Accordingly, we have:  

[ ]
( , 1| ) ( , | 0) [1 ] ( , | 1) ( , 1| )

1 ( , 1| ) ( 1, 1| 0), 0, , ( 1), 1, , ( 1).
m j m mV j k m p r qfsV j k qf V j k m j k m

j k m V j k k M j N

µ

µ

 + = + + − + + 
+ − + + + = … − = … −

   



P P P
 (71) 

  Since the heuristic policy for the last (Nth) target coincides with the optimal policy, we also 
have:  

( , 1| ) ( , 1| ), , 0.V N k m V N k m k m+ = + ∀ ≥  

For different M and N values, we perform Monte-Carlo simulations to provide empirical bounds 
on the loss in total expected reward at the beginning of the bombing mission, i.e., 

(1, | 0) (1, | 0)V M V M−  . In addition, we also compute the percent difference in the optimal and 
heuristic policies over all reachable states starting from the initial state: 1, , 0j k M m= = = . 
Figure 2 shows box plot analyses of the empirical loss in value and difference from optimal 
policy for four different sets of M and N values. For each set, we compute statistics for ten 
different values of [0,1]f ∈ . All other problem parameters are randomly sampled from uniform 
distributions: [0,1], [0,1]p s∈ ∈  and [1, ,50]jr ∈ …  for all 1, ,j N= … . For each (M, N) value, we 
perform 1000 Monte-Carlo runs. From figure 2, it appears that the loss in value increases as the 
number of targets N increases. A similar trend holds for the percent difference between the 
optimal and heuristic policies. We stop at N = 8, M = 12 since the computation time for solving 
the exact Dynamic Program grows exponentially. As expected, there is no loss in optimality for 
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all data sets with f = 1. Interestingly, we also see that the performance degradation starts low for 
small f, grows and then decreases to zero at f = 1. Needless to say, these observations are based 
on simulation results and we have no conclusive proof of this property at the time of writing this 
article. However, an encouraging sign is the relatively small loss in performance incurred in 
using the heuristic compared to the potential savings in computation time achieved in computing 
the heuristic policy (via a direct linear recursion).  

4  Partial information game 
In this section, we consider the following sequence of events. Suppose the bomber fires at a live 
target. If the target survives the attack, it can either return fire or play dead. The bomber waits 
(looks) to see if there is return fire before proceeding with the next action. Given that a round of 
return fire has a positive probability of destroying the bomber, it would seem that the target 
should always return fire, when presented with an opportunity. Conversely, when the targets are 
cooperating, it may be advantageous for a high value target to sometimes play dead so that the 
bomber moves on to a low value target downstream.  

As in the counter example earlier, we consider a representational two target scenario that 
captures the essence of the game. Indeed, let the bomber be at the first target T1 with 2 weapons 
at hand. Further suppose that 1 2r r>  (else the bomber may simply move on to T2) and the bomber 
fires the first shot at T1 and is waiting to see if there is any return fire. We wish to answer the 
following key questions. Should T1, if it survives the first round of direct fire, return fire or play 
dead? Should the bomber, if still alive, expend the last weapon at the first or the second target? 
We investigate this setup and compute the Nash equilibrium strategies for both players.  

Since we are dealing with a partial information game, the decisions made by the players are a 
function of their respective information states. A player’s strategy is a mapping from his 
information state to available actions. We first consider the strategy of the bomber, who strives 
to maximize the reward yielded by inflicting damage on T1 and/or T2. If it sees return fire and 
survives it, the bomber knows that T1 is alive and expends the last weapon on it since 1 2r r> . 
This part is straightforward. However, if there is no return fire, it is not clear what the Bomber’s 
strategy should be. For this instance, suppose that the bomber’s strategy is to fire the second shot 
at T1 with probability b. Furthermore, if T1 survives the first round of fire, let the probability with 
which it returns fire be given by f. We will compute the optimal values for b and f i.e., the Nash 
equilibrium strategies. We will also illustrate conditions under which pure strategies are optimal.  

Let (b, f) indicate the tuple of mixed strategies for the bomber and T1. Suppose T1 survived the 
first round of fire. The expected damage as seen by T1 for the joint strategies (b, f) is given by:  
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[ ]1 1 2( , ) (1 ) (1 ) .TV b f fspr f bpr b pr= + − + −  (72) 

 In other words, if T1 fires back, it knows that the bomber will survive the return fire with 
probability s and fire at it again yielding an expected damage of pr1. On the other hand, if it 
holds fire (plays dead), the bomber’s strategy will yield an expected damage of 1 2(1 )bpr b pr+ − . 
For the same pair of strategies, the expected reward yielded by the second round of fire as seen 
by the bomber is given by:  

[ ]2( , ) 0 (1 ) ( , ).B TV b f p b b pr qV b f= × + − +  (73) 

 Indeed, if the first round was successful, the bomber gets the reward 2(1 )b pr−  from the second 
round. On the other hand, if the first round was unsuccessful, it gets the reward ( , )TV b f  from 
the second round of fire. The target T1 strives to minimize the damage ( , )TV b f  and the bomber 
strives to maximize the reward ( , )BV b f . We shall first compute each player’s best response to a 
given opponent strategy. For a given bomber strategy, b, T1’s best response, *( )f b  that 
minimizes ( , )TV b f  is computed as follows. Recall that:  

[ ]1 2 1 2( , ) ( ) (1 ) (1 ) .TV b f p s b r b r f bpr b pr= − − − + + −  (74) 

 By inspection, it follows that:  

1 2*

1 2

0,  if ( ) (1 ) ,
( )

1,  if ( ) (1 ) .
 

s b r b r
f b

s b r b r
− > −

=  − < −
 (75) 

In particular, if 1 2

1 2

, ( , )T
sr rb V b f
r r
−

=
−

 is independent of f and hence, any value [0,1]f ∈  is 

optimal. In a similar fashion, for a given T1 strategy f, the bomber’s best response, *( )b f  that 
maximizes ( , )BV b f  is computed as follows. Recall that:  

[ ]{ }
[ ]

2 1 1 2

1 2 1 2

( , ) (1 ) (1 ) (1 ) .

(1 ) (1 ) (1 )
BV b f p b pr q fspr f bpr b pr

p q f r fq r b qfspr fq pr

= − + + − + −

= − − − + + −
 (76) 

 By inspection, it follows that:  
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1 2*

1 2

1,  if (1 ) (1 ) ,
( )

0,  if (1 ) (1
 

) ,
q f r fq r

b f
q f r fq r

− > −
=  − < −

 (77) 

In particular, if 1 2

1 2

, ( , )
( ) B
qr rf V b f

q r r
−

=
−

 is independent of b and hence, any value [0,1]b ∈  is 

optimal. By definition, the Nash equilibrium strategies, ( , )b f   satisfy *( )b b f=   and *( )f f b=  . 
We have the following result establishing the Nash equilibrium.  

Theorem 3.  

1 2

1 2 1

1 2 1 2

1 2 1 2

(0,1),  if ,
( , ) (0,0),  if ,

, ,otherwi

 

se.
( )

sr r
b f qr r sr

sr r qr r
r r q r r




<= < <
 − −
  − − 

   (78) 

Proof. We shall prove the result by considering the different inequalities:  

Case 1. 1 2sr r< : It follows from (74) that 1 2 2(0, ) ( )TV f p sr r f pr= − +  and therefore, the 
minimizing best target response, *(0) 1f = . Also, from (76), we have 

2 2
2 1 2( ,1)BV b p r b qspr p r= − + +  and so, the maximizing best bomber response, *(1) 0b = . Hence, 

( , ) (0,1)b f =   are the Nash equilibrium pure strategies i.e., T1 always returns fire and the bomber 
always fires at T2 in the event of no return fire. The corresponding expected damage seen by T1 
and reward seen by the bomber are given by 1(0,1)TV psr=  and 2

2 1(0,1)BV p r qpsr= +  
respectively.  

Case 2. 1 2 1qr r sr< < : It follows from (74) that 1 2 2(0, ) ( )TV f p sr r f pr= − +  and therefore, the 
minimizing best target response, *(0) 0f = . Also, from (76), we have 

1 2 2( ,0) ( )BV b p qr r b pr= − +  and so, the maximizing best bomber response, *(0) 0b = . Hence, 

( , ) (0,0)b f =   are the Nash equilibrium pure strategies i.e., T1 always plays dead and the bomber 
always fires at T2 in the event of no return fire. The corresponding expected damage seen by T1 
and reward seen by the bomber are given by 2(0,0)TV pr=  and 2(0,0)BV pr=  respectively.  
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Case 3. 2 1 1min( , )r qr sr≤ : For this case, no pure strategies exist. Indeed, the game does not admit 
the other possible solutions, (1, 1) and (1, 0). From (74), we have 1 1(1, ) ( 1)TV f p s r f pr= − +  and 
therefore, the minimizing best target response, *(1) 1f =  since s  <  1. However, from (76), we 
have 2 2

2 1 2( ,1)BV b p r b qspr p r= − + +  and so, the maximizing best bomber response, *(1) 0b = . So, 
the bomber switches strategy. Continuing in this fashion, we note that 

1 2 2(0, ) ( )TV f p sr r f pr= − + . Since, 2 1r sr< , the target also switches strategy to *(0) 0f = . 
Finally, we note that 1 2 2( ,0) ( )BV b p qr r b pr= − +  and so, the maximizing best bomber response, 

*(0) 1b =  since 1 2qr r> . So, the bomber switches strategy again implying that there are no Nash 
equilibrium pure strategies for this case. So, the only admissible solution is the tuple of mixed 

strategies, 1 2 1 2

1 2 1 2

( , ) ,
( )

sr r qr rb f
r r q r r

 − −
=  − − 

   that simultaneously makes ( , )BV b f  to be independent of 

b and ( , )TV b f  to be independent of f. Note that the mixed strategy probabilities are well defined 

i.e., , [0,1)b f ∈   since 2 1 1r sr r≤ <  and 2 2 1qr r qr< ≤ . The corresponding expected damage seen 
by T1 and reward seen by the bomber are given by:  

1 2 2 1( , ) ( )TV b f p r r b pr psr= − + =    (79) 

  

1 2 2
2

1 1 2 1 2
1 2 2

1 2

( , ) ( )
( )( ) .

BV b f qp sr r f pr
psr qr r p r rp qr r b pr

r r

= − +

− +
= − + =

−

  


 (80) 

 □  

In this article, we do not consider the generalization of the above result to the case of N targets 
and M weapons. Suffice to say that this will be a challenging enterprise given the interplay 
between the information states for the two players i.e., the bomber and the target team. It is 
reasonable to expect that the optimal play for the thj  target will rely on a tradeoff between the 
expected personal damage, if it returns fire, and expected marginal damage to downstream 
targets, if it chooses to play dead. The optimal play also relies on what the bomber’s expectation 
of its rewards are. Note that since we are dealing with a partial information scenario, the 
expected rewards calculated by the two players are different i.e., this is not a zero sum game. 
This makes it a formidable challenge to solve the general case. A possible line of attack would be 
to employ the dynamic programming approach in [18], which deals with a sequential 
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engagement with perfect information, where the attacker/defender choose to attack/defend each 
target by firing a single shot.  

5  Conclusions and future work 
We consider a dynamic variant of the Weapon-Target Assignment (WTA) problem, wherein 
ground targets are sequentially visited by a bomber equipped with homogenous weapons. We 
investigate the scenario where the targets are capable of retaliation and solve for the optimal play 
therein. In particular, we consider an interesting informational aspect of the game, where the act 
of firing back at the bomber reveals the status of the target. To complete the analyses, we also 
consider the cases where the target action is deterministic and random. Insightful monotonicity 
properties of the threshold function at which the bomber’s control switches are preserved under 
perfect information. Future work will focus on either establishing a monotonic threshold policy 
or providing counterexamples thereof for the partial information setup. Finally, for a two target 
game scenario, we develop Nash equilibrium mixed strategies and establish conditions under 
which pure strategies are optimal. In the future, we plan to extend this result to the general case 
of multiple targets and multiple homogenous weapons with the bomber.  
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A Sequential Partial Information Bomber-Defender
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A bomber carrying homogenous weapons sequentially engages ground targets ca-

pable of retaliation. Upon reaching a target, the bomber may fire a weapon at it.

If the target survives the direct fire, it can either return fire or choose to hold fire

(play dead). If the former occurs, the bomber is immediately made aware that the

target is alive. If no return fire is seen, the true status of the target is unknown to the

bomber. After the current engagement, the bomber, if still alive, can either re-engage

the same target or move on to the next target in the sequence. The bomber seeks

to maximize the expected cumulative damage it can inflict on the targets. We solve

the perfect and partial information problems, where a target always fires back and

sometimes fires back respectively using stochastic dynamic programming. The per-

fect information scenario yields an appealing threshold based bombing policy. Indeed,

the marginal future reward is the threshold at which the control policy switches and

furthermore, the threshold is monotonic decreasing with the number of weapons left

with the bomber and monotonic non-decreasing with the number of targets left in the
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mission. For the partial information scenario, we show via a counterexample that the

marginal future reward is not the threshold at which the control switches. In light of

the negative result, we provide an appealing threshold based heuristic instead. Finally,

we address the partial information game, where the target can choose to fire back and

establish the Nash equilibrium strategies for a representative two target scenario.

Keywords: Attacker-Defender Game, Sequential Decision Making, Shoot-Look-Shoot, Partial In-

formation

I. Introduction

The operational scenario is the following. A bomber with M identical weapons travels along a

designated route/ path and sequentially encounters N enemy targets on the ground. Upon reaching

a target, the bomber may choose to release a weapon. A weapon dropped on a target will destroy

it with probability p, where 0 < p < 1. Successful elimination of the target yields a known positive

reward to the bomber/ Decision Maker (DM). However, we assume that the target is equipped with

a Surface to Air Missile (SAM) launcher and so, is capable of firing back at the bomber. We assume

the following sequence of events. The bomber acts first and fires at the target. If a weapon dropped

on a target is unsuccessful, the target (which is still alive) can fire back at the bomber. We assume

that the probability that the bomber is not destroyed by a round of return fire is given by s < 1.

After each engagement, if still alive, the bomber can either re-engage the current target or move

on to the next target in the sequence. We are interested in the optimal weapon allocation policy

that results in maximal total expected reward for the bomber. We emphasize here that the actual

reward accrued (realization of a random variable) is not known to the bomber and will perhaps

be collected by some form of ground intelligence e.g., by checking post mission what targets were

destroyed. The only exception is the perfect information scenario, where the target by virtue of

firing back (or not) reveals the reward yielded to the bomber. The bomber’s decision is clearly a

function of the information regarding the target status (alive or dead). We consider three different

but related information models in this article:

2
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1) Perfect information: If attacked and not destroyed, the target always fires back. Here, the

DM is immediately made aware of the true status of the target upon observing the presence

or lack of return fire.

2) Partial information: If attacked and not destroyed, the target fires back with probability

f < 1 known to the DM. If return fire is seen, the DM knows that the target is still alive.

However, if there is no return fire, the DM cannot distinguish between the two possible states

(alive/dead) of the target.

3) Partial information game: If attacked and not destroyed, the target can either choose to

fire back or play dead (hold fire). Again, if there is no return fire, the DM cannot determine

the true state of the target.

A. Prior Work

The framework we consider is common to military weapon target engagements [1–3], shooting

problems [4, 5], cybersecurity [6, 7], attacker-defender games [8] and more broadly to stochastic

sequential resource allocation [9, 10]. In sequential assignment problems of the kind considered

herein, the decision rule usually takes the form, attack the target iff its value is no less than a

certain threshold c, where the optimal c is to be determined. Moreover, one would expect the optimal

threshold to be monotonic decreasing and non-decreasing in the number of remaining weapons and

targets respectively. In other words, if the DM has more weapons in hand or less targets to engage,

it is more likely to bomb the current target. If the probability of kill, p = 1, there is no need

for repeated allocation to the same target and the resulting problem bears similarity to Revenue

Management (RM) - wherein, the threshold monotonicity property is known to hold, e.g., see [11, 12].

Monotonicity properties A, B & C for the related Bomber Problem, where a bomber has to survive

sequential engagements with enemy aircraft by firing a volley (one or more) of weapons are discussed

in [13]. Note that our setup is different from the bomber problem in two respects. In the bomber

problem, 1) a volley of weapons (≥ 1) is allowed at each decision stage and 2) the enemy aircraft

shoots at the bomber regardless of whether or not it was shot at first. The property B states that

the optimal number of weapons (salvo size) assigned to an enemy aircraft is nondecreasing in the

3

This article is protected by copyright. All rights reserved.



number of weapons left with the bomber. This property, long thought to be true, remained an open

problem for 43 years. Recently, it was shown to be false via counterexamples [14].

To clearly distinguish this paper from our earlier work, which only considered passive targets

with no retaliatory action, we note that:

1) In [15], a perfect information scenario is considered, where the DM is informed if the target

was destroyed or not and the threshold monotonicity result has been established for this case.

2) In [16], the rewards are considered to be random (as in RM) but known at decision time and

the target status is perfectly known to the DM; the threshold monotonicity result has been

established for this case as well.

3) In [17], we extend the monotonicity result to the case of error-prone Battle Damage Assessment

(BDA), where a live target is sometimes reported to be dead and vice-versa, i.e., the DM has

access to a classifier with known Type I and II error rates.

In military parlance, our model embraces a Shoot-Look-Shoot (SLS) approach, in that homoge-

nous resources are expended by the DM one at a time with observations made in between that

assess the outcome of the previous allocation. The analysis of SLS strategies under partial feedback

information on the allocation outcome was first reported in [3]. A survey of the state of the art in

SLS methods and the optimal use of information is provided in [5]. If additional complicating fac-

tors such as a search cost for finding a target or a scenario wherein resources can be replenished are

considered, the monotonicity property breaks down, e.g., see [9, 10]. A related perfect information

sequential allocation game, where an attacker and a defender choose to expend a single resource

from a finite inventory is presented in [18].

A more elaborate partially observable Markov model where a single red engages multiple blue

entities (possibly of different types) is provided in [19]. The authors therein analyze the optimal

shooting strategy via generalized bandits. In contrast, our parsimonious model requires only two

readily available parameters, the probabilities of kill for the direct and return fire. This yields a

fairly elegant solution derived entirely from first principles.

In this article, we present a low resolution model of the SLS scenario where the target can

4
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defend itself by returning fire at the DM. Our emphasis is on providing an analytical relationship

under which it is optimal for the target to play dead. We also derive critical threshold monotonicity

properties for the optimal policy under perfect information and show that a similar result does

not hold for the partial information scenario. Motivated by the perfect information policy, we also

provide an intuitive threshold based heuristic policy for the partial information case supported by

numerical simulations.

II. Perfect information scenario

We assume that the bomber is equipped with M identical weapons and sequentially visits

N targets on the ground. Under perfect information, we stipulate that if the bomber chooses to

deploy a weapon and if the (current) target is not destroyed, the target immediately fires back at the

bomber. We emphasize that the bomber looks to see if the target fires back or not before proceeding

with the next course of action (SLS approach). Let V (j, k) indicate the optimal cumulative reward

(value function) that can be achieved when the DM (still alive) arrives at the jth live target with k

weapons in hand. It follows that the value function must satisfy the Bellman recursion:

V (j, k + 1) = max
u=0,1

{[p(rj + V (j + 1, k)) + qsV (j, k)]u+ (1− u)V (j + 1, k + 1)} ,

j = 1, . . . , N − 1, k = 0, . . . ,M − 1, (1)

where q = 1 − p. The control action, u indicates whether the DM should deploy a weapon at the

current target (u = 1) or move on to the next target (u = 0). The decision u = 1 results in the jth

target being destroyed with probability p yielding an immediate reward of rj and a future expected

payoff of V (j + 1, k). In other words, having successfully destroyed target j, the DM moves on to

target j + 1 with k weapons in hand. On the other hand, if it is not destroyed, the target fires back

at the DM. In this case, the DM survives with probability s < 1 and so, the corresponding expected

future payoff is sV (j, k). If u = 0 is chosen, the DM simply moves on to the next target in the

sequence and the corresponding expected future payoff is V (j + 1, k + 1).

5
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In lieu of (1), the optimal firing policy is given by:

µ(j, k + 1) = arg max
u=0,1

{[p(rj + V (j + 1, k)) + qsV (j, k)]u+ (1− u)V (j + 1, k + 1)} ,

j = 1, . . . , N − 1, k = 0, . . . ,M − 1. (2)

If the DM runs out of ammunition, there is no more reward to be gained i.e., the boundary condition:

V (j, 0) = 0, ∀j. (3)

Furthermore, if the DM is alive at the last target (known to be alive) and has k > 0 weapons at

hand, it is always optimal to fire a weapon and so, the Bellman recursion (1) collapses to:

V (N, k) = prN + qsV (N, k − 1),

⇒ V (N, k) = prN

k−1∑
i=0

(qs)i =
prN

1− qs
[
1− (qs)k

]
, k = 1, . . . ,M. (4)

It is clear that the optimal value function can be easily computed using backward Dynamic Pro-

gramming. The problem is tractable so long as M,N are small as can be expected in a realistic

military engagement. In this article, we are interested more in the structure of the optimal solution.

In particular, we are interested in showing that a (monotonic) thresholding policy is optimal.

A. Threshold firing policy

If the bomber chooses to move on to the next target, the expected reward is V (j+ 1, k+ 1). On

the other hand, if it chooses to deploy a weapon at the current target j, it must either destroy the

target or evade the return fire to remain alive. So, the bomber will survive the current engagement

with probability p+qs and thereafter, it will receive the reward V (j+1, k) from downstream targets.

Hence, the marginal future reward is given by,

∆j+1(k) := V (j + 1, k + 1)− (p+ qs)V (j + 1, k), j = 1, . . . , (N − 1). (5)

Suppose ∆j+1(k) is a monotonically decreasing function of k for all j = 1, . . . , (N − 1). Let

κ(j) be the smallest non negative integer k such that prj ≥ ∆j+1(k) for all j = 1, . . . , (N − 1). The

following result shows that, under this assumption, a thresholding policy is optimal for the DM.
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Proposition 1. If ∆j+1(k) is a monotonically decreasing function of k, we have for all j < N ,

µ(j, k) =


0, k ≤ κ(j),

1, otherwise.

Proof. From the definition of ∆j+1(k) and κ(j), we have:

prj < ∆j+1(k), k < κ(j) and prj ≥ ∆j+1(k), k ≥ κ(j). (6)

From the Bellman recursion (1), we have: V (j, k) ≥ V (j + 1, k). Therefore, it follows that:

p(rj + V (j + 1, k)) + qsV (j, k) ≥ prj + (p+ qs)V (j + 1, k). (7)

Combining (6) and (7), we can write:

p(rj + V (j + 1, k)) + qsV (j, k) ≥ V (j + 1, k + 1), ∀k ≥ κ(j). (8)

In light of (8), the Bellman recursion (1) yields:

V (j, k + 1) = p(rj + V (j + 1, k)) + qsV (j, k), ∀k ≥ κ(j), (9)

⇒ µ(j, k + 1) = 1, ∀k ≥ κ(j). (10)

We shall show that µ(j, k + 1) = 0, ∀k < κ(j), by induction on k. Recall that:

prj + (p+ qs)V (j + 1, k) < V (j + 1, k + 1), ∀k < κ(j). (11)

If κ(j) = 0, there is nothing left to prove. So, suppose κ(j) > 0. From the Bellman recursion (1),

we have:

V (j, 1) = max
u=0,1

{prju+ (1− u)V (j + 1, 1)} = V (j + 1, 1), (12)

where (12) follows from (11) applied to the case k = 0. So, we have: µ(j, 1) = 0.

Suppose V (j, h) = V (j + 1, h) for some h < κ(j). The Bellman recursion (1) yields:

V (j, h+ 1) = max
u=0,1

{[p(rj + V (j + 1, h)) + qsV (j, h)]u+ (1− u)V (j + 1, h+ 1)}

= max
u=0,1

{[prj + (p+ qs)V (j + 1, h)]u+ (1− u)V (j + 1, h+ 1)}

= V (j + 1, h+ 1). (13)

⇒ µ(j, h+ 1) = 0.
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where (13) follows from applying (11) to the case k = h. Moreover, from (9) and (13), we can write:

V (j + 1, κ(j) + 1) = p [rj + V (j + 1, κ(j))] + qsV (j, κ(j))

= p [rj + V (j + 1, κ(j))] + qsV (j + 1, κ(j))

= prj + (p+ qs)V (j + 1, κ(j)). (14)

Combining (9), (13) and (14), we have:

V (j, k + 1) =


V (j + 1, k + 1), k < κ(j)

prj + (p+ qs)V (j + 1, k), k = κ(j)

p(rj + V (j + 1, k)) + qsV (j, k), k > κ(j).

(15)

Therefore, the corresponding optimal policy satisfies:

µ(j, k + 1) =


0, k < κ(j)

1, k ≥ κ(j).
(16)

The above result tells us that 1 out of (k + 1) weapons is dropped on the current target j iff the

immediate expected reward, prj is greater than or equal to the marginal future reward, ∆j+1(k).

So, the marginal future reward is the threshold at which the bomber’s control switches. In line with

previous results on the related discrete bomber problem, one would expect the optimal threshold

to be monotonic decreasing in k and monotonic non-increasing in j. These intuitive monotonicity

properties are indeed true under our model as shown below.

Theorem 1. For j = 1, . . . , N , ∆j(k) is a monotonic decreasing function of k.

Proof. We prove the result by backward induction on j. From (4) and (5), we have:

∆N (k) = V (N, k + 1)− (p+ qs)V (N, k)

=
prN

1− qs
[
1− (qs)k+1 − (p+ qs)(1− (qs)k)

]
=

prN
1− qs

[
q(1− s) + p(qs)k

]
. (17)

∆N (k) is clearly a decreasing function of k given that 0 < q, s < 1. Let us suppose that ∆j+1(k) is

a decreasing function of k for some j < N − 1. As before, let κ(j) be the smallest k = 0, 1, · · · such
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that prj ≥ ∆j+1(k). By definition, ∆j(k) = V (j, k+ 1)− (p+ qs)V (j, k) and so, we have from (15):

∆j(k) = ∆j+1(k), k < κ(j), (18)

∆j(κ(j)) = prj . (19)

For ` = k − κ(j) > 0, we have by repeated application of (15):

V (j, k + 1) = prj
∑̀
i=0

(qs)i + (qs)`(p+ qs)V (j + 1, κ(j)) + p

`−1∑
i=0

(qs)iV (j + 1, k − i). (20)

So, we can write:

∆j(k) = V (j, k + 1)− (p+ qs)V (j, k)

= p

`−1∑
i=0

(qs)i∆j+1(k − i− 1) + prj

[
(qs)` + q(1− s)

`−1∑
i=0

(qs)i
]
, k > κ(j). (21)

We proceed to show that ∆j(k) as prescribed by (18), (19) and (21) is a decreasing function of k.

By our induction argument, ∆j(k) = ∆j+1(k) decreases as k goes from 0 to κ(j) − 1. From the

definition of κ(j), we have: prj < ∆j+1(κ(j)− 1) and so,

∆j(κ(j)) = prj < ∆j+1(κ(j)− 1) = ∆j(κ(j)− 1). (22)

From (21), we have:

∆j(κ(j) + 1) = p∆j+1(κ(j)) + prj [qs+ q(1− s)]

= prj + p [∆j+1(κ(j))− prj ] (23)

≤ ∆j(κ(j)), (24)

since ∆j+1(κ(j)) ≤ prj as per the definition of κ(j). For k > κ(j) we again employ (21) and after

some algebraic manipulations get,

∆j(k + 1)−∆j(k) = p(qs)` [∆j+1(κ(j))− prj ] + p

`−1∑
i=0

(qs)i [∆j+1(k − i)−∆j+1(k − i− 1)]

< 0, (25)

since ∆j+1(k− i) < ∆j+1(k− i−1) per the induction argument and ∆j+1(κ(j)) ≤ prj . Hence, ∆j(k)

is a decreasing function of k.

9

This article is protected by copyright. All rights reserved.



Remark 1. We note from (23) that strict monotonicity is guaranteed for ∆j(k) as a function

of k so long as prj > ∆j+1(κ(j)).

Next, we show that the threshold function is monotonic non-decreasing with the number of

targets left in the mission.

Theorem 2. For any k, ∆j(k) is a monotonic non-increasing function of j.

Proof. From (18) in Theorem 1, we have:

∆j(k) = ∆j+1(k), k = 0, . . . , κ(j)− 1. (26)

From (22) in Theorem 1 and the definition of κ(j), we have:

∆j(κ(j)) = prj ≥ ∆j+1(κ(j)). (27)

Recall that for k > κ(j), ∆j(k) is given by (21). From Theorem 1, ∆j+1(k− i−1) > ∆j+1(k), i ≥ 0

and so we have:

∆j(k) > ∆j+1(k)p
`−1∑
i=0

(qs)i + prj

[
(qs)` + q(1− s)

`−1∑
i=0

(qs)i
]

= ∆j+1(k)[1− q(1− s+ s)]
1− (qs)`

1− qs
+ prj

[
(qs)` + q(1− s)1− (qs)`

1− qs

]
= ∆j+1(k) + (prj −∆j+1(k))

[
(qs)` + q(1− s)1− (qs)`

1− qs

]
(28)

> ∆j+1(k), ` = k − κ(j) > 0. (29)

In the above, (29) follows from the definition of κ(j), i.e., prj > ∆j+1(k), k > κ(j). From (26), (27)

and (29), the result follows.

Given the monotonicity result in Theorem 1, we can compute the optimal threshold at which

the control switches via a direct backward linear recursion without resorting to the computationally

prohibitive non-linear Bellman recursion (1). Indeed, we can combine (18), (19) and (21) to get the

backward recursion: ∀j < N ,

∆j(k) =


∆j+1(k), k < κ(j),

prj , k = κ(j),

p
∑`−1

i=0(qs)i∆j+1(k − i− 1) + prj

[
(qs)` + q(1− s)

∑`−1
i=0(qs)i

]
.

(30)
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Recall that κ(j) is the smallest k = 0, 1, · · · such that prj ≥ ∆j+1(k) for all j < N and the boundary

condition:

∆N (k) =
prN

1− qs
[
q(1− s) + p(qs)k

]
, k ≥ 0. (31)

The backward recursion (30) yields the marginal reward values ∆j and the corresponding threshold

values κ(j) for j = 1, . . . , (N − 1). The optimal firing policy for all j < N is prescribed by:

µ(j, k) =


0, k ≤ κ(j),

1, otherwise.
(32)

At the last target, it is always optimal to fire a weapon and so, µ(N, k) = 0,∀k > 0. To visualize

the central result, we have computed and plotted the marginal future reward function ∆j(k) (top

plot) and κ(j) values (bottom plot) at which the control switches for six different sets of problem

parameters in Fig. 1. For illustration, we picked N = 5 targets. The other randomly chosen

problem parameters, p, s and rj for different j are shown in the plots. The key takeaway is the

dual monotonicity property of the marginal reward function. In the next section, we investigate if

a similar threshold monotonicity property extends to the partial information case, when the target

action is random.

III. Partial information scenario

In this section, we introduce an additional complexity in that the target, if attacked and not

destroyed, fires back with probability f ≤ 1 known to the bomber. Suppose the DM is alive and

initially facing a target known to be alive. Further suppose that subsequently m ≥ 1 contiguous

shots are fired at the target with no return fire seen. Let Pm indicate the corresponding a posteriori

probability that the target is still alive after the stated sequence of events. We apply the conditional

expectation theorem as follows. Let the events:

A: The target is alive after m rounds of contiguous firing and

B: No return fire was seen immediately after the mth round of firing.

It follows from the definition earlier that,

Pm = Prob(A|B) =
Prob(B|A)Prob(A)

Prob(B)
. (33)

11

This article is protected by copyright. All rights reserved.



We note that Prob(B|A) = 1−f is the probability that a live target holds fire. For the target to be

alive after m rounds, it must have been alive after m− 1 rounds and it must be missed by the mth

shot. So, Prob(A) = Pm−1q. In addition, if the target must fire back, the corresponding probability

is given by Pm−1qf . It follows that the complementary event B satisfies: Prob(B) = 1 − Pm−1qf .

Thus, the one step Bayes’ update formula for the a posteriori probability is given by:

Pm =
Pm−1q(1− f)
1− Pm−1qf

. (34)

For m = 0, we stipulate that P0 = 1. Note that this reflects the situation when the DM arrives for

the first time at a live target or immediately after the DM survives a round of return fire from the

target. In either case, the DM knows that the target is alive prior to any further engagement.

A. Partial information sequential engagement

Suppose the DM is alive and initially facing (live) target j with k weapons in hand. Further

suppose that m ≥ 0 contiguous shots have been fired at j with no return fire seen thus far. Let

V (j, k|m) indicate the optimal expected cumulative reward i.e., value function, that can be achieved

thereafter. As before, let the control action, u = 1 indicate that a shot is fired at the current target

j and u = 0 indicate that the DM moves on to the next target in the sequence. If the DM chooses

u = 1, it will observe the event y = 0, 1 indicating the absence or presence of return fire. In

accordance with the SLS framework, we assume that the DM waits (looks) after firing a shot to see

if there is return fire. Note that the target not firing back could indicate one of two things: 1) the

target was destroyed or 2) the target was not destroyed and it did not fire back. These two states

are indistinguishable to the DM. Indeed, we have the probability:

Prob(y = 1) = Pmqf, (35)

where, as before, q = 1− p. In other words, for the target to fire back, it must be alive and choose

to fire back. It follows that the value function must satisfy the Bellman recursion:

V (j, k + 1|m) = max
u=0,1

{[pPmrj + Prob(y = 1)sV (j, k|0) + Prob(y = 0)V (j, k|m+ 1)]u

+(1− u)V (j + 1, k + 1|0)} , k = 0, . . . , (M − 1), j = 1, . . . , (N − 1). (36)
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In (36), u = 1 yields an expected immediate reward of pPmrj and the expected future payoff for

the two outcomes y = 0, 1 are given by: V (j, k|m+ 1) and sV (j, k|0) respectively. Indeed, if u = 1

and y = 1, the bomber must survive the return fire to yield any future reward, hence the factor

s in front of V (j, k|0). If u = 1 and y = 0, an additional (contiguous) shot has been fired at j

with no return fire and so, the corresponding expected future payoff is V (j, k|m + 1). As before,

u = 0 results in the DM moving on to the next target with the corresponding expected future payoff

V (j + 1, k + 1|0). Substituting for Prob(y) from (35), we have:

V (j, k + 1|m) = max
u=0,1

{[pPmrj + PmqfsV (j, k|0) + [1− Pmqf ]V (j, k|m+ 1)]u

+(1− u)V (j + 1, k + 1|0)} , k = 0, . . . , (M − 1), j = 1, . . . , (N − 1). (37)

The optimal firing policy is therefore given by:

µ(j, k + 1|m) = arg max
u=0,1

{[pPmrj + PmqfsV (j, k|0) + [1− Pmqf ]V (j, k|m+ 1)]u

+(1− u)V (j + 1, k + 1|0)} , k = 0, . . . , (M − 1), j = 1, . . . , (N − 1). (38)

If the DM is alive and at the last target (which may still be alive) and has k > 0 weapons at hand,

it is clearly optimal to deploy a weapon since there is no payoff in retaining weapons. Indeed, for

any k,m ≥ 0:

V (N, k + 1|m) = pPmrN + PmqfsV (N, k|0) + (1− Pmqf)V (N, k|m+ 1), (39)

with the boundary condition V (N, 0|m) = 0 for any m ≥ 0.

As before, we are interested in determining if the optimal policy is threshold based and if it

has desirable monotonicity properties. Motivated by the perfect information result, we define the

corresponding (equivalent) partial information marginal future reward:

∆j(k) := V (j, k + 1|0)− (p+ qa)V (j, k|0), ∀j, (40)

where a = 1 − f(1 − s). For the case of f = 1 (perfect information), we have shown that the

marginal future reward is the threshold at which the bomber’s control switches and furthermore,

the threshold exhibits desirable monotonicity properties in both k and j. Unfortunately, for the

partial information setup, a similar analysis does not work. In other words, we show that the
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marginal future reward (40) is not the threshold at which the bomber’s control switches. We do so

via a counterexample for the special case of an invincible bomber, i.e., s = 1.

B. Invincible bomber counterexample

For the special case s = 1, the partial information Bellman recursion (37) is given by:

V (j, k + 1|m) = max
u=0,1

{[pPmrj + PmqfV (j, k|0) + (1− Pmqf)V (j, k|m+ 1)]u

+(1− u)V (j + 1, k + 1|0)} . (41)

Repeating the steps (6)-(9) in Proposition 1, one can show that the corresponding optimal policy

satisfies:

µ(j, k + 1|m) = 1, pPmrj ≥ ∆j+1(k). (42)

Note that for s = 1, ∆j+1(k) = V (j + 1, k + 1|0) − V (j + 1, k|0) and is therefore identical to the

perfect information marginal reward defined earlier (5). So, it is not unreasonable to expect the

marginal future reward to be the threshold at which the bomber’s control switches. Indeed, we

have the partial result in (42) that gives us a sufficient condition for bombing the current target.

Unfortunately, it is no longer the case that µ(j, k + 1|m) = 0, if pPmrj < ∆j+1(k). Suppose we

have two targets, i.e., N = 2 and the DM is at the first target with m = k = 1. We will show

that there exists r1 for which it is optimal to bomb the current target even though the immediate

expected payoff is less than the marginal future reward (40). In other words, µ(1, 2|1) = 0 even

though pP1r1 < ∆2(1).

Lemma 1.

pP1r1 < ∆2(1) but µ(1, 2|1) = 0, if r1 ∈ (L1r2, L2r2),

where: L1 =
1− qf 2

1− pf − qf 2 and L2 =
1− qf
1− f

. (43)

Proof. First we note that it can easily be shown that 1 < L1 < L2 so we can always pick r1 from

the non-empty interval (L1r2, L2r2). From the a posteriori probability update (34), we have:

P1 =
q(1− f)
1− qf

=
q

L2
. (44)

⇒ q(1 + P1f)
P1(1 + qf)

=
1− qf 2

1− pf − qf 2 = L1. (45)
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From the Bellman recursion (41), we can write:

V (2, k|m) = pPmr2 + PmqfV (2, k − 1|0) + (1− Pmqf)V (2, k − 1|m+ 1) (46)

⇒ V (2, 1|0) = pr2 (47)

By repeated application of (46), we have:

V (2, 2|0) = pr2 + qfV (2, 1|0) + (1− qf)V (2, 1|1)

= pr2 + qfpr2 + (1− qf)[pP1r2]

= pr2 + qfpr2 + pq(1− f)r2 = pr2(1 + q). (48)

So, we can write:

∆2(1) = V (2, 2|0)− V (2, 1|0) = pqr2. (49)

Since r1 < L2r2, we can write:

pP1r1 < pP1L2r2 = pqr2 = ∆2(1). (50)

From the Bellman recursion (41), we have:

V (1, 1|0) = max
u=0,1
{pr1u+ (1− u)V (2, 1|0)} = pr1. (51)

V (1, 1|2) = max
u=0,1
{pP2r1u+ (1− u)V (2, 1|0)} = pr2. (52)

V (1, 2|1) = max
u=0,1
{[pP1r1 + qP1fV (1, 1|0) + (1− qP1f)V (1, 1|2)]u+ (1− u)V (2, 2|0)}

⇒ µ(1, 2|1) = arg max
u=0,1

{pP1r1u+ qP1f [V (1, 1|0)− V (2, 1|0)]u+ (1− u)∆2(1)}

= arg max
u=0,1

{pP1r1u+ pqP1f [r1 − r2]u+ (1− u)pqr2}

= arg max
u=0,1

{
r1u+

q(1 + P1f)
P1(1 + qf)

r2(1− u)
}

= arg max
u=0,1

{r1u+ (1− u)L1r2} = 1. (53)

Note that (52) follows from (50) since P2 < P1 and so, pP2r1 < pP1r1 < pqr2 < pr2.

So, we conclude that for the partial information scenario, a thresholding policy similar to the

perfect information case cannot be established. We emphasize that we have only shown that the

marginal future reward (40) is not the threshold at which the optimal policy switches. It is quite

likely that the optimal bombing policy is a thresholding policy with desirable monotonicity properties
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but we do not have a definitive proof either way at this time. However, in light of the negative result

established herein, we propose a threshold based heuristic for the partial information case.

C. Threshold based heuristic

Motivated by the perfect information threshold policy, we propose the following threshold based

heuristic policy for the partial information scenario. For any j < N , let κ̃(j,m) be the smallest

k = 0, 1, · · · such that pPmrj ≥ ∆̃j+1(k) for all j = 1, . . . , (N − 1), where the approximate marginal

reward ∆̃j(k) is computed according to:

∆̃j(k) =


∆̃j+1(k), k < κ̃(j, 0),

prj , k = κ̃(j, 0),

p
∑`−1

i=0(qa)i∆̃j+1(k − i− 1) + prj

[
(qa)` + q(1− a)

∑`−1
i=0(qa)i

]
, ` = k − κ̃(j, 0) > 0.

(54)

The boundary condition is given by:

∆̃N (k) =
prN

1− qa
[
q(1− a) + p(qa)k

]
. (55)

The threshold based heuristic policy for all j = 1, . . . , (N − 1) is prescribed by:

µ̃(j, k + 1|m) =


0, k < κ̃(j,m),

1, otherwise.
(56)

At the last (possibly alive) target, it is always optimal to bomb: µ̃(N, k + 1|m) = 1, k,m ≥ 0.

Note that equations (54)-(56) closely mirror the perfect information equations (30)-(32) and they

coincide when f = 1. Indeed, for f = 1 ⇒ a = s and the heuristic policy prescribed above is

optimal. Furthermore, the approximate marginal reward function defined herein is not arbitrary in

that it equals the exact marginal reward at least for the last target. In other words,

∆̃N (k) = ∆N (k) = V (N, k + 1|0)− (p+ qa)V (N, k|0). (57)

Lemma 2.

V (N, k|0) = prN

k−1∑
`=0

(qa)`. (58)

16

This article is protected by copyright. All rights reserved.



Proof. We shall prove the result by induction on k. From (39), we immediately have: V (N, 1|0) =

prN . Assume that for any t; 1 ≤ t < k,

V (N, t|0) = prN

t−1∑
`=0

(qa)`. (59)

We proceed to show that:

V (N, k|0) = prN

k−1∑
`=0

(qa)`. (60)

Indeed, we have from the Bellman recursion (39) applied to the last target:

V (N, k|0) =prN + qfsV (N, k − 1|0) + (1− qf)V (N, k − 1|1)

=prN + qfs

[
prN

k−2∑
`=0

(qa)`
]

+ (1− qf) [pP1rN + P1qfsV (N, k − 2|0) + (1− P1qf)V (N, k − 2|2)] (61)

=prN

[
1 + qfs

k−2∑
`=0

(qa)`
]

+ q(1− f) [prN + qfsV (N, k − 2|0)] + (1− qf)(1− P1qf)V (N, k − 2|2) (62)

=prN

[
1 + qfs

k−2∑
`=0

(qa)`
]

+ q(1− f)prN

[
1 + qfs

k−3∑
`=0

(qa)`
]

+ (1− qf)(1− P1qf)V (N, k − 2|2) (63)

=prN

[
1 + qfs

k−2∑
`=0

(qa)`
]

+ q(1− f)prN

[
1 + qfs

k−3∑
`=0

(qa)`
]

+ q2(1− f)2prN

[
1 + qfs

k−4∑
`=0

(qa)`
]

+ · · ·+ qk−1(1− f)k−1prN (64)

=prN
k∑

m=2

qk−m(1− f)k−m
[

1 + qfs

m−2∑
`=0

(qa)`
]

+ prNq
k−1(1− f)k−1. (65)

In the above derivation, we have repeatedly used the induction assumption (59) for t ≤ k − 1. We

have also used the probability update equation (34):

Pm =
Pm−1q(1− f)
1− Pm−1qf

, m > 0 and P0 = 1.

⇒ Pm

m−1∏
i=0

[1− Piqf ] = qm(1− f)m, m > 0. (66)

Finally, we have used the boundary condition: V (N, 1|k − 1) = pPk−1rN to arrive at (65). Note
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however that, 1− f + fs = 1− f(1− s) = a and so, we can write:

k−1∑
`=0

(qa)` = 1 +
k−1∑
`=1

(qa)` = 1 + q

k−1∑
`=1

(qa)`−1(1− f + fs)

= 1 + q

[
(1− f)

k−2∑
`=0

(qa)` + fs

k−2∑
`=0

(qa)`
]

=

[
1 + qfs

k−2∑
`=0

(qa)`
]

+ q(1− f)
k−2∑
`=0

(qa)`︸ ︷︷ ︸ . (67)

By repeated application of (67) to the underbraced expression, we get:

k−1∑
`=0

(qa)` =
k∑

m=2

qk−m(1− f)k−m
[

1 + qfs

m−2∑
`=0

(qa)`
]

+ qk−1(1− f)k−1 (68)

So, upon comparing (65) and (68), we conclude that:

V (N, k|0) = prN

k−1∑
`=0

(qa)`. (69)

It immediately follows that the marginal reward for the last target:

∆N (k) = V (N, k + 1|0)− (p+ qa)V (N, k|0)

=
prN

1− qa
{

1− (qa)k+1 − [p+ qa]
[
1− (qa)k

]}
=

prN
1− qa

{
1− p

[
1− (qa)k

]
− qa

}
=

prN
1− qa

[
q(1− a) + p(qa)k

]
, (70)

which by definition equals the approximate marginal future reward, ∆̃N (k). To summarize, we have

shown via a counterexample that the threshold based heuristic policy is sub-optimal for f < 1. We

have also shown that it is optimal when f = 1. In the absence of theoretical bounds on the quality

of the heuristic policy, we perform a numerical study instead. Towards this end, we first compute

the value yielded by implementing the heuristic policy. Let Ṽ (j, k + 1|m) denote the value yielded

to the DM when it implements the threshold heuristic. Accordingly, we have:

Ṽ (j, k + 1|m) =
[
pPmrj + PmqfsṼ (j, k|0) + [1− Pmqf ]Ṽ (j, k|m+ 1)

]
µ̃(j, k + 1|m)

+ [1− µ̃(j, k + 1|m)] Ṽ (j + 1, k + 1|0), k = 0, . . . , (M − 1), j = 1, . . . , (N − 1). (71)
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Since the heuristic policy for the last (N th) target coincides with the optimal policy, we also have:

Ṽ (N, k + 1|m) = V (N, k + 1|m), ∀k,m ≥ 0.

For different M and N values, we perform Monte-Carlo simulations to provide empirical bounds on

the loss in total expected reward at the beginning of the bombing mission, i.e., V (1,M |0)−Ṽ (1,M |0).

In addition, we also compute the percent difference in the optimal and heuristic policies over all

reachable states starting from the initial state: j = 1, k = M,m = 0. Figure 2 shows box plot

analyses of the empirical loss in value and difference from optimal policy for four different sets of

M and N values. For each set, we compute statistics for ten different values of f ∈ [0, 1]. All

other problem parameters are randomly sampled from uniform distributions: p ∈ [0, 1], s ∈ [0, 1]

and rj ∈ [1, . . . , 50] for all j = 1, . . . , N . For each (M,N) value, we perform 1000 Monte-Carlo

runs. From figure 2, it appears that the loss in value increases as the number of targets N increases.

A similar trend holds for the percent difference between the optimal and heuristic policies. We

stop at N = 8, M = 12 since the computation time for solving the exact Dynamic Program grows

exponentially. As expected, there is no loss in optimality for all data sets with f = 1. Interestingly,

we also see that the performance degradation starts low for small f , grows and then decreases to

zero at f = 1. Needless to say, these observations are based on simulation results and we have

no conclusive proof of this property at the time of writing this article. However, an encouraging

sign is the relatively small loss in performance incurred in using the heuristic compared to the

potential savings in computation time achieved in computing the heuristic policy (via a direct linear

recursion).

IV. Partial information game

In this section, we consider the following sequence of events. Suppose the bomber fires at a live

target. If the target survives the attack, it can either return fire or play dead. The bomber waits

(looks) to see if there is return fire before proceeding with the next action. Given that a round

of return fire has a positive probability of destroying the bomber, it would seem that the target

should always return fire, when presented with an opportunity. Conversely, when the targets are

cooperating, it may be advantageous for a high value target to sometimes play dead so that the
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bomber moves on to a low value target downstream.

As in the counter example earlier, we consider a representational two target scenario that

captures the essence of the game. Indeed, let the bomber be at the first target T1 with 2 weapons at

hand. Further suppose that r1 > r2 (else the bomber may simply move on to T2) and the bomber

fires the first shot at T1 and is waiting to see if there is any return fire. We wish to answer the

following key questions. Should T1, if it survives the first round of direct fire, return fire or play

dead? Should the bomber, if still alive, expend the last weapon at the first or the second target?

We investigate this setup and compute the Nash equilibrium strategies for both players.

Since we are dealing with a partial information game, the decisions made by the players are a

function of their respective information states. A player’s strategy is a mapping from his information

state to available actions. We first consider the strategy of the bomber, who strives to maximize the

reward yielded by inflicting damage on T1 and/or T2. If it sees return fire and survives it, the bomber

knows that T1 is alive and expends the last weapon on it since r1 > r2. This part is straightforward.

However, if there is no return fire, it is not clear what the Bomber’s strategy should be. For this

instance, suppose that the bomber’s strategy is to fire the second shot at T1 with probability b.

Furthermore, if T1 survives the first round of fire, let the probability with which it returns fire be

given by f . We will compute the optimal values for b and f i.e., the Nash equilibrium strategies.

We will also illustrate conditions under which pure strategies are optimal.

Let (b, f) indicate the tuple of mixed strategies for the bomber and T1. Suppose T1 survived

the first round of fire. The expected damage as seen by T1 for the joint strategies (b, f) is given by:

VT (b, f) = fspr1 + (1− f) [bpr1 + (1− b)pr2] . (72)

In other words, if T1 fires back, it knows that the bomber will survive the return fire with probability

s and fire at it again yielding an expected damage of pr1. On the other hand, if it holds fire (plays

dead), the bomber’s strategy will yield an expected damage of bpr1 + (1− b)pr2. For the same pair

of strategies, the expected reward yielded by the second round of fire as seen by the bomber is given

by:

VB(b, f) = p [b× 0 + (1− b)pr2] + qVT (b, f). (73)
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Indeed, if the first round was successful, the bomber gets the reward (1 − b)pr2 from the second

round. On the other hand, if the first round was unsuccessful, it gets the reward VT (b, f) from

the second round of fire. The target T1 strives to minimize the damage VT (b, f) and the bomber

strives to maximize the reward VB(b, f). We shall first compute each player’s best response to a

given opponent strategy. For a given bomber strategy, b, T1’s best response, f ∗(b) that minimizes

VT (b, f) is computed as follows. Recall that:

VT (b, f) = p [(s− b)r1 − (1− b)r2] f + bpr1 + (1− b)pr2. (74)

By inspection, it follows that:

f ∗(b) =


0, if (s− b)r1 > (1− b)r2,

1, if (s− b)r1 < (1− b)r2.

(75)

In particular, if b = sr1−r2
r1−r2

, VT (b, f) is independent of f and hence, any value f ∈ [0, 1] is optimal.

In a similar fashion, for a given T1 strategy f , the bomber’s best response, b∗(f) that maximizes

VB(b, f) is computed as follows. Recall that:

VB(b, f) = p(1− b)pr2 + q {fspr1 + (1− f) [bpr1 + (1− b)pr2]} .

= p [q(1− f)r1 − (1− fq)r2] b+ qfspr1 + (1− fq)pr2 (76)

By inspection, it follows that:

b∗(f) =


1, if q(1− f)r1 > (1− fq)r2,

0, if q(1− f)r1 < (1− fq)r2,

(77)

In particular, if f = qr1−r2
q(r1−r2) , VB(b, f) is independent of b and hence, any value b ∈ [0, 1] is optimal.

By definition, the Nash equilibrium strategies, (b̃, f̃) satisfy b̃ = b∗(f̃) and f̃ = f ∗(b̃). We have the

following result establishing the Nash equilibrium.

Theorem 3.

(b̃, f̃) =


(0, 1), if sr1 < r2,

(0, 0), if qr1 < r2 < sr1,(
sr1−r2
r1−r2

, qr1−r2
q(r1−r2)

)
, otherwise.

(78)
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Proof. We shall prove the result by considering the different inequalities:

Case 1. sr1 < r2: It follows from (74) that VT (0, f) = p(sr1 − r2)f + pr2 and therefore, the

minimizing best target response, f ∗(0) = 1. Also, from (76), we have VB(b, 1) = −p2r2b+qspr1+p2r2

and so, the maximizing best bomber response, b∗(1) = 0. Hence, (b̃, f̃) = (0, 1) are the Nash

equilibrium pure strategies i.e., T1 always returns fire and the bomber always fires at T2 in the event

of no return fire. The corresponding expected damage seen by T1 and reward seen by the bomber

are given by VT (0, 1) = psr1 and VB(0, 1) = p2r2 + qpsr1 respectively.

Case 2. qr1 < r2 < sr1: It follows from (74) that VT (0, f) = p(sr1 − r2)f + pr2 and therefore, the

minimizing best target response, f ∗(0) = 0. Also, from (76), we have VB(b, 0) = p(qr1 − r2)b+ pr2

and so, the maximizing best bomber response, b∗(0) = 0. Hence, (b̃, f̃) = (0, 0) are the Nash

equilibrium pure strategies i.e., T1 always plays dead and the bomber always fires at T2 in the event

of no return fire. The corresponding expected damage seen by T1 and reward seen by the bomber

are given by VT (0, 0) = pr2 and VB(0, 0) = pr2 respectively.

Case 3. r2 ≤ min(qr1, sr1): For this case, no pure strategies exist. Indeed, the game does not admit

the other possible solutions, (1, 1) and (1, 0). From (74), we have VT (1, f) = p(s− 1)r1f + pr1 and

therefore, the minimizing best target response, f ∗(1) = 1 since s < 1. However, from (76), we have

VB(b, 1) = −p2r2b+ qspr1 + p2r2 and so, the maximizing best bomber response, b∗(1) = 0. So, the

bomber switches strategy. Continuing in this fashion, we note that VT (0, f) = p(sr1 − r2)f + pr2.

Since, r2 < sr1, the target also switches strategy to f ∗(0) = 0. Finally, we note that VB(b, 0) =

p(qr1 − r2)b + pr2 and so, the maximizing best bomber response, b∗(0) = 1 since qr1 > r2. So, the

bomber switches strategy again implying that there are no Nash equilibrium pure strategies for this

case. So, the only admissible solution is the tuple of mixed strategies, (b̃, f̃) =
(

sr1−r2
r1−r2

, qr1−r2
q(r1−r2)

)
that simultaneously makes VB(b, f̃) to be independent of b and VT (b̃, f) to be independent of f .

Note that the mixed strategy probabilities are well defined i.e., b̃, f̃ ∈ [0, 1) since r2 ≤ sr1 < r1 and

qr2 < r2 ≤ qr1. The corresponding expected damage seen by T1 and reward seen by the bomber are
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given by:

VT (b̃, f̃) = p(r1 − r2)b̃+ pr2 = psr1 (79)

VB(b̃, f̃) = qp(sr1 − r2)f̃ + pr2

= p(qr1 − r2)b̃+ pr2 =
psr1(qr1 − r2) + p2r1r2

r1 − r2
. (80)

In this article, we do not consider the generalization of the above result to the case of N targets

andM weapons. Suffice to say that this will be a challenging enterprise given the interplay between

the information states for the two players i.e., the bomber and the target team. It is reasonable to

expect that the optimal play for the jth target will rely on a tradeoff between the expected personal

damage, if it returns fire, and expected marginal damage to downstream targets, if it chooses to

play dead. The optimal play also relies on what the bomber’s expectation of its rewards are. Note

that since we are dealing with a partial information scenario, the expected rewards calculated by

the two players are different i.e., this is not a zero sum game. This makes it a formidable challenge

to solve the general case. A possible line of attack would be to employ the dynamic programming

approach in [18], which deals with a sequential engagement with perfect information, where the

attacker/defender choose to attack/defend each target by firing a single shot.

V. Conclusions and future work

We consider a dynamic variant of the Weapon-Target Assignment (WTA) problem, wherein

ground targets are sequentially visited by a bomber equipped with homogenous weapons. We

investigate the scenario where the targets are capable of retaliation and solve for the optimal play

therein. In particular, we consider an interesting informational aspect of the game, where the act

of firing back at the bomber reveals the status of the target. To complete the analyses, we also

consider the cases where the target action is deterministic and random. Insightful monotonicity

properties of the threshold function at which the bomber’s control switches are preserved under

perfect information. Future work will focus on either establishing a monotonic threshold policy or

providing counterexamples thereof for the partial information setup. Finally, for a two target game
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scenario, we develop Nash equilibrium mixed strategies and establish conditions under which pure

strategies are optimal. In the future, we plan to extend this result to the general case of multiple

targets and multiple homogenous weapons with the bomber.
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