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Abstract 

On-site analysis of the composition, morphology, and thickness of surface scale on heat-resistant alloys 

helps to efficiently prevent serious problems such as failure and corrosion during their operation and to predict 

their remaining life. Currently, there are no analytical methods available that satisfy the requirements for the on-

site analysis of oxide scale, which include short measurement time, nondestructive measurement, and portability 

of the analyzer. This study proposes a nondestructive analytical method to simultaneously identify alumina scale, 

which is one the most important protective oxide scales for base alloys, and to evaluate its morphology and 

thickness within 10 s by obtaining X-ray-excited optical luminescence (XEOL) images of the alloy surfaces. This 

was verified on Fe–25%Al, Fe–15%Al–10%Cr, and NiAl alloys heated at 900 or 1000 °C for different holding 

times. The XEOL images allow identifying alumina scale and observing its morphology from the infrared 

luminescence at 695 nm. The alumina scale thickness can be determined from the R value of the XEOL images in 

the range of 0.20 to 1.50 μm. The XEOL measurement can be performed in the air, and the setup primarily requires 

an X-ray tube used in portable analyzers such as X-ray fluorescence analyzer and a digital camera. The results 

suggest that the XEOL imaging method is suitable for the on-site evaluation of oxide scales on practical heat-

resistant alloys. 
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Introduction 

Heat-resistant alloys are materials designed to withstand oxidizing and corrosive environments at high 

temperatures above 650 °C, and comprise iron, nickel, and/or cobalt as base elements and aluminum, chromium, 

and/or silicon as additive elements [1-3]. These alloys are used in applications such as jet engines of aircraft, gas 

turbines of power plants, and reactors of petrochemical plants. At high temperatures, continuous, adhesive, and 

slowly growing oxide scales of alumina, chromia, or silica may form on such alloys, which are thereby protected 

from further oxidation and corrosion owing to the thermodynamic stability and high melting point of these oxides 

[1,2,4,5]. However, if nonprotective and/or inhomogeneous oxide scales form on the alloys, serious problems such 

as failure and corrosion may occur. Therefore, an understanding of the composition, morphology, and thickness 

of oxide scales is critical to prevent such problems and to predict the remaining life of the alloys. Moreover, 

performing these evaluations on-site is becoming increasingly important for enhancing the efficiency of the 

analysis. On-site analysis requires short analysis time, nondestructive measurements, and portability of the 

analyzer. Unfortunately, the most widely used techniques for evaluating oxide scales, such as scanning electron 

microscopy (SEM) equipped with energy- or wavelength-dispersive X-ray spectrometry (EDX or WDX) [6,7], do 

not satisfy such requirements. This is because SEM-EDX/WDX analysis for oxide scales requires laboratory-scale 

instruments and destructive cross-sectional observation for thickness measurement under a vacuum condition, 

which leads to long analysis time. Therefore, the development of an analytical technique suitable for on-site 

analysis of oxide scales on heat-resistant alloys is desirable. 

We focused on X-ray-excited optical luminescence (XEOL) imaging to satisfy the abovementioned 

requirements for on-site analysis because it is a nondestructive technique and can be carried out in the air, which 

contributes to the reduction of analysis time. XEOL imaging provides a map of the elemental composition based 

on the phenomenon of light emission by X-ray irradiation. The laboratory-scale XEOL imaging technique has 

been primarily applied in studies to identify chemicals, cancers, and infections in biological specimens by injecting 

nanophosphors into tissues [8-13]. However, to the best of our knowledge, XEOL imaging has not yet been applied 

to the simultaneous evaluation of the composition, morphology, and thickness of oxide scales on heat-resistant 

alloys. In a previous study, we reported that the identification of alumina scale on Fe–Al and Fe–Al-Cr alloys from 

its luminescent color in XEOL images and the observation of the surface morphology of scale with a thickness 

above 0.6 μm [14]. The XEOL setup used in that study primarily comprised an air-cooled X-ray tube, which is 

used in portable X-ray fluorescence analyzers, and a commercially available digital camera, suggesting that the 

setup has a potential to be scaled down to a portable device. However, this XEOL imaging method was not 
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applicable to measuring the alumina-scale thickness from their brightness owing to the low XEOL intensity in the 

setup.  

The present study aimed at applying the XEOL imaging to simultaneously identify, observe the surface 

morphology, and measure the thickness of alumina scale on alloys by increasing the emission intensity from 

alumina scale and improving the sensitivity to the emission in the XEOL setup. For this purpose, the apparatus 

was improved by using a high-power X-ray tube and a zoom lens with high sensitivity. We selected alumina scale 

as an analyte because alumina is the most protective and stable oxide against high-temperature oxidation and 

corrosion [7,15-18]. 

 

Material and Methods 

We selected the typical alumina-forming alloys Fe–25%Al (mass%), Fe–15%Al–10%Cr (mass%), and 

NiAl as samples. The preparation of Fe–25%Al and Fe–15%Al–10%Cr was reported in our previous study [14]. 

NiAl was prepared by melting Al (purity 99.9%, Hirano Seizaemon Co. Ltd., Tokyo, Japan) and Ni pieces (purity 

99.9%, Hirano Seizaemon Co. Ltd., Tokyo, Japan) in an Al2O3 crucible using a high-frequency induction-heating 

furnace. The Fe–25%Al, Fe–15%Al–10%Cr, and NiAl alloys were cut into cubic slices of approximately 5 mm. 

The slices were annealed at 1100 °C in a vacuum of 0.1 Pa for 12 h. The surfaces of the slices were polished using 

600-, 1200-, and 2400-grit abrasive papers and finished using a 1 μm diamond slurry. The polished slices were 

heated at 1000 °C in air so that alumina scale was formed on their surfaces. The thickness of the alumina scale 

was controlled by changing the holding time at 900 °C or 1000 °C, as presented in Table 1. After the heat-treatment, 

one side of a given sample was subjected to the same polishing procedure mentioned above to measure the 

thickness of the formed alumina scale by SEM observation. 

 XEOL images of the samples were captured using a custom setup primarily comprising an X-ray tube 

with a rhodium target (TUB00050-RH2, Moxtek Inc., Orem, Utah, USA) and a digital mirrorless camera (α7RII, 

Sony Corp., Tokyo, Japan) equipped with a zoom lens (LZH-10A-05T, Seimitu Wave Inc., Kyoto, Japan), as 

shown in Fig. 1. The setup can generate X-rays with 30 keV (our previous setup generated 20 keV [14,19-21]) by 

using a radiation shielding glass with a lead equivalence of 2.0 mm (LX-57B, Electric Glass Building Materials 

Co. Ltd., Osaka, Japan) as a window to capture the XEOL images, and the X-ray tube and sample stage were 

enclosed in a steel box to whose surface a few layers of radiation shielding sheets (GT-RS3.3, Green Technologies 

Co. Ltd., Tokyo, Japan) were attached. The sensitivity of the zoom lens was approximately 1.5 times higher than 

that used in the previous setup [14,19-21]. The camera can detect light whose wavelength range is from 350 to 
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1000 nm. The wavelength range was achieved by detaching a built-in filter that blocks ultraviolet and infrared 

light from the commercially available digital mirrorless camera which can detect light with the wavelength from 

420 to 680 nm. The X-ray tube was operated at 30 kV and 200 μA. The exposure time for XEOL images were set 

to be 5 s for measuring the alumina scale thickness and 10 s for observing the surface morphology. Surface, cross-

section observations, and elemental analyses of the samples were performed using a SEM (TM3030 Plus, Hitachi 

High-Technologies Co., Tokyo, Japan) equipped with a silicon drift EDX detector (Quantax70, Bruker Corp., 

Billerica, Massachusetts, USA) to confirm the validity of the XEOL imaging method. Cathodoluminescence (CL) 

spectra of a few samples were also acquired using a custom SEM-CL system to identify the formed scales. Details 

of the CL measurement system were provided in our previous papers [21-27]. 

 

Results and Discussion 

First, SEM-EDX analysis was performed on the scales that were formed on the Fe–25%Al, Fe–15%Al–

10%Cr, and NiAl alloys upon heating at 900 °C or 1000 °C to identify the compositions of the scales. Only alumina 

and oxygen were detected on the surface layers for all alloys, whereas their constituent elements were detected 

beneath the surface layers (Fig. 2). This indicates that an exclusive alumina scale was on the surface of each alloy. 

In addition, the formation of alumina scale was confirmed by obtaining CL spectra of the surface of the alloys, in 

which an intense CL peak attributable to alumina was observed at 695 nm [14,22] (Fig. 3).  

We then acquired XEOL images of the surfaces of Fe–25%Al, Fe–15%Al–10%Cr, and NiAl heated at 

900 °C or 1000 °C to identify the composition and to observe the morphology of the scale surfaces with various 

alumina thicknesses. Figure 4 shows the XEOL images and the corresponding SEM surface images. Almost the 

entire alloy surface area of these alloys emitted red luminescence. The luminescence color was proven to originate 

from infrared light because no luminescence was detected for the XEOL images of the alloys when an optical filter 

that blocked light in the wavelength region above 650 nm (DR655, Kenko Tokina Co., Ltd., Tokyo, Japan) was 

attached to the zoom lens. Since alumina scale emits infrared luminescence at 695 nm, the XEOL images in Fig. 

4 represented the luminescence of alumina scale, indicating that XEOL imaging is suitable for identifying alumina 

scale. A comparison of the XEOL images and the corresponding SEM images reveals that areas with no 

luminescence in the XEOL images corresponded to cracks (area 1 in Fig. 4a and area 2 in Fig. 4c) and an area in 

which the alumina scale was peeled away (area 3 in Fig. 4e, whose composition agreed with that of NiAl via EDX 

analysis). Infrared luminescence with higher intensity was detected along the cracks observed in Fig. 4c, indicating 

that the alumina scale in these areas was thicker than that in other areas. This is most likely due to in-depth 
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formation of alumina scale along the cracks. Figure 4a and 4c indicate that the present XEOL setup can detect the 

luminescence originating from alumina scale with thickness below 0.6 μm, which constituted the detection limit 

for the previous setup [14], by increasing the irradiated X-ray energy from 20 to 30 keV and by using a zoom lens 

with 1.5 times higher sensitivity. Therefore, the present XEOL setup is suitable for observing the morphology of 

alumina scale down to 0.2 μm thickness on heat-resistant alloys.  

Because determining the alumina-scale thickness without its cross-sectional observation is a key to realize 

on-site analysis of scale on heat-resistant alloys, we attempted to determine the thickness of alumina scale from its 

surface XEOL image. Since our previous work revealed that the thickness of alumina scale could be estimated 

from the CL intensity of the peak at 695 nm [14], the red (R) value of the XEOL images was used to measure the 

thickness of alumina scale. The R value is determined from intensity of light that passed through a red filter in the 

camera and has integer values from 0 to 255. In the present experiments, the R value of the XEOL images of 

alumina scale correlated most intimately with its CL intensity at 695 nm among the R, green (G) and blue (B) 

values in the camera [28] because only the red and infrared luminescence originating from alumina was involved 

in the XEOL images. Figure 5 shows the thickness dependence on the R value of the surface XEOL images of the 

Fe–25%Al, Fe–15%Al–10%Cr, and NiAl alloys heated at 1000 °C for different holding times. It should be noted 

that NiAl alloys with alumina scale thicknesses below 1.0 μm were not obtained for heat-treatment at 1000 °C, 

and NiAl alloy with an alumina scale thickness of 0.62 μm could be only obtained by heat-treatment at 900 °C for 

10 h. The actual thicknesses of the alumina scale were determined from cross-sectional SEM images of each alloy 

sample, which are shown in Fig. 2a, e, and j. The R value of the XEOL images increased almost linearly with the 

alumina scale thickness, regardless of the base alloys. This indicates that surface XEOL imaging can be used to 

approximately determine the alumina scale thickness on various alumina-forming alloys by using the calibration 

curve depicted in Fig. 5. This calibration curve exhibited a nonzero value of the intercept owing to the background 

of infrared light during the XEOL measurement. This suggests that the determination of alumina scale thickness 

via the present XEOL setup would be difficult below the thickness investigated in the present study (0.2 μm). In 

addition, the upper limit of thickness measurable by the XEOL imaging method is expected to be a few microns, 

which corresponds to the CL sampling depth [29]. However, the thickness range of the present XEOL imaging 

method is sufficient to evaluate the alumina scale thickness of commercial alumina-forming alloys exposed to 

high-temperature atmospheres for more than one year, such as the 214 alloy (Ni-Cr-Al-Fe alloy), APM (Fe-Cr-Al 

alloy), and Inconel 702 (Ni-Cr alloy) [17,18]. 
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Figure 2 and Table 1 indicate that the alumina-scale thickness of NiAl was larger than that of Fe–25%Al 

and Fe–15%Al–10%Cr, suggesting the formation of metastable alumina on NiAl, e.g., theta and gamma alumina, 

prior to stable alpha alumina as reported in the previous work [18]. The formation of theta and gamma alumina on 

the NiAl alloy can be confirmed from the small CL peak at 685 nm of NiAl  [30,31] (Fig. 3) and the gradual 

decrease toward higher wavelength for the CL peak at 695 nm [30,32] compared to Fe–25%Al and Fe–15%Al–

10%Cr (Fig. 3), respectively. Since the wavelength of CL peaks for theta (685 nm) and gamma alumina (695 nm) 

are close to that of alpha alumina (695 nm), it is difficult to distinguish alpha, gamma, and theta alumina from the 

luminescent color of XEOL image. In the present study, the formation of theta and gamma alumina did not affect 

thickness measurement of alumina scale from the R value of the XEOL images because CL intensity related to 

alpha alumina was approximately 10 times higher, compared to that of theta and gamma alumina (Fig. 3). 

 

Conclusions 

 We have presented a method to nondestructively identify alumina scale on alumina-forming alloys, 

observe its surface morphology, and measure its thickness simultaneously by acquiring XEOL images. The 

alumina scale formed on Fe–25%Al, Fe–15%Al–10%Cr, and NiAl alloys emitted infrared light at 695 nm, and 

their XEOL images allowed us to observe cracks and areas in which the alumina scale was peeled away on the 

surfaces. However, we could not distinguish alpha, gamma, and theta alumina from the luminescent colors of 

XEOL images. The thickness of the alumina scale can be determined from the R value of the XEOL images since 

the R value linearly increased with the thickness in the 0.20–1.50 μm range, regardless of the base alloys. This 

method can be performed in air and requires only 10 s for the measurement. The setup comprised an X-ray tube 

used in portable X-ray fluorescence analyzers and a commercially available digital camera. Therefore, the present 

study demonstrates that the XEOL imaging method is suitable for the on-site analysis of oxide scales on practical 

heat-resistant alloys for predicting their remaining life. Future work will involve the application of this method to 

silica and chromia scales and the realization of a portable XEOL imaging apparatus. 
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Table 1 Heat-treatment condition of the alloys and its thickness measured via cross-sectional scanning electron 

microscope observation. 

Alloy Temperature [°C] Holding time [h] Thickness [μm] 

Fe–25%Al 1000 9 0.37 

  25 0.59 

  100 0.92 

Fe–15%Al–10%Cr 1000 1 0.20 

  4 0.31 

  16 0.45 

  25 0.68 

NiAl 900 10 0.62 

 1000 10 1.13 

  25 1.53 
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Figure captions 

Fig. 1 Schematic illustration of the X-ray-excited optical luminescence setup. 

 

Fig. 2 Cross-sectional scanning electron microscope (SEM) (backscattered electron) images and energy-dispersive 

X-ray spectroscopy (EDX) elemental mappings corresponding to the area surrounded by the broken line in the 

SEM images for the Fe–25%Al alloy heated at 1000 °C for 100 h ((A) SEM image and EDX mappings of (B) O, 

(C) Al, and (D) Fe), the Fe–15%Al–10%Cr alloy heated at 1000 °C for 25 h ((E) SEM image and EDX mappings 

of (F) O, (G) Al, (H) Fe, and (I) Cr), and the NiAl alloy heated at 1000 °C for 10 h ((J) SEM image and EDX 

mappings of (K) O, (L) Al, and (M) Ni). 

 

Fig.3 Cathodoluminescence (CL) spectra of the surface of (a) the Fe–25%Al alloy heated at 1000 °C for 100 h, 

(b) the Fe–15%Al–10%Cr alloy heated at 1000 °C for 25 h, and (c) the NiAl alloy heated at 1000 °C for 10 h. 

Measurement durations for the CL spectra were 0.1 s. 

 

Fig. 4 X-ray-excited optical luminescence (XEOL) images (A, C, E) and the corresponding scanning electron 

microscope (secondary ion) images (B, D, F) of the Fe–25%Al alloy with an alumina scale thickness of 0.37 μm, 

the Fe–15%Al–10%Cr alloy with an alumina scale thickness of 0.20 μm, and the NiAl alloy with an alumina scale 

thickness of 1.10 μm, respectively. The exposure time for the XEOL images was 10 s. 

 

Fig. 5 R value of X-ray-excited optical luminescence (XEOL) images for the Fe–25%Al, Fe–15%Al–10%Cr, 

and NiAl alloys heated at 900 °C or 1000 °C for different times as a function of alumina scale thickness. The 

exposure time for the XEOL images was 5 s. 
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