
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4008 - 4015

4008

IJRITCC | December 2014, Available @ http://www.ijritcc.org

Comparison of Rubik’s Cube Solution Softwares with SWOT Analyses for the

Input-Output Process Modeling

Csaba Fogarassy

Szent István University Faculty of Economics and Social Sciences

Institute of Regional Economics and Rural Development

Gödöllő, Hungary
E-mail: fogarassy.csaba@gtk.szie.hu

Abstract - The Cube Explorer was the first Rubik’s Cube solution program which was able to solve a cube from any starting

position using around 30 rotations. After this first software, and also using it as a basis, began the different personal developments

for the different solution programs all around the world. In order to view the connection network of Rubik’s Cube software

development, and modeling of input-output process based on Rubik’s Cube’s solution algorithms, I will do the SWOT analysis for

three different development routes or software methods (Ruwix program - Kociemba Cube explorer development; Solution

Searching LBL software developed by Gábor Nagy; Rubiksolve Program developed by Eric Diec). During input-output process

analysis, the goal is to make the analysed development or investment process faster and simpler, even with the use of software.

The role of the software can be important if after assigning the attributes to the cube’s respective sides, we can define the starting

state of the project even with the unassortedness state of Rubik’s Cube.

Keywords - Rubik’s Cube solutions, Rubik’s Cube software, solution algorithms, cube explorer, layer-by-layer method, input-

output process analysis, Ruwix program, Rubiksolve program.

__*****___

I. INTRODUCTION

Scientists basically thought that a maximum of 18 steps are

required to solve the cube, however, Michael Reid

mathematician created a mathematical formula that made it

obvious that the cube can’t be solved starting from any given

state, with a rotation which consists of less than 20 steps. This

means that the cube can only be solved with at least 20

rotation steps according to theoretical calculations. Rokicki

(2008) and his affiliates divided all the starting configurations

using the technique derived from group theory (Davis, 2006).

This meant 2.2 billion groups, each of which consisted of 19.5

billion configurations. The grouping was dependent on the

reaction of the configurations to 10 possible rotation

movements. The mathematicians working on the project, using

the different symmetries of the cube, successfully reduced the

groups to 56 million. This reduction was made possible

through a very simple methodology, since if we turn the given

cube upside down, or to each side, the solution won’t get any

more complicated, therefore making these equal

’combinations’ outright unnecessary (Fogarassy, 2014). This

means that the newly created algorithm was able to match

movements with the correct starting state at an incredible

speed, making the solution of a 19,5 billion series possible in a

mere 20 seconds, which may seem like an astounding speed,

but still would’ve required 35 years for an ordinary computer

to complete the entire task. In order to shorten the time

required, they were searching to an especially efective method.

During the process of problem solving, it was quite fortunate

that the work was followed by John Dethridge, one of

Google’s engineers, and offered the free capacities of his IT

systems to aid the research. With using the free capacity of the

PC empire, he managed to solve the problem in a few weeks.

The result of the astounding and persistent research spanning

15 years therefore proved the assumption made and supported

by mathematicians for a long time, that to solve the 3×3×3

Rubik’s Cube from any given starting state, no more than 20

moves is required. The basic rule is that during the

arrangement of the cube, our goal is to move the small cubes

into a different location, or leave them in place, but at a

different angle (f.e. let a cornercube do a 120° turn, or rotate

an edge cube with its colour) while everything else remains

untouched. To solve the 3×3×3 cube, many different methods

were made independent of each other in the last few decades,

one of which is the very popular layer by layer method

designed by David Singmaster, which was published in „Notes

on Rubik’s ’Magic Cube’” in 1981. Using another general

solution, named corner first method, the speed of solution can

go well below a minute. Obviously, the speed is dependent on

the number of required rotations. The corner first method is

the basis of one of the fastest, Gilles Roux’s method. The point

is that as a first step, all corners must be arranged to their

position and proper angle. After this, all mid rows can be

freely moved in a way that the corners remain intact. With this

method, we have a much wider margin of freedom on the

cube, compared to the layer by layer method (Doig, 2000). A

very widely known and used method among „cubers” is the

Fridrich method. The method was developed by Jessica

Fridrich, which is very similar to the layer by layer method,

but uses a high number of algorithms for the solution. With

this method, and lots of practice, the cube can usually be

solved in 17 seconds, whith is why most of the world’s

„speedcubers” use this method. As a general assumption, the n

x n x n, n=3 Rubik’s Cube can be solved with Θ(n2 / log(n))

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42934179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4008 - 4015

4009

IJRITCC | December 2014, Available @ http://www.ijritcc.org

rotations (Fogarassy et al., 2014). The optimalisation of the

3×3×3 cube, and reaching the minimum amount of rotations

began with the discovery of group theory using computers, the

basis of which was laid down by Morwen Thistlethwaite in

1981. The basis of the Thistlethwaite method was to divide the

problem into subproblems, meaning searching for the solution

by dividing the cube into subgroups. The tools of group theory

can simplify the calculations of the process of software

development by defining subgroups of the hundreds, or

millions of layouts, which have shared mathematical

characteristics. Herbert Kociemba German mathematician

used a cunning method to decrease the 43 quintillion possible

rotations of the cube in 1992 (Ajay, 2011). Kociemba had a

different approach to the mathematical relations of the cube,

compared to the usual method of basing it on fix combinations

– he made a subgroup, which was based on 10 out of the 18

possible rotations of the cube. With the combination of these

10 rotations, he found out that he can reach 20 billion different

configurations from a solved cube. This is an important step,

because this subgroup is small enough to fit an ordinary PC-s

memory. Kociemba also developed a program for this, named

Cube Explorer, which was further developed by American

mathematician Michael Reid in 1995, and used to estimate the

minimum required rotations to solve the cube at 30. Cube

Explorer was the first Rubik’s Cube solution program which

was able to solve a cube from any starting position using

around 30 rotations. Thus, after this first software, and also

using it as a basis, began the different personal developments

for the different solution programs all around the world. In

order to view the connection network of Rubik’s Cube

software development, and modeling of input-output process

based on Rubik’s Cube’s solution algorithms, I will do the

SWOT analysis for three different development routes. During

input-output process analysis, the goal is to make the analysed

development or investment process faster and simpler, even

with the use of software. The role of the software can be

important if after assigning the attributes to the cube’s

respective sides, we can define the starting state of the project

even with the unassortedness state of Rubik’s Cube.

II. MATERIAL AND METHODS

To analyse the software aimed at solving Rubik’s Cube, I
used a SWOT analysis during my research, and to evaluate the
processes of the Rubik’s Cube solution algorithms. SWOT
analysis is a strategic planning tool which helps evaluating
strenghts, weaknesses, opportunities and threats, which may
come up in case of corporate or personal decisions concerning
a product, project, or business venture, or any other goal.
SWOT analysis includes the measurement of the system, the
person, or the inner and outer environment of the business,
thereby helping the decision maker to concentrate only on the
most important topics (Fogarassy, 2014).

The answers we seek with the analyses:
Strengths:

- What pros does the analysed system have in input-
output process analysis, analysation of internal attributes?

- What does it do better compared to the other system?
- What’s the hearsay about the system, its strengths?

Weaknesses:
- What parts could be improved?
- What should be avoided?
- What’s the hearsay about the system, its weaknesses?

Opportunities:
- What opportunities does it have in the future?
- What trends, market tendencies are known to it?

Threats:
- What problems may surface during its use?
- What are the competitors doing?
- Are unfavourable changes visible in the operation

environment?

The above defined questions are answered in the evaluation

chart below, by giving short answers to them.

 POSITIVE

TRAITS

NEGATIVE

TRAITS

Internal

traits

Strengths Weaknesses

External

traits

Opportunities Threats

In the case of the solution-searching software applications

which were examined, the goal of the SWOT analysis is to
determine if the functions of each software are applicable to the
input and output system attributes of the project evaluation
model, and if they satisfy the user expectations.

The SWOT analysis offers a good opportunity to create an
overview comparison, which has no exact attributes definable
in easily comparable dimensions. In itself, the SWOT analysis
has no meaning, however, if it’s part of a complex analysis, it
can sufficiently facilitate thought process.

III. DISCUSSION

The tools of group theory can simplify the calculations of

the process of software development by defining subgroups of

the hundreds, or millions of layouts, which have shared

mathematical characteristics. Herbert Kociemba german

mathematician used a cunning method to decrease the 43

quintillion possible rotations of the cube in 1992 (Ajay, 2011).

The mathematical basis of the calculation (according to group

theory) was how we calculate the variation possibilities, in

other words, how many different samples can we observe on

the cube:

 8 corners = 8! positions / each have 3 possible

orientations = 3
8

 12 edges = 12! positions / each have 2 possible

orientations = 2
12

 Impossibilities:

- no element substitution (2),

- no edge orientation (2),

- no corner orientation (3).

 Meaning 2x2x3 = divided by 12, which totals for = (

8! x 3
8
 x 12! x 2

12
) / 12 ~= 4.3 x 10

19

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4008 - 4015

4010

IJRITCC | December 2014, Available @ http://www.ijritcc.org

Kociemba had a different approach to the mathematical

relations of the cube, compared to the usual method of basing

it on fix combinations – he made a subgroup, which was based

on 10 out of the 18 possible rotations of the cube. With the

combination of these 10 rotations, he found out that he can

reach 20 billion different configurations from a solved cube.

This is an important step, because this subgroup is small

enough to fit an ordinary PC-s memory. Kociemba also

developed a program for this, named Cube Explorer, which

was further developed by American mathematician Michael

Reid in 1995, and used to estimate the minimum required

rotations to solve the cube at 30. Theoretical scientists alredy

considered 20 to be „God’s number” (the minimum required

rotations), but the proof would’ve required a supercomputer.

Finally, the proof of „God’s number” being 20 only happened

in July 2010, when Thomas Rokicki, Herbert Kociemba,

Morley Davidson and John Dethridge (Rokicki et al., 2010)

proudly declared to the world that it’s proven – „God's

Number for the Cube is exactly 20”.

Therefore, Kociemba’s Cube Explorer was the first

Rubik’s Cube solution program which was able to solve a

cube from any starting position using around 30 rotations.

Thus, after this first software, and also using it as a basis,

began the different personal developments for the different

solution programs all around the world. In order to view the

connection network of Rubik’s Cube software development,

and the output-input project development methodology based

on Rubik’s Cube’s solution algorithms, I will do the SWOT

analysis for three different development routes. During output-

input project development, the goal is to make the analysed

development or investment process faster and simpler, even

with the use of software. The role of the software can be

important if after assigning the attributes to the cube’s

respective sides, we can define the starting state of the project

even with the unassortedness state of Rubik’s Cube. If we

define the unassortedness with the cube’s state, the solution

program can easily inform the user how he can reach various

levels of assortedness. The solution search using software

raises one simple question: is the route appropriate, and can

the process of solution search abide by the various

professional requirements (Global best practice for innovation

ecosystems), which lead to the basis of successful project

development?

The goal of the detailed introduction of the SWOT analysis

in the methodology section was to make it clear to me, if the

functions of the software are applicable to project the

evaluation model’s input and output requirements. The

analysis was done by classic SWOT rules, the details of which

won’t be shown, only the results. For the sake of

understanding them, I’ll give short descriptions on the various

software applications.

Software evaluated using SWOT analyses:

 RUWIX PROGRAM (KOCIEMBA CUBE

EXPLORER DEVELOPMENT)

 SOLUTION SEARCHING LBL SOFTWARE

(GÁBOR NAGY)

 RUBIKSOLVE PROGRAM (ERIC DIEC)

IV. RESULTS AND CONCLUSIONS

SWOT analysis of the Ruwix program

The complex solution and demonstration program was

developed by Hungarian Ferenc Dénes, using Kociemba’s

2005 solver program as a basis. The software chooses the

shortest possible solution from any given starting combination.

The average number of rotations is 50-60, which does not

prefer layer by layer algorithms. In this case, the developers

uploaded a lot more algorithms into the optimal solution

search program, which finds more right solutions during

optimalisation. The online solution software shares all

important information with the user, and it’s very spectacular

(Illustration 1.).

Ruwix is an online Java-based web application, which

doesn’t use any support platforms. It was applied with

necessary functions by the developer, in order to help users

learn Rubik’s Cube, and the various solution methods for it. Its

suitable f.e. to animate the process of solution step by step,

and display it to the user.

The solution search engine can animate the solution and

rotation moves from any given combination, which is

preferred by users training for Rubik’s Cube solving

competitions. Using the Ruwix program, users can play with

different Rubik products online (2×2×2 cube, 3×3×3 cube,

4×4×4 cube, 5×5×5 cube, etc.), which offer a pleasing game

experience in 3D.

Illustration 1.: Visual style and shortest solution formula of

Ruwix program

Source: Dénes, T. (2005) Ruwix.com

The SWOT evaluation of Ruwix (Chart 1.), in accordance to

the project evaluation model’s input and output requirements:

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4008 - 4015

4011

IJRITCC | December 2014, Available @ http://www.ijritcc.org

Chart 1.: Ruwix program SWOT chart

 POSITIVE TRAITS NEGATIVE TRAITS

INTERNAL

TRAITS

STRENGHTS

Exceptional

graphics and visual

details, some

mention it as the

world’s most

advanced solution

software. Offers

solutions not only to

Rubik’s Cube, but

many other logical

games.

WEAKNESSES

Presently not

compatible, since it

uses different, faster

algorithms than the

layer by layer

solution, which aren’t

the best for

development

solutions.

EXTERNAL

TRAITS

OPPORTUNITIES

Because of its

strenghts, and the

applicability, it

would be beneficial

to develop output-

input specifications

as well.

THREATS

Since the program

runs in an online

format, it isn’t

possible to add special

data to it.

Even in case of a

output-input

specification, syncing

the free software with

the pay-to-use

SMART add-on

makes it difficult to

use.

Source: self-made (based on Fogarassy, 2014)

SWOT analysis of Solution Searching LBL software for

Rubik’s Cube

To introduce the Rubik’s Cube solution software, I will mostly

use a domestic development made by IT technician and

engineer Gábor Nagy’s (University of Debrecen) description

and methodology guide: „Solution searching methods”, which

is unique because of its status space representation, which was

used to work out the problem of multi-level solution search.

The other important thing to note about the choice of software

was that it prefers the layer by layer(LBL) solution, and as far

as I know, this is the only application which uses only this

method, because it’s considered „too slow”. (On another note,

any solution search could implement the layer by layer

method, were it coded with it in the first place.)

The program was developed in 2008, using Java language, and

NetBeans IDE 6.1 development platform. To make the

structure of the program clear, we have to understand the

respective structures of two packs – the status space and cube

packs.

The pack named Status Space („Allapotter”) contains two

abstract classes, and an interface, which save the exact,

various elements and attributes of the status spaces. During the

main problem’s implementation, these elements are

concretised by the program to fit the representation of the

status space. The program checks (for each different status) if

a given status is the goal, or not. According to the developer’s

manual, the heuristic result is ensured by the interface named

Heuristic Status („HeurisztikusAllapot”), which needs to be

implemented in the program from the get-go. In the case of the

solution search program, we define the Cube Status

(„KockaAllapot”) class, or the cube pack as the start, the

elements of which describe a given element of the status

space. This class contains the constructors not included in the

54-element byte packets, which record the various states of

Rubik’s Cube, and all the methods applicable for the different

statuses. The objective status checking function checks the 3D

parts of the cube, and if it finds a colour out of place, returns a

„false” message, while if it doesn’t, the cube is solved, and

every colour is in its place.

In the program’s description, there’s also mention that the

status of the cube is marked with 54 number, which are

selected from the 0,5 interval, and the colours symbolise the

various colours (based on Nagy, 2008):

𝐻 = 0,0,… . . ,0 , 1,0,… . . ,0 ,… . . , (5,5,… . ,5)
A ≠ H, since not all elements of H can be real statuses.

𝐴 = 𝑎|𝑎 ∈ 𝐻1 × … .× 𝐻𝑛

Description of Cube Pack

Using the classes and interface of the „Status Space Pack”, the

created classes arecategorised into the „Cube Pack”, which are

closely related to Rubik’s Cube and its structure. The

examples of the „Cube Status” class are defining the various

statuses of the status space, but the class also contains the

constructors not included in the 54-element byte packets,

which record the various states of Rubik’s Cube, and all the

methods applicable for the different statuses, which are as

follows (based on Nagy, 2008):

 „Objective status checking function”, which has a

return value of either true or false. Using three For-

loops integrated into each other, it analyses the 3D

block that defines the status of the cube, and if it

finds a colour out of place, returns a „false” message,

while if it doesn’t, the cube is solved, and every

colour is in its place.

 „Operator” – a function that checks the application

master, and analyses if the operator condition is

applicable to the given status. This also has a logical

return value, which is – for Rubik’s Cube – always

true.

 „Apply function”, which contains the operator for the

given status as a parameter, and it’s return value is

the function of the resulting status. It creates a copy

of the cube’s status, executes the value copying

abiding by the operators, and returns with the copy.

 The function that benchmarks the given status

against a different status, which is the result of a

parameter. Has a logical return value, which is true if

all elements of the statuses of benchmarked cubes are

identical. Otherwise, its value is false.

 An evaluation function which is exceptionally

important for our research.

 Method to access the „data tags” which register the

various states of the cube.

 Methods related to imaging and burning.

Layer by layer method, and the evaluation function

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4008 - 4015

4012

IJRITCC | December 2014, Available @ http://www.ijritcc.org

Due to the developer’s choice, the program uses a AVID

search engine (greedy search) to solve the cube, therefore, the

evaluation function consists only of the heuristic function,

which is implemented by the „Cube Status” class’ „Heuristic

Method”, alredy mentioned above. The method evaluates and

scores the various statuses by the sequential row by row, in

other words, the layer by layer method. Therefore, due to the

impact of the heuristic pack, the program uses the layer by

layer method to find the solution, meaning row by row, though

it’s a known fact that this isn’t the fastest, and most effective

way to produce the result in solution search. The program

doesn’t analyse the starting state, since the optimalisation of

the starting side would require a complex evaluation

function’s implementation, which was deemed unnecessary for

this program by the developer, so the program always starts

with the yellow side. In terms of the method, we’re talking

easily checkable layers, or in other words, levels, meaning the

heuristic function also begins by the check of this so-called

level, to avoid checks which are not important on the actual

level, but may be on lower levels (Molnár, 1994, Nagy, 2008).

 These levels are as follows (Illustration 2):

Level 0.: Cube doesn’t abide by level 1’s requirements.

Level 1.: Edges which also have yellow are in

position, with proper orientation, meaning

„yellow cross” is complete.

Level 2.: Corners which also have yellow are in

position, with proper orientation, meaning

„upper row” is complete.

Level 3.: Mid row is complete.

Level 4.: Edges which also have yellow are in

position, with proper orientation, meaning

„white cross” is complete.

Level 5.: Corners which also have yellow are in

position, with proper orientation, meaning

the cube is in its finished state.

Illustration 2.: Levels of Layer by layer method in the

program

Source: self-made (based on Nagy, 2008)

According to the developer’s description, we may not be able

to continue without heuristics, or breaking the level. In this

case, the so-called solution algorithms may help when used for

the correct statuses, which are series of steps that, though

degrade the heuristics at first, but get closer to the goal in the

end, compared to where we stood before applying them. The

first level (solution of first row) may be reached even without

algorithms, but this is the part of the heuristic function which

is implemented with the greatest hardship. According to Nagy,

the reason for this is that unlike on higher levels, where we

primarily use algorithms apart from 1-2 rotations, at first, we

use steps which are simple, but numerous, and give a lot of

various alternatives, so translating human knowledge for the

program becomes difficult. On higher levels, use of the

heuristic algorithm becomes much less of a problem, we can

assign a few fixed algorithms for virtually any status, we only

have to decide wich to implement first.

With the heuristics of a status, the programmer defines

the return value of the heuristic function, in other words, the

„correctness” of the status. His idea was that while we’re on

lower levels, the heuristics of the status starts from a higher

value, while the farther the next level seems during the

appropriate checks for each level, the more its value increases.

Therefore, the rate of increase is dependent on the positions

and/or orientations of the edges and corners required to

complete the level. Each of these edges or corners raises the

value of the heuristics more or less. The scale therefore

depends on how far it is from its proper position, or a position

from which it can be moved to its proper position using an

algorithm. According to the developer, within a single level,

the value of heuristics will never raise so much, that a lower

level’s heauristics is lower as well. This condition is necessary

for the search engine to find the shortest route to the solution,

based on the method. One of the consequences for this is that

if we reach a certain level with the program, it’s sufficient to

do the checks only for that given level, since all the others

either alredy stand true, or aren’t needed yet. According to

this, the scoring in the program is as follows (based on Nagy,

2008):

• Determining the level is the first step of

evaluation/scoring. The higher the level we’re on, the

lower the number will be. The starting value of

heuristics on level 5’s evaluation function is ”0”.

• On level 0: An edge in its place with proper

orientation barely raises heuristics, while the ones far

from their position raise it according to their exact

„misplacedness”. If we have at least two edges in the

right position and with proper orientation, we can

allow the use of algorithms, but this causes the edges

to raise heuristics less, if they’re close to being put in

their proper position using an algorithm. These

algorithms consist of only 3-5 steps, but have other

extra effects. For each side, we have to check using

three of these algorithms. The reason for this is that

the software interprets operators from a fixed point of

view, with the yellow side always being on top, and

the blue side in the front. Because of this, the same

sequence of rotations may be built with different

operators for the various sides, but we have to be able

to choose the correct one. A good example for this

would be for us to check three different positions for

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4008 - 4015

4013

IJRITCC | December 2014, Available @ http://www.ijritcc.org

the yellow-blue edge, from where only an algorithm

can put it in its proper position (Illustration 3.).

Illustration 3.: Edges only solvable through algorithms

Source: self-made (based on Nagy, 2008)

Algorithm 1.: UR, LB, UL.

Algorithm 2.: UR, LF, UL.

Algorithm 3.: UR, UR, RR, UL, UL.

Abbreviations are from initials:
F (Front)

B (Back)

U (Up)

D (Down)

L (Left)

R (Right)

• On level 1: On this level, we can use almost only

algorithms to solve a corner. Heuristics may further

increase due to the corners’ distance of their

„algorithm possibilities”, apart from the basic

increase of the level. On this level, we have to

watch 5 different algorithms. Let’s go through the

blue-yellow-orange corner’s five different

algorithms via the examples on Illustration 4.

below:

Illustration 4.: Positions of corners defineable via

algorithm

Source: self-made (based on Nagy, 2008)

Algorithm 1.: LF, LL, LB.

Algorithm 2.: FL, LR, FR.

Algorithm 3.: LF, LR, LB.

Algorithm 4.: FL, LL, FR.

Algorithm 5.: LF, LL, LB.

The solution search program therefore uses the above

mentioned seven levels’ AVID search to solve the cube (Chart

2). During the evaluation of the above defined methodology

guide, it’s obvious that the program is able to solve Rubik’s

Cube from virtually any starting combination using Layer by

layer method. The number of required rotations is dependent

on the base combination, but usually needs more than 70

rotations. However, in case of a simpler starting combination,

this can decrease to 40-45 rotations (Illustration 5.).

Chart 2.: Layer by layer solution algorithms for 3×3×3

Rubik’s Cube using software and AVID search engine (on

levels 2., 3., 4., 5.)

Level Phase Algorithms

2.

Positions defineable

with algorithms for

second row edges

Algorithm 1.: FL, LL, FR, LB,

FR, LF, FL.

Algorithm 2.: LF, LR, LB, FR.

LB. FL LF.

Algorithm 3.: LF, LL, LB, LR.

3.

State fit for edge

switch, edge switch

on sealing side

Algorithm 1.: LF, LL, LL, LB,

LR, LF, LR, LB, LR.

Edge rotation,

rotating sealing side

to match colours

Algorithm 1.: LB,RB, FL, LF,

RF, LR, LB,RB,FL,LF,RF,

LR, LB,RB,FL,LF,RF,LR

4. Corner switch

Algorithm 1.: LB, LL, RB, LR,

LF, LL. RF, LR.

Algorithm 2.: FR, LR, RR LL,

FL, LR EL, LL

5.

Rotating corners to

match colours,

correction of

misplaced corners

Algorithm 1.: RB, LL, RF, LL,

RB, LR, LR, RF, LB, LR, LF,

LR, LB, LR, LR, LF.

Algorithm 2.: LB, LL, LL, LF,

LL, LB, LL, LF, RB, LL, LL,

RF, LR, RB, LR, RF.

Source: self-made (based on Nagy, 2008)

Illustration 5.: Evaluation screen of Solution Searching

LBL software for Rubik’s Cube

Source: Solution Searching LBL software for Rubik’s Cube

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4008 - 4015

4014

IJRITCC | December 2014, Available @ http://www.ijritcc.org

The reason I found showing the Solution Searching LBL

software for Rubik’s Cube in this much detail is that during

the process of solution, it follows rotations by hand almost

completely, and uses each algorithm of the layer by layer

method, but doesn’t implement any other methods.

The SWOT evaluation of Solution Searching LBL

software for Rubik’s Cube (Chart 3.), in accordance to the

project development model’s input and output requirements:

Chart 3.: Rubik’s Cube Solution Search program SWOT

chart

 POSITIVE TRAITS NEGATIVE TRAITS

INTERNAL

TRAITS

STRENGHTS

The steps of

conceptual and

practical solutions

are the same

The layer by layer

solution is followed

through in the

program

Uses obvious

advancement and

correction steps

Because of the easy

programming, it’s

also easy to develop

Every algorithm is

also defineable in the

steps of the input-

output project

evaluation model as

well.

WEAKNESSES

The visual interface

is not up-to-date

Slightly slow

processing

Not available in

online format

As of now, it can

only solve the 3×3×3

Rubik’s Cube.

EXTERNAL

TRAITS

OPPORTUNITIES

Visual interface

Easy to sync with the

SMART evaluation

software plugin

The definition of

input-output model

domain requires no

additional

development on the

software

Because of the easy

programming, it may

prove to be cheap to

be a newcomer on

the market.

THREATS

Quite an old

development

The program may

seem slow, because it

can’t be accelerated

properly because of a

set of certain

configurations

„Easy to copy”.

Source: self-made (based on Fogarassy, 2014)

SWOT analysis of Rubiksolve program

One of the most well-known solution software on the web.

The developer, Eric Dietz has been interested in the

mathematics and programming opportunities of Rubik’s Cube

since his childhood. His first program that solves Rubik’s

Cube was published, and shared with the members of the

Rubik „fun” community in 2002. In 2005, he used Kociemba’s

3×3×3 method to popularise his own online program. In 2007,

he developed a solver program which he further developed by

lowering the amount of required rotations, using newer

algorithms. The one that’s currently running was finalised in

2010, which uses Kociemba’s algorithm, meaning it needs less

than 25 rotations to finish the cube from any given starting

combination. Eric Dietz always used Kociemba’s algorithms

for the solution, two of which can be seen on Illustrations 8.

and 9., or by clicking the link below (Dietz, 2010).

The program only handles 2×2×2, 3×3×3 and 4×4×4 cubes’

solution algorithms, its portfolio has no other Rubik games. It

illustrates every detail in 2D, and offers no special visual

enjoyment either. The illustrations that explain rotations can

be interpreted easily, therefore, in the last few decades, tens of

thousands of players learned to solve Rubik’s Cube with this

program’s guides.

Because of the reduced number of algorithms, we won’t

find the same levels as for the previously introduced Solution

Searching LBL software. The progrem doesn’t implement the

layer by layer method as a solution process, but some

algorithms of the various methods are the same, meaning the

same algorithms are sometimes used in different solution

searching programs. The program works quite fast, only needs

a few seconds to display the solution formula for the

combinations put in. As a comparison, Ruwix and Solution

Search need several tens of seconds, or even minutes to

display the solution formula (Illustration 6.).

Illustration 6.: Notations of sides on the program’s solution

interface (flip state)

Source: based on Dietz, 2010

The SWOT evaluation of Rubiksolve, in accordance to the

project develpment model’s input and output requirements we

can follow on the Chart 4.

The introduced Ruwix Solver and Rubiksolve applications

are both the further developed versions of Kociemba’s Cube

Explorer, which was the basis of most Rubik’s Cube fans’

software development work and ideas since 2005. After

reviewing the different solution programs, we can say that

there is an option to bring in technically any new algorithm,

but of course, the goal of all the developers was to give the

competitors a program that offers the solutions with the

highest possible procession speed, and lowest number of

combinations necessary. In the case of the Rubiksolve

program, this is below 25 steps.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 2 Issue: 12 4008 - 4015

4015

IJRITCC | December 2014, Available @ http://www.ijritcc.org

Chart 4.: Rubiksolve program SWOT chart

 POSITIVE TRAITS
NEGATIVE

TRAITS

INTERNAL

TRAITS

STRENGHTS

Fast, constantly

developed, can use

layer by layer method

WEAKNESSES

2D, can’t interpret

layer by layer logic

at the input, other

user functions are

missing.

EXTERNAL

TRAITS

OPPORTUNITIES

Easy plugin options

offer good

compatibility with

model usage.

THREATS

Since it focuses on

fast solutions, not all

details can be

understood by the

users.

Source: self-made (based on Fogarassy, 2014)

The Rubik’s Cube Solution Search program completes the

cube with the seven solution levels defined by AVID’s search

engine. During the evaluation of the methodology manual, we

made it clear that this one is able to get to the completed stage,

meaning the one side – one colour state from any starting stage

with the layer by layer method. Also, the process may be

stopped at any given stage. The number of rotations varies by

the starting stage, but usually it takes more than 70 rotations to

complete the cube. However, from an easier starting point, it

can reduce to a mere 40-45 rotations. Also, by analysing the

SWOT evaluations, it can be said that the swift

strenghts/weaknesses/opportunities/threats chart prefers the

hungarian-developed Rubik’s Cube Solution Search program,

which was optimised for the layer by layer algorithms.

This Java-based application proved to be best in its

functionality for the project evaluation model’s input and

output expectations, also noted by the structural trait that the

software’s „State Area” pack designates almost the same

solution levels, that the hand-solved algorithms do. (The other

evaluated softwares designate almost completely different

levels.)

REFERENCES

[1] Ajay, J. (2011) Rubik’s Cube Model of Software Engineering
for Incremental and legacy projects. Journal of Computing,
Volume 3. Issue 2. Februar 2011 pp. 99-101.

http://journalofcomputing.org/volume-3-issue-2-february-2011/

[2] Davis, T. (2006) Group Theory via Rubic’s Cube. Geometer
Org, http://geometer.org/rubik/group.pdf pp.10-12

[3] Denes, T. (2005) Ruwix program’s descriptions and
programming. 2005 Source: Ruwix.com/Online Ruwix Cube
Solver program p.1

[4] Dietz, E. (2010) About me. USA, Minnesota, 2007, pp. 4-5.

[5] Doig, A. (2000) Community planning and management of
energy supplies - international experience. Renewable Energy.
2000; pp.325-331.
https://sites.google.com/site/journalofcomputing/
www.journalofcomputing.org , pp. 99

[6] Fogarassy, C. (2012) Low-carbon economy (Karbongazdaság in
Hungarian language). Monography. L’Harmattan Kiadó,
Budapest, 2012, ISBN: 978-963-236-541-1 pp. 8-10

[7] Fogarassy, C. (2014) The Interpretation of Sustainability Criteria
using Game Theory Models (Sustainable project development
with Rubik’s Cube), Budapest; Paris: L' Harmattan Publisher,
pp. 36-47

https://www.scribd.com/doc/250370912/Fogarassy-Rubik-
Model-Eng-Harmattan-Publisher-2014

[8] Fogarassy, C. Borocz, M., Molnár, S. (2014) Process of
sustainable project development with Rubik’s Cube using Game
Theory interpretations. IJAIR, ISSN 2278-7844, Volume No. 03,
Issue No.10, October-2014.

http://www.advanceresearchlibrary.com/temp/downloads/ijair/oc
t2014/t1.pdf

[9] Molnár, S. (1994) On the optimization of INPUT-OUTPUT
systems cost functions, Pure Mathematics and Applications, Vol.
5. No. 4, 1994, pp. 404

[10] Nagy, G. (2008) Solution searching methods (on Hungarian).
Scientific Paper. Debreceni University, Debrecen, 2008, pp.12-
16, pp. 22-25, pp. 40-45

[11] Rokicki, T. (2008) Twenty-Five Moves Suffice for Rubik’s
Cube. Source: http://tomas.rokicki.com/rubik25.pdf pp. 1-4

[12] Rokicki, T. et al. (2010) God's Number is 20.
http://www.cube20.org/ pp.1

[13] Singmaster, D. (1981) Notes on Rubik's Magic Cube. Penguin
Books. ISBN 0907395007). pp. 10-12.

[14] https://www.scribd.com/doc/58001400/Notes-on-Rubik-s-
Magic-Cube

[15] START UP GUIDE (2012) Business advise for SMEs. (Üzleti
tanácsok fejlődő kisvállakozók részére, Online publication) on
Hugarian language, http://startupguide.hu , pp. 2.2

