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Abstract. This paper discuss the existence of almost periodic solutions of neutral

functional differential equations. Using a Liapunov function and the Razumikhin’s
technique, we obtain the existence, uniqueness and stability of almost periodic solu-

tions.
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In the theory of functional differential equations, the existence, uniqueness and
stability of almost periodic solutions is an important subject. Hale[1], Yoshizawa[2]
and Yuan[3,4] et al, have provided some existence results for certain kind of retarded
functional differential equations by means of Liapunov functions. The focus of our
present work is to establish the existence of almost periodic solutions of neutral
functional differential equations by using the Razumikhin-type argument. The
problem of uniqueness and stability of the solution is also addressed. As a corollary
to our results, the corresponding theorem of Yuan[4] is included and the proof in
[4] is also simplified.

Consider the following almost periodic neutral functional differential equation

(1)
d

dt
Dxt = f(t, xt)

and its product systems

(1∗)











d

dt
Dxt = f(t, xt)

d

dt
Dyt = f(t, yt)
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where D : C → Rn is linear, autononous and atomic at zero(see Hale [9]), C :=
C([−τ, 0], Rn), f : R×C → Rn is continous and local Lipschitzian with respect to
φ ∈ C. Namely, for any H > 0, there is K0 = K0(H) > 0 such that for φ, ψ ∈ CH ,

|f(t, φ)− f(t, ψ)| ≤ K0|φ− ψ|,

where CH := {φ ∈ C : |φ| ≤ H}.
Under the above hypotheses, there is a unique solution x(t) = x(σ, φ)(t) of Eq.

(1) through a given intial value (σ, φ) ∈ R× CH∗ (see [9]).
In addition, we always suppose that f : R × CH∗ → Rn is almost periodic in t

uniformly for φ ∈ CH∗ (see [8]).

Definition. Let CD = {φ ∈ C : Dφ = 0}. D is said to be stable if the zero solution
of the homogeneous difference equation Dyt = 0, t ≥ 0, y0 = ψ ∈ CD is uniformly
asymptotically stable.

It is shown (see [9]) that when D is linear autonomous and atomic at zero, D is
stable if and only if D is uniformly stable. Namely, there are two constant a, b > 0
such that for any h ∈ C(R+, Rn), the solutions of the equation

Dyt = h(t), t ≥ σ

satisfies

(2) |yt| ≤ be−a(t−σ)|yσ| + b sup
σ≤u≤t

|h(u)|, t ≥ σ.

Suppose that V : R+ × Rn × Rn → R+ is continuous. For any φ, ψ ∈ C, we
define the derivative of V along the solution of (1∗) by

V̇(1∗)(t, φ, ψ) = lim sup
h→0+

[V (t+ h,Dxt+h(t, φ), Dyt+h(t, ψ))− V (t,Dφ,Dψ)].

Similar to the proof in [8, p.207], we can obtain

Lemma 1. Suppose p : R → R is the unique almost periodic solution of (1) with
pt ∈ CH for t ∈ R. Then mod (p) ⊂ mod (f).

Lemma 2[3]. Suppose D is stable, and Eq.(1) has a solution ξ : R → R with
|ξt| ≤ H < H∗ for t ≥ 0. If ξ is an asymptotically almost periodic function, then
Eq.(1) has an almost periodic solution.

In what follows, we assume D is a stable operator, ||D|| = K. Let 0 ≤ u(s) ≤
v(s), s ≥ 0, be continuous and nondecreasing functions, u(s) → ∞ as s → ∞,
v(0) = 0, and suppose that there is a continuous function α : R+ → R satisfying
v(Kη) ≤ u(α(η)). Let β(η) be an arbitrary function of η > 0 such that β(η) > bα(η)
for η > 0 ( where b > 0 is defined in inequality (2) ). Also assume α(0) = β(0) = 0.
The main result of this work is as follows:
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Theorem. Suppose f(t, φ) is almost periodic in t ∈ R uniformly for φ ∈ CH∗ . If
there exists a Liapunov function V : R+ × Rn ×Rn → R+ such that

(i). u(|x− y|) ≤ V (t, x, y) ≤ v(|x− y|) for (t, x, y) ∈ R+ × Rn ×Rn;
(ii). |V (t, x1, y1)−V (t, x2, y2)| ≤ L(|x1−x2|+|y1−y2|), where L > 0, (t, xi, yi) ∈

R+ × Ω × Ω, i = 1, 2, Ω = {x ∈ Rn : |x| < H∗};
(iii). For t ∈ R, φ, ψ ∈ CH∗ with F (V (t,Dφ,Dψ)) ≥ V (t + θ, φ(θ), ψ(θ)) for

θ ∈ [−τ, 0], we have

V̇(1∗)(t, φ, ψ) ≤ −ω(|Dφ−Dψ|),

where F : [0,∞) → R+ is continuous and nondecreasing such that F (v(Kη)) >
v(β(η)), η > 0.

Moreover, Assume that Eq. (1) has a bounded solution ξ : R → R with |ξt| ≤
H < H∗ for t ≥ 0. Then Eq. (1) has a unique almost periodic solution p : R → R
with |p(t)| ≤ H for t ∈ R, mod (p) ⊂ mod (f), and p is uniformly asymptotically
stable.

We first prove the following two lemmas.

Lemma 3. Assume all conditions of the Theorem are satisfied. If a sequence {αn}
is given so that f(t+ αn, φ) coverges uniformly on R+ × CH , then for any ε > 0,
there is a positive integer k0(ε), such that for m ≥ k ≥ k0,

Am,k(t) = lim sup
h→0+

1

h
|V (t+ h,Dξt+h, Dξt+αm−αk+h)

− V (t+ h,Dxt+h(t, ξt), Dyt+h(t, ξt + αm − αk))| ≤ ε.

Proof. For any ε > 0, there exists k0(ε) such that for m ≥ k ≥ k0, we have

|f(t+ αk, φ) − f(t+ αm, φ)| ≤
ε

2L
, (t, φ) ∈ R+ × CH .

By condition (ii),

(3)

Am,k(t) ≤ lim sup
h→0+

L

h
(|Dξt+h −Dxt+h(t, ξt)|

+ |Dξt+αm−αk+h −Dyt+h(t, ξt+αm−αk
)|)

= lim sup
h→0+

L

h
|D(ξt+αm−αk+h − yt+h(t, ξt+αm−αk

))|.

Note that ηs := ξs+αm−αk
satisfies







d

ds
Dηs = f(s+ αm − αk, ηs),

ηt = ξt+αm−αk
, s ≥ t.
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Let Bm,k(t) = maxt≤s≤t+h |D(ηs − ys)|, where ys := ys(t, ξt+αm−αk
). Thus,

Bm,k ≤ max
t≤s≤t+h

∫ s

t

|f(s+ αm − αk, ηs) − f(s, ys)|ds

=

∫ t+h

t

|f(s+ αm − αk, ηs) − f(s, ys)|ds

≤

∫ t+h

t

|f(s+ αm − αk, ηs) − f(s, ηs)|ds

+

∫ t+h

t

|f(s, ηs) − f(s, ys)|ds

≤ h
ε

2L
+K0

∫ t+h

t

|ηs − ys|ds.

By (2) we have

|ηs − ys| ≤ b sup
t≤u≤s

|D(ηu − yu)|

≤ bBm,k(t), t ≤ s ≤ t+ h.

Hence

(4) Bm,k(t) ≤ h
ε

2L
+K0bhBm,k(t).

Let h > 0 be sufficiently small such that K0bh < 1/2. By (4) we get

Bm,k ≤
εh

2L(1 −K0bh)
≤
ε

L
h.

Then
|D(ξt+αm−αk+h − yt+h(t, ξt+αm−αk

))| ≤
ε

L
h.

Form (3), it follows that

Am,k(t) ≤ lim sup
h→o+

L

h

εh

L
= ε.

Lemma 4. Assume t0 ∈ R and |yt| ≤ 2H and |Dyt| ≤ α(δ)(δ > 0) for t ≥ t0.
Then there exists t1 > t0, t1 = t1(δ, t0), such that |yt| ≤ β(δ) for t ≥ t1.

Proof. From inequality (2),

|yt| ≤ be−a(t−t0)|yt0 | + b sup
to≤u≤t

|Dyt| ≤ 2Hbe−a(t−t0) + bα(δ).
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Choose

t1 > t0 +
1

a
ln

2Hb

β(δ) − bα(δ)
,

then

|yt| ≤ 2Hb
β(δ) − bα(δ)

2Hb
+ bα(δ) = β(δ) for t ≥ t1.

This complete the proof of Lemma 4.

Proof of the Theorem. Let S = Cl{ξt : t ≥ 0}. It is easy to see that S is a compact
set in C(see, for example, [4]). Let α′ = {α′

n}, a
′
n → ∞ as n → ∞, be a given

sequence. Since f(t, φ) is almost periodic in t uniformly for φ ∈ CH∗ , there exists
a subsequence {αn} ⊂ α′ such that limn→∞ f(t+αn, φ) exists uniformly on R×S.
Also we can suppose that {αn} is increasing.

From the condition F (v(Kη)) > v(β(η)), η > 0, we know that there exists a
sequence {zn}n=1,2,···, z0 = 2H such that

F (v(Kzn)) = v(β(zn−1)), n = 1, 2, · · · .

Obviously, zn is decreasing and tends to zero as n → ∞ . For any given ε > 0, we
may assume ε < β(2H), and select a N such that β(zN ) < ε. In the following, we
prove that there exists l0 = l0(ε) such that

(5) |ξ(t+ αk) − ξ(t+ αm)| < ε,

for m ≥ k ≥ l0 and t ∈ R+. Let

γ =
1

2
inf

kzN≤s≤2HK
ω(s) > 0.

First, we prove that there is a T1 > 0 such that

(6) V (t) := V (t,Dξt, Dξt+αm−αk
) ≤ v(kz1),

for t ≥ T1 + v(2HK)/γ and m ≥ k ≥ k0(γ). From

u(|D(ξt − ξt+αm−αk
)|) ≤ V (t) ≤ v(|D(ξt − ξt+αm−αk

)|)

≤ v(2HK) ≤ u(α(2H)),

we deduce
|D(ξt − ξt+αm−αk

)| ≤ α(2H), t ≥ 0.

Applying Lemma 4, there is a T1 ≥ 0 such that

(7) |ξt − ξt+αm−αk
| ≤ β(2H), t ≥ T1.
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We now consider the following two cases:

Case 1. V (t) > v(Kz1) for T1 ≤ t ≤ T1 + v(2HK)/γ. In this case we have

F (V (t)) ≥ F (v(Kz1)) = v(β(2H))

≥ v(|ξt − ξt+αm−αk
|)

≥ V (t+ θ, ξ(t+ θ), ξ(t+ αm − αk + θ)), −τ ≤ θ ≤ 0,

which yields
V̇(1∗)(t) ≤ −ω(|D(ξt − ξt+αm−αk

)|).

Since
v(|D(ξt − ξt+αm−αk

)|) ≥ V (t) > v(Kz1),

we obtain
|D(ξt − ξt+αm−αk

)| ≥ Kz1 ≥ KzN .

Moreover,
|D(ξt − ξt+αm−αk

)| ≤ 2KH.

Then
V̇(1∗)(t) ≤ −2γ.

Applying Lemma 3 with m ≥ k ≥ k0(γ0), we obtain that

V ′(t) = lim sup
h→0+

1

h
[V (t+ h) − V (t)]

≤ lim sup
h→0+

1

h
[V (t+ h) − V (t+ h,Dxt+h(t, ξt), Dyt+h(t, ξt+αm−αk

)]

+ lim sup
h→0+

1

h
[V (t+ h,Dxt+h(t, ξt), Dyt+h(t, ξt+αm−αk

)) − V (t)]

≤ γ − 2γ = −γ for T1 ≤ t ≤ T1 +
v(2HK)

γ
.

Thus,

V (t) ≤ V (T1) − γ(t− T1) for T1 ≤ t ≤ T1 +
v(2HK)

γ
,

which yields

V (T1 +
v(2HK)

γ
) ≤ v(2HK) − γ(T1 +

v(2HK)

γ
− T1) = 0.

This contradicts V (t) > v(Kz1).
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Case 2. There is a t1 ∈ [T1, T1 + v(2HK)/γ] such that V (t1) ≤ v(Kz1). In this
case, we can suppose that there is t2 ≥ t1 such that V (t2) = v(Kz1). Then,

F (V (t2)) = F (v(Kz1)) = v(β(2H))

≥ v(|ξt2 − ξt2+αm−αk
|)

≥ V (t2 + θ, ξ(t2 + θ), ξ(t2 + αm − αk + θ)),

where −τ ≤ θ ≤ 0. Thus, condition(iii) implies

V̇(1∗)(t2) ≤ −ω(|Dξt2 − ξt2+αm−αk
)|).

An argument similar to Case 1 leads to

V ′(t2) ≤ −γ < 0 for m ≥ k ≥ k0(γ).

Consequently, in both Case 1 and Case 2, (6) turns to be true.
By the same reasoning as above, we obtain that if

V (t) ≤ v(Kzj) (j = 1, 2, ..., N − 1) for all t ≥ Tj +
v(2HK)

γ
,

then there exists Tj+1 > Tj + v(2HK)/γ such that

V (t) ≤ v(Kzj+1) for all t ≥ Tj+1 +
v(2HK)

γ
.

Finally,
V (t) ≤ v(KzN ) for all t ≥ TN+1.

Thus, we have

u(|D(ξt − ξt+αm−αk
)|) ≤ V (t) ≤ v(KzN ) ≤ u(α(zN )).

Therefore,
|D(ξt − ξt+αm−αk

)| ≤ α(zN ).

Applying Lemma 4, there is a T ∗ > TN+1 such that

|ξt − ξt+αm−α−k| ≤ β(zN ) < ε for t ≥ T ∗.

Then,

(8) |ξ(t) − ξ(t+ αm − αk)| ≤ ε,
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for all t ≥ T ∗,m ≥ k ≥ k0. We can select l0 ≥ k0 such that al0 ≥ T ∗. Therefore,
(8) implies

|ξ(t+ αk) − ξ(t+ αm)| ≤ ε, t ∈ R+m ≥ k ≥ l0.

Thus, ξ(t) is an asymptotially almost periodic solution of Eq.(1). Applying Lemma
2, Eq.(1) has an almost periodic solution p with p(t) ∈ CH for t ∈ R.

Similarly to the proof above, we can obtain that p is quasi- uniformly asymp-
totically stable. At last, we prove that p is uniformly stable. For any ε ≥ 0 and
t0 ∈ R, let δ1 > 0 so that β(δ1) < ε. Denote

δ :=
1

b
(β(δ1) − bα(δ1)) > 0.

We will prove that when |φ− pt0 | < δ, we have

V (t1, Dxt, Dpt) ≤ v(Kδ1), t ≥ t0,

where x(t) := x(t0, φ)(t). Suppose that there is a t1 > t0, such that

V (t,Dxt1 , Dpt1) = v(Kδ1)

and
V (t,Dxt, Dpt) ≤ v(Kδ1) for t0 ≤ t ≤ t1.

Then,

u(|D(xt − pt)|) ≤ V (t,Dxt, Dpt) ≤ v(Kδ1) ≤ u(α(δ1)), t0 ≤ t ≤ t1.

Therefore, |D(xt − pt)| ≤ α(δ1). From inequality (2), we have

|xt1 − pt1 | ≤ be−a(t1−t0)|φ− pt0 | + b sup
t0≤u≤t1

|D(xu − pu)|

≤ bδ + bα(δ1) = β(δ1).

Consequently,

F (V (t1, Dxt1 , Dpt1)) = F (v(Kδ1)) > v(β(δ1)) ≥ v(|xt1 − pt1 |)

≥ V (t1 + θ, x(t1 + θ), p(t1 + θ)), −τ ≤ θ ≤ 0.

Then, from condition (iii), we have

V ′(t1, xt1 , pt1) ≤ −ω(|D(xt1 − pt1)|) ≤ 0.

Thus,
V (t,Dxt, Dpt)|) ≤ v(Kδ1), t ≥ t0,
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which yields
u(|D(xt − pt)|) ≤ v(Kδ1) ≤ u(α(δ1)).

That is,
|D(xt − pt)| ≤ α(δ1), t ≥ t0.

It follows from (2) that
|xt − pt| ≤ β(δ1) < ε,

and this implies that p is uniformly stable. Since p is asymptotically stable, it
follows that for any almost periodic solution p̄(t) of Eq. (1), |p̄(t)| < H for t ∈ R,
we have

|p(t) − p̄(t)| → 0 as t→ ∞.

Using the almost periodicity, we obtain p(t) = p̄(t) for all t ∈ R. This implies that
Eq. (1) has only one almost periodic solution in CH . And, from Lemma 2, we have
mod(p) ⊂ mod(f), completing the proof.

We conclude the paper with an example to illustrate the theorem.

Example. Consider the following equation

(9)
d

dt
[x(t) − e−1x(t− r)] = −x(t) + (p(t) − e−1p(t− r))′ + p(t),

where r = 1
2
(1 − ln2), p : R → R is an almost periodic function such that p′ is

uniformly continous on R.
Let V (x, y) = (x − y)2, u(s) = v(s) = s2, F (s) = A2s, where A > 1

(1−e−1)
,

α(η) = (1 + e−1)η, β(η) = e+1
e−1

η, and ψ(t) = e−2t + p(t) is a bounded solution of

Eq.(9). Then it is easy to see that the conditions of the Theorem are satisfied,
thus, Eq.(9) has a unique almost periodic solution x(t) = p(t), which is uniformly
asymptotically stable.

References

1. J. K. Hale, Periodic and almost periodic solution of functional differential equations, Arch.
Rational Mech. Anal. 15 (1964), 289-304.

2. T. Yoshizawa, Stability Theory by Liapunov Second Method, Math. Soc., Japan, Tokyo, 1966.
3. Rong Yuan, Existence of almost periodic solutions of functional differential equations of neu-

tral type, J. Math. Anal. Appl. 165(2) (1992), 524-538.

4. R. Yuan, Existence of almost periodic solutions of functional differential equations, Ann. Diff.
Eqns. 7(2) (1991), 234-242.

5. Zhicheng Wang and Xiangzheng Qian, The method of Liapunov functional for functional

differential equations, Hunan Daxue Xuebao 6(3) (1979), 15-24.
6. Zheng ZuXiu, Functional Differential Equation, AnHui Education Press, HeFei, 1994.

7. A. M. Fink, Almost Periodic Differential Equations, in Lecture Notes in Mathematics, vol.

337, Springer-Verlag, New York, 1974.

8. C. Y. He, Almost Periodic Differential Equations, Gaojiao Press, Beijing, 1992.

9. J.K.Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.

EJQTDE, 1998 No. 4, p.9


