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Abstract. For a class of linear autonomous delay differential equations with pa-

rameter α we give upper bounds for the integral
´∞
0

|X (t, α)| dt of the fundamental

solution X (·, α). The asymptotic estimations are sharp at a critical value α0 where

x = 0 loses stability. We use these results to study the stability properties of

perturbed equations.
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1. Introduction

Let n ≥ 1 be an integer, r1, . . . , rn be real numbers with r1 > r2 > . . . > rn ≥ 0,

a1, . . . , an be positive numbers, α0 > 0. In case n = 1, we assume r1 > 0. Consider

the linear delay differential equation

(1.1) ẋ (t) = −α

n
∑

j=1

ajx (t − rj)

with a real parameter α ∈ (0, α0].

The natural phase space for Eq. (1.1) is C = C ([−r1, 0] , R), the space of all

real valued continuous functions defined on [−r1, 0] equipped with the supremum

norm ‖·‖. For each ϕ ∈ C, there exists a unique solution xϕ : [−r1,∞) → R with

xϕ (t) = ϕ (t), −r1 ≤ t ≤ 0.
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The characteristic function for (1.1) is

∆ (z, α) = z + α
n
∑

j=1

aje
−rjz , z ∈ C, 0 < α ≤ α0.

The zeros of the characteristic function are the eigenvalues of the generator of the

strongly continuous semigroup defined by the solution operators

T (t) : C ∋ ϕ 7→ xϕ
t ∈ C, t ≥ 0,

where the segment xϕ
t ∈ C, t ≥ 0, is defined by xϕ

t (s) = xϕ (t + s), −r1 ≤ s ≤ 0.

We assume that the following hypothesis holds throughout the paper.

(H1): For α = α0, there exists a unique pair of purely imaginary and simple

eigenvalues iν0, −iν0 with ν0 > 0. There exist α1 ∈ (0, α0) and γ < 0 such

that for all α ∈ [α1, α0), there is a unique complex conjugate pair of simple

eigenvalues λ = λ (α), λ = λ (α) in {z ∈ C : γ < Rez < 0} with

lim
α→α0

Reλ (α) = 0 and lim
α→α0

Imλ (α) = ν0.

For α ∈ [α1, α0], all the other eigenvalues are found in {z ∈ C : Rez < γ}.

For each α, the fundamental solution of Eq. (1.1) is the function X (·, α) : [−r1,∞) →
R with initial condition

(1.2) X (t, α) =







0 if − r1 ≤ t < 0

1 if t = 0,

that satisfies

(1.3) X(t, α) = 1 − α

n
∑

j=1

aj

ˆ t

0

X (s − rj , α) ds

for all t ≥ 0. It is clear that X exists uniquely, X |[0,∞) is continuous and X |(r1,∞)

is continuously differentiable. It is well known [9] that
´∞
0 |X (t, α)| dt < ∞ pro-

vided Rez < 0 for all zeros of ∆ (z, α). Our aim is to give explicit estimations for
´∞
0 |X (t, α)| dt.

The integral
´∞
0

|X (t, α)| dt has a role via the variation-of-constants formula in

perturbation results. For example Eq. (1.1) can appear as the linear variational

equation at a stationary point of a nonlinear delay differential equation. If the

solution x = 0 of Eq. (1.1) is asymptotically stable, then the stationary point of the

original nonlinear equation is locally attracting. Integral
´∞
0 |X (t, α)| dt plays an

important role in the estimation of the attractivity region of the stationary point

[7, 9].
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The technique applied to estimate
´∞
0 |X (t, α)| dt contains a splitting of the

spectrum by the vertical line Rez = γ < 0 so that there is no eigenvalue on Rez = γ.

Then the phase space can be decomposed as C = P ⊕ Q, where P is the realified

generalized eigenspace of the generator corresponding to the spectrum in Rez > γ,

and Q is the realified generalized eigenspace corresponding to the spectrum in Rez <

γ. The solution operator T (t) is easily estimated on P as it is finite dimensional.

On Q it is well known that ‖T (t)ϕ‖ ≤ M (γ) eγt ‖ϕ‖ holds for all ϕ ∈ Q and t ≥ 0

with some constant M (γ) ≥ 1. An explicit upper bound for M (γ) is crucial in

our estimation for
´∞
0

|X (t, α)| dt. Giving an optimal upper bound for M (γ) is

also interesting in the construction of invariant manifolds, in particular when the

size of the manifolds is of key importance. E. g., in order to prove that the local

attractivity of 0 implies global attractivity for Wright’s equation, the estimates for

M (γ) of this paper are used to find bounds for the size of a center manifold [11].

Although the estimates for
´∞
0 |X (t, α)| dt seem to be a fundamental technical

issue, as far as we know, not much is known except for the results of Győri and

Hartung in [5, 6, 7]. In the single delay case n = 1 their estimates are sharp for

small values of α, but not for α close to the critical value α0.

This paper is organized as follows. We present the results in Section 2. Section

3 estimates the location of the leading pair of eigenvalues. Sections 4 contains

the proofs of the first three theorems. For the single delay case (Theorem 2.4) a

different proof is given in Section 5 yielding a sharper result. An example is shown

in Section 6 with two delays. Section 7 presents two applications of the results for

perturbed equations.

2. Main results

Note that

∆′
z (λ, α) =

∂

∂z
∆(λ, α) = 1 − α

n
∑

j=1

ajrje
−rjλ,

and for λ = µ + iν,

|∆′
z (λ, α)|2 =

(

1 − α

n
∑

j=1

ajrje
−rjµ cos (rjν)

)2

+

(

α

n
∑

j=1

ajrje
−rjµ sin (rjν)

)2

.

According to the results [5, 6] of Győri and Hartung,

ˆ ∞

0

|X (t, α)| dt = O

(

1

(α0 − α)
2

)

.
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Our first theorem gives a sharp asymptotic estimation for
´∞
0 |X (t, α)| dt as α →

α0− implying that
´∞
0

|X (t, α)| dt = O
(

(α0 − α)
−1
)

.

Theorem 2.1. Under hypothesis (H1)

lim
α→α0−

(α0 − α)

ˆ ∞

0

|X (t, α)| dt =
4 |∆′

z (iν0, α0)|
πα0

(

∑n
j=1 ajrj sin (rjν0)

)(

∑n
j=1 aj sin (rjν0)

) .

From the application point of view it is more important to give an explicit upper

bound for
´∞
0

|X (t, α)| dt on interval [α1, α0). This is contained in the next result

in terms of α, λ = λ (α), µ = µ (α) = Reλ (α) and ν = ν (α) = Imλ (α) guaranteed

by (H1).

Theorem 2.2. Under hypothesis (H1)

ˆ ∞

0

|X (t, α)| dt ≤ 2νe−
µ
ν

π
(

1 + e−
µ
ν

π
)

|∆′
z (λ, α)| (µ2 + ν2)

(

1 − e
µ
ν

π
) +

max {L1 (α) , L2 (α)}
−γ

for all α1 ≤ α < α0 with

(2.1) L1 (α) =
1

2πr1

(

1 +
ω0

2

)

(

8

ω0
+ 2

ˆ ω0

0

dω

|∆(γ + iω, α)|2

)

< ∞,

ω0 = 2α0

n
∑

j=1

aje
−rjγ ,

and

(2.2) L2 (α) = e−γr1

(

eα0r1

Pn
j=1

aj +
2

|∆′
z (λ, α)|

)

< ∞.

We are going to check that the upper bound given by Theorem 2.2 is sharp in

the sense that this upper estimate multiplied by (α0 − α) has the same limit at

α0− as function (α0 − α)
´∞
0

|X (t, α)|dt.

There is a need for easily computable upper bounds. Our next aim is to give an

estimate that is independent of λ = λ (α) .

For simplicity, set c1 = 1 + α0

∑n
j=1 ajrj . For each δ ∈ (0, π/ (2r1)), set c2 =

c2 (δ) = a1r1 sin (r1δ) > 0 and fix K = K (δ) > 0 so large that

K >
2c2

1e
−r1γ

c2δ

holds. We will need the following additional hypothesis besides (H1).

(H2): There exists δ ∈ (0, π/ (2r1)) such that for all α ∈ [α1, α0], we have

δ ≤ Imλ ≤ π/r1 − δ and

0 <
2c2

1e
−r1γ

c2δ + c1α
−1
1 Reλ

≤ K (δ) .
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The upper bound given by the next result is not sharp, but it is independent of

λ = λ (α) .

Theorem 2.3. If (H1) and (H2) hold, then

(α0 − α)

ˆ ∞

0

|X (t, α)| dt ≤ K (δ)
−2γe

−γ
δ

π
(

1 + e
−γ
δ

π
)

α1c2δ
(

1 − e
γ
δ

π
) +

max
{

L̃1, L̃2

}

(α0 − α1)

−γ

for all α1 ≤ α < α0, where L̃1 = supα1≤α≤α0
L1 (α), L1 (α) is defined by (2.1) and

L̃2 = e−γr1

(

eα0r1

Pn
j=1

aj +
2

α1c2

)

.

The particular case n = 1, r1 = 1, a1 = 1 is of special interest as equation

(2.3) ẋ (t) = −αx (t − 1)

is the simplest delay differential equation, and it appears as a linearization of famous

equations of the form ẋ (t) = f (x (t − 1)). However, surprisingly, little is known

about
´∞
0 |X (t, α)| dt even for this simple case when α ≈ α0.

Theorem 2.1 is a generalization of a result of Krisztin in [10] saying that for this

equation

lim
α→π

2
−

(π

2
− α

)

ˆ ∞

0

|X (t, α)| dt =
4
√

4 + π2

π2
≈ 1.5.

The result of Theorem 2.3 can be substantially improved for (2.3). This is essential

in the estimation of the attractivity region of x = 0 for the Wright’s equation for α

near the critical value π/2, see [2].

Theorem 2.4. If X (·, α) : [−r1,∞) → R is the fundamental solution of Eq. (2.3),

then
(π

2
− α

)

ˆ ∞

0

|X (t, α)| dt ≤ 1.93 + 5.99
(π

2
− α

)

for α ∈
[

3

2
,
π

2

)

.

We remark that the upper bound given in [5, 7] for the integral of the fundamental

solution of Eq. (2.3) is sharp only for small α > 0, in particular for α ∈
(

0, e−1
]

.

3. The real part of the leading eigenvalues

It is of key importance to understand the behavior of Reλ (α) near the critical

value α0.
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For all z = u + iv ∈ C and α ≤ α0, set

g (u, v, α) = Re∆ (u + iv, α) = u + α

n
∑

j=1

aje
−rju cos (rjv) ,

h (u, v, α) = Im∆(u + iv, α) = v − α

n
∑

j=1

aje
−rju sin (rjv) .

Then g and h are smooth functions with the following partial derivatives:

∂g

∂u
(u, v, α) = ∂h

∂v (u, v, α) = 1 − α

n
∑

j=1

ajrje
−rju cos (rjv) ,(3.1)

∂g

∂v
(u, v, α) =−∂h

∂u (u, v, α) = −α

n
∑

j=1

ajrje
−rju sin (rjv) ,(3.2)

(3.3)
∂g

∂α
(u, v, α) =

n
∑

j=1

aje
−rju cos (rjv) ,

(3.4)
∂h

∂α
(u, v, α) = −

n
∑

j=1

aje
−rju sin (rjv) .

Note that

(3.5) ∆′
z (z, α) = 1 − α

n
∑

j=1

ajrje
−rjz =

∂g

∂u
(u, v, α) − i

∂g

∂v
(u, v, α) .

If µ = µ (α) = Reλ (α) and ν = ν (α) = Imλ (α), where λ is the leading eigen-

value in (H1), then g (µ, ν, α) = 0 and h (µ, ν, α) = 0 for all α1 ≤ α ≤ α0. In

particular, g (0, ν0, α0) = 0 and h (0, ν0, α0) = 0.

By condition (H1), λ (α) is a simple zero of ∆ (λ, α), that is

(3.6) |∆′
z (λ, α)|2 =

(

∂g

∂u
(µ, ν, α)

)2

+

(

∂g

∂v
(µ, ν, α)

)2

> 0

for all α1 ≤ α ≤ α0 with a lower bound independent of α.

The smooth dependence of µ and ν on α is easily guaranteed.

Proposition 3.1. Assume that condition (H1) holds. Then µ and ν are C1-smooth

functions of α on [α1, α0] with

(3.7) µ′ (α) =
∂g
∂v (µ, ν, α) ∂h

∂α (µ, ν, α) − ∂g
∂u (µ, ν, α) ∂g

∂α (µ, ν, α)
(

∂g
∂u (µ, ν, α)

)2

+
(

∂g
∂v (µ, ν, α)

)2 , α ∈ [α1, α0] .

Proof. Choose α ∈ [α1, α0] arbitrarily. As g (µ, ν, α) = 0, h (µ, ν, α) = 0, and
EJQTDE, 2011 No. 36, p. 6



det

(

∂g
∂u (µ, ν, α) ∂g

∂v (µ, ν, α)
∂h
∂u (µ, ν, α) ∂h

∂v (µ, ν, α)

)

=

(

∂g

∂u
(µ, ν, α)

)2

+

(

∂g

∂v
(µ, ν, α)

)2

6= 0

by our initial assumption, the Implicit Function Theorem yields the first assertion.

Differentiating the equations with respect to α, we get

∂g

∂u
(µ, ν, α)µ′ (α) +

∂g

∂v
(µ, ν, α) ν′ (α) +

∂g

∂α
(µ, ν, α) = 0,

∂h

∂u
(µ, ν, α)µ′ (α) +

∂h

∂v
(µ, ν, α) ν′ (α) +

∂h

∂α
(µ, ν, α) = 0,

from which the formula for µ′ (α) easily follows. �

Corollary 3.2. If (H1) holds, then

lim
α→α0−

µ′ (α) =
α0

(

∑n
j=1 ajrj sin (rjv0)

)(

∑n
j=1 aj sin (rjv0)

)

|∆′
z (iν0, α0)|2

.

Proof. By hypothesis (H1), limα→α0
λ (α) = iν0. Proposition 3.1 with (3.1)-(3.5)

and relation

∂g

∂α
(0, ν0, α0) =

n
∑

j=1

aj cos (rjν0) =
g (0, ν0, α0)

α0
= 0

gives the statement of the corollary. �

If ν is bounded away from 0, and |µ| is sufficiently small for all α, then we give an

upper bound for (α0 − α) / |µ (α)|. The following corollary is needed in the proof

of Theorem 2.3.

Corollary 3.3. Suppose that (H1) and (H2) hold. Then

α − α0

µ (α)
≤ K (δ) for each α ∈ [α1, α0) .

Proof. Proposition 3.1 gives

µ′ (α) =

(

−∂g
∂v (µ, ν, α)

)

(

− ∂h
∂α (µ, ν, α)

)

− ∂g
∂u (µ, ν, α) ∂g

∂α (µ, ν, α)
(

∂g
∂u (µ, ν, α)

)2

+
(

−∂g
∂v (µ, ν, α)

)2 , α ∈ [α1, α0] .

Using this result, we give a positive lower bound for µ′ (α), α ∈ [α1, α0]. It clearly

follows from (3.1)-(3.2) that for all α ∈ [α1, α0],

∂g

∂u
(µ, ν, α) ≤

(

1 + α

n
∑

j=1

ajrj

)

e−r1µ ≤ c1e
−r1µ,

∂g

∂u
(µ, ν, α) ≥ −α

n
∑

j=1

ajrje
−r1µ ≥ −c1e

−r1µ
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and

−∂g

∂v
(µ, ν, α) ≤

(

α

n
∑

j=1

ajrj

)

e−r1µ ≤ c1e
−r1µ,

with constant c1 introduced before Theorem 2.3. Note that if (H2) holds, then

sin (rjν) > 0 for all j ∈ {1, ..., n} and sin (r1ν) > sin (r1δ). Hence

−∂g

∂v
(µ, ν, α) ≥ αa1r1e

−r1µ sin (r1ν) ≥ αc2e
−r1µ > 0,

where c2 = a1r1 sin (r1δ). Equations (3.3), (3.4) with g (µ, ν, α) = 0 and h (µ, ν, α) =

0 give that
∂g

∂α
(µ, ν, α) =

−µ

α
and − ∂h

∂α
(µ, ν, α) =

ν

α
.

Therefore

µ′ (α) ≥ αc2e
−r1µ ν

α − c1e
−r1µ −µ

α

2c2
1e

−2r1µ

=
c2ν + c1α

−1µ

2c2
1e

−r1µ
for α ∈ [α1, α0] .

Conditions given in (H2) now yield

µ′ (α) ≥ c2δ + c1α
−1
1 µ

2c2
1e

−r1γ
>

1

K (δ)
.

The Lagrange Mean Value Theorem implies that for each α ∈ [α1, α0),

−µ (α) = µ (α0) − µ (α) = µ′ (ξ) (α0 − α)

with some α < ξ < α0. Thus the previous result implies−µ (α) ≥ (α0 − α) /K (δ)

for all α ∈ [α1, α0), and the proof is complete. �

4. The Proofs of Theorems 2.1-2.3

Under hypothesis (H1), the phase space C = C ([−r1, 0] , R) can be decomposed

as C = P⊕Q into the closed subspaces P and Q, where P is the realified generalized

eigenspace of the generator associated with the leading eigenvalues λ = µ + iν,

λ̄ = µ − iν, and Q is the realified generalized eigenspace associated with the rest

of the spectrum of the generator. Subspace P is spanned by eµt cos (νt) |[−r1,0] and

eµt sin (νt) |[−r1,0], therefore dimP = 2. Both P and Q are invariant subspaces for

the solution segments of Eq. (1.1) in the sense that if x : [−r1,∞) → R is a solution

of Eq. (1.1) and xT ∈ P (Q) for some T ≥ 0, then xt ∈ P (Q) for all t ≥ T .

The decomposition C = P ⊕ Q defines a projection PrP onto P along Q and a

projection PrQ onto Q along P .
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For all α ∈ [α1, α0] , set functions p(·, α) : [−r1,∞) → R and q(·, α) : [−r1,∞) →
R by

p(t, α) =
∑

z=λ,λ

Res
ezt

∆(z, α)
, t ≥ −r1,

and q (t, α) = X(t, α) − p(t, α), t ≥ −r1. For simplicity we also use notations

p = p (·, α) and q = q (·, α). As

∑

z=λ,λ

Res
ezt

∆(z, α)
=

eλt

∆′
z (λ, α)

+
eλt

∆′
z

(

λ, α
) = 2Re

eλt

∆′
z (λ, α)

,

p(·, α) : [−r1,∞) → R is a solution of (1.1). Thus it follows from the definition of

X(·, α) that t = 0 is the only discontinuity of q(·, α), it is differentiable for t > r1

and satisfies

q(t, α) = q(0, α) − α

n
∑

j=1

aj

ˆ t

0

q (s − rj , α) ds for t ≥ 0.

It is a well known result (see [4] of Diekmann et al.), that pt = PrP Xt ∈ P for

all t ≥ r1, hence qt ∈ Q for all t ≥ r1. Moreover, formula

q (t, α) =
1

2π
eγt lim

T→∞

ˆ T

−T

eiωt

∆(γ + iω, α)
dω

holds for all t > 0 by the Laplace transform technique [4, 9]. In order to estimate
´∞
0

|X (t, α)| dt, we estimate
´∞
0

|p (t, α)| dt and
´∞
0

|q (t, α)| dt.

Proposition 4.1. Under hypothesis (H1)

ˆ ∞

0

|p (t, α)| dt ≤ 2νe−
µ
ν

π
(

1 + e−
µ
ν

π
)

|∆′
z (λ, α)| (µ2 + ν2)

(

1 − e
µ
ν

π
)

for all α1 ≤ α < α0. Furthermore,

lim
α→α0−

(α0 − α)

ˆ ∞

0

|p (t, α)| dt =
4 |∆′

z (iν0, α0)|
πα0

(

∑n
j=1 ajrj sin (rjν0)

)(

∑n
j=1 aj sin (rjν0)

) .

Proof. For all α ∈ [α1, α0] and t ≥ −r1,

p (t, α) = 2Re
eλt

∆′
z (λ, α)

=
2eµt

|∆′
z (λ, α)|2

{

cos (νt)

(

1 − α

n
∑

j=1

ajrje
−rjµ cos (rjν)

)

(4.1)

+ sin (νt)

(

α

n
∑

j=1

ajrje
−rjµ sin (rjν)

)}

.
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Since for all A, B ∈ R with A2 + B2 > 0 we have A cos (νt) + B sin (νt) =√
A2 + B2 sin (νt + η) with η ∈ [−π, π) satisfying

sin η =
A√

A2 + B2
and cos η =

B√
A2 + B2

,

we obtain that there exists η = η (α) ∈ [−π, π) such that

(4.2) p (t, α) = 2eµt sin (νt + η)

|∆′
z (λ, α)| , α ∈ [α1, α0] , t ≥ −r1.

Choose 0 < t1 < t2 < . . . < tn < . . . such that νtj + η = jπ for all j ≥ 1.

Then sin (νt + η) > 0 for all t ∈ (t2j , t2j+1), j ≥ 1, and sin (νt + η) < 0 for all

t ∈ (t2j−1, t2j), j ≥ 1. With this notation,

ˆ ∞

t1

|p (t, α)| dt =

∞
∑

j=1

(−1)
j
ˆ tj+1

tj

p (t, α) dt

=
2

|∆′
z (λ, α)|

∞
∑

j=1

(−1)
j
ˆ tj+1

tj

eµt sin (νt + η) dt

=
2e−

µ
ν

η

|∆′
z (λ, α)| ν

∞
∑

j=1

(−1)
j
ˆ (j+1)π

jπ

e
µ
ν

s sin sds.

Since
ˆ

e
µ
ν

s sin sds =
ν2e

µ
ν

s

µ2 + ν2

(µ

ν
sin s − cos s

)

,

it follows that
ˆ ∞

t1

|p (t, α)| dt =
2νe−

µ
ν

η
(

e
µ
ν

π + 1
)

|∆′
z (λ, α)| (µ2 + ν2)

∞
∑

j=1

e
µ
ν

jπ

=
2νe−

µ
ν

η
(

e
µ
ν

π + 1
)

|∆′
z (λ, α)| (µ2 + ν2)

e
µ
ν

π

1 − e
µ
ν

π

for all α1 ≤ α < α0.

In addition,
ˆ t1

0

|p (t, α)| dt =
2

|∆′
z (λ, α)|

ˆ t1

0

eµt |sin (νt + η)| dt

≤ 2e−
µ
ν

η

|∆′
z (λ, α)| ν

{

−
ˆ 0

−π

e
µ
ν

s sin sds +

ˆ π

0

e
µ
ν

s sin sds

}

=
2νe−

µ
ν

η
(

e
µ
ν

π + 2 + e−
µ
ν

π
)

|∆′
z (λ, α)| (µ2 + ν2)

.
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As

e
µ
ν

π + 2 + e−
µ
ν

π +
e

µ
ν

π
(

e
µ
ν

π + 1
)

1 − e
µ
ν

π
=

1 + e−
µ
ν

π

1 − e
µ
ν

π
,

the last two results with η ∈ [−π, π) give the first statement of the proposition.

It is clear that
´ t1
0

|p (t, α)| dt is bounded with an upper bound independent of

α. Hence

lim
α→α0−

(α0 − α)

ˆ ∞

0

|p (t, α)|dt = lim
α→α0−

(α0 − α)

ˆ ∞

t1

|p (t, α)|dt

=
4

|∆′
z (iν0, α)|π lim

α→α0−

(

α0 − α

−µ

)( −µ
ν π

1 − e
µ
ν

π

)

.

As limx→0− (−x) / (1 − ex) = 1 and −µ = µ′ (ξ) (α0 − α) with some ξ ∈ (α, α0),

we obtain that

lim
α→α0−

(α0 − α)

ˆ ∞

0

|p (t, α)| dt =
4

|∆′
z (iν0, α)|π limα→α0− µ′ (α)

.

Now Corollary 3.2 yields the second statement of the proposition. �

It is a well known result that for each α there exists a constant L (α) > 0 such

that |q (t, α)| < L (α) eγt for all t > 0, see [4, 9]. Next we construct an upper bound

for |q (t, α)| that is independent of α.

Proposition 4.2. If hypothesis (H1) holds, then |q (t, α)| < max {L1 (α) , L2 (α)} eγt

for all t > 0 and α ∈ [α1, α0], where L1 = L1 (α) and L2 = L2 (α) are given by

(2.1) and (2.2), respectively. Consequently,
ˆ ∞

0

|q (t, α)| dt < −max{L1 (α) , L2 (α)}
γ

for all α ∈ [α1, α0] .

Proof. Recall that for α ∈ [α1, α0] and t > 0,

q (t, α) =
eγt

2π
lim

T→∞

ˆ T

−T

eiωt

∆(γ + iω, α)
dω,

where ∆ (γ + iω, α) = γ + iω + α
∑n

j=1 aje
−rj(γ+iω). Partial integration gives that

ˆ T

−T

eiωt

∆(γ + iω, α)
dω =

[

eiωt

it

1

∆ (γ + iω, α)

]T

−T

+

ˆ T

−T

eiωt∆′
z (γ + iω, α)

t∆2 (γ + iω, α)
dω.

Since |∆(γ + iω, α)| → ∞ as |ω| → ∞ and
∣

∣eiωt/t
∣

∣ = 1/t for all t > 0, we conclude

that

q (t, α) =
eγt

2π
lim

T→∞

ˆ T

−T

eiωt∆′
z (γ + iω, α)

t∆2 (γ + iω, α)
dω for α ∈ [α1, α0] and t > 0.
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Hence

|q (t, α)| ≤ eγt

2πt

(

1 + α

n
∑

j=1

ajrje
−rjγ

)
ˆ ∞

−∞

dω

|∆(γ + iω, α)|2
.

It is clear that

|∆(γ + iω, α)| ≥ |γ + iω| − α0

n
∑

j=1

aje
−rjγ =

√

γ2 + ω2 − α0

n
∑

j=1

aje
−rjγ ≥ ω

2

if ω ≥ ω0 = 2α0

∑n
j=1 aje

−rjγ . Therefore

ˆ ∞

−∞

dω

|∆(γ + iω, α)|2
= 2

ˆ ∞

0

dω

|∆(γ + iω, α)|2

≤ 2

{

ˆ ω0

0

dω

|∆(γ + iω, α)|2
+

ˆ ∞

ω0

4

ω2
dω

}

=
8

ω0
+ 2

ˆ ω0

0

dω

|∆(γ + iω, α)|2
.

Thus for t ≥ r1 and α ∈ [α1, α0], |q (t, α)| < L1 (α) eγt, where L1 (α) is defined by

(2.1).

We also need an estimate for t ∈ (0, r1). It is clear from (1.2)-(1.3) that

|X (t, α)| ≤ 1 +

(

α0

n
∑

j=1

aj

)
ˆ t

0

|X (s, α)| ds, t ∈ [0, r1] , α ∈ [α1, α0] ,

thus |X (t)| ≤ exp
(

α0r1

∑n
j=1 aj

)

for t ∈ [0, r1] and α ∈ [α1, α0] by Gronwall’s

Lemma. From (4.2) we see that

|p (t, α)| ≤ 2

|∆′
z (λ, α)| for t ∈ (0, r1) and α ∈ [α1, α0] ,

and this upper bound is finite by (H1). Hence |q (t, α)| ≤ |X (t)| + |p (t, α)| <

L2 (α) eγt for t ∈ (0, r1) and α ∈ [α1, α0] with L2 (α) defined by (2.2). �

Proof of Theorem 2.1. Proposition 4.2 implies that
´∞
0 |q (t, α)| dt is bounded

on [α1, α0]. Therefore Theorem 2.1 follows directly from the facts that X(t, α) =

p(t, α) + q(t, α), t ≥ −r1, α ∈ [α1, α0], and that the same limit holds for

(α0 − α)

ˆ ∞

0

|p (t, α)| dt,

see Proposition 4.1. �
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Note that if n = 2, r1 = 1, r2 = 0, a1 > a2 ≥ 0 and hypothesis (H1) is satisfied,

then

a1 cos ν0 + a2 = 0 and sin2 ν0 = 1 − cos2 ν0 = 1 − a2
2

a2
1

.

Hence Theorem 2.1 implies

lim
α→α0−

(α0 − α)

ˆ ∞

0

|X (t, α)| dt =
4
√

1 − 2α0a1 cos ν0 + α2
0a

2
1

πα0 (a1 sin ν0)
2

=
4
√

1 + 2α0a2 + α2
0a

2
1

πα0 (a2
1 − a2

2)
.

Proof of Theorem 2.2. The upper bound for
´∞
0

|X (t, α)| dt in the theorem is

simply the sum of the upper bounds for
´∞
0 |p (t, α)| dt and

´∞
0 |q (t, α)| dt given by

Proposition 4.1 and Proposition 4.2, respectively. �

As we have already mentioned, the upper bound given by the Theorem 2.2 is

sharp for parameters close to the critical value α0: the upper estimate multiplied by

(α0 − α) has the same limit at α0− as function (α0 − α)
´∞
0

|X (t, α)| dt. Indeed,

as

−µ = µ′ (ξ) (α0 − α) with some ξ ∈ (α, α0) and lim
x→0−

−x

1 − ex
= 1,

we see that

lim
α→α0−

(α0 − α)

{

2νe−
µ
ν

π
(

1 + e−
µ
ν

π
)

|∆′
z (λ, α)| (µ2 + ν2)

(

1 − e
µ
ν

π
) +

max {L1, L2}
−γ

}

= lim
α→α0−

2ν2e−
µ
ν

π
(

1 + e−
µ
ν

π
)

|∆′
z (λ, α)| (µ2 + ν2)π

(

α0 − α

−µ

)( −µ
ν π

1 − e
µ
ν

π

)

=
4

|∆′
z (iν0, α)|π lim

α→α0−

1

µ′ (α)
,

which limit is the same as given by Theorem 2.1, see Corollary 3.2.

Proof of Theorem 2.3. Assume that not only hypothesis (H1) but also (H2) is

satisfied. In this case δ ≤ ν ≤ π/r1−δ for all α ∈ [α1, α0], hence sin (r1ν) > sin (r1δ)

and sin (rjν) > 0 for all α ∈ [α1, α0] and j ∈ {1, . . . , n}. In consequence,

(4.3) |∆′
z (λ, α)| ≥

∣

∣

∣

∣

α

n
∑

j=1

ajrje
−rjµ sin (rjν)

∣

∣

∣

∣

≥ α1c2 for all α ∈ [α1, α0]
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with c2 = a1r1 sin (r1δ). Also, µ > γ and

α − α0

µ
≤ K (δ) for each α ∈ [α1, α0]

by Corollary 3.3.

With Proposition 4.1, these estimates imply that

(α0 − α)

ˆ ∞

0

|p (t, α)| dt ≤
(

α0 − α

−µ

)( −µ
ν π

1 − e
µ
ν

π

)

2ν2e−
µ
ν

π
(

1 + e−
µ
ν

π
)

π |∆′
z (λ, α)| (µ2 + ν2)

≤ K (δ)

( −µ
ν π

1 − e
µ
ν

π

)

2e−
γ
δ

π
(

1 + e−
γ
δ

π
)

πα1c2

for all α1 ≤ α < α0. The function x 7→ −x/ (1 − ex) is strictly decreasing on

(−∞, 0), hence
−µ

ν π

1 − e
µ
ν

π
<

−γ
δ π

1 − e
γ
δ

π

and

(α0 − α)

ˆ ∞

0

|p (t, α)| dt ≤ K (δ)
−2γe−

γ
δ

π
(

1 + e−
γ
δ

π
)

α1c2δ
(

1 − e
γ
δ

π
)

for all α1 ≤ α < α0.

In addition,

L2 (α) = e−γr1

(

eα0r1

Pn
j=1

aj +
2

|∆′
z (λ, α)|

)

≤ e−γr1

(

eα0r1

Pn
j=1

aj +
2

α1c2

)

= L̃2

for all α1 ≤ α < α0.

With Proposition 4.2 now we deduce that for all α1 ≤ α < α0,

(α0 − α)

ˆ ∞

0

|X (t, α)|dt ≤ (α0 − α)

ˆ ∞

0

|p (t, α)| dt + (α0 − α)

ˆ ∞

0

|q (t, α)| dt

≤ K (δ)
−2γe

−γ
δ

π
(

1 + e
−γ
δ

π
)

α1c2δ
(

1 − e
γ
δ

π
) +

max
{

L̃1, L̃2

}

(α0 − α1)

−γ
,

where L̃1 = supα1≤α≤α0
L1 (α) and L1 (α) is defined by (2.1). �

5. The proof of Theorem 2.4

For Eq. (2.3) and α > 1/e the eigenvalues are simple and appear in complex

conjugate pairs
(

λj , λj

)∞
j=0

with

Reλ0 > Reλ1 > . . . > Reλj → −∞ (j → ∞)

and

Imλj ∈ (2jπ, (2j + 1)π) for all j ≥ 0.
EJQTDE, 2011 No. 36, p. 14



In coherence with the previous sections, λ = µ + iν and λ = µ − iν denote the

leading eigenvalues λ0 and λ0. As they are roots of the characteristic function,

(5.1) µ + αe−µ cos ν = 0 and ν − αe−µ sin ν = 0.

In [10] Krisztin has verified that for α ∈ [3/2, π/2),

−1

2
< µ < 0, 1.54 < ν <

π

2
, |λ| > 1, lim

α→π
2
−

µ = 0 and lim
α→π

2
−

ν =
π

2
,

moreover the real parts of the remaining eigenvalues are smaller than −1.

With equations (5.1) Proposition 3.1 implies

µ′ (α) =
α (e−µ sin ν)

2 − (1 − αe−µ cos ν) e−µ cos ν

(1 − αe−µ cos ν)
2

+ (αe−µ sin ν)
2

=
1

α

ν2 + (1 + µ)µ

(1 + µ)
2

+ ν2
, α ∈ [3/2, π/2] .(5.2)

For all α ∈ [3/2, π/2], ν2 > 1 and −0.25 < (1 + µ)µ ≤ 0, hence 0 < µ′ (α) < 1/α.

As −µ (α) = µ′ (ξ) (π/2 − α) for all α ∈ [3/2, π/2) with some ξ ∈ (α, π/2), we

obtain that

−µ (α) <
1

ξ

(

π

2
− 3

2

)

<
2

3

(

π

2
− 3

2

)

< 0.05, α ∈ [3/2, π/2) .

We mention that numerical approximation yields µ > −0.033 for all α ∈ [3/2, π/2),

thus conditions (H1) and (H2) hold with γ = −0.1, δ = 1.54 and K = 15. According

to Theorem 2.3,
´∞
0

|X (t, α)| dt ≤ 29.

In this section we give a better estimate without using any numerical approxi-

mation.

Relation (4.1) and equations (5.1) imply that

(5.3) |∆′
z (λ, α)| =

√

(1 + µ)
2

+ ν2

and

(5.4) p (t, α) =
2eµt

(1 + µ)
2
+ ν2

[(1 + µ) cos (νt) + ν sin (νt)]

for t ≥ −1 and α ∈ [3/2, π/2], see also [10].

Proposition 5.1. For each α ∈ [3/2, π/2),

(π

2
− α

)

ˆ ∞

0

|p (t, α)| dt ≤ 1.93.

Proof. Proposition 4.1 and relation (5.3) implies that for all α ∈ [3/2, π/2) we have
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(π

2
− α

)

ˆ ∞

0

|p (t, α)|dt ≤ 2e−
µ
ν

π
(

1 + e−
µ
ν

π
)

π |∆′
z (λ, α)|

(

ν2

µ2 + ν2

)( −µ
ν π

1 − e
µ
ν

π

)( π
2 − α

−µ

)

≤ 2e−
µ
ν

π
(

1 + e−
µ
ν

π
)

π

√

(1 + µ)
2

+ ν2

( −µ
ν π

1 − e
µ
ν

π

)

1

µ′ (ξ)

with some ξ ∈ (α, π/2).

As µ ∈ [−0.05, 0] and ν ∈ [1, 54, π/2] for each α ∈ [3/2, π/2), it follows from

result (5.2) that

0 <
1

µ′ (α)
≤ α max

(µ,ν)∈[−0.05,0]×[1,54,π/2]

(

1 +
1 + µ

ν2 + (1 + µ)µ

)

, α ∈
[

3

2
,
π

2

)

.

The expression on the right hand side is strictly decreasing in ν ∈ [1, 54, π/2]. In

addition, as

∂

∂µ

(

1 + µ

ν2 + (1 + µ)µ

)

=
ν2 − (µ + 1)

2

(ν2 + (1 + µ)µ)
2 > 0

for (µ, ν) ∈ [−0.05, 0] × [1, 54, π/2], it is strictly increasing in µ ∈ [−0.05, 0]. We

deduce that
1

µ′ (α)
≤ π

2

(

1 +
1

1.542

)

for all α ∈
[

3

2
,
π

2

)

.

Recall that the function x 7→ −x/ (1 − ex) is strictly decreasing on (−∞, 0). Hence

(π

2
− α

)

ˆ ∞

0

|p (t, α)| dt ≤
2e

0.05
1.54

π
(

1 + e
0.05
1.54

π
)

π
√

0.952 + 1.542

( 0.05
1.54π

1 − e−
0.05
1.54

π

)

π

2

(

1 +
1

1.542

)

for all α ∈ [3/2, π/2), and this upper bound is smaller than 1.93. �

In order to get a better estimate for
´∞
0

|q (t, α)| dt, we apply an approach dif-

ferent from that of Proposition 4.2. The fact that there is only one delay is crucial

here.

We use the discrete Lyapunov functional V of Mallet-Paret and Sell introduced

in [12]. V (ϕ) counts the sign changes of ϕ ∈ C \ {0} if it is an odd number or

infinity, otherwise V (ϕ) is the number of sign changes plus one. Then V (ϕ) ∈
{1, 3, . . .} ∪ {∞}. The map t 7→ V (xt) is monotone nonincreasing along solutions

of Eq. (2.3). In addition, V is upper semi-continuous: for each ϕ ∈ C \ {0} and

(ϕn)
∞
0 ⊂ C \ {0} with ϕn → ϕ as n → ∞, V (ϕ) ≤ lim infn→∞ V (ϕn).

Proposition 5.2. For each α ∈ [3/2, π/2] and t ≥ 1, V (qt) ≥ 3, that is q has at

least two sign changes on each subinterval [t − 1, t] of [0,∞).

Proof. Suppose for contradiction that V (qs) = 1 for some s ≥ 1. Then the mono-

tone property of V gives that V (qt) = 1 for all t ≥ s. By a result of Cao [3] (see

also Arino [1]) and by the Gronwall-Bellmann inequality there exist C1 > 0, C2 > 0
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and t0 such that

(5.5) C1 ‖qt‖ ≤ ‖qt+1‖ ≤ C2 ‖qt‖ for all t > t0.

For n ≥ 1 define yn : [−n,∞) → R by yn (t) = q (n + t) / ‖qn‖. Then

ẏn (t) = −αyn (t − 1) for t > −n + 1,

and

C1 ‖yn
t ‖ ≤

∥

∥yn
t+1

∥

∥ ≤ C2 ‖yn
t ‖ if n + t > t0.

The Arzelà−Ascoli Theorem can be applied to find a subsequence (ynk)
∞
k=1 and a

C1-function y : R → R so that ynk (t) → y (t), ẏnk (t) → y (t) as k → ∞ uniformly

on compact subintervals of R, moreover

ẏ (t) = −αy (t − 1) for t ∈ R.

As Q is closed, y0 = limk→∞ ynk

0 ∈ Q with ‖y0‖ = 1. In addition, C1 ‖yt‖ ≤
‖yt+1‖ ≤ C2 ‖yt‖ for all t ∈ R. Hence for all n ∈ {0, 1, 2, . . .},

‖y−n‖ ≤ C−1
1 ‖y−n+1‖ ≤ C−2

1 ‖y−n+2‖ ≤ . . . ≤ C−n
1 ‖y0‖ ≤

(

1 + C−1
1

)n ‖y0‖ .

Let t ≤ 0 be arbitrary and choose integer n so that − (n + 1) < t ≤ −n holds.

Then

‖yt‖ ≤
∥

∥y−(n+1)

∥

∥+ ‖y−n‖ ≤
(

1 + C−1
1

)

‖y−n‖ ≤
(

1 + C−1
1

)n+1 ‖y0‖ .

As
(

1 + C−1
1

)n
= en ln(1+C−1

1 ) ≤ e−t ln(1+C−1

1 ),

we conclude that ‖yt‖ ≤ Ae−Bt for all t ≤ 0 with A =
(

1 + C−1
1

)

‖y0‖ > 0 and

B = ln
(

1 + C−1
1

)

> 0.

Choose c > B so that Rez 6= −c for all roots of the characteristic function. The

space C has the decomposition C = P̂ ⊕ Q̂, where P̂ is the realified generalized

eigenspace of the generator of the semigroup (T (t))t≥0 associated with the eigenval-

ues having real parts greater than −c, and Q̂ is the realified generalized eigenspace

associated with the rest of the spectrum. By [9], there is M > 0 so that

‖T (t)ϕ‖ ≤ Me−ct ‖ϕ‖ for all t ≥ 0 and ϕ ∈ Q̂.
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Let t ≤ 0 and σ ≤ t. Then
∥

∥

∥
PrQ̂yt

∥

∥

∥
=
∥

∥

∥
T (t − σ)PrQ̂yσ

∥

∥

∥

≤ Me−c(t−σ)
∥

∥

∥
PrQ̂yσ

∥

∥

∥

≤ M
∥

∥

∥
PrQ̂

∥

∥

∥
e−c(t−σ) ‖yσ‖

≤ M
∥

∥

∥
PrQ̂

∥

∥

∥
e−c(t−σ)Ae−Bσ

= M
∥

∥

∥
PrQ̂

∥

∥

∥
e−ctAe−(B−c)σ → 0

as σ → −∞. It follows that PrQ̂yt = 0 and yt ∈ P̂ for all t ≤ 0. If subspace P̂

is trivial, i.e. there are no eigenvalues with real parts greater than −c, then the

previous result implies y0 = 0, a contradiction to ‖y0‖ = 1. Otherwise

y (t) =
n
∑

j=0

Aje
Reλj t cos (Imλjt + Bj) , t ≤ 0,

for some real numbers A0, B0, . . . , An, Bn and integer N > 0 so that

λ0 = λ, λ0 = λ, λ1, λ1, . . . , λN , λN

are the eigenvalues with real parts greater than −c. The upper semi-continuity of

V and V (qt) = 1, t ≥ s, combined yield V (yt) = 1 for all t ∈ R. As Imλj ∈
(2jπ, (2j + 1)π), j ≥ 0, it follows that A1 = A2 = . . . = AN = 0. This means that

yt ∈ P for all t ≤ 0. In particular y0 ∈ P , a contradiction to y0 ∈ Q \ {0}. This

completes the proof. �

We can use this result to give an explicit estimate for the growth of q on [−1,∞).

In the next proposition ⌊r⌋ denotes the integer part of the positive real number r.

Proposition 5.3. For each α ∈ [3/2, π/2] and t ≥ −1,

|q (t)| ≤
(α

2

)k

q̄, where q̄ = sup
−1≤s≤ 1

2

|q (s)| and k =

⌊

2

3
(t + 1)

⌋

.

Proof. The statement is clearly true for −1 ≤ t < 1/2.

It is enough to show that if

t0 ≥ 1

2
and sup

s∈[t0− 3
2
,t0]

|q (s)| ≤ m for some m > 0,

then

|q (t)| ≤ α

2
m for all t ∈

[

t0, t0 +
3

2

]

,

so we confirm this latter assertion.
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For all t0 ≥ 1/2 and t ∈ [t0, t0 + 3/2], there exists z ∈ [t − 1/2, t + 1/2] with

q (z) = 0, see Proposition 5.2. Hence for t ∈ [t0, t0 + 3/2],

|q (t)| = |q (t) − q (z)| = α

∣

∣

∣

∣

ˆ t−1

z−1

q (s) ds

∣

∣

∣

∣

≤ α |t − z| sup
s∈[t− 3

2
,t− 1

2 ]
|q (s)|

≤ α

2
sup

s∈[t− 3
2

,t− 1
2 ]
|q (s)| .

It follows that

sup
t∈[t0,t0+

1
2 ]
|q (t)| ≤ α

2
m,

sup
t∈[t0+ 1

2
,t0+1]

|q (t)| ≤ α

2
sup

t∈[t0−1,t0+
1
2 ]
|q (t)| ≤ α

2
max

{

m,
α

2
m
}

=
α

2
m

and

sup
t∈[t0+1,t0+ 3

2 ]
|q (t)| ≤ α

2
sup

t∈[t0− 1
2
,t0+1]

|q (t)| ≤ α

2
max

{

m,
α

2
m
}

=
α

2
m.

�

The previous statement shows we need an upper bound for q̄.

Proposition 5.4. For all α ∈ [3/2, π/2], q̄ = sup−1≤s≤1/2 |q (s)| ≤ 1.

Proof. Set α ∈ [3/2, π/2] arbitrarily. Differentiating (5.4) we get

p′ (t) =
2eµt

(1 + µ)
2
+ ν2

[(

µ + µ2 + ν2
)

cos (νt) − ν sin (νt)
]

=
2eµt

(1 + µ)
2
+ ν2

ν cos (νt)

[

µ + µ2 + ν2

ν
− tan (νt)

]

.

Note that as 1.54 < ν ≤ π/2 and −0.05 < µ ≤ 0, we have cos (νt) > 0 for all

t ∈ [−1, π/ (2ν)), and in addition µ + µ2 + ν2 > 0. It follows that there exists

t0 ∈ (0, π/ (2ν)) such that

tan (νt0) =
µ + µ2 + ν2

ν
,

p increases on [−1, t0] and decreases on [t0, π/ (2ν)).

Clearly,

p (−1) =
2e−µ

(1 + µ)
2

+ ν2
[(1 + µ) cos ν − ν sin ν] < 0
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as (1 + µ) cos ν < 1 and ν sin ν > 1.54 · sin (1.54) > 1 for µ ∈ (−0.05, 0] and

ν ∈ (1.54, π/2]. Therefore

|p (−1)| ≤ 2e−µν

(1 + µ)
2
+ ν2

.

As the right hand side is decreasing in ν for ν ∈ (1.54, π/2] and it is decreasing in

µ for µ ∈ (−0.05, 0], we deduce that

|p (−1)| ≤ e0.051.54

0.952 + 1.542
< 1.

Also we find that

0 < p (0) =
2 (1 + µ)

(1 + µ)2 + ν2
≤ 2

1 + ν2
< 1,

0 < p(1) =
2eµ

(1 + µ)
2
+ ν2

[(1 + µ) cos ν + ν sin ν] ,

≤ 2ν

(1 + µ)
2
+ ν2

≤ π

0.952 + 1.542
< 1

and

p(t0) =
2eµt0

(1 + µ)
2
+ ν2

[

(1 + µ) +
µ + µ2 + ν2

ν
ν

]

cos (νt0) = 2eµt0 cos (νt0) ≤ 2.

Clearly, p (t) ∈ (−1, 1) for all t ∈ [−1, 0]. In case t0 > 1 one has p (t) ∈ (0, 1) for

all t ∈ [0, 1]. Otherwise p (t) ∈ (0, 2) for all t ∈ [0, 1]. Using that q (t) = −p (t) for

−1 ≤ t < 0 and q (t) = 1 − p (t) for 0 ≤ t ≤ 1, we obtain that q̄ ≤ 1. �

Now we are able to estimate
´∞
0 |q (t, α)| dt. The bound given by the subsequent

proposition is substantially better than bound 3e2 presented in paper [10] and the

bound given by Proposition 4.2.

Proposition 5.5. For each α ∈ [3/2, π/2],
ˆ ∞

0

|q (t, α)|dt ≤ 2 + π

4 − π
.

Proof. By Propositions 5.3 and 5.4, sup−1≤s≤1/2 |q (s, α)| ≤ 1 for all α ∈ [3/2, π/2],

and |q (t, α)| ≤ (π/4)k for all α ∈ [3/2, π/2] and t ≥ 0, where k is the greatest

integer with k ≤ 2 (t + 1) /3. Thus
ˆ ∞

0

|q (t, α)| dt ≤ 1

2
+

3

2

{

π

4
+
(π

4

)2

+
(π

4

)3

+ . . .

}

=
2 + π

4 − π
.

�
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Proof of Theorem 2.4. The statement of the theorem follows directly from Propo-

sition 5.1 and Proposition 5.5. �

6. An example with two delays

Consider the linear equation

ẋ (t) = −α (x (t − 1) + x (t − 2)) with 0 < α ≤ π

3
√

3
.

In this case the characteristic function is

(6.1) ∆ (z, α) = z + α
(

e−z + e−2z
)

.

For the eigenvalues z = u + iv,

(6.2) u + α
(

e−u cos v + e−2u cos (2v)
)

= 0

and

(6.3) v − α
(

e−u sin v + e−2u sin (2v)
)

= 0.

There are purely imaginary eigenvalues ±iπ/3 for α = π/
(

3
√

3
)

.

We examine the location of the eigenvalues on the complex plane for 0 < α ≤
π/
(

3
√

3
)

.

Suppose 0 < α ≤ π/
(

3
√

3
)

and z = u + iv is an eigenvalue with u ≤ 0 and

|v| ≥ π. Then it follows from (6.3) that

π ≤ |v| ≤ π

3
√

3

(

e−u |sin v| + e−2u |sin (2v)|
)

≤ 2π

3
√

3
e−2u,

that is

u ≤ −1

2
ln

3
√

3

2
< −0.4.

It is also known that there is exactly one pair of eigenvalues
(

λ, λ
)

in the subset

{z ∈ C : |Imz| < π} of the complex plane, see [13]. Numerical approximation gives

that for each α ∈
[

0.58, π/
(

3
√

3
))

, there is an eigenvalue λ = λ (α) in the rectangle

{z ∈ C : −0.02 < Rez < 0 and 1.03 ≤ Imz ≤ 1.05} ,

see Fig. 1.

Hence hypotheses (H1) and (H2) are satisfied with α0 = π/
(

3
√

3
)

, α1 = 0.58,

γ = −0.04, δ = .52 and K = 22. Theorem 2.1 now gives that

lim
α→ π

3
√

3
−

(

π

3
√

3
− α

)
ˆ ∞

0

|X (t, α)| dt =
8

√

(

1 + π
6
√

3

)2

+ π2

4
√

3π2
≈ 0.95.
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0.58, π/
“

3
√

3
”i

∋ α 7→ λ (α) ∈ C

In addition, Theorem 2.3 can be applied, and we get
(

π

3
√

3
− α

)
ˆ ∞

0

|X (t, α)| dt ≤ 55

for all 0.58 ≤ α < π/
(

3
√

3
)

by Theorem 2.3.

7. Applications

In this section, let n ≥ 1 be an integer, r1, . . . , rn be real numbers with r1 >

r2 > . . . > rn ≥ 0, a1, . . . , an be positive numbers, α0 > α1 > 0. In case n = 1, we

assume r1 > 0.

In papers [7, 8] Győri, Hartung and Turi has studied linear equations with per-

turbed time lags in the form

(7.1) ẋ (t) = −
n
∑

j=1

ajx (t − rj − ηj (t)) ,

where ηj : [0,∞) → [0,∞) are piecewise continuous functions for all j ∈ {1, . . . , n}.
Suppose that the 0 solution of Eq. (7.1) with ηj ≡ 0, j ∈ {1, . . . , n}, is asymptot-

ically stable. Then using estimates on the integral of the fundamental solution,

they gave sufficient conditions on ηj to guarantee the asymptotic stability of the 0

solution of Eq. (7.1). We cite the following result as an example: if

n
∑

j=1

aj lim sup
t→∞

|ηj (t)| <
1

(

∑n
j=1 aj

)

´∞
0 |X (t)| dt

,

then the trivial solution of Eq. (7.1) is asymptotically stable.
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We present two more applications in connection with the nonlinear equation

(7.2) ẏ (t) = −α

n
∑

j=1

ajy (t − rj) + f (yt, α)

with parameter α ∈ [α1, α0) and a continuously differentiable nonlinear function

f : C × [α1, α0) → R. We assume the following hypothesis:

(H3): To each α ∈ [α1, α0) there correspond positive constants k1 = k1 (α)

and δ1 = δ1 (α) such that

|f (ϕ, α)| ≤ k1 (α) ‖ϕ‖2 for all α ∈ [α1, α0) and ϕ ∈ C with ‖ϕ‖ < δ1 (α) .

By the variation-of-constants formula, the solution yϕ : [−1,∞) → R of Eq. (7.2)

with yϕ
0 = ϕ satisfies the equation

(7.3) yϕ (t) = xϕ (t) +

ˆ t

0

X (t − s, α) f (ys, α) ds for t ≥ 0,

where xϕ : [−1,∞) → R is the solution of the linear variational equation (1.1) with

initial segment ϕ [4, 9]. Using this formula and estimates for the integral of the

fundamental solution, the existence of periodic solutions of small amplitude can be

excluded for Eq. (7.2).

Theorem 7.1. Assume that (H1) holds for the linear variational equation (1.1),

and f : R × [α1, α0) → R satisfies (H3). If α ∈ [α1, α0) and p : R → R is a

nonconstant periodic solution of Eq. (7.2), then

max
t∈R

|p (t)| ≥ min

{

1

k1 (α)
´∞
0

|X (t, α)| dt
, δ1 (α)

}

.

Proof. Fix α ∈ [α1, α0) and let p : R → R be a periodic solution of Eq. (7.2) with

A = max
t∈R

|p (t)| < min

{

1

k1

´∞
0

|X (t, α)| dt
, δ1

}

.

Then clearly |f (pt, α)| ≤ k1 ‖pt‖2 ≤ k1A
2 for all t ∈ R.

By the periodicity of p, there is a sequence (tn)
∞
0 in [0,∞) so that tn → ∞ as

n → ∞ and |ptn
| = A for all n ≥ 0. Then the variation-of-constants formula (7.3)

yields

A = |p (tn)| ≤ |xp0 (tn)| + k1A
2

ˆ tn

0

|X (tn − s, α)| ds for all n ≥ 0.

Hypothesis (H1) implies limt→∞ xp0 (t) = 0 [9]. Letting n → ∞, we obtain that

A ≤ k1A
2

ˆ ∞

0

|X (s, α)| ds.
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Hence

A ≥ 1

k1

´∞
0 |X (t, α)| dt

,

a contradiction to our initial assumption. �

For each ϕ ∈ C, solution xϕ : [−1,∞) → R of Eq. (1.1) can be expressed in form

(7.4) xϕ (t) = X (t, α)ϕ (0) − α

n
∑

j=0

aj

ˆ 0

−rj

X (t − rj − s, α)ϕ (s) ds for t ≥ 0,

see [9]. Hence using equality (4.2) and Proposition 4.2, one can determine explicit

constants M = M (α) ≥ 1 and b = b (α) > 0 such that ‖xϕ
t ‖ ≤ M ‖ϕ‖ e−bt for each

t ≥ 0.

As a second application, we estimate the stability region of the 0 solution of

Eq. (7.2) in phase space C.

Theorem 7.2. Assume that (H1) holds for the linear variational equation (1.1),

and f : R× [α1, α0) → R satisfies (H3). In addition, suppose that δ1 (α) in (H3) is

chosen so small that

2k1 (α) δ1 (α)

ˆ ∞

0

|X (t, α)| dt < 1 for all α ∈ [α1, α0) .

If α ∈ [α1, α0) and ϕ ∈ C with ‖ϕ‖ ≤ δ1/ (2M (α)), then for the solution yϕ :

[−1,∞) → R of Eq. (7.2) with initial function ϕ, limt→∞ yϕ (t) = 0.

Proof. Set α ∈ [α1, α0) and ϕ ∈ C with ‖ϕ‖ < δ1/ (2M).

First we claim that |yϕ (t)| < δ1 for all t ≥ −1. Suppose for contradiction that

there is a minimal t0 > 0 with |yϕ (t0)| = δ1. Then the variation-of-constants

formula (7.3) gives that

δ1 = |yϕ (t0)| ≤ |xϕ (t0)| +
ˆ t0

0

|X (t0 − s, α) f (ys, α)|ds

≤ M ‖ϕ‖ e−bt + k1δ
2
1

ˆ t0

0

|X (t0 − s, α)| ds,

where xϕ : [−1,∞) → R is the solution of the linear variational equation (1.1) with

xϕ
0 = ϕ. It follows that

δ1

(

1 − k1δ1

ˆ ∞

0

|X (t, α)| dt

)

≤ M ‖ϕ‖ e−bt ≤ M ‖ϕ‖ .

As 1 − k1δ1

´∞
0 |X (t, α)| dt > 1/2, we obtain that ‖ϕ‖ > δ1/ (2M), which contra-

dicts our initial assumption. So |yϕ (t)| < δ1 for all t ≥ −1.

Set A = lim supt→∞ |yϕ (t)|. The previous step implies that A ∈ [0, δ1]. We have

to show that A = 0.
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Suppose for contradiction that A = δ1. Choose a sequence (tn)
∞
0 in [0,∞) so

that tn → ∞ and |yϕ (tn)| → δ1 as n → ∞. Then by the variation-of-constants

formula (7.3),

|yϕ (tn)| ≤ |xϕ (tn)| + k1δ
2
1

ˆ tn

0

|X (tn − s, α)| ds for all n ≥ 0.

Clearly, limt→∞ xϕ (t) = 0. Letting n → ∞, we obtain that

δ1 ≤ k1δ
2
1

ˆ ∞

0

|X (s, α)| ds,

that is 1 ≤ k1δ1

´∞
0

|X (s, α)| ds, which contradicts the choice of δ1. So A < δ1.

Suppose that A ∈ (0, δ1). Set ε ∈
(

0,
√

2 − 1
)

so small that inequality (1 + ε)A <

δ1 also holds. As before, there exists a sequence (tn)
∞
0 in [0,∞) so that tn → ∞ and

|yϕ (tn)| → A as n → ∞. In addition, there is a threshold number T > 0 so that

yϕ (t) < (1 + ε)A for t ≥ T−1. Then hypothesis (H3) implies that |f (yϕ
t , α)| ≤ k1δ

2
1

for all 0 ≤ t < T , and |f (yϕ
t , α)| ≤ k1 (1 + ε)

2
A2 for all t ≥ T . By the variation-

of-constants formula,

|yϕ (tn)| ≤ |xϕ (tn)| + k1δ
2
1

ˆ T

0

|X (tn − s, α)| ds +

k1 (1 + ε)
2
A2

ˆ tn

T

|X (tn − s, α)| ds

= |xϕ (tn)| + k1δ
2
1

ˆ tn

tn−T

|X (s, α)| ds + k1 (1 + ε)
2
A2

ˆ tn−T

0

|X (s, α)| ds

for all sufficiently large n. Since
´∞
0

|X (s, α)| ds < ∞ for all α ∈ [α1, α0), we see

that
´ tn

tn−T |X (s, α)|ds → 0 as n → ∞. So letting n → ∞, we conclude that

A ≤ k1 (1 + ε)
2
A2

ˆ ∞

0

|X (s, α)| ds,

that is

A ≥ 1

k1 (1 + ε)2
´∞
0

|X (t, α)| dt
>

2

(1 + ε)2
δ1.

This result contradicts the fact that A < δ1.

It follows that A = lim supt→∞ |yϕ (t)| = 0, and the proof is complete. �

As an example, consider Wright’s equation

(7.5) ẏ (t) = −α
(

ey(t−1) − 1
)

with parameter α ∈ [3/2, π/2). Now the linear variational equation along the 0

solution is Eq. (2.3). For the fundamental solution X of Eq. (2.3), Theorem 2.4
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gives that

(π/2 − α)

ˆ ∞

0

|X (t, α)| dt ≤ 2.36

for all α ∈ [3/2, π/2) .

Eq. (7.5) can be written in form (7.2) with

f : C ×
[

3

2
,
π

2

)

∋ (ϕ, α) 7→ −α
(

eϕ(−1) − 1 − ϕ (−1)
)

∈ R.

For α ∈ [3/2, π/2) and ϕ ∈ C with ‖ϕ‖ < δ1 < 3,

|f (ϕ, α)| ≤ α
∞
∑

k=2

‖ϕ‖k

k!
≤ α

‖ϕ‖2

2

∞
∑

k=0

(

δ1

3

)k

≤ π

4

3

3 − δ1
‖ϕ‖2 .

So (H3) holds with

δ1 (α) ∈ (0, 3) and k1 (α) ≥ π

4

3

3 − δ1
.

Set δ1 (α) ≡ 0.04 and k1 (α) ≡ 0.8 for example. Then it follows from Theorem 7.1

that whenever p : R → R is a nonconstant periodic solution of Eq. (7.2) for some

α ∈ [3/2, π/2), then

max
t∈R

|p (t)| ≥ 0.52
(π

2
− α

)

.

We note that it is verified in [2] that

max
t∈R

p (t) ≥ 2

π

(π

2
− α

)

≈ 0.64
(π

2
− α

)

.

To apply Theorem 7.2, we decrease δ1 (α) so that

2k1 (α) δ1 (α)

ˆ ∞

0

|X (t, α)| dt ≤ 2 · 0.8 · δ1 (α)
2.36

π
2 − α

< 1

for all α ∈ [3/2, π/2); we set δ1 (α) = 0.26 (π/2 − α) for each α ∈ [3/2, π/2).

At last we need constants M (α) > 1 and b (α) > 0 such that for the solution

xϕ : [−1,∞) → R of Eq. (2.3), ‖xϕ
t ‖ ≤ M (α) ‖ϕ‖ e−b(α)t for all t ≥ 0.

Recall that for α ∈ [3/2, π/2),

−0.05 < µ < 0 and 1.54 < ν <
π

2
,

where µ and ν are the real and imaginary parts of the leading eigenvalue λ = λ (α)

in the spectrum of the generator of the semigroup defined by the solution operators

of Eq.(2.3). Hence by (5.4),

|p (t, α)| ≤ 2 (1 + µ + ν)

(1 + µ)
2

+ ν2
eµt ≤ 2

(

1 + π
2

)

0.952 + 1.542
eµt < 1.58eµt
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for all α ∈ [3/2, π/2) and t ≥ −1. In addition, Proposition 5.3 and Proposition 5.4

imply

|q (t, α)| ≤
(π

4

)⌊ 2
3
(t+1)⌋

≤
(π

4

)
2
3
t− 1

3

=
3

√

4

π
e

2
3

ln(π
4 )·t ≤ 1.09e−0.16t

for all α ∈ [3/2, π/2) and t ≥ 0. It follows that

|X (t, α)| ≤ |p (t, α)| + |q (t, α)| ≤ (1.58 + 1.09)eµt = 2.67eµt

for all α ∈ [3/2, π/2) and t ≥ 0. Recall that X (t, α) = 0 for all t ∈ [−1, 0), hence

the previous estimate can be used for all t ≥ −1.

According to formula (7.4),

|xϕ (t)| ≤ |X (t, α)| |ϕ (0)| + α

ˆ 0

−1

|X (t − 1 − s, α)| |ϕ (s)| ds

≤ 2.67
(

1 +
π

2
e0.05

)

‖ϕ‖ eµt ≤ 7.08 ‖ϕ‖ eµt

for each t ≥ 0. Therefore we may set M (α) = 7.08 and b (α) = −µ (α) for

α ∈ [3/2, π/2).

According to Theorem 7.2, if ϕ ∈ C with ‖ϕ‖ ≤ 0.018 (π/2 − α) , then for the

solution yϕ : [−1,∞) → R of Eq. (7.2) with initial function ϕ, limt→∞ yϕ (t) = 0.
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