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Observation problems posed for the Klein-Gordon equation
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Abstract. Transversal vibrations u = u(x,t) of a string of length [ with fixed ends

are considered, where u is governed by the Klein-Gordon equation
U (7, 1) = a*Ugy (2, 1) + cu(a, t), (x,t) €[0,]] xR, a>0, c<O.

Sufficient conditions are obtained that guarantee the solvability of each of four
observation problems with given state functions f, ¢ at two distinct time instants
—00 < t; < ty < 00. The essential conditions are the following: smoothness of f, ¢
as elements of a corresponding subspace D**%(0,1) (introduced in [2]) of a Sobolev
space H**%(0,1), where i = 1,2 depending on the type of the observation problem, and
the representability of ¢ — ¢; as a rational multiple of —. The reconstruction of the
unknown initial data (u(z,0), u¢(x,0)) as the elements of %SH(O, [) x D*(0,1) are given
by means of the method of Fourier expansions.
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1. BACKGROUND AND KNOWN RESULTS

In control theory - which is closely related to the subject of this paper - numer-
ous monographies and articles dealt with the accessability of a final state (position
and speed) of oscillations (in particular string oscillations) in the time interval
0 <t <T < oo; see for example, [1] - [10]. Although, only the short communica-
tion [11] dealt with observability of the string oscillations on the interval 0 < x <,
and it treated just the case when the observation instants ¢; and ¢, are small, namely
0 <ty <ty < —, where a is the speed of the wave propagation. Furthermore, it is
assumed in [11] %hat the initial data are known on some subinterval [hy, hs] C [0,1].
We reconstruate the initial data in each of the four observation problems related to
the Klein-Gordon equation for arbitrary large ¢; and ¢;. Our preassumptions are only
that (to — tl)% is rational and the given state functions are smooth enough. The cases

f,g € D® with arbitrary s € R are also admitted.
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Let Q = {(z,t) : 0 <z <, t € R}. Consider the problem (at first in the classical
sense) of the vibrating [0, /] string with fixed ends when there is an elastic withdrawing
force proportional to the transversal deflection w(z,t) of the point x of the string at
the instant denoted by ¢. This phenomenon is described by the Klein-Gordon equation

as follows:

(1) un(z,t) = a’ug(2,t) + cu(z, t), (,t) €Q, a,c€R, 0<a, 0>c,
with the initial conditions

(2) u(z,0) = p(2), w(@,0) = (), O0<z<l,

and the homogeneous boundary conditions of the first kind

(3) u(0,t) =0, u(l,t) =0, teR.

We recall, that the function u is said to be a classical solution of this problem, if
u € C%(Q) and conditions (1) — (3) are satisfied.

It is well known that if

(4) veC0,1],9€C0,1] and »(0) =(l) = ¢"(0) = " (1) = ¥(0) = ¥(1) =0,

then the Fourier method gives the classical solution u of the problem (1) — (3) posed

for the Klein-Gordon equation, which is of the following form:

(5) u(z,t) = Z [, cos (twy,) + B sin (twy,)] sin(%x), (z,t) € Q,
n=1
where
(6) = [(Fa?—c,  neN,
2 ! . M
(1) e(@) =u(z,0) Zan sin(—1) = a, = 7 / p(z) sm(T:c)da:, n €N,
0

00 l
(8) ¥(z) = ur(x,0) = ;wn B sin(nTﬂa:) = 0, = win%/O () sin(nTﬂx)d:c, n € N.

The uniqueness of the solution is a consequence of the law of conservation of energy.

To have a wider class of functions for ¢, and f, g, we shall consider certain gener-

alized solutions of the problem (1)—(3). Namely, by using the suggestions of the referee,
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we introduce the spaces D*(0,1), s € R mentioned in the abstract (see [2]). Given an

nm

arbitrary real number s, on the linear span D of the functions sin *;

ch sin(Ta:) = <Z n2s|cn|2> .
n=1 s n=1

Completing D with respect to this norm, we obtain a Hilbert space D?. One can readily

r,n=12..,

consider the following Euclidean norm:

verify that for s > 0, D* is a closed subspace of the Sobolev space H*(0,[), namely
D* = {uec H0,1) : u®(0)=u® (1) =0, i=0,1,...,[(s—1)/2]}.

If we identify D° = L?(0,1) with its dual, then D™ is the dual space of D*. Some
of the results of [2] (see Section 1.1-1.3) and [10] say that for arbitrary s € R with
(p,1) € D**1 x D* the generalized mixed problem (1) — (3) has a unique solution u
satisfying

u € C(R, D**H N CHR, D*) N C*(R, D)

given by the Fourier series (5) with coefficients «,,, (3, defined by (7) and (8). Here and

below all Fourier expansions for ¢, 1, f, g and u are understood in the spaces D*(0,1).

2. NEW RESULTS

Definition 1. The observation problem posed for the Klein-Gordon equation is the
following. The initial functions ¢, 1 are unknown, but such functions f(z) and g(z)

are given for which one of the following four conditions holds:

(9) u(@,ty) = f(2), ulxz,t) = g(z),  0<w<i;
(10) ue(x, th) = f(x), u(z,ta) = g(z),  0<z <
(11) u(@,ty) = f(2), w(z,ta) = g(z), 0<z <
(12) u(w,t) = f(z), w(z,ty) = g(z), 0<z<l

Here w is the solution of the generalized problem (1) — (3), and the given functions
f, g are said to be the partial state of the string at distinct time instants ¢; and o,

—00 < t; < ty < 0o. Now the problem is to find the initial functions ¢, ¢ in terms of

f(x), g(x).
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Theorem 1. Suppose that

(13) fe Dt ge D2 where s € R,

2
(14) ty—t, = 22
q a

where p, q are positive integers and they are relative primes. In addition, suppose that

(15) sin ((t2 — ) (”l—”a)2 - c) £0, VneN.

Then the observation problem (1) — (3) under condition (9) has a unique solution for
(p,9) € DT x D*. They are represented by their Fourier expansions in the proof

below.

Theorem 2. Suppose that
(16) fe Dt ge D2 where s € R,

condition (14) holds and

nm

(17) cos ((t2 —t1)y/(Fa)? - c) £0, VneN.

Then the observation problem (1) — (3) under condition (10) has a unique solution for
(p,v) € D*tL x D*. They are represented by their Fourier expansions in the proof

below.

Theorem 3. Suppose that
(18) fe D2 ge D, where s € R,

and conditions (14) and (17) hold. Then the observation problem (1) — (3) under con-
dition (11) has a unique solution for (p,v) € D*T1 x D*. They are represented by their

Fourier expansions in the proof below.
Theorem 4. Suppose that
(19) fe Dt ge D where s € R,

and conditions (14) and (15) hold. Then the observation problem (1) — (3) under con-
dition (12) has a unique solution for (p,v) € D*T1 x D*. They are represented by their

Fourier expansions in the proof below.
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3. AUXILTARY RESULTS

Lemma 1. If condition (14) holds, then there exist N € N and m € R such that

1
- < ﬁ, Vn > N.
Isin(wy,(ta —t1))]  m

Proof. First, we deal with the denominator of the left-hand side of the inequality

(20) sin(wn(ts — t1)) = sin ((t2 _ t1)$a 4ty — 1) [wn _ ?a]) _

2 nw . \2
, nm w; — ("Fa) , nm —c
= to —t1)— to —t1)——————— |= to —t1)— to —t1)—————— .
sm(( o —t1) l a+ (ta —ty) on T ™a ) sm((z 1) ] a+ (to 1)Wn+nl7ra)

It follows from the condition (14) that
(tg — tﬁ%a = ]—?27’1,71',
and that it takes on at most ¢ different values (mod 27) as n varies. Let

Zp = (ty — tl)nl—ﬂa and dy = min#0{|sin (zn)|}-

Due to the absolute value bars, there is a real number dy such that

Sil’l(dQ) = dl, 0<dy < g
It is easy to see, that
—c 1
ty —t)) ————— = O(— — 00.
(t2 l)wn—l——"l”a <n) sn

Therefore, there exist constants N € N, m € R* such that

m™m
21 — <
@) 5

—C d2 m . d2
ty—t)————| < = and — < — Vn > N.
(t2 l)wn—l—%a 2 M s1n<2), "

nm
—a

So, if sin ((t2 —t) l ) # 0, then

i (t —t )—n ( —1 )76 >
sin a—+ (t
2 7 2 1 nlw

. dy . dy m

81n(d2—5)'—51n(2) > e
o nm

On the other hand, if sin ((t2 — t1)7a> =0, then

. —C
sin ((tg — tl)m) ' >
n l

whenever n > N, by virtue of (21).

sin ((t2 - tl)nl—ﬁa +(ty — tl)_ic> ' _

wy, + Hra
2

> —
™

—C m
> —, Vn > N,

to —t1)——————
(t2 1>wn+%a n
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due to (21) and the inequality
2
sint| > = [¢],  if 0<]| <.
T 2

(22)
Combining the two cases just above, we get that
— ) ’ > T, Vn > N.

in ( (¢ _t)_n (ta —t1)——r>
sin a+
2 Yo 2 ! wn+—”l7ra n

Lemma 2. If condition (14) holds, then there exist N € N and m € R such that

1
<E, Vn > N.

|cos(wy(ta — t1))]  m

Proof. Similarly to (20) in the proof of Lemma 1, now we obtain that
—c )

nm
cos(wy(ta — t1)) = cos (( 9 —11) ; a+ (ts 1)wn+nl_ﬂa

Let
nm
Zp = (ta—t1)—a and  d;:= mm {\cos Znl}-
l n, COS Zn
Due to the absolute value bars, there is a real number dy such that

COS(dg) = dl, 0< dg < g

Similarly to (21) in the proof of Lemma 1, there exist constants N € N and m € R

such that
m — T —d, m 2 +ds
23) — < |(ta—t <2 d —< . Vn > N.
(23) ™" ]<2 D] < 5% © o (352).
In this manner, if cos ( (ty — 1y nT ) = 0, we obtain again that
—d Z2+d
Cos((tg—t1)7a+(t2—t1 ) > Cos(d2+ 5 2)':005(2 5 2) >%,
whenever n > N, by virtue of (23)
nl_7ra) =0, we get

On the other hand, in the case when cos ((tz —t)
nm —c —c
to —t1)— lo—t)——— || =sin|teo —t1)——— || >
-0 o0
Vn > N,

(th—t)— | >
2 lwn—ir%a n

due to (22) and (23).
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Combining the two cases just above, we get that

oS ((tg—tl)?aﬁ»(tg—tl)i)’ > @, Vn > N.

wn + *a n

4. PROOFS OF THE THEOREMS 1 —4

Proof of Theorem 1. Since any of the solutions u of problem (1)—(3) has representation
(5) with some coefficients a,,, (,; n € N, the observation problem can be reduced to
the problem of the appropriate choices of a,, and [, such that (9) is satisfied. For this
reason, we substitute ¢; and ¢, into (5), and use the two conditions in (9). As a result,

we get the following necessary conditions for «,, 5,:

(24) f(z) =u(x, ty) = Z[an cos(wpt1) + By sin(wpty)] sin(nTﬁx), x € 10,1,
(25) g(x) = u(x, ty) = Z[an cos(wpta) + By, sin(wyts)] sin(nTﬂx), x €[0,1],

where w, is defined in (6).

The assumption (13) guarantees that the coefficients of the sine Fourier expansions of
the functions f(z), g(z) are unambiguously determined and comparing these Fourier

series with (24) and (25), for «,, [, we get the following conditions:

ay, cos(wpty) + B sin(wpty) / f(x sin ) x, n € N,
(26) o
ay, cos(wpta) + B sin(wyts) = 7 / g(z) sin(— i x)dx, n € N.

0
The linear system (26) can be uniquely solved for the unknown coefficients «,, and £,

due to assumption (15):

 sin(wats) 7 fo ) sin(*%rx)dr — sin(wyt1) 7 fo ) sin(%Fx)dx
A = sm(w (ts — tl)) ’
(27)
5 =" cos(wpta) fo )sin(®F)dz + cos(wnt1)] fo ) sin( ") dx

sm( n(ta —t1))

So the unknown initial functions ¢ and v are uniquely determined and found in the
form of (7) and (8). It remains to show that ¢, ¢ are from the classes D**1 Ds,
respectively, i. e. to show that the following inequality holds:

(28) max{ |||, [[¥[12} < oo
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We introduce the following notations for the sake of transparency:

9
D, = —/ f(x) sin(ﬂx)dx,
I Jo l
9l
E, = —/ g(z) sin(ﬁx)d:p.
L Jo l
Since (f, g) € D572 x D**2 we have the following inequality:

(29) > n*max{|D,|*, |E,*} < cc.

n=1

By using Lemma 1, for every n > N we get

o] = sin(wnég)Dn — sin(wy,t)E, - ’ﬁDn N ’ﬁEn ’
sin(wy, (te — 1)) m m
— cos(wpta)D,, + cos(w,t1)E, n n
16, = | —enta Do L costnti) | gy | (g |
sin(wy, (ta — t1)) m m
which means that
(30) max{|ay,|, |6} < canmax{|D,|, |E,|} n €N,

with a suitable constant ¢;.

Let M > 1 be a constant such that w, < Mn, Vn € N. Combining (29), (30) and the
definition of the norm ||.||s we get the desired inequality (28):

00 00
max{[|p|2,1, |12} = max{d  n® 2|, ?, Y " n*|w,B,]*} <
n=1 n=1

o o0
<> M P max{|ag (B < AM? D 0 max{|D,[*, |E,[*} < oc.

n=1 n=1

Remark 1. In the classical case when the given state functions are continuously dif-
ferentiable, according to Theorem 1, the initial functions are also continuously differ-

entiable. More precisely, if
U(l‘,tl) :f(ZL‘) S 04[07l]7 U(ZL‘,tz) :g(l‘) S 04[07l]7 fag|0,l = f”ag”|07l =0,
then f, g € D* and the observation problem has a unique classical solution

u(z,0) = o(z) € D* € C?,  wuy(z,0) =¢(x) € D* C Ch.
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Remark 2. Taking into account (20), condition (15) can be written into the following

form:

. . nm —C
(31) sin ((ta — t1)wy,) =sin | (ta —t1)—a + (t2 — t1) #0
l ("Fa)? —c+ "Ta
for all n € N. Analysing the proof of Lemma 1, it is easy to see that the above condition
is certainly satisfied for all n large enough, say n > N.
If we want to get an easily verifiable condition instead of (15), which is not necessary
then

—C ™
32 lo —t <=
(52) (0= t) e < ]

is such a sufficient condition. We justify this claim as follows. The first term in the
argument of the sine function in (31) is either 0 (mod 27), or its distance is at least
T from its zeroes, and the second term in the argument of the sine function in (31) is
positive and monotone decreasing function of n. So, if we assume that the second term
is already smaller than T forn = 1, which is actually the case in (32), then condition
(31) is satisfied for eachqn > 1.

Nevertheless, we can see from this simpler condition (32), that if the parameters |c|
and a in equation (1) are such that either ¢ is small or a is great enough, then condition
(31) is always satisfied. Similar observations can be made in the following Theorems
2—4.

Proof of Theorem 2. In an analogous way as in the proof of Theorem 1, now we start

with the following equalities:

e}

f(x) =w(z, ty) = Z[—Oznwn sin(wyt1) + Buwn cos(wnty)] sin(nTW:c), z € [0,1],
g(x) = u(x, ty) = Z[an cos(wpta) + By sin(wpts)] sin(nTW:p), z € 0,1].

Hence we get the following necessary conditions for the coefficients «,,, G,:
. 2 ! . NT
— Wy sin(wyty) + Buwy, cos(wnty) = 7 f(z) SIH(TSL’)dSL’, n e N,
0

2 nmw

l
ay, cos(wpta) + By sin(wyts) = 7/ g(x) sin(Tx)dx, n € N.
0

The linear equations just received can be uniquely solved for the unknown coefficients

a,, and (3,, due to assumption (17):
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— sin(wpts)* fo ) sin(2Fz)dx + cos(wyty )wn 7 fo r)sin(“Fx)dx

oy =

)

Wh, cos(wn(t2 —t1))

cos(wpts) fo ) sin(2%z)dx + sin(wpt1 )w, 7 fo r) sin(%w)dy

ﬁn:

W Cos(wn(tg —t1))

So the unknown initial functions ¢ and v are uniquely determined and found in the
form of (7) and (8). It remains to show that ¢, ¢ are from the classes D**! D?
respectively. To this effect, it is enough to show that (28) holds.

Again, let

/f )sin("Z)d,

nm

E, = l/og(x) sin(— l x)dzx.

Since (f,g) € D*t! x D2 we have that the inequality (29) holds:
C 1

29’ 2std —D, % |E.?} < .

(29) > (D B < oo

By using Lemma 2, for every n > N we have

— sin(wyte) Dy, + cos(wpty))wn By,

1 n n
n| — < __Dn ’_En 5
o] ’ wp, cos(wy (te — 1)) ’wn m + m
cos(wpta)D,, + sin(w,t1 ) wn By, 1n n
8, = | Cnta)Dn E oMlnlijonln) N1 0py |0 )
Wy, cos(wp(ta — 1)) Wy, M m
which means that
1
(30) max{|ay|, |G|} < conmax{|—D,|, |E,|} n €N,
n

with a suitable constant c,.

Combining (29'), (30") and the definition of the norm ||.||s we get the desired inequality
(28):

o) 00
max{[[e ]2, [[0[12} = max{d 0> e’ n*|wn b’} <
n=1 n=1

[e.e] o0
1
< ZM2n2s+2 max{|a,|?, |8.]*} < s M? Zn2s+4 max{|gDn\2, |E,|*} < oo. O

n=1 n=1
Proof of Theorem 3. This proof goes along the same lines as that of Theorem 2, except

that here we have to interchange the roles of the coefficients a,, and 3,. O

EJQTDE, 2012 No. 7, p. 10



Proof of Theorem J. Now, we have

o0

f(@) = w(x,t1) = Z[—Oénwn sin(wpty) + Bpwn cos(wyty)] sin(?:c), r € [0,1],
n=1

g(x) = uy(x,t3) = i[—anwn sin(wpts) + Buwy cos(wpts)] sin(nTﬁx), x € [0,1],
n=1

whence the necessary conditions for the coefficients «,,, 3, are the following:

— W, Sin(wyty) + Brwy, cos(wytr) / f(z sin ) T, n €N,

— Wy, Sin(wyte) + Bpwy, cos(wpts) = 7/ g(x) mn(n;rx)d:p, n € N.
0

The linear equations just received can be uniquely solved for the unknown coefficients

a, and f3,, due to assumption (15):

cos(wpts)? fo ) sin("Fw)dr — cos(wnt1)7 fo ) sin(“Fx)dx

Ay = )

Wy sin(wy,(te — 1))

_sin(wata) 7 fo )sin(%x)dr — sin(w,ty)7 fo ) sin(%x)dx

" Wy, sm(wn(tg —t1))

So the unknown initial functions ¢ and v are uniquely determined and found in the
form of (7) and (8). It remains to show that ¢, ¢ are from the classes D**1 Ds
respectively. To this effect, it is enough to show that (28) holds.

Again, let

/f )sin("a)dz,

nm

E, = l/og(x)sm( l x)d.

Since (f,g) € D™ x D**1 we have that the inequality (29”) holds:

(29") > n2* max{| D, [ B} < .

n=1

By using Lemma 1, for every n > N we get

o] = cos(wntg?Dn — cos(wnt1)E, _ iﬁDn N iﬁEn |
Wy, sin(wy(te — 1)) Wp m n M
sin(wpta)D,, — sin(w,t1)E, 1n 1n
18, = [lent2) D= siolenti)Bo) [ R | L0 |
Wy sin(wy (ta — t1)) n M n
which means that
(30”) max{|a,|, |G|} < camax{|D,|, |F,|} n €N,
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with a suitable constant c,.

Combining (29”), (30”) and the definition of the norm ||.||s we get the desired inequality
(28):

0o 00
masc{[o]2, 1. 1P} = max{ > n2 22, S 02w, 6,2} <
n=1 n=1

<> M P max{|a, 8.7 < EM? D n® T max{|D,|*, |E,[*} < oc. O
n=1 n=1
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