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t. Transversal vibrations u = u(x, t) of a string of length l with �xed endsare 
onsidered, where u is governed by the Klein-Gordon equation
utt(x, t) = a2uxx(x, t) + cu(x, t), (x, t) ∈ [0, l] × R, a > 0, c < 0.Su�
ient 
onditions are obtained that guarantee the solvability of ea
h of fourobservation problems with given state fun
tions f, g at two distin
t time instants

−∞ < t1 < t2 < ∞. The essential 
onditions are the following: smoothness of f, gas elements of a 
orresponding subspa
e Ds+i(0, l) (introdu
ed in [2℄) of a Sobolevspa
e Hs+i(0, l), where i = 1, 2 depending on the type of the observation problem, andthe representability of t2 − t1 as a rational multiple of 2l

a
. The re
onstru
tion of theunknown initial data (u(x, 0), ut(x, 0)) as the elements of Ds+1(0, l)×Ds(0, l) are givenby means of the method of Fourier expansions.2010 AMS Subje
t Classi�
ations: Primary 35Q93, 81Q05; Se
ondary 35L05,35R30, 42A20Key words: Observation problems, Klein-Gordon equation, generalized solutions,method of Fourier expansions.1. BACKGROUND AND KNOWN RESULTSIn 
ontrol theory - whi
h is 
losely related to the subje
t of this paper - numer-ous monographies and arti
les dealt with the a

essability of a �nal state (positionand speed) of os
illations (in parti
ular string os
illations) in the time interval

0 ≤ t ≤ T < ∞; see for example, [1℄ - [10℄. Although, only the short 
ommuni
a-tion [11℄ dealt with observability of the string os
illations on the interval 0 ≤ x ≤ l,and it treated just the 
ase when the observation instants t1 and t2 are small, namely
0 ≤ t1 ≤ t2 ≤

2l

a
, where a is the speed of the wave propagation. Furthermore, it isassumed in [11℄ that the initial data are known on some subinterval [h1, h2] ⊂ [0, l].We re
onstruate the initial data in ea
h of the four observation problems related tothe Klein-Gordon equation for arbitrary large t1 and t2. Our preassumptions are onlythat (t2 − t1)

a

2l
is rational and the given state fun
tions are smooth enough. The 
ases

f, g ∈ Ds with arbitrary s ∈ R are also admitted.1Corresponding author EJQTDE, 2012 No. 7, p. 1
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Let Ω = {(x, t) : 0 < x < l, t ∈ R}. Consider the problem (at �rst in the 
lassi
alsense) of the vibrating [0, l] string with �xed ends when there is an elasti
 withdrawingfor
e proportional to the transversal de�e
tion u(x, t) of the point x of the string atthe instant denoted by t. This phenomenon is des
ribed by the Klein-Gordon equationas follows:
(1) utt(x, t) = a2uxx(x, t) + cu(x, t), (x, t) ∈ Ω, a, c ∈ R, 0 < a, 0 > c,with the initial 
onditions
(2) u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ l,and the homogeneous boundary 
onditions of the �rst kind
(3) u(0, t) = 0, u(l, t) = 0, t ∈ R.We re
all, that the fun
tion u is said to be a 
lassi
al solution of this problem, if
u ∈ C2(Ω) and 
onditions (1) − (3) are satis�ed.It is well known that if
(4) ϕ ∈ C2[0, l], ψ ∈ C1[0, l] and ϕ(0) = ϕ(l) = ϕ′′(0) = ϕ′′(l) = ψ(0) = ψ(l) = 0,then the Fourier method gives the 
lassi
al solution u of the problem (1) − (3) posedfor the Klein-Gordon equation, whi
h is of the following form:
(5) u(x, t) =

∞
∑

n=1

[αn cos (tωn) + βn sin (tωn)] sin(
nπ

l
x), (x, t) ∈ Ω,where

(6) ωn =

√

(
nπ

l
a)2 − c, n ∈ N,

(7) ϕ(x) = u(x, 0) =
∞
∑

n=1

αn sin(
nπ

l
x) ⇒ αn =

2

l

∫ l

0

ϕ(x) sin(
nπ

l
x)dx, n ∈ N,

(8) ψ(x) = ut(x, 0) =

∞
∑

n=1

ωn βn sin(
nπ

l
x) ⇒ βn =

1

ωn

2

l

∫ l

0

ψ(x) sin(
nπ

l
x)dx, n ∈ N.The uniqueness of the solution is a 
onsequen
e of the law of 
onservation of energy.To have a wider 
lass of fun
tions for ϕ, ψ and f, g, we shall 
onsider 
ertain gener-alized solutions of the problem (1)−(3). Namely, by using the suggestions of the referee,EJQTDE, 2012 No. 7, p. 2



we introdu
e the spa
es Ds(0, l), s ∈ R mentioned in the abstra
t (see [2℄). Given anarbitrary real number s, on the linear span D of the fun
tions sin nπ

l
x, n = 1, 2, ...,
onsider the following Eu
lidean norm:

∥

∥

∥

∥

∥

∞
∑

n=1

cn sin(
nπ

l
x)

∥

∥

∥

∥

∥

s

:=

(

∞
∑

n=1

n2s|cn|
2

)
1

2

.CompletingD with respe
t to this norm, we obtain a Hilbert spa
e Ds. One 
an readilyverify that for s ≥ 0, Ds is a 
losed subspa
e of the Sobolev spa
e Hs(0, l), namely
Ds = {u ∈ Hs(0, l) : u(2i)(0) = u(2i)(l) = 0, i = 0, 1, ..., [(s− 1)/2]}.If we identify D0 = L2(0, l) with its dual, then D−s is the dual spa
e of Ds. Someof the results of [2℄ (see Se
tion 1.1-1.3) and [10℄ say that for arbitrary s ∈ R with

(ϕ, ψ) ∈ Ds+1 × Ds the generalized mixed problem (1) − (3) has a unique solution usatisfying
u ∈ C(R, Ds+1) ∩ C1(R, Ds) ∩ C2(R, Ds−1)given by the Fourier series (5) with 
oe�
ients αn, βn de�ned by (7) and (8). Here andbelow all Fourier expansions for ϕ, ψ, f , g and u are understood in the spa
es Ds(0, l).2. NEW RESULTSDe�nition 1. The observation problem posed for the Klein-Gordon equation is thefollowing. The initial fun
tions ϕ, ψ are unknown, but su
h fun
tions f(x) and g(x)are given for whi
h one of the following four 
onditions holds:

(9) u(x, t1) = f(x), u(x, t2) = g(x), 0 ≤ x ≤ l;

(10) ut(x, t1) = f(x), u(x, t2) = g(x), 0 ≤ x ≤ l;

(11) u(x, t1) = f(x), ut(x, t2) = g(x), 0 ≤ x ≤ l;

(12) ut(x, t1) = f(x), ut(x, t2) = g(x), 0 ≤ x ≤ l.Here u is the solution of the generalized problem (1) − (3), and the given fun
tions
f, g are said to be the partial state of the string at distin
t time instants t1 and t2,
−∞ < t1 < t2 < ∞. Now the problem is to �nd the initial fun
tions ϕ, ψ in terms of
f(x), g(x).

EJQTDE, 2012 No. 7, p. 3



Theorem 1. Suppose that
(13) f ∈ Ds+2, g ∈ Ds+2, where s ∈ R,

(14) t2 − t1 =
p

q

2l

a
,where p, q are positive integers and they are relative primes. In addition, suppose that

(15) sin

(

(t2 − t1)

√

(
nπ

l
a)2 − c

)

6= 0, ∀n ∈ N.Then the observation problem (1) − (3) under 
ondition (9) has a unique solution for
(ϕ, ψ) ∈ Ds+1 × Ds. They are represented by their Fourier expansions in the proofbelow.Theorem 2. Suppose that
(16) f ∈ Ds+1, g ∈ Ds+2, where s ∈ R,
ondition (14) holds and
(17) cos

(

(t2 − t1)

√

(
nπ

l
a)2 − c

)

6= 0, ∀n ∈ N.Then the observation problem (1)− (3) under 
ondition (10) has a unique solution for
(ϕ, ψ) ∈ Ds+1 × Ds. They are represented by their Fourier expansions in the proofbelow.Theorem 3. Suppose that
(18) f ∈ Ds+2, g ∈ Ds+1, where s ∈ R,and 
onditions (14) and (17) hold. Then the observation problem (1) − (3) under 
on-dition (11) has a unique solution for (ϕ, ψ) ∈ Ds+1×Ds. They are represented by theirFourier expansions in the proof below.Theorem 4. Suppose that
(19) f ∈ Ds+1, g ∈ Ds+1, where s ∈ R,and 
onditions (14) and (15) hold. Then the observation problem (1) − (3) under 
on-dition (12) has a unique solution for (ϕ, ψ) ∈ Ds+1×Ds. They are represented by theirFourier expansions in the proof below. EJQTDE, 2012 No. 7, p. 4



3. AUXILIARY RESULTSLemma 1. If 
ondition (14) holds, then there exist N ∈ N and m ∈ R su
h that
1

|sin(ωn(t2 − t1))|
<

n

m
, ∀n > N.Proof. First, we deal with the denominator of the left-hand side of the inequality

(20) sin(ωn(t2 − t1)) = sin
(

(t2 − t1)
nπ

l
a + (t2 − t1)

[

ωn −
nπ

l
a
])

=

= sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

ω2
n − (nπ

l
a)2

ωn + nπ

l
a

)

= sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

).It follows from the 
ondition (14) that
(t2 − t1)

nπ

l
a =

p

q
2nπ,and that it takes on at most q di�erent values (mod 2π) as n varies. Let

zn := (t2 − t1)
nπ

l
a and d1 := min

n, sin zn 6=0
{|sin (zn)|}.Due to the absolute value bars, there is a real number d2 su
h that

sin(d2) = d1, 0 < d2 ≤
π

2
.It is easy to see, that

(t2 − t1)
−c

ωn + nπ
l
a

= O(
1

n
) as n→ ∞.Therefore, there exist 
onstants N ∈ N, m ∈ R

+ su
h that
(21)

πm

2n
<

∣

∣

∣

∣

(t2 − t1)
−c

ωn + nπ
l
a

∣

∣

∣

∣

<
d2

2
and m

n
< sin

(

d2

2

)

, ∀n > N.So, if sin
(

(t2 − t1)
nπ

l
a
)

6= 0, then
∣

∣

∣

∣

sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

)∣

∣

∣

∣

>

∣

∣

∣

∣

sin

(

d2 −
d2

2

)∣

∣

∣

∣

= sin

(

d2

2

)

>
m

n
,whenever n > N , by virtue of (21).On the other hand, if sin

(

(t2 − t1)
nπ

l
a
)

= 0, then
∣

∣

∣

∣

sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

)
∣

∣

∣

∣

=

∣

∣

∣

∣

sin

(

(t2 − t1)
−c

ωn + nπ

l
a

)
∣

∣

∣

∣

>

>
2

π

∣

∣

∣

∣

(t2 − t1)
−c

ωn + nπ

l
a

∣

∣

∣

∣

>
m

n
, ∀n > N, EJQTDE, 2012 No. 7, p. 5



due to (21) and the inequality
(22) |sin t| >

2

π
|t| , if 0 < |t| <

π

2
.Combining the two 
ases just above, we get that

∣

∣

∣

∣

sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

)
∣

∣

∣

∣

>
m

n
, ∀n > N.

Lemma 2. If 
ondition (14) holds, then there exist N ∈ N and m ∈ R su
h that
1

|cos(ωn(t2 − t1))|
<

n

m
, ∀n > N.Proof. Similarly to (20) in the proof of Lemma 1, now we obtain that

cos(ωn(t2 − t1)) = cos

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ
l
a

)

.Let
zn := (t2 − t1)

nπ

l
a and d1 := min

n, cos zn 6=0
{|cos zn|}.Due to the absolute value bars, there is a real number d2 su
h that

cos(d2) = d1, 0 ≤ d2 <
π

2
.Similarly to (21) in the proof of Lemma 1, there exist 
onstants N ∈ N and m ∈ R

+su
h that
(23)

πm

2n
<

∣

∣

∣

∣

(t2 − t1)
−c

ωn + nπ
l
a

∣

∣

∣

∣

<
π

2
− d2

2
and m

n
< cos

( π

2
+ d2

2

)

, ∀n > N.In this manner, if cos
(

(t2 − t1)
nπ

l
a
)

6= 0, we obtain again that
∣

∣

∣

∣

cos

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c

ωn + nπ

l
a

)
∣

∣

∣

∣

>

∣

∣

∣

∣

cos

(

d2 +
π

2
− d2

2

)
∣

∣

∣

∣

= cos

( π

2
+ d2

2

)

>
m

n
,whenever n > N , by virtue of (23).On the other hand, in the 
ase when cos

(

(t2 − t1)
nπ

l
a
)

= 0, we get
∣

∣

∣

∣

cos

(

(t2 − t1)
nπ

l
a + (t2 − t1)

−c

ωn + nπ
l
a

)
∣

∣

∣

∣

=

∣

∣

∣

∣

sin

(

t2 − t1)
−c

ωn + nπ
l
a

)
∣

∣

∣

∣

>

>
2

π

∣

∣

∣

∣

(t2 − t1)
−c

ωn + nπ

l
a

∣

∣

∣

∣

>
m

n
, ∀n > N,due to (22) and (23). EJQTDE, 2012 No. 7, p. 6



Combining the two 
ases just above, we get that
∣

∣

∣

∣

cos

(

(t2 − t1)
nπ

l
a + (t2 − t1)

−c

ωn + nπ
l
a

)
∣

∣

∣

∣

>
m

n
, ∀n > N.

4. PROOFS OF THE THEOREMS 1 − 4Proof of Theorem 1. Sin
e any of the solutions u of problem (1)−(3) has representation
(5) with some 
oe�
ients αn, βn; n ∈ N, the observation problem 
an be redu
ed tothe problem of the appropriate 
hoi
es of αn and βn su
h that (9) is satis�ed. For thisreason, we substitute t1 and t2 into (5), and use the two 
onditions in (9). As a result,we get the following ne
essary 
onditions for αn, βn:
(24) f(x) = u(x, t1) =

∞
∑

n=1

[αn cos(ωnt1) + βn sin(ωnt1)] sin(
nπ

l
x), x ∈ [0, l],

(25) g(x) = u(x, t2) =

∞
∑

n=1

[αn cos(ωnt2) + βn sin(ωnt2)] sin(
nπ

l
x), x ∈ [0, l],where ωn is de�ned in (6).The assumption (13) guarantees that the 
oe�
ients of the sine Fourier expansions ofthe fun
tions f(x), g(x) are unambiguously determined and 
omparing these Fourierseries with (24) and (25), for αn, βn we get the following 
onditions:

(26)
αn cos(ωnt1) + βn sin(ωnt1) =

2

l

∫ l

0

f(x) sin(
nπ

l
x)dx, n ∈ N,

αn cos(ωnt2) + βn sin(ωnt2) =
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx, n ∈ N.The linear system (26) 
an be uniquely solved for the unknown 
oe�
ients αn and βndue to assumption (15):

(27)
αn =

sin(ωnt2)
2
l

∫ l

0
f(x) sin(nπ

l
x)dx− sin(ωnt1)

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

sin(ωn(t2 − t1))
,

βn =
− cos(ωnt2)

2
l

∫ l

0
f(x) sin(nπ

l
x)dx+ cos(ωnt1)

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

sin(ωn(t2 − t1))
.So the unknown initial fun
tions ϕ and ψ are uniquely determined and found in theform of (7) and (8). It remains to show that ϕ, ψ are from the 
lasses Ds+1, Ds,respe
tively, i. e. to show that the following inequality holds:

(28) max{‖ϕ‖2
s+1, ‖ψ‖

2
s} <∞. EJQTDE, 2012 No. 7, p. 7



We introdu
e the following notations for the sake of transparen
y:
Dn :=

2

l

∫ l

0

f(x) sin(
nπ

l
x)dx,

En :=
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx.Sin
e (f, g) ∈ Ds+2 ×Ds+2, we have the following inequality:

(29)

∞
∑

n=1

n2s+4 max{|Dn|
2, |En|

2} <∞.By using Lemma 1, for every n > N we get
|αn| =

∣

∣

∣

∣

sin(ωnt2)Dn − sin(ωnt1)En

sin(ωn(t2 − t1))

∣

∣

∣

∣

<
∣

∣

∣

n

m
Dn

∣

∣

∣
+
∣

∣

∣

n

m
En

∣

∣

∣
,

|βn| =

∣

∣

∣

∣

− cos(ωnt2)Dn + cos(ωnt1)En

sin(ωn(t2 − t1))

∣

∣

∣

∣

<
∣

∣

∣

n

m
Dn

∣

∣

∣
+
∣

∣

∣

n

m
En

∣

∣

∣
,whi
h means that

(30) max{|αn|, |βn|} < c1nmax{|Dn|, |En|} n ∈ N,with a suitable 
onstant c1.Let M ≥ 1 be a 
onstant su
h that ωn < Mn, ∀n ∈ N. Combining (29), (30) and thede�nition of the norm ‖.‖s we get the desired inequality (28):
max{‖ϕ‖2

s+1, ‖ψ‖
2
s} = max{

∞
∑

n=1

n2s+2|αn|
2,

∞
∑

n=1

n2s|ωnβn|
2} ≤

≤
∞
∑

n=1

M2n2s+2 max{|αn|
2, |βn|

2} < c21M
2

∞
∑

n=1

n2s+4 max{|Dn|
2, |En|

2} <∞.

Remark 1. In the 
lassi
al 
ase when the given state fun
tions are 
ontinuously dif-ferentiable, a

ording to Theorem 1, the initial fun
tions are also 
ontinuously di�er-entiable. More pre
isely, if
u(x, t1) = f(x) ∈ C4[0, l], u(x, t2) = g(x) ∈ C4[0, l], f, g|0,l = f ′′, g′′|0,l = 0,then f, g ∈ D4 and the observation problem has a unique 
lassi
al solution

u(x, 0) = ϕ(x) ∈ D3 ⊂ C2, ut(x, 0) = ψ(x) ∈ D2 ⊂ C1.EJQTDE, 2012 No. 7, p. 8



Remark 2. Taking into a

ount (20), 
ondition (15) 
an be written into the followingform:
(31) sin ((t2 − t1)ωn) = sin

(

(t2 − t1)
nπ

l
a+ (t2 − t1)

−c
√

(nπ

l
a)2 − c+ nπ

l
a

)

6= 0for all n ∈ N. Analysing the proof of Lemma 1, it is easy to see that the above 
onditionis 
ertainly satis�ed for all n large enough, say n > N .If we want to get an easily veri�able 
ondition instead of (15), whi
h is not ne
essarythen
(32) (t2 − t1)

−c
√

(π
l
a)2 − c+ π

l
a
<
π

qis su
h a su�
ient 
ondition. We justify this 
laim as follows. The �rst term in theargument of the sine fun
tion in (31) is either 0 (mod 2π), or its distan
e is at least
π

q
from its zeroes, and the se
ond term in the argument of the sine fun
tion in (31) ispositive and monotone de
reasing fun
tion of n. So, if we assume that the se
ond termis already smaller than π

q
for n = 1, whi
h is a
tually the 
ase in (32), then 
ondition

(31) is satis�ed for ea
h n ≥ 1.Nevertheless, we 
an see from this simpler 
ondition (32), that if the parameters |c|and a in equation (1) are su
h that either c is small or a is great enough, then 
ondition
(31) is always satis�ed. Similar observations 
an be made in the following Theorems
2 − 4.Proof of Theorem 2. In an analogous way as in the proof of Theorem 1, now we startwith the following equalities:
f(x) = ut(x, t1) =

∞
∑

n=1

[−αnωn sin(ωnt1) + βnωn cos(ωnt1)] sin(
nπ

l
x), x ∈ [0, l],

g(x) = u(x, t2) =
∞
∑

n=1

[αn cos(ωnt2) + βn sin(ωnt2)] sin(
nπ

l
x), x ∈ [0, l].Hen
e we get the following ne
essary 
onditions for the 
oe�
ients αn, βn:

−αnωn sin(ωnt1) + βnωn cos(ωnt1) =
2

l

∫ l

0

f(x) sin(
nπ

l
x)dx, n ∈ N,

αn cos(ωnt2) + βn sin(ωnt2) =
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx, n ∈ N.The linear equations just re
eived 
an be uniquely solved for the unknown 
oe�
ients

αn and βn, due to assumption (17): EJQTDE, 2012 No. 7, p. 9



αn =
− sin(ωnt2)

2
l

∫ l

0
f(x) sin(nπ

l
x)dx+ cos(ωnt1)ωn

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

ωn cos(ωn(t2 − t1))
,

βn =
cos(ωnt2)

2
l

∫ l

0
f(x) sin(nπ

l
x)dx+ sin(ωnt1)ωn

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

ωn cos(ωn(t2 − t1))
.So the unknown initial fun
tions ϕ and ψ are uniquely determined and found in theform of (7) and (8). It remains to show that ϕ, ψ are from the 
lasses Ds+1, Ds,respe
tively. To this e�e
t, it is enough to show that (28) holds.Again, let

Dn :=
2

l

∫ l

0

f(x) sin(
nπ

l
x)dx,

En :=
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx.Sin
e (f, g) ∈ Ds+1 ×Ds+2, we have that the inequality (29′) holds:

(29′)

∞
∑

n=1

n2s+4 max{|
1

n
Dn|

2, |En|
2} <∞.By using Lemma 2, for every n > N we have

|αn| =

∣

∣

∣

∣

− sin(ωnt2)Dn + cos(ωnt1)ωnEn

ωn cos(ωn(t2 − t1))

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωn

n

m
Dn

∣

∣

∣

∣

+
∣

∣

∣

n

m
En

∣

∣

∣
,

|βn| =

∣

∣

∣

∣

cos(ωnt2)Dn + sin(ωnt1)ωnEn

ωn cos(ωn(t2 − t1))

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωn

n

m
Dn

∣

∣

∣

∣

+
∣

∣

∣

n

m
En

∣

∣

∣
,whi
h means that

(30′) max{|αn|, |βn|} < c2nmax{|
1

n
Dn|, |En|} n ∈ N,with a suitable 
onstant c2.Combining (29′), (30′) and the de�nition of the norm ‖.‖s we get the desired inequality

(28):
max{‖ϕ‖2

s+1, ‖ψ‖
2
s} = max{

∞
∑

n=1

n2s+2|αn|
2,

∞
∑

n=1

n2s|ωnβn|
2} ≤

≤

∞
∑

n=1

M2n2s+2 max{|αn|
2, |βn|

2} < c22M
2

∞
∑

n=1

n2s+4 max{|
1

n
Dn|

2, |En|
2} <∞.Proof of Theorem 3. This proof goes along the same lines as that of Theorem 2, ex
eptthat here we have to inter
hange the roles of the 
oe�
ients αn and βn.EJQTDE, 2012 No. 7, p. 10



Proof of Theorem 4. Now, we have
f(x) = ut(x, t1) =

∞
∑

n=1

[−αnωn sin(ωnt1) + βnωn cos(ωnt1)] sin(
nπ

l
x), x ∈ [0, l],

g(x) = ut(x, t2) =
∞
∑

n=1

[−αnωn sin(ωnt2) + βnωn cos(ωnt2)] sin(
nπ

l
x), x ∈ [0, l],when
e the ne
essary 
onditions for the 
oe�
ients αn, βn are the following:

−αnωn sin(ωnt1) + βnωn cos(ωnt1) =
2

l

∫ l

0

f(x) sin(
nπ

l
x)dx, n ∈ N,

−αnωn sin(ωnt2) + βnωn cos(ωnt2) =
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx, n ∈ N.The linear equations just re
eived 
an be uniquely solved for the unknown 
oe�
ients

αn and βn, due to assumption (15):
αn =

cos(ωnt2)
2
l

∫ l

0
f(x) sin(nπ

l
x)dx− cos(ωnt1)

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

ωn sin(ωn(t2 − t1))
,

βn =
sin(ωnt2)

2
l

∫ l

0
f(x) sin(nπ

l
x)dx− sin(ωnt1)

2
l

∫ l

0
g(x) sin(nπ

l
x)dx

ωn sin(ωn(t2 − t1))
.So the unknown initial fun
tions ϕ and ψ are uniquely determined and found in theform of (7) and (8). It remains to show that ϕ, ψ are from the 
lasses Ds+1, Ds,respe
tively. To this e�e
t, it is enough to show that (28) holds.Again, let

Dn :=
2

l

∫ l

0

f(x) sin(
nπ

l
x)dx,

En :=
2

l

∫ l

0

g(x) sin(
nπ

l
x)dx.Sin
e (f, g) ∈ Ds+1 ×Ds+1, we have that the inequality (29′′) holds:

(29′′)

∞
∑

n=1

n2s+2 max{|Dn|
2, |En|

2} <∞.By using Lemma 1, for every n > N we get
|αn| =

∣

∣

∣

∣

cos(ωnt2)Dn − cos(ωnt1)En

ωn sin(ωn(t2 − t1))

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωn

n

m
Dn

∣

∣

∣

∣

+

∣

∣

∣

∣

1

ωn

n

m
En

∣

∣

∣

∣

,

|βn| =

∣

∣

∣

∣

sin(ωnt2)Dn − sin(ωnt1)En

ωn sin(ωn(t2 − t1))

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωn

n

m
Dn

∣

∣

∣

∣

+

∣

∣

∣

∣

1

ωn

n

m
En

∣

∣

∣

∣

,whi
h means that
(30′′) max{|αn|, |βn|} < c4 max{|Dn|, |En|} n ∈ N,EJQTDE, 2012 No. 7, p. 11



with a suitable 
onstant c4.Combining (29′′), (30′′) and the de�nition of the norm ‖.‖s we get the desired inequality
(28):
max{‖ϕ‖2

s+1, ‖ψ‖
2
s} = max{

∞
∑

n=1

n2s+2|αn|
2,

∞
∑

n=1

n2s|ωnβn|
2} ≤

≤

∞
∑

n=1

M2n2s+2 max{|αn|
2, |βn|

2} < c24M
2

∞
∑

n=1

n2s+2 max{|Dn|
2, |En|
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