# Observation problems posed for the Klein-Gordon equation 

## ANDRÁS SZIJÁRTÓ ${ }^{1}$, JENỐ HEGEDÛS

(SZTE, Bolyai Institute, Szeged, Hungary) szijarto@math.u-szeged.hu, hegedusj@math.u-szeged.hu

Abstract. Transversal vibrations $u=u(x, t)$ of a string of length $l$ with fixed ends are considered, where $u$ is governed by the Klein-Gordon equation

$$
u_{t t}(x, t)=a^{2} u_{x x}(x, t)+c u(x, t), \quad(x, t) \in[0, l] \times \mathbb{R}, \quad a>0, c<0
$$

Sufficient conditions are obtained that guarantee the solvability of each of four observation problems with given state functions $f, g$ at two distinct time instants $-\infty<t_{1}<t_{2}<\infty$. The essential conditions are the following: smoothness of $f, g$ as elements of a corresponding subspace $D^{s+i}(0, l)$ (introduced in [2]) of a Sobolev space $H^{s+i}(0, l)$, where $i=1,2$ depending on the type of the observation problem, and the representability of $t_{2}-t_{1}$ as a rational multiple of $\frac{2 l}{a}$. The reconstruction of the unknown initial data $\left(u(x, 0), u_{t}(x, 0)\right)$ as the elements of $D^{s+1}(0, l) \times D^{s}(0, l)$ are given by means of the method of Fourier expansions.

2010 AMS Subject Classifications: Primary 35Q93, 81Q05; Secondary 35L05, 35R30, 42A20

Key words: Observation problems, Klein-Gordon equation, generalized solutions, method of Fourier expansions.

## 1. BACKGROUND AND KNOWN RESULTS

In control theory - which is closely related to the subject of this paper - numerous monographies and articles dealt with the accessability of a final state (position and speed) of oscillations (in particular string oscillations) in the time interval $0 \leq t \leq T<\infty$; see for example, [1] - [10]. Although, only the short communication [11] dealt with observability of the string oscillations on the interval $0 \leq x \leq l$, and it treated just the case when the observation instants $t_{1}$ and $t_{2}$ are small, namely $0 \leq t_{1} \leq t_{2} \leq \frac{2 l}{a}$, where $a$ is the speed of the wave propagation. Furthermore, it is assumed in [11] that the initial data are known on some subinterval $\left[h_{1}, h_{2}\right] \subset[0, l]$. We reconstruate the initial data in each of the four observation problems related to the Klein-Gordon equation for arbitrary large $t_{1}$ and $t_{2}$. Our preassumptions are only that $\left(t_{2}-t_{1}\right) \frac{a}{2 l}$ is rational and the given state functions are smooth enough. The cases $f, g \in D^{s}$ with arbitrary $s \in \mathbb{R}$ are also admitted.

[^0]Let $\Omega=\{(x, t): 0<x<l, t \in \mathbb{R}\}$. Consider the problem (at first in the classical sense) of the vibrating $[0, l]$ string with fixed ends when there is an elastic withdrawing force proportional to the transversal deflection $u(x, t)$ of the point $x$ of the string at the instant denoted by $t$. This phenomenon is described by the Klein-Gordon equation as follows:

$$
\begin{equation*}
u_{t t}(x, t)=a^{2} u_{x x}(x, t)+c u(x, t), \quad(x, t) \in \bar{\Omega}, a, c \in \mathbb{R}, 0<a, 0>c \tag{1}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), \quad 0 \leq x \leq l \tag{2}
\end{equation*}
$$

and the homogeneous boundary conditions of the first kind

$$
\begin{equation*}
u(0, t)=0, u(l, t)=0, \quad t \in \mathbb{R} \tag{3}
\end{equation*}
$$

We recall, that the function $u$ is said to be a classical solution of this problem, if $u \in C^{2}(\bar{\Omega})$ and conditions (1) - (3) are satisfied.

It is well known that if

$$
\begin{equation*}
\varphi \in C^{2}[0, l], \psi \in C^{1}[0, l] \quad \text { and } \quad \varphi(0)=\varphi(l)=\varphi^{\prime \prime}(0)=\varphi^{\prime \prime}(l)=\psi(0)=\psi(l)=0 \tag{4}
\end{equation*}
$$

then the Fourier method gives the classical solution $u$ of the problem (1) - (3) posed for the Klein-Gordon equation, which is of the following form:

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left[\alpha_{n} \cos \left(t \omega_{n}\right)+\beta_{n} \sin \left(t \omega_{n}\right)\right] \sin \left(\frac{n \pi}{l} x\right), \quad(x, t) \in \bar{\Omega}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{n}=\sqrt{\left(\frac{n \pi}{l} a\right)^{2}-c}, \quad n \in \mathbb{N} \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& \text { (7) } \quad \varphi(x)=u(x, 0)=\sum_{n=1}^{\infty} \alpha_{n} \sin \left(\frac{n \pi}{l} x\right) \Rightarrow \alpha_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \left(\frac{n \pi}{l} x\right) d x, \quad n \in \mathbb{N},  \tag{7}\\
& \text { (8) } \psi(x)=u_{t}(x, 0)=\sum_{n=1}^{\infty} \omega_{n} \beta_{n} \sin \left(\frac{n \pi}{l} x\right) \Rightarrow \beta_{n}=\frac{1}{\omega_{n}} \frac{2}{l} \int_{0}^{l} \psi(x) \sin \left(\frac{n \pi}{l} x\right) d x, \quad n \in \mathbb{N} .
\end{align*}
$$

The uniqueness of the solution is a consequence of the law of conservation of energy.

To have a wider class of functions for $\varphi, \psi$ and $f, g$, we shall consider certain generalized solutions of the problem (1) - (3). Namely, by using the suggestions of the referee,
we introduce the spaces $D^{s}(0, l), s \in \mathbb{R}$ mentioned in the abstract (see [2]). Given an arbitrary real number $s$, on the linear span $D$ of the functions $\sin \frac{n \pi}{l} x, n=1,2, \ldots$, consider the following Euclidean norm:

$$
\left\|\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi}{l} x\right)\right\|_{s}:=\left(\sum_{n=1}^{\infty} n^{2 s}\left|c_{n}\right|^{2}\right)^{\frac{1}{2}}
$$

Completing $D$ with respect to this norm, we obtain a Hilbert space $D^{s}$. One can readily verify that for $s \geq 0, D^{s}$ is a closed subspace of the Sobolev space $H^{s}(0, l)$, namely

$$
D^{s}=\left\{u \in H^{s}(0, l): u^{(2 i)}(0)=u^{(2 i)}(l)=0, i=0,1, \ldots,[(s-1) / 2]\right\}
$$

If we identify $D^{0}=L^{2}(0, l)$ with its dual, then $D^{-s}$ is the dual space of $D^{s}$. Some of the results of [2] (see Section 1.1-1.3) and [10] say that for arbitrary $s \in \mathbb{R}$ with $(\varphi, \psi) \in D^{s+1} \times D^{s}$ the generalized mixed problem (1)-(3) has a unique solution $u$ satisfying

$$
u \in C\left(\mathbb{R}, D^{s+1}\right) \cap C^{1}\left(\mathbb{R}, D^{s}\right) \cap C^{2}\left(\mathbb{R}, D^{s-1}\right)
$$

given by the Fourier series (5) with coefficients $\alpha_{n}, \beta_{n}$ defined by (7) and (8). Here and below all Fourier expansions for $\varphi, \psi, f, g$ and $u$ are understood in the spaces $D^{s}(0, l)$.

## 2. NEW RESULTS

Definition 1. The observation problem posed for the Klein-Gordon equation is the following. The initial functions $\varphi, \psi$ are unknown, but such functions $f(x)$ and $g(x)$ are given for which one of the following four conditions holds:

$$
\begin{array}{ll}
u\left(x, t_{1}\right)=f(x), u\left(x, t_{2}\right)=g(x), & 0 \leq x \leq l \\
u_{t}\left(x, t_{1}\right)=f(x), u\left(x, t_{2}\right)=g(x), & 0 \leq x \leq l \\
u\left(x, t_{1}\right)=f(x), u_{t}\left(x, t_{2}\right)=g(x), & 0 \leq x \leq l \\
u_{t}\left(x, t_{1}\right)=f(x), u_{t}\left(x, t_{2}\right)=g(x), & 0 \leq x \leq l \tag{12}
\end{array}
$$

Here $u$ is the solution of the generalized problem (1) - (3), and the given functions $f, g$ are said to be the partial state of the string at distinct time instants $t_{1}$ and $t_{2}$, $-\infty<t_{1}<t_{2}<\infty$. Now the problem is to find the initial functions $\varphi, \psi$ in terms of $f(x), g(x)$.

Theorem 1. Suppose that

$$
\begin{gather*}
f \in D^{s+2}, g \in D^{s+2}, \quad \text { where } s \in \mathbb{R},  \tag{13}\\
t_{2}-t_{1}=\frac{p}{q} \frac{2 l}{a}, \tag{14}
\end{gather*}
$$

where $p, q$ are positive integers and they are relative primes. In addition, suppose that

$$
\begin{equation*}
\sin \left(\left(t_{2}-t_{1}\right) \sqrt{\left(\frac{n \pi}{l} a\right)^{2}-c}\right) \neq 0, \quad \forall n \in \mathbb{N} . \tag{15}
\end{equation*}
$$

Then the observation problem (1) - (3) under condition (9) has a unique solution for $(\varphi, \psi) \in D^{s+1} \times D^{s}$. They are represented by their Fourier expansions in the proof below.

Theorem 2. Suppose that

$$
\begin{equation*}
f \in D^{s+1}, g \in D^{s+2}, \quad \text { where } s \in \mathbb{R} \tag{16}
\end{equation*}
$$

condition (14) holds and

$$
\begin{equation*}
\cos \left(\left(t_{2}-t_{1}\right) \sqrt{\left(\frac{n \pi}{l} a\right)^{2}-c}\right) \neq 0, \quad \forall n \in \mathbb{N} \tag{17}
\end{equation*}
$$

Then the observation problem (1) - (3) under condition (10) has a unique solution for $(\varphi, \psi) \in D^{s+1} \times D^{s}$. They are represented by their Fourier expansions in the proof below.

Theorem 3. Suppose that

$$
\begin{equation*}
f \in D^{s+2}, g \in D^{s+1}, \quad \text { where } s \in \mathbb{R} \tag{18}
\end{equation*}
$$

and conditions (14) and (17) hold. Then the observation problem (1) - (3) under condition (11) has a unique solution for $(\varphi, \psi) \in D^{s+1} \times D^{s}$. They are represented by their Fourier expansions in the proof below.

Theorem 4. Suppose that

$$
\begin{equation*}
f \in D^{s+1}, g \in D^{s+1}, \quad \text { where } s \in \mathbb{R} \tag{19}
\end{equation*}
$$

and conditions (14) and (15) hold. Then the observation problem (1) - (3) under condition (12) has a unique solution for $(\varphi, \psi) \in D^{s+1} \times D^{s}$. They are represented by their Fourier expansions in the proof below.

## 3. AUXILIARY RESULTS

Lemma 1. If condition (14) holds, then there exist $N \in \mathbb{N}$ and $m \in \mathbb{R}$ such that

$$
\frac{1}{\left|\sin \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)\right|}<\frac{n}{m}, \quad \forall n>N
$$

Proof. First, we deal with the denominator of the left-hand side of the inequality
$=\sin \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{\omega_{n}^{2}-\left(\frac{n \pi}{l} a\right)^{2}}{\omega_{n}+\frac{n \pi}{l} a}\right)=\sin \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right)$.
It follows from the condition (14) that

$$
\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a=\frac{p}{q} 2 n \pi
$$

and that it takes on at most $q$ different values $(\bmod 2 \pi)$ as $n$ varies. Let

$$
z_{n}:=\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a \quad \text { and } \quad d_{1}:=\min _{n, \sin z_{n} \neq 0}\left\{\left|\sin \left(z_{n}\right)\right|\right\}
$$

Due to the absolute value bars, there is a real number $d_{2}$ such that

$$
\sin \left(d_{2}\right)=d_{1}, \quad 0<d_{2} \leq \frac{\pi}{2}
$$

It is easy to see, that

$$
\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}=O\left(\frac{1}{n}\right) \quad \text { as } n \rightarrow \infty
$$

Therefore, there exist constants $N \in \mathbb{N}, m \in \mathbb{R}^{+}$such that

$$
\begin{equation*}
\frac{\pi m}{2 n}<\left|\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right|<\frac{d_{2}}{2} \text { and } \frac{m}{n}<\sin \left(\frac{d_{2}}{2}\right), \quad \forall n>N \tag{21}
\end{equation*}
$$

So, if $\sin \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a\right) \neq 0$, then

$$
\left|\sin \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right)\right|>\left|\sin \left(d_{2}-\frac{d_{2}}{2}\right)\right|=\sin \left(\frac{d_{2}}{2}\right)>\frac{m}{n}
$$

whenever $n>N$, by virtue of (21).
On the other hand, if $\sin \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a\right)=0$, then

$$
\begin{aligned}
& \left|\sin \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right)\right|=\left|\sin \left(\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right)\right|> \\
& >\frac{2}{\pi}\left|\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right|>\frac{m}{n}, \quad \forall n>N,
\end{aligned}
$$

due to (21) and the inequality

$$
\begin{equation*}
|\sin t|>\frac{2}{\pi}|t|, \quad \text { if } 0<|t|<\frac{\pi}{2} \tag{22}
\end{equation*}
$$

Combining the two cases just above, we get that

$$
\left|\sin \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right)\right|>\frac{m}{n}, \quad \forall n>N
$$

Lemma 2. If condition (14) holds, then there exist $N \in \mathbb{N}$ and $m \in \mathbb{R}$ such that

$$
\frac{1}{\left|\cos \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)\right|}<\frac{n}{m}, \quad \forall n>N .
$$

Proof. Similarly to (20) in the proof of Lemma 1, now we obtain that

$$
\cos \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)=\cos \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right)
$$

Let

$$
z_{n}:=\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a \quad \text { and } \quad d_{1}:=\min _{n, \cos z_{n} \neq 0}\left\{\left|\cos z_{n}\right|\right\} .
$$

Due to the absolute value bars, there is a real number $d_{2}$ such that

$$
\cos \left(d_{2}\right)=d_{1}, \quad 0 \leq d_{2}<\frac{\pi}{2}
$$

Similarly to (21) in the proof of Lemma 1, there exist constants $N \in \mathbb{N}$ and $m \in \mathbb{R}^{+}$ such that

$$
\begin{equation*}
\frac{\pi m}{2 n}<\left|\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right|<\frac{\frac{\pi}{2}-d_{2}}{2} \text { and } \frac{m}{n}<\cos \left(\frac{\frac{\pi}{2}+d_{2}}{2}\right), \quad \forall n>N \tag{23}
\end{equation*}
$$

In this manner, if $\cos \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a\right) \neq 0$, we obtain again that $\left|\cos \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right)\right|>\left|\cos \left(d_{2}+\frac{\frac{\pi}{2}-d_{2}}{2}\right)\right|=\cos \left(\frac{\frac{\pi}{2}+d_{2}}{2}\right)>\frac{m}{n}$, whenever $n>N$, by virtue of (23).

On the other hand, in the case when $\cos \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a\right)=0$, we get
$\left.\left|\cos \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right)\right|=\left\lvert\, \sin \left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right.\right) \mid>$
$>\frac{2}{\pi}\left|\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right|>\frac{m}{n}, \quad \forall n>N$,
due to (22) and (23).

Combining the two cases just above, we get that

$$
\left|\cos \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{-c}{\omega_{n}+\frac{n \pi}{l} a}\right)\right|>\frac{m}{n}, \quad \forall n>N .
$$

## 4. PROOFS OF THE THEOREMS 1 - 4

Proof of Theorem 1. Since any of the solutions $u$ of problem (1)-(3) has representation (5) with some coefficients $\alpha_{n}, \beta_{n} ; n \in \mathbb{N}$, the observation problem can be reduced to the problem of the appropriate choices of $\alpha_{n}$ and $\beta_{n}$ such that (9) is satisfied. For this reason, we substitute $t_{1}$ and $t_{2}$ into (5), and use the two conditions in (9). As a result, we get the following necessary conditions for $\alpha_{n}, \beta_{n}$ :

$$
\begin{array}{ll}
f(x)=u\left(x, t_{1}\right)=\sum_{n=1}^{\infty}\left[\alpha_{n} \cos \left(\omega_{n} t_{1}\right)+\beta_{n} \sin \left(\omega_{n} t_{1}\right)\right] \sin \left(\frac{n \pi}{l} x\right), \quad x \in[0, l], \\
g(x)=u\left(x, t_{2}\right)=\sum_{n=1}^{\infty}\left[\alpha_{n} \cos \left(\omega_{n} t_{2}\right)+\beta_{n} \sin \left(\omega_{n} t_{2}\right)\right] \sin \left(\frac{n \pi}{l} x\right), \quad x \in[0, l], \tag{25}
\end{array}
$$

where $\omega_{n}$ is defined in (6).
The assumption (13) guarantees that the coefficients of the sine Fourier expansions of the functions $f(x), g(x)$ are unambiguously determined and comparing these Fourier series with (24) and (25), for $\alpha_{n}, \beta_{n}$ we get the following conditions:

$$
\begin{array}{ll}
\alpha_{n} \cos \left(\omega_{n} t_{1}\right)+\beta_{n} \sin \left(\omega_{n} t_{1}\right)=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x, & n \in \mathbb{N},  \tag{26}\\
\alpha_{n} \cos \left(\omega_{n} t_{2}\right)+\beta_{n} \sin \left(\omega_{n} t_{2}\right)=\frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x, & n \in \mathbb{N} .
\end{array}
$$

The linear system (26) can be uniquely solved for the unknown coefficients $\alpha_{n}$ and $\beta_{n}$ due to assumption (15):

$$
\begin{align*}
\alpha_{n} & =\frac{\sin \left(\omega_{n} t_{2}\right) \frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x-\sin \left(\omega_{n} t_{1}\right) \frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x}{\sin \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}  \tag{27}\\
\beta_{n} & =\frac{-\cos \left(\omega_{n} t_{2}\right) \frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x+\cos \left(\omega_{n} t_{1}\right) \frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x}{\sin \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}
\end{align*}
$$

So the unknown initial functions $\varphi$ and $\psi$ are uniquely determined and found in the form of (7) and (8). It remains to show that $\varphi, \psi$ are from the classes $D^{s+1}, D^{s}$, respectively, i. e. to show that the following inequality holds:

$$
\begin{equation*}
\max \left\{\|\varphi\|_{s+1}^{2},\|\psi\|_{s}^{2}\right\}<\infty \tag{28}
\end{equation*}
$$

We introduce the following notations for the sake of transparency:
$D_{n}:=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x$,
$E_{n}:=\frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x$.
Since $(f, g) \in D^{s+2} \times D^{s+2}$, we have the following inequality:

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{2 s+4} \max \left\{\left|D_{n}\right|^{2},\left|E_{n}\right|^{2}\right\}<\infty \tag{29}
\end{equation*}
$$

By using Lemma 1 , for every $n>N$ we get

$$
\begin{gathered}
\left|\alpha_{n}\right|=\left|\frac{\sin \left(\omega_{n} t_{2}\right) D_{n}-\sin \left(\omega_{n} t_{1}\right) E_{n}}{\sin \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}\right|<\left|\frac{n}{m} D_{n}\right|+\left|\frac{n}{m} E_{n}\right| \\
\left|\beta_{n}\right|=\left|\frac{-\cos \left(\omega_{n} t_{2}\right) D_{n}+\cos \left(\omega_{n} t_{1}\right) E_{n}}{\sin \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}\right|<\left|\frac{n}{m} D_{n}\right|+\left|\frac{n}{m} E_{n}\right|,
\end{gathered}
$$

which means that

$$
\begin{equation*}
\max \left\{\left|\alpha_{n}\right|,\left|\beta_{n}\right|\right\}<c_{1} n \max \left\{\left|D_{n}\right|,\left|E_{n}\right|\right\} \quad n \in \mathbb{N} \tag{30}
\end{equation*}
$$

with a suitable constant $c_{1}$.
Let $M \geq 1$ be a constant such that $\omega_{n}<M n, \forall n \in \mathbb{N}$. Combining (29), (30) and the definition of the norm $\|\cdot\|_{s}$ we get the desired inequality (28):
$\max \left\{\|\varphi\|_{s+1}^{2},\|\psi\|_{s}^{2}\right\}=\max \left\{\sum_{n=1}^{\infty} n^{2 s+2}\left|\alpha_{n}\right|^{2}, \sum_{n=1}^{\infty} n^{2 s}\left|\omega_{n} \beta_{n}\right|^{2}\right\} \leq$
$\leq \sum_{n=1}^{\infty} M^{2} n^{2 s+2} \max \left\{\left|\alpha_{n}\right|^{2},\left|\beta_{n}\right|^{2}\right\}<c_{1}^{2} M^{2} \sum_{n=1}^{\infty} n^{2 s+4} \max \left\{\left|D_{n}\right|^{2},\left|E_{n}\right|^{2}\right\}<\infty$.

Remark 1. In the classical case when the given state functions are continuously differentiable, according to Theorem 1, the initial functions are also continuously differentiable. More precisely, if

$$
u\left(x, t_{1}\right)=f(x) \in C^{4}[0, l], \quad u\left(x, t_{2}\right)=g(x) \in C^{4}[0, l], \quad f,\left.g\right|_{0, l}=f^{\prime \prime},\left.g^{\prime \prime}\right|_{0, l}=0
$$

then $f, g \in D^{4}$ and the observation problem has a unique classical solution

$$
u(x, 0)=\varphi(x) \in D^{3} \subset C^{2}, \quad u_{t}(x, 0)=\psi(x) \in D^{2} \subset C^{1}
$$

Remark 2. Taking into account (20), condition (15) can be written into the following form:

$$
\begin{equation*}
\sin \left(\left(t_{2}-t_{1}\right) \omega_{n}\right)=\sin \left(\left(t_{2}-t_{1}\right) \frac{n \pi}{l} a+\left(t_{2}-t_{1}\right) \frac{-c}{\sqrt{\left(\frac{n \pi}{l} a\right)^{2}-c}+\frac{n \pi}{l} a}\right) \neq 0 \tag{31}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Analysing the proof of Lemma 1, it is easy to see that the above condition is certainly satisfied for all $n$ large enough, say $n>N$.
If we want to get an easily verifiable condition instead of (15), which is not necessary then

$$
\begin{equation*}
\left(t_{2}-t_{1}\right) \frac{-c}{\sqrt{\left(\frac{\pi}{l} a\right)^{2}-c}+\frac{\pi}{l} a}<\frac{\pi}{q} \tag{32}
\end{equation*}
$$

is such a sufficient condition. We justify this claim as follows. The first term in the argument of the sine function in $(31)$ is either $0(\bmod 2 \pi)$, or its distance is at least $\frac{\pi}{q}$ from its zeroes, and the second term in the argument of the sine function in (31) is positive and monotone decreasing function of $n$. So, if we assume that the second term is already smaller than $\frac{\pi}{q}$ for $n=1$, which is actually the case in (32), then condition (31) is satisfied for each $n \geq 1$.

Nevertheless, we can see from this simpler condition (32), that if the parameters $|c|$ and $a$ in equation (1) are such that either $c$ is small or $a$ is great enough, then condition (31) is always satisfied. Similar observations can be made in the following Theorems $2-4$.

Proof of Theorem 2. In an analogous way as in the proof of Theorem 1, now we start with the following equalities:

$$
\begin{gathered}
f(x)=u_{t}\left(x, t_{1}\right)=\sum_{n=1}^{\infty}\left[-\alpha_{n} \omega_{n} \sin \left(\omega_{n} t_{1}\right)+\beta_{n} \omega_{n} \cos \left(\omega_{n} t_{1}\right)\right] \sin \left(\frac{n \pi}{l} x\right), \quad x \in[0, l], \\
g(x)=u\left(x, t_{2}\right)=\sum_{n=1}^{\infty}\left[\alpha_{n} \cos \left(\omega_{n} t_{2}\right)+\beta_{n} \sin \left(\omega_{n} t_{2}\right)\right] \sin \left(\frac{n \pi}{l} x\right), \quad x \in[0, l] .
\end{gathered}
$$

Hence we get the following necessary conditions for the coefficients $\alpha_{n}, \beta_{n}$ :

$$
\begin{gathered}
-\alpha_{n} \omega_{n} \sin \left(\omega_{n} t_{1}\right)+\beta_{n} \omega_{n} \cos \left(\omega_{n} t_{1}\right)=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x, \quad n \in \mathbb{N}, \\
\alpha_{n} \cos \left(\omega_{n} t_{2}\right)+\beta_{n} \sin \left(\omega_{n} t_{2}\right)=\frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x, \quad n \in \mathbb{N} .
\end{gathered}
$$

The linear equations just received can be uniquely solved for the unknown coefficients $\alpha_{n}$ and $\beta_{n}$, due to assumption (17):

$$
\begin{aligned}
\alpha_{n} & =\frac{-\sin \left(\omega_{n} t_{2}\right) \frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x+\cos \left(\omega_{n} t_{1}\right) \omega_{n} \frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x}{\omega_{n} \cos \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)} \\
\beta_{n} & =\frac{\cos \left(\omega_{n} t_{2}\right) \frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x+\sin \left(\omega_{n} t_{1}\right) \omega_{n} \frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x}{\omega_{n} \cos \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}
\end{aligned}
$$

So the unknown initial functions $\varphi$ and $\psi$ are uniquely determined and found in the form of (7) and (8). It remains to show that $\varphi, \psi$ are from the classes $D^{s+1}, D^{s}$, respectively. To this effect, it is enough to show that (28) holds.
Again, let
$D_{n}:=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x$,
$E_{n}:=\frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x$.
Since $(f, g) \in D^{s+1} \times D^{s+2}$, we have that the inequality (29') holds:

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{2 s+4} \max \left\{\left|\frac{1}{n} D_{n}\right|^{2},\left|E_{n}\right|^{2}\right\}<\infty \tag{29'}
\end{equation*}
$$

By using Lemma 2, for every $n>N$ we have

$$
\begin{gathered}
\left|\alpha_{n}\right|=\left|\frac{-\sin \left(\omega_{n} t_{2}\right) D_{n}+\cos \left(\omega_{n} t_{1}\right) \omega_{n} E_{n}}{\omega_{n} \cos \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}\right|<\left|\frac{1}{\omega_{n}} \frac{n}{m} D_{n}\right|+\left|\frac{n}{m} E_{n}\right|, \\
\left|\beta_{n}\right|=\left|\frac{\cos \left(\omega_{n} t_{2}\right) D_{n}+\sin \left(\omega_{n} t_{1}\right) \omega_{n} E_{n}}{\omega_{n} \cos \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}\right|<\left|\frac{1}{\omega_{n}} \frac{n}{m} D_{n}\right|+\left|\frac{n}{m} E_{n}\right|,
\end{gathered}
$$

which means that

$$
\max \left\{\left|\alpha_{n}\right|,\left|\beta_{n}\right|\right\}<c_{2} n \max \left\{\left|\frac{1}{n} D_{n}\right|,\left|E_{n}\right|\right\} \quad n \in \mathbb{N}
$$

with a suitable constant $c_{2}$.
Combining $\left(29^{\prime}\right),\left(30^{\prime}\right)$ and the definition of the norm $\|.\|_{s}$ we get the desired inequality (28):
$\max \left\{\|\varphi\|_{s+1}^{2},\|\psi\|_{s}^{2}\right\}=\max \left\{\sum_{n=1}^{\infty} n^{2 s+2}\left|\alpha_{n}\right|^{2}, \sum_{n=1}^{\infty} n^{2 s}\left|\omega_{n} \beta_{n}\right|^{2}\right\} \leq$
$\leq \sum_{n=1}^{\infty} M^{2} n^{2 s+2} \max \left\{\left|\alpha_{n}\right|^{2},\left|\beta_{n}\right|^{2}\right\}<c_{2}^{2} M^{2} \sum_{n=1}^{\infty} n^{2 s+4} \max \left\{\left|\frac{1}{n} D_{n}\right|^{2},\left|E_{n}\right|^{2}\right\}<\infty$.
Proof of Theorem 3. This proof goes along the same lines as that of Theorem 2, except that here we have to interchange the roles of the coefficients $\alpha_{n}$ and $\beta_{n}$.

Proof of Theorem 4. Now, we have

$$
\begin{aligned}
& f(x)=u_{t}\left(x, t_{1}\right)=\sum_{n=1}^{\infty}\left[-\alpha_{n} \omega_{n} \sin \left(\omega_{n} t_{1}\right)+\beta_{n} \omega_{n} \cos \left(\omega_{n} t_{1}\right)\right] \sin \left(\frac{n \pi}{l} x\right), \quad x \in[0, l], \\
& g(x)=u_{t}\left(x, t_{2}\right)=\sum_{n=1}^{\infty}\left[-\alpha_{n} \omega_{n} \sin \left(\omega_{n} t_{2}\right)+\beta_{n} \omega_{n} \cos \left(\omega_{n} t_{2}\right)\right] \sin \left(\frac{n \pi}{l} x\right), \quad x \in[0, l],
\end{aligned}
$$

whence the necessary conditions for the coefficients $\alpha_{n}, \beta_{n}$ are the following:

$$
\begin{array}{ll}
-\alpha_{n} \omega_{n} \sin \left(\omega_{n} t_{1}\right)+\beta_{n} \omega_{n} \cos \left(\omega_{n} t_{1}\right)=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x, & n \in \mathbb{N}, \\
-\alpha_{n} \omega_{n} \sin \left(\omega_{n} t_{2}\right)+\beta_{n} \omega_{n} \cos \left(\omega_{n} t_{2}\right)=\frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x, & n \in \mathbb{N} .
\end{array}
$$

The linear equations just received can be uniquely solved for the unknown coefficients $\alpha_{n}$ and $\beta_{n}$, due to assumption (15):

$$
\begin{aligned}
& \alpha_{n}=\frac{\cos \left(\omega_{n} t_{2}\right) \frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x-\cos \left(\omega_{n} t_{1}\right) \frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x}{\omega_{n} \sin \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)} \\
& \beta_{n}=\frac{\sin \left(\omega_{n} t_{2}\right) \frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x-\sin \left(\omega_{n} t_{1}\right) \frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x}{\omega_{n} \sin \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}
\end{aligned}
$$

So the unknown initial functions $\varphi$ and $\psi$ are uniquely determined and found in the form of (7) and (8). It remains to show that $\varphi, \psi$ are from the classes $D^{s+1}, D^{s}$, respectively. To this effect, it is enough to show that (28) holds.
Again, let
$D_{n}:=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x\right) d x$,
$E_{n}:=\frac{2}{l} \int_{0}^{l} g(x) \sin \left(\frac{n \pi}{l} x\right) d x$.
Since $(f, g) \in D^{s+1} \times D^{s+1}$, we have that the inequality ( $29^{\prime \prime}$ ) holds:

$$
\sum_{n=1}^{\infty} n^{2 s+2} \max \left\{\left|D_{n}\right|^{2},\left|E_{n}\right|^{2}\right\}<\infty
$$

By using Lemma 1 , for every $n>N$ we get

$$
\begin{aligned}
& \left|\alpha_{n}\right|=\left|\frac{\cos \left(\omega_{n} t_{2}\right) D_{n}-\cos \left(\omega_{n} t_{1}\right) E_{n}}{\omega_{n} \sin \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}\right|<\left|\frac{1}{\omega_{n}} \frac{n}{m} D_{n}\right|+\left|\frac{1}{\omega_{n}} \frac{n}{m} E_{n}\right|, \\
& \left|\beta_{n}\right|=\left|\frac{\sin \left(\omega_{n} t_{2}\right) D_{n}-\sin \left(\omega_{n} t_{1}\right) E_{n}}{\omega_{n} \sin \left(\omega_{n}\left(t_{2}-t_{1}\right)\right)}\right|<\left|\frac{1}{\omega_{n}} \frac{n}{m} D_{n}\right|+\left|\frac{1}{\omega_{n}} \frac{n}{m} E_{n}\right|,
\end{aligned}
$$

which means that

$$
\max \left\{\left|\alpha_{n}\right|,\left|\beta_{n}\right|\right\}<c_{4} \max \left\{\left|D_{n}\right|,\left|E_{n}\right|\right\} \quad n \in \mathbb{N},
$$

with a suitable constant $c_{4}$.

Combining $\left(29^{\prime \prime}\right),\left(30^{\prime \prime}\right)$ and the definition of the norm $\|.\|_{s}$ we get the desired inequality (28):
$\max \left\{\|\varphi\|_{s+1}^{2},\|\psi\|_{s}^{2}\right\}=\max \left\{\sum_{n=1}^{\infty} n^{2 s+2}\left|\alpha_{n}\right|^{2}, \sum_{n=1}^{\infty} n^{2 s}\left|\omega_{n} \beta_{n}\right|^{2}\right\} \leq$
$\leq \sum_{n=1}^{\infty} M^{2} n^{2 s+2} \max \left\{\left|\alpha_{n}\right|^{2},\left|\beta_{n}\right|^{2}\right\}<c_{4}^{2} M^{2} \sum_{n=1}^{\infty} n^{2 s+2} \max \left\{\left|D_{n}\right|^{2},\left|E_{n}\right|^{2}\right\}<\infty$.

## ACKNOWLEDGEMENTS

We would like to sincerely thank Professor Ferenc Móricz for his encouragement and constant help on a previous draft. We also thank the anonymous referee for careful reading of the previous draft and his/her suggestions which resulted in the present version of this paper.

## REFERENCES

[1] Lions, J.L., Contrôle optimal de systemes gouvernés par des équations aux dérivées partielles (Études mathématiques), Paris: Dunod, 1968.
[2] Komornik, V., Exact controllability and stabilization. The multiplier method., Research in Applied Mathematics 36. Chichester: Wiley. Paris: Masson, 1994.
[3] Komornik, V., Exact controllability in short time for the wave equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6, No. 2, pp. 153-164, 1989.
[4] Joó, I., On the vibration of a string., Studia Sci. Math. Hungar 22, No. 1-4, pp. 1-9, 1987.
[5] Horváth, M., Vibrating strings with free ends, Acta Math. Hungar 51, No. 1-2, pp. 171-180, 1988.
[6] Il'in, V.A., Boundary control of the vibration process at two ends, Dokl. Acad. Nauk 369, No. 5, pp. 592-596, 1999.
[7] Moiseev, E.I., Kholomeeva, A. A., Optimal boundary displacement control of string vibrations with nonlocal oddness condition of the first kind, Differential Equations 46, No. 11, pp. 1624-1630, 2010.
[8] Il'in, V.A., Moiseev, E.I., Optimization of boundary controls of string vibrations, Uspekhi Mat. Nauk 60, No. 6, pp. 89-114, 2005.
[9] Lions, J.L., Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev. 30, No. 1, pp. 1-68, 1988.
[10] Lions, J.L., Magenes, E., Problèmes aux limites non homogènes et applications I-III, Dunod, Paris, 1968-1970.
[11] Znamenskaya, L.N., State observability of elastic string vibrations under the boundary conditions of the first kind, Differential Equations 46, No. 5, pp. 748-752, 2010.
(Received March 30, 2011)


[^0]:    ${ }^{1}$ Corresponding author

