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Abstract

We develop maximum principles for several P functions which are defined on solutions
to equations of fourth and sixth order (including a equation which arises in plate theory and
bending of cylindrical shells).
As a consequence, we obtain uniqueness results for fourth and sixth order boundary value
problems in arbitrary n dimensional domains.
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1 Introduction

This paper represents the n dimensional analogue of Schaefer’s paper [9] and is concerned with
uniqueness results for boundary value problems of fourth and sixth order.

Schaefer [9] investigated the uniqueness of the solution for the boundary value problems

{

∆3u − a(x)∆2u + b(x)∆u − c(x)u = f in Ω ⊂ IRn

u = g, ∆u = h, ∆2u = i on ∂Ω,
(1.1)

and

{

∆2u − ϕ(x)∆u + ρ(x)u = f in Ω ⊂ IRn

u = g, ∆u = h on ∂Ω,
(1.2)

where a, b,≥ 0, c > 0 are constants, ϕ ≡ 0, ρ > 0 in the bounded domain Ω, n = 2 and the
curvature of the boundary is strictly positive.

Our aim here is to remove via the P function method dimension and geometry conditions
(convexity and smoothness) with, of course, further conditions on the coefficients a, b, c and ρ.

Finally, we deal with a equation that arises in plate theory and in bending of cylindrical shells.
We prove the uniqueness result for the corresponding homogeneous boundary value problem
without the hypothesis that the plate has a convex shape.

A word on notations. For simplicity, we shall say that a function Φ satisfies a generalized
maximum principle in Ω, if either there exists a constant k ∈ IR such that Φ ≡ k in Ω or Φ does
not attain a nonnegative maximum in Ω. Throughout the paper Ω and diamΩ denote respectively
a bounded domain in IRn, the diameter of Ω.
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2 Some useful results

We first involve second order operators and establish some useful results. The results are not
only useful for our purposes but also yielding other results for partial differential equations (see
[3], [7]).

We consider the problem of determining a smooth function w (a positive supersolution), which
satisfies

Lw ≡ ∆w + γ(x)w ≤ 0 in Ω, (2.1)

w > 0 in Ω. (2.2)

The problem of determining such a function is of interest only if γ takes positive values or
both positive and negative values. If γ ≤ 0 in Ω then, the function w ≡ c, where c is a positive
constant, satisfies (2.1) and (2.2).

Lemma 2.1. Suppose that γ ≥ 0 in Ω and that

sup
Ω

γ <
4n + 4

(diamΩ)2
. (2.3)

Then, there exists a function w1 ∈ C∞(IRn) satisfying (2.1) and (2.2).
If Ω lies in a slab of width d and if

sup
Ω

γ <
π2

d2
, (2.4)

there exists a function w2 ∈ C∞(Ω) satisfying (2.1) and (2.2).

Proof. By virtue of Jung’s theorem (see [5] or [1], Theorem 11.5.8, p. 357), we may suppose
without loss of generality that Ω is embedded in the ball (the smallest ball containing Ω): Ω ⊂

B
(n/2n+2)

1

2 diamΩ
= {x | x2

1 + · · · + x2
n < n(diamΩ)2

2n+2 }.

We define the function

w1(x) = 1 − α(x2
1 + · · · + x2

n) in Ω, (2.5)

where the positive constant α is to be determined.
By calculations we get

Lw1 ≤ −2αn + sup
Ω

γ in Ω.

By choosing

α = sup
Ω

γ/2n,

we obtain Lw1 ≤ 0 in Ω.
To insure that w1 > 0 in Ω, we must have α(x2

1 + · · · + x2
n) < 1 in Ω. Hence the inequality

(2.3) must be valid.
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If Ω lies in a slab of width d, then the result follows from Lemma 21.11, p.158, [8]. Here

w2 = cos
π(2xi − d)

2(d + ε)

n
∏

j=1

cosh(εxj),

for some i ∈ {1, . . . , n}, where ε > 0 is small.

Combining our Lemma and Theorem 10, [7], p.73, we get the following useful result:

Theorem 2.1. Let u ∈ C2(Ω) ∩C0(Ω) satisfy the inequality Lu ≡ ∆u + γ(x)u ≥ 0, where γ ≥ 0
in Ω. Suppose that (2.3) holds.

Then, the function u/w1 satisfies a generalized maximum principle in Ω.
Similarly, if we impose the restriction (2.4), we obtain that u/w2 satisfies a generalized max-

imum principle in Ω.

Comments

1. A broad class of domains satisfy Ω ⊂ BdiamΩ/2. For these domains C(n, diamΩ) =
(4n + 4)/(diamΩ)2 may be replaced by C1(n, diamΩ) = 8n/(diamΩ)2.

2. We may improve the constant C1(n, diamΩ) if Ω = {x ∈ IRn | 0 < R <| x |< R+ε}, where
ε > 0 is sufficiently small. We define w3(x) = R + ε− | x | +δ, where δ is any positive constant.
Since

Lw3 ≤ 2(n − 1)/diamΩ + (ε + δ) sup
Ω

γ in Ω,

we get that w3 is a supersolution under the restriction

sup
Ω

γ <
2(n − 1)

(ε + δ)diamΩ
.

For sufficiently small ε we have C2(n, diamΩ) = 2(n − 1)/(ε + δ)diamΩ > C1(n, diamΩ).
3. A method for determining a function having properties (2.1) and (2.2) was given in [7], p.

73–74 . The authors proved that if

sup
Ω

γ <
4

d2e2
, (2.6)

then there exists a function w4 fulfilling (2.1) and (2.2). Here Lw ≡ ∆w +γ(x)w, γ ≥ 0 in Ω and
Ω is supposed to lie in a strip of width d. Note that (2.6) is the inequality in the footnote of p.
74.

Of course, our Lemma is sharper that this result. For a more general result concerning the
construction of supersolutions see [3].

4. We have to impose some restrictions to γ. Otherwise, as the following example shows, the
maximum principle (Theorem 2.1) is false. The function u(x, y) = sin x sin y satisfies u = 0 on
∂Ω and is solution of the equation ∆u + 2u = 0 in Ω = (0, π) × (0, π). Of course, (2.3) does not
hold.
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3 Maximum principles and uniqueness results for sixth or-

der equations

We now tackle the uniqueness for the boundary value problem (1.1). For the sake of simplicity
we consider four cases.

Case 1. a, b, c > 0.
We deal with classical solutions (i.e. u ∈ C6(Ω) ∩ C4(Ω)) of

∆3u − a(x)∆2u + b(x)∆u − c(x)u = 0 in Ω ⊂ IRn, n ≥ 2. (3.7)

The uniqueness results can be inferred from the following maximum principles.

Lemma 3.1. Let u be a classical solution of (3.7).
i). Suppose that

a(b + c)2

b2(a − 1)
<

8n + 8

(diamΩ)2
, (3.8)

holds, where a > 1, b, c are constants. We consider the function P1 given by

P1 = (a∆2u + bu)2 + ab(a − 1)(∆u)2 + b2(a − 1)u2.

Then, the function P1/w1 satisfies a generalized maximum principle in Ω.
ii). Suppose that

sup
Ω

(a + c)2

a(b − 1)
<

8n + 8

(diamΩ)2
, (3.9)

b ∈ C2(Ω) , b > 1 in Ω, ∆(1/(b − 1)) ≤ 0 in Ω (3.10)

holds.
If

P2 = (∆2u + u)2 + (b − 1)(∆u)2 + (b − 1)u2

then, the function P2/w1 satisfies a generalized maximum principle in Ω.
If a = c in Ω then, P2 attains its maximum value on ∂Ω (the restriction (3.9) is not needed).
iii). Suppose that

sup
Ω

c2

2a
+ 1 <

4n + 4

(diamΩ)2
, (3.11)

b ∈ C2(Ω) , b > 0, ∆(1/b) ≤ 0 in Ω, (3.12)

b

(

c2

2a
+ 1

)

≥ 1 in Ω (3.13)

holds, where a > 0 in Ω, and c is of arbitrary sign in Ω.
If

P3 = (∆2u)2 + b(∆u)2 + u2

then, the function P3/w1 satisfies a generalized maximum principle in Ω.
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Proof. i). By computation and using equation (3.7) we have in Ω

∆
(

(a∆2u + bu)2
)

≥ 2(a∆2u + bu)(a∆3u + b∆u)

= 2
(

a3(∆2u)2 + abcu2 + a2(b + c)u∆2u + ab(1 − a)∆u∆2u

+b2(1 − a)u∆u
)

,

∆
(

ab(a − 1)(∆u)2
)

≥ 2ab(a− 1)∆u∆2u,

∆
(

b2(a − 1)u2
)

≥ 2b2(a − 1)u∆u.

That means that

∆P1 ≥ 2a
(

a2(∆2u)2 + a(b + c)u∆2u + bcu2
)

= 2a

(

a∆2u +
b + c

2
u

)2

+ 2a

(

bc −
(b + c)2

4

)

u2 (3.14)

≥ −
a(b + c)2

2
u2.

Hence P1 satisfies the differential inequality

∆P1 +
a(b + c)2

2b2(a − 1)
P1 ≥ 0 in Ω.

Since (3.8) holds, we can use the maximum principle (Theorem 2.1) to obtain the desired
result.

ii). A computation shows that

∆
(

(∆2u + u)2
)

≥ 2(∆2u + u)(a∆2u + (1 − b)∆u + cu)

≥ 2a

(

(∆2u)2 +
a + c

a
u∆2u +

c

a
u2

)

+ 2(1 − b)(∆u∆2u + u∆u).

By (3.10) and the arithmetic - geometric mean inequality we get

∆
(

(b − 1)(∆u)2
)

≥ 2(b − 1)∆u∆2u,

∆
(

(b − 1)u2
)

≥ 2(b − 1)u∆u.

Adding, we obtain that P2 satisfies

∆P2 ≥ 2a

(

∆2u +
a + c

2a
u

)2

+ 2

(

c −
(a + c)2

4a

)

u2 in Ω.

Hence

∆P2 +
(a + c)2

2a(b − 1)
P2 ≥ 0 in Ω,

and the proof follows.
iii). The proof follows by similar reasoning.
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Case 2. a, c > 0, b = 0.

Lemma 3.2. Let u be a classical solution of (3.7).
i). Suppose that

sup
Ω

1

a

(

c +
(c + 1)2

4(a − 1)

)

<
2n + 2

(diamΩ)2
, (3.15)

a ∈ C2(Ω) , a > 1 in Ω, ∆(1/a) ≤ 0 in Ω, (3.16)

c ∈ C2(Ω) , c > 0, ∆(1/c) ≤ 0 in Ω (3.17)

holds.
We consider the function P4 given by

P4 = (∆2u − ∆u)2 + c(∆u − u)2 + a(∆u)2.

Then, the function P4/w1 satisfies a generalized maximum principle in Ω.
ii). Suppose that

sup
Ω

c

a − c − 1
<

2n + 2

(diamΩ)2
, (3.18)

a, c ∈ C2(Ω) , a − c − 1 > 0 in Ω, ∆(1/(a − c − 1)) ≤ 0 in Ω, (3.19)

and (3.17) holds.
We consider the function P5 given by

P5 = (∆2u − ∆u)2 + c(∆u − u)2 + (a − c − 1)(∆u)2.

Then, the function P5/w1 satisfies a generalized maximum principle in Ω.

Proof. i). It is easily verified that P4 satisfies in Ω

∆P4 ≥ 2(a − 1)(∆2u)2 + 2(c + 1)∆u∆2u − 2c(∆u)2

= 2(c + 1)

(

√

a − 1

c + 1
∆2u +

1

2

√

c + 1

a − 1
∆u

)2

− 2c(∆u)2 −
2(c + 1)2

4(a − 1)
(∆u)2

Hence

∆P4 +
2

a

(

c +
(c + 1)2

4(a − 1)

)

P4 ≥ 0 in Ω,

and the proof follows.
ii). The proof follows by similar reasoning.

Case 3. b, c > 0, a = 0.
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Lemma 3.3. Let u be a classical solution of (3.7).
Suppose that

max{2, sup
Ω

1

b
, sup

Ω
c2} <

4n + 4

(diamΩ)2
, (3.20)

and (3.12) holds.
Then, the function P3/w1 satisfies a generalized maximum principle in Ω.

The proof is achieved by arguing exactly as in Lemma 3.1.

Case 4. a = b = 0.

Lemma 3.4. Let u be a classical solution of (3.7), where c satisfies (3.17).
If the relation

max{1, sup
Ω

c} <
2n + 2

(diamΩ)2
. (3.21)

holds, then the function P6/w1 satisfies a generalized maximum principle in Ω. Here

P6 = (∆2u)2 + c(∆u)2 + cu2.

Similarly, if
c ∈ C2(Ω) , c > 0 in Ω, ∆c ≤ 0 in Ω, (3.22)

then, the function P7/w1 satisfies a generalized maximum principle in Ω. Here

P7 =
1

c
(∆2u)2 + (∆u)2 + u2.

The proof is achieved by arguing exactly as in Lemma 3.1.

We now conclude the uniqueness result.

Theorem 3.1. There is at most one classical solution of the boundary value problem (1.1), where
a, b and c satisfy the conditions of Lemma 3.1, Lemma 3.2, Lemma 3.3 or Lemma 3.4.

Proof. Suppose that (3.8) is satisfied. We define u = u1 − u2, where u1 and u2 are solutions of
(1.1). Then u satisfies the equation (3.7) and

u = ∆u = ∆2u = ∆3u = 0 on ∂Ω. (3.23)

Hence by Lemma 3.1 either there exists a constant k ∈ IR such that

P1

w1
≡ k in Ω, (3.24)

or
P1

w1
does not attain a maximum in Ω. (3.25)

In the first case the function P1/w1 is smooth and hence (3.24) holds in Ω. By the boundary
conditions (3.23) we have P1 = 0 on ∂Ω, i.e., k=0. It follows that P1 = 0 in Ω, which means
u ≡ 0 in Ω. Hence u1 = u2 in Ω.
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We are left to check the condition (3.25), i.e.,

max
Ω

P1

w1
= max

∂Ω

P1

w1
.

By the boundary conditions (3.23) we have

0 ≤ max
Ω

P1

w1
= 0,

i.e., u1 = u2 in Ω.
We can argue similarly if we are under the hypotheses of Lemma 3.2, Lemma 3.3 or Lemma

3.4.

Comments.

1. Our uniqueness results extend Theorem 1, [9] to the n dimensional and nonconstant
coefficient case without the convexity restriction imposed to Ω. In our paper, the removal was
achieved by using P functions without gradient terms.
2. We could also derive P functions containing gradient terms. This kind of functions would
have led us to weaker uniqueness results.

For example, the function

P8 =
1

2
(∆2u)2 +

b

2
(∆u)2 + c(|∇u|2 − u∆u) +

c(2c + nc)

nb
u2.

satisfies the inequality

∆P8 +
2(2c + nc)

nb
P8 ≥ 0 in Ω.

Hence P8/w1 attains its maximum value on ∂Ω (unless P8 < 0 in Ω), if a=0 and

2c + nc

nb
<

2n + 2

(diamΩ)2
.

We note that this maximum principle can be used to obtain gradient bounds for the solution
of (3.7) (the method is similar to the method presented in Section 4 and hence will be omitted).
3. We note that the case a, b, c > 0 and n arbitrary was also treated in [4]. We see that our
results cannot be deduced from results in [4]. Moreover, we are able here to treat the cases a = 0
or b = 0 or a = b = 0.
4. If b = c and a > 1 (see relation (3.14)), then Lemma 3.1 holds without the assumption (3.8).
This particular result can be deduced from Theorem 2, [4].
5. Different uniqueness results for boundary value problems of sixth order have been obtained in
[2].
6. The sign condition on the coefficients a and b is needed. The following example shows that if
a < 0, then the uniqueness result (Theorem 3.1) is violated.

The boundary value problem

{

∆3u + 3∆2u + ∆u − 2u = 0 in Ω = (0, π) × (0, π)
u = ∆u = ∆2u = ∆3u = 0 on ∂Ω,

has (at least) the solutions u1(x, y) ≡ 0 and u2(x, y) = sin x sin y in Ω.
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4 A maximum principle and an uniqueness result for a

fourth order equation

Finally, we deal with the following equation

∆2u + k1u + k2u
3 = 0 in Ω ⊂ IRn, n ≥ 2, (4.26)

where k1, k2 > 0 are constants.
The equation (4.26) arises in the plate theory and in the bending of cylindrical shells [10].

The next maximum principle will be used to obtain solution and gradient bounds for the
equation (4.26).

Lemma 4.1. Let u be a classical solution of (4.26).
Then the function

P9 = (∆u)2 +
k2

2
u4 + k1u

2

attains its maximum value on ∂Ω.

Proof. Since
∆

(

(∆u)2
)

≥ 2∆u(−k1u − k2u
3) = −2k1u∆u − 2k2u

3∆u,

k2

2
∆u4 ≥ k2u

2∆u2 ≥ 2k2u
3∆u,

k1∆u2 ≥ 2k1u∆u,

we get
∆P9 ≥ 0 in Ω,

and the proof follows by the classical maximum principle.

Theorem 4.1. If u satisfies (4.26) then, we have the following bounds
a).

max
Ω

|u| ≤

√

1

k1

(

max
∂Ω

|∆u| +

√

k2

2
max
∂Ω

u2 +
√

k1 max
∂Ω

|u|

)

, (4.27)

where n ≥ 2.
b).

max
Ω

|∇u|2 ≤ max
∂Ω

|∇u|2 +
3 + k1

2
max
∂Ω

u2 +
k2(1 + k1)

4k1
max
∂Ω

u4 +
1 + 2k1

2k1
max
∂Ω

(∆u)2, (4.28)

where n = 2.

Proof. a). Case a). is a simple consequence of Lemma 4.1.
b). From Theorem 1, [10] we know that the the function |∇u|2 − u∆u attains it maximum

value on ∂Ω, which we may rewrite as

|∇u|2 ≤
u2

2
+

(∆u)2

2
+ max

∂Ω
(|∇u|2 − u∆u) in Ω. (4.29)
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By Lemma 4.1 we get

u2

2
≤ max

∂Ω
u2 +

k2

4k1
max
∂Ω

u4 +
1

2k1
max
∂Ω

(∆u)2 in Ω, (4.30)

(∆u)2

2
≤

k1

2
max
∂Ω

u2 +
k2

4
max
∂Ω

u4 +
1

2
max
∂Ω

(∆u)2 in Ω. (4.31)

Combining inequalities (4.29), (4.30) and (4.31), we get the inequality (4.28).

The hypothesis that is assumed over and over again in plate theory is convexity. Under this
assumption, Schaefer [10] proved the uniqueness for the solution of

{

∆2u + k1u + k2u
3 = 0 in Ω

u = ∆u = 0 on ∂Ω,
(4.32)

where Ω ⊂ IR2 is a convex domain.
An application of our Lemma 4.1 shows that the convexity assumption is redundant. More-

over, the uniqueness result for solutions of (4.32) holds for n > 2.
The result reads as follows:

Theorem 4.2. Let u be a classical solution of (4.32), where Ω ⊂ IRn is an arbitrary domain.
Then u ≡ 0 in Ω.

Comments.

1. Some maximum principles and their applications for general equations of fourth and six
order have been given in [11] and [6]. Unfortunately, it is difficult to apply their results in the
study of uniqueness results.
2. If n ≥ 3 we can still obtain gradient bounds for solutions of (4.26).
We must use the function

P10 = 2(∆u)2 + k2u
4 +

(

2k1 +
3

2

)

u2 + |∇u|2 − u∆u.

By the inequality,
n

∑

i,j=1

(

∂2u

∂xi∂xj

)2

≥
1

n
(∆u)2

(which holds in n dimensions) we see the function P10 satisfies

∆P10 + P10 ≥ (u + ∆u)2 ≥ 0 in Ω.

Hence, by Theorem 2.1 we obtain (under the restriction (diamΩ)2 < 4n + 4)

P10 ≤ w1 max
∂Ω

P10

w1
≤

max∂Ω P10

min∂Ω w1
in Ω, (4.33)
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unless P10 < 0 in Ω.
If P10 < 0 in Ω we have

|∇u|2 − u∆u ≤ 0 in Ω,

i.e.

|∇u|2 ≤
u2

2
+

(∆u)2

2
in Ω. (4.34)

Using an argument similar to that we have used in Theorem 4.1 and combining the inequalities
(4.33) and (4.34), we get a gradient bound.
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