Eigenvalue problems for a class of singular quasilinear elliptic equations in weighted spaces*

Gao Jia ${ }^{1} \dagger \quad$ Mei-ling Zhao ${ }^{1}$, Fang-lan Li^{2}
${ }^{1}$ College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
${ }^{2}$ Shanghai Medical Instrumentation College, Shanghai 200093, China

Abstract

In this paper, by using the Galerkin method and the generalized Brouwer's theorem, some problems of the higher eigenvalues are studied for a class of singular quasiliner elliptic equations in the weighted Sobolev spaces. The existence of weak solutions is obtained for this problem.

Keywords: Weighted Sobolev space; Singular quasilinear elliptic equation; Eigenvalue.
2010MSC: 35J20, 35J25, 65J67

1 Introduction

In this paper, we consider the existence of weak solutions in weighted Sobolev spaces for the singular quasilinear elliptic equation

$$
\begin{cases}\mathcal{L} u=\lambda_{J} u \rho+f(x, u) \rho-G, & \text { in } \Omega \tag{1.1}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where

$$
\begin{equation*}
\mathcal{L} u=-\sum_{i, j=1}^{N} D_{i}\left(p_{i}^{\frac{1}{2}} p_{j}^{\frac{1}{2}} a_{i j}(x) D_{j} u\right)+a_{0}(x) q u \tag{1.2}
\end{equation*}
$$

and $\lambda_{J}(J>1)$ is J-th eigenvalue of the operator (1.2) of multiplicity J_{1}.
Equation (1.1) is singular arises from the fact that Ω may be unbounded or that p_{i} may equal zero or infinity on part or all of the boundary of Ω.

Working in Sobolev spaces, there are many existence results for linear or quasilinear elliptic equation. For example, we can refer to [1]-[4]. However, there are seem to be relatively few papers

[^0]that consider the quasilinear elliptic equations in weighted Sobolev spaces, because the compact embedding theorem cannot be obtained easily.

In 2001, V.L. Shapiro ${ }^{[5]}$ established a new weighted compact Sobolev embedding theorem, and proved a series of existence problems for weighted quasilinear elliptic equations and parabolic equations.

In 2005, working in Sobolev space $H_{p, \rho}^{1}(\Omega, \Gamma)$ only for the first eigenvalue, A. Rumbos and V. L. Shapiro ${ }^{[6]}$ on the basis of [7] by using the generalized Landesman-Lazer conditions ${ }^{[8]}$ discussed the existence of the solutions for weighted quasilinear elliptic equations

$$
\left\{\begin{array}{lc}
\mathcal{P} u-\lambda_{1} u \rho=-a(x, u) u^{-} \rho+g(x, u) \rho+h, & x \text { in } \Omega \\
u=0, & x \text { on } \Omega
\end{array}\right.
$$

where

$$
\mathcal{P} u=-\sum_{i, j=1}^{N} D_{i}\left(p_{i}^{\frac{1}{2}} p_{j}^{\frac{1}{2}} b_{i j}(x) D_{j} u\right)+\rho(x) c(x) u
$$

The problems what we discussed have physical background. In fact, equation (1.1) is one of the most useful sets of Navier-Stokes equations, which describe the motion of viscous fluid substances liquids and gases.

The purpose of this paper is to obtain an existence result of the weakly result for problem (1.1). Our results are bases on the Galerkin-type techniques ${ }^{[9]}$ and the generalized Brouwer's theorem ${ }^{[10]}$ and other methods.

2 Preliminaries and Fundamental Lemmas

Let Ω denote a bounded domain in $R^{N}(N \geq 1), p_{i}(x)$ and $\rho(x) \in C^{0}(\Omega)$ be positive functions, $q(x) \in C^{0}(\Omega)$ be a nonnegative function, with the property that

$$
\begin{equation*}
\int_{\Omega} q(x) d x<\infty, \int_{\Omega} \rho(x) d x<\infty, \int_{\Omega} p_{i}(x) d x<\infty, i=1,2, \cdots, N \tag{2.1}
\end{equation*}
$$

Let $\Gamma \subset \partial \Omega$ be a fixed closed set (it may be the empty set), $q(x)$ maybe identically zero, $D_{i} u=$ $\frac{\partial u}{\partial x_{i}}, i=1,2, \cdots, N$. We consider the following pre-Hilbert spaces

$$
\begin{equation*}
C_{\rho}^{0}(\Omega)=\left\{\left.u \in C^{0}(\Omega)\left|\int_{\Omega}\right| u\right|^{2} \rho d x<\infty\right\} \tag{2.2}
\end{equation*}
$$

with inner-product $\langle u, v\rangle_{\rho}=\int_{\Omega} u v \rho d x, \forall u, v \in C_{\rho}^{0}(\Omega)$, and

$$
\begin{equation*}
C_{p, q, \rho}^{1}(\Omega, \Gamma)=\left\{u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega) \mid u(x)=0, \forall x \in \Gamma ; \int_{\Omega}\left[\sum_{i=1}^{N}\left|D_{i} u\right|^{2} p_{i}+u^{2}(q+\rho)\right] d x<\infty\right\} \tag{2.3}
\end{equation*}
$$

with inner-product

$$
\begin{equation*}
\langle u, v\rangle_{p, q, \rho}=\int_{\Omega}\left[\sum_{i=1}^{N} p_{i} D_{i} u D_{i} v+(q+\rho) u v\right] d x \tag{2.4}
\end{equation*}
$$

Let $L_{\rho}^{2}(\Omega)$ denote the Hilbert space obtained through the completion of $C_{\rho}^{0}(\Omega)$ by using the method of Cauchy sequences with respect to the norm $\|u\|_{\rho}=\langle u, u\rangle_{\rho}^{\frac{1}{2}}, H_{p, q, \rho}^{1}(\Omega, \Gamma)$ denote the completion of the space $C_{p, q, \rho}^{1}(\Omega, \Gamma)$ with respect to the norm $\|u\|_{p, q, \rho}=\langle u, u\rangle_{p, q, \rho}^{\frac{1}{2}}$. Obviously, $H_{p, q, \rho}^{1}(\Omega, \Gamma)$ is a weighted Sobolev spaces. In a similar manner we have the spaces $L_{p_{i}}^{2}(\Omega),(i=$ $1,2, \cdots, N)$ and $L_{q}^{2}(\Omega)$. Hance we see from (2.4) that

$$
\begin{equation*}
\langle u, v\rangle_{p, q, \rho}=\sum_{i=1}^{N}\left\langle D_{i} u, D_{i} v\right\rangle_{p_{i}}+\langle u, v\rangle_{\rho}+\langle u, v\rangle_{q} . \tag{2.5}
\end{equation*}
$$

Next, we make the following assumptions for the functions $a_{i j}(x)$ and $a_{0}(x)$
$(\mathrm{a}-1) a_{i j}(x), a_{0}(x) \in L^{\infty}(\Omega), i, j=1,2, \cdots, N$, and $a_{0}(x) \geq 0$, a.e. $x \in \Omega$;
$(\mathrm{a}-2) a_{i j}(x)=a_{j i}(x), \forall x \in \Omega, i, j=1,2, \cdots, N ;$
(a-3) $\sum_{i, j=1}^{N} a_{i j}(x) \xi_{i} \xi_{j} \geq c_{0}|\xi|^{2}, \forall x \in \Omega, \xi \in R^{N}$, where $c_{0}>0$.
$f(x, s)$ will meet the following conditions:
(f-1) $f(x, s)$ satisfies Caratheodory conditions ${ }^{[9]}$;
(f-2) There exists a nonnegative function $f_{0}(x) \in L_{\rho}^{2}$, for $\forall s \in R$, such that $|f(x, s)| \leq 2 \gamma^{\prime}|s|+$ $f_{0}(x)$, where $0<\gamma^{\prime}<\gamma, \gamma=\left(\lambda_{J+J_{1}}-\lambda_{J}\right) / 2$;
(f-3) $f(x, s) \geq-f_{0}(x), s>0$ and a.e. $x \in \Omega ; f(x, s) \leq f_{0}(x), s \leq 0$ and a.e. $x \in \Omega$, where $f_{0}(x) \in L_{\rho}^{2}$ is similar with ($\mathrm{f}-2$).

Hence (f-2) and (f-3) together imply

$$
\begin{equation*}
\left|f(x, s)-\gamma^{\prime} s\right| \leq \gamma^{\prime}|s|+f_{0}(x), \forall s \in R, \text { a.e. } x \in \Omega . \tag{2.6}
\end{equation*}
$$

Now we introduce the two-form for the operator \mathcal{L}

$$
\begin{equation*}
\mathcal{L}(u, v)=\sum_{i, j=1}^{N} \int_{\Omega} p_{i}^{\frac{1}{2}} p_{j}^{\frac{1}{2}} a_{i j}(x) D_{j} u D_{i} v+\left\langle a_{0} u, v\right\rangle_{q}, \tag{2.7}
\end{equation*}
$$

$\forall u, v \in H_{p, q, \rho}^{1}(\Omega, \Gamma)$. We say \mathcal{L} satisfies $V_{L}(\Omega, \Gamma)$ conditions if the following two facts obtain:
$\left(V_{L}-1\right)$ There exists a complete orthonormal system $\left\{\varphi_{n}\right\}_{n=1}^{\infty} \subset L_{\rho}^{2}$, and for arbitrary n, $\varphi_{n} \in H_{p, q, \rho}^{1}(\Omega, \Gamma) \cap C^{2}(\Omega) ;$
$\left(V_{L}-2\right)$ There exists a sequence of eigenvalues $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ with $0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{n} \rightarrow$ ∞, such that

$$
\mathcal{L}\left(\varphi_{n}, v\right)=\lambda_{n}\left\langle\varphi_{n}, v\right\rangle_{\rho}, \forall v \in H_{p, q, \rho}^{1}(\Omega, \Gamma)
$$

Let S_{n} be the subspace of $H_{p, q, \rho}^{1}(\Omega, \Gamma)$ spanned by $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$. For $u_{n} \in S_{n}, \exists\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right) \in$ R^{n}, s.t.

$$
u_{n}=\sum_{k=1}^{J-1} \alpha_{k} \varphi_{k}+\sum_{k=J}^{J+J_{1}-1} \alpha_{k} \varphi_{k}+\sum_{k=J+J_{1}}^{n} \alpha_{k} \varphi_{k} .
$$

From $\left(V_{L}-1\right)$, we see that $\left\|u_{n}\right\|_{\rho}^{2}=|\alpha|^{2}$. Setting

$$
\begin{equation*}
v_{n}=\sum_{k=1}^{J-1} \alpha_{k} \varphi_{k}+\sum_{k=J+J_{1}}^{n} \alpha_{k} \varphi_{k}, \quad w_{n}=\sum_{k=J}^{J+J_{1}-1} \alpha_{k} \varphi_{k}, \tag{2.8}
\end{equation*}
$$

then $u_{n}=w_{n}+v_{n}$, and $\left\langle v_{n}, \varphi_{j}\right\rangle=0, j=J, J+1, \cdots, J+J_{1}-1$, and w_{n} is an eigenfunction of the operator \mathcal{L} corresponding to eigenvalue λ_{J}.

We say functional G satisfies G^{*} - conditions if the following two facts obtain:
(G-1) $G \in\left(H_{p, q, \rho}^{1}(\Omega, \Gamma)\right)^{*}$, the dual of $H_{p, q, \rho}^{1}(\Omega, \Gamma)$, that is, $G: H_{p, q, \rho}^{1}(\Omega, \Gamma) \rightarrow R$ linearly and $|G(u)| \leq K_{0}\|u\|_{p, q, \rho}, \forall u \in H_{p, q, \rho}^{1}(\Omega, \Gamma)$, where K_{0} is a constant;
(G-2) For $u_{n} \in S_{n}, u_{n}=w_{n}+v_{n}$ (same as (2.8)), if

$$
\lim _{n \rightarrow \infty} \frac{\left\|v_{n}\right\|_{p, q, \rho}}{\left\|u_{n}\right\|_{p, q, \rho}} \rightarrow 0
$$

then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[\left(1-n^{-1}\right)\left\langle f\left(x, u_{n}\right), w_{n}\right\rangle_{\rho}-G\left(w_{n}\right)\right]>0 \tag{2.9}
\end{equation*}
$$

We need the following lemmas in section three.
Lemma 2.1 Assume that operator \mathcal{L} is given by (1.2) and that the conditions (a-1)-(a-3) are valid, and that $V_{L}(\Omega, \Gamma)$ conditions hold, and that $v \in L_{\rho}^{2}(\Omega)$. Set $\hat{v}(n)=\left\langle v, \varphi_{n}\right\rangle_{\rho}, n=1,2, \cdots$, then $v \in H_{p, q, \rho}^{1}(\Omega, \Gamma)$ if and only if

$$
\sum_{n=1}^{\infty} \lambda_{n}|\hat{v}(n)|^{2}<\infty
$$

Furthermore if $v \in H_{p, q, \rho}^{1}(\Omega, \Gamma)$, then

$$
\mathcal{L}(v, v)=\sum_{n=1}^{\infty} \lambda_{n}|\hat{v}(n)|^{2}
$$

Lemma 2.2 Assume that operator \mathcal{L} is given by (1.2) and that the conditions (a-1)-(a-3) are valid, for $\forall u \in H_{p, q, \rho}^{1}(\Omega, \Gamma)$. Then, there exist constants $K_{1}>0$ and $K_{2}>0$, such that

$$
K_{1}\|u\|_{p, q, \rho}^{2} \leq \mathcal{L}(u, u) \leq K_{2}\|u\|_{p, q, \rho}^{2} .
$$

Lemma 2.3 Assume that operator \mathcal{L} is given by (1.2) and that the conditions (a-1)-(a-3) are valid, and that $V_{L}(\Omega, \Gamma)$ conditions hold. Then $H_{p, q, \rho}^{1}(\Omega, \Gamma)$ is compactly imbedded in $L_{\rho}^{2}(\Omega)$.

Proofs of the Lemma 2.1 and Lemma 2.2 can be refer to [6,P.9-10], Lemma 2.3 can be refer to [5, P.38], so the proofs are omitted.

3 Main Results and Their Proofs

In this section, we prove that problem (1.1) has at least one solution, which is the main result of this paper stated as Theorem 3.3.

In order to prove the problem (1.1) has a weak solution, we first discuss it in a finite dimension space S_{n}, where S_{n} is the subspace of $H_{p, q, \rho}^{1}(\Omega, \Gamma)$ spanned by $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$, then we extend the result to the infinite dimension space $H_{p, q, \rho}^{1}(\Omega, \Gamma)$.

Theorem 3.1 Let Ω denote a bounded domain in $R^{N}(N \geq 1), p_{i}(x)$ and $\rho(x) \in C^{0}(\Omega)$ be positive functions, $q(x) \in C^{0}(\Omega)$ be a nonnegative function and assume that (2.1) holds. Let
$\Gamma \subset \partial \Omega$ be a fixed closed set (it may be the empty set), the operator \mathcal{L} be given by (1.2) and assume (a-1)-(a-3), that $V_{L}(\Omega, \Gamma)$ conditions hold. Suppose that $f(x, u)$ satisfies ($\mathrm{f}-1$)-(f-3), that the functional G satisfies $(G-1)$. Then if $n \geq n_{0}=J+J_{1}+1$, there exists $u_{n}^{*} \in S_{n}$ with the property that

$$
\begin{equation*}
\mathcal{L}\left(u_{n}^{*}, v\right)=\left(\lambda_{J}+\gamma^{\prime} n^{-1}\right)\left\langle u_{n}^{*}, v\right\rangle_{\rho}+\left(1-n^{-1}\right)\left\langle f\left(x, u_{n}^{*}\right), v\right\rangle_{\rho}-G(v), \forall v \in S_{n} \tag{3.1}
\end{equation*}
$$

Proof We only consider the situation for $J>1$. The case $J=1$ has already been treated in [6]. We set

$$
\begin{gather*}
u=\sum_{k=1}^{n} \alpha_{k} \varphi_{k}, \tilde{u}=\sum_{k=1}^{n} \delta_{k} \alpha_{k} \varphi_{k}, \tag{3.2}\\
\delta_{k}=\left\{\begin{array}{cc}
-1, & k=1, \cdots, J+J_{1}-1, \\
1, & k=J+J_{1}, J+J_{1}+1, \cdots, n
\end{array}\right. \tag{3.3}
\end{gather*}
$$

where $n \geq n_{0}$, and $n_{0}=J+J_{1}+1$. For $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in R^{n}$, from (3.2) and (3.3), we see that

$$
\|u\|_{\rho}^{2}=\|\tilde{u}\|_{\rho}^{2}=|\alpha|^{2}=\sum_{i=1}^{n} \alpha_{i}^{2}
$$

We define

$$
\begin{equation*}
F_{k}(\alpha)=\mathcal{L}\left(u, \delta_{k} \varphi_{k}\right)-\left(\lambda_{J}+\gamma^{\prime} n^{-1}\right)\left\langle u, \delta_{k} \varphi_{k}\right\rangle_{\rho}-\left(1-n^{-1}\right)\left\langle f(x, u), \delta_{k} \varphi_{k}\right\rangle_{\rho}+G\left(\delta_{k} \varphi_{k}\right) \tag{3.4}
\end{equation*}
$$

It follows from (3.2) and (3.3) that

$$
\begin{align*}
\sum_{k=1}^{n} F_{k}(\alpha) \alpha_{k} & =\mathcal{L}(u, \tilde{u})-\left(\lambda_{J}+\gamma^{\prime} n^{-1}\right)\langle u, \tilde{u}\rangle_{\rho}-\left(1-n^{-1}\right)\langle f(x, u), \tilde{u}\rangle_{\rho}+G(\tilde{u}) \\
& =\mathcal{L}(u, \tilde{u})-\left(\lambda_{J}+\gamma^{\prime}\right)\langle u, \tilde{u}\rangle_{\rho}-\left(1-n^{-1}\right)\left\langle f(x, u)-\gamma^{\prime} u, \tilde{u}\right\rangle_{\rho}+G(\tilde{u}) . \tag{3.5}
\end{align*}
$$

First of all,

$$
\mathcal{L}(u, \tilde{u})-\left(\lambda_{J}+\gamma^{\prime}\right)\langle u, \tilde{u}\rangle_{\rho}=\sum_{k=1}^{J+J_{1}-1}\left(\lambda_{J}+\gamma^{\prime}-\lambda_{k}\right) \alpha_{k}^{2}+\sum_{k=J+J_{1}}^{n}\left(\lambda_{k}-\lambda_{J}-\gamma^{\prime}\right) \alpha_{k}^{2},
$$

since $2 \gamma^{\prime}<\lambda_{J+J_{1}}-\lambda_{J}$ and $\|u\|_{\rho}^{2}=\|\tilde{u}\|_{\rho}^{2}=|\alpha|^{2}$, hence we obtain

$$
\begin{equation*}
\mathcal{L}(u, \tilde{u})-\left(\lambda_{J}+\gamma^{\prime}\right)\langle u, \tilde{u}\rangle_{\rho} \geq \gamma^{\prime}|\alpha|^{2} . \tag{3.6}
\end{equation*}
$$

Secondly, from (2.6), Hölder inequality and Minkowski inequality, we get

$$
\begin{align*}
\left\langle f(x, u)-\gamma^{\prime} u, \tilde{u}\right\rangle_{\rho} & =\int\left(f(x, u)-\gamma^{\prime} u\right) \tilde{u} \rho d x \\
& \leq \int\left(\gamma^{\prime}|u|+f_{0}(x)\right)|\tilde{u}| \rho d x \\
& \leq\left\|\gamma^{\prime}|u|+f_{0}(x)\right\|_{\rho}\|u\|_{\rho} \\
& \leq\left(\gamma^{\prime}|\alpha|+\left\|f_{0}\right\|_{\rho}\right)|\alpha| \tag{3.7}
\end{align*}
$$

In addition, according to (G-1), Lemma 2.2, $\mathcal{L}(u, u)=\sum_{k=1}^{n} \lambda_{k}|\hat{u}(k)|^{2}$, and $\sum_{k=1}^{n}|\hat{u}(k)|^{2}=$ $\|u\|_{\rho}^{2}$ for fixed n, we have

$$
\begin{align*}
& |G(\tilde{u})| \leq K_{0}\|\tilde{u}\|_{p, q, \rho} \leq K_{0}^{\prime}[L(\tilde{u}, \tilde{u})]^{1 / 2} \\
& =K_{0}^{\prime}\left[\sum_{k=1}^{n} \lambda_{k}|\hat{u}(k)|^{2}\right]^{1 / 2} \leq K_{0}^{\prime}\left[\lambda_{n} \sum_{k=1}^{n}|\hat{u}(k)|^{2}\right]^{1 / 2}=K_{3}|\alpha|, \tag{3.8}
\end{align*}
$$

where $K_{0}, K_{0}^{\prime}, K_{3}$ are positive constants. We observe from (3.5), (3.6), (3.7) and (3.8) that there exists $t>0$, such that

$$
\begin{aligned}
\sum_{k=1}^{n} F_{k}(\alpha) \alpha_{k} & \geq \gamma^{\prime}|\alpha|^{2}-\left(1-n^{-1}\right)\left[\left(\gamma^{\prime}|\alpha|+\left\|f_{0}\right\| \rho\right)|\alpha|\right]-K_{3}|\alpha| \\
& \geq n^{-1} \gamma^{\prime}|\alpha|^{2}-\left[\left(1-n^{-1}\right)| | f_{0} \|_{\rho}+K_{3}\right]|\alpha| \\
& \geq \gamma^{\prime}|\alpha|^{2} / 2 n>0, \quad|\alpha| \geq t .
\end{aligned}
$$

By the generalized Brouwer's theorem ${ }^{[10]}$, there exists $\alpha^{*}=\left(\alpha_{1}^{*}, \ldots, \alpha_{n}^{*}\right)$ satisfying $F_{k}\left(\alpha^{*}\right)=$ $0, k=1,2, \cdots, n$. Thus, taking $u_{n}^{*}=\sum_{k=1}^{n} \alpha_{k}^{*} \varphi_{k}$, we obtain from(3.3) and (3.4) that

$$
\mathcal{L}\left(u_{n}^{*}, \varphi_{k}\right)=\left(\lambda_{J}+\gamma^{\prime} n^{-1}\right)\left\langle u_{n}^{*}, \varphi_{k}\right\rangle_{\rho}+\left(1-n^{-1}\right)\left\langle f\left(x, u_{n}^{*}\right), \varphi_{k}\right\rangle_{\rho}-G\left(\varphi_{k}\right), \quad k=1,2, \cdots, n,
$$

and the proof of Theorem 3.1 is complete by the definition of S_{n}.
Theorem 3.2 The sequence $\left\{u_{n}^{*}\right\}$ obtained in Theorem 3.1 is uniformly bounded in $H_{p, q, \rho}^{1}$ with respect to the norm $\|u\|_{p, q, \rho}=\langle u, u\rangle_{p, q, \rho}^{\frac{1}{2}}$.

Proof From Theorem 3.1, for $u_{n}^{*} \in S_{n}$, we have

$$
\begin{equation*}
\mathcal{L}\left(u_{n}^{*}, v\right)=\left(\lambda_{J}+\gamma^{\prime} n^{-1}\right)\left\langle u_{n}^{*}, v\right\rangle_{\rho}+\left(1-n^{-1}\right)\left\langle f\left(x, u_{n}^{*}\right), v\right\rangle_{\rho}-G(v), \forall v \in S_{n}, \tag{3.9}
\end{equation*}
$$

where $0<\gamma^{\prime}<\gamma, \gamma=\frac{\lambda_{J+J_{1}}-\lambda_{J}}{2}, n \geq n_{0}, n_{0}=J+J_{1}+1$.
For ease of notation, we represent the sequence $\left\{u_{n}^{*}\right\}_{n \geq n_{0}}$ by $\left\{u_{n}\right\}_{n \geq n_{0}}$. In order to prove Theorem 3.2, we need to prove that there exists constant K_{4} for above $u_{n} \in S_{n}$, such that

$$
\begin{equation*}
\left\|u_{n}\right\|_{p, q, \rho} \leq K_{4}, \quad \forall n \geq n_{0} \tag{3.10}
\end{equation*}
$$

Suppose to the contrary that (3.10) does not hold, then there exists subsequence (for ease of notation, we still denoted by $\left\{u_{n}\right\}$), such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{p, q, \rho}=\infty \tag{3.11}
\end{equation*}
$$

Taking $v=u_{n}$ in (3.9), from Lemma 2.2, $G \in\left(H_{p, q, \rho}^{1}(\Omega, \Gamma)\right)^{*}$ and the methods of (3.7), there exists $K_{5}>0$, such that

$$
\begin{aligned}
K_{5}\left\|u_{n}\right\|_{p, q, \rho}^{2} & \leq\left(\lambda_{J}+\gamma^{\prime} n^{-1}\right)\left\langle u_{n}, u_{n}\right\rangle_{\rho}+\left(1-n^{-1}\right)\left|\left\langle f\left(x, u_{n}\right), u_{n}\right\rangle_{\rho}\right|+\left|G\left(u_{n}\right)\right| \\
& \leq\left(\lambda_{J}+\gamma^{\prime}\right)\left\|u_{n}\right\|_{\rho}^{2}+\left(1-n^{-1}\right)\left(\gamma^{\prime}\left\|u_{n}\right\|_{\rho}^{2}+\left\|f_{0}\right\|_{\rho}\left\|u_{n}\right\|_{\rho}\right)+K_{0}\left\|u_{n}\right\|_{p, q, \rho} .
\end{aligned}
$$

Hence dividing both sides of above inequality by $\left\|u_{n}\right\|_{p, q, \rho}^{2}$ and taking the limit as $n \rightarrow \infty$, then there exists positive integer $n_{1}\left(n_{1} \geq n_{0}\right)$, when $n \geq n_{1}$ that

$$
\frac{K_{5}}{2\left(\lambda_{J}+2 \gamma^{\prime}\right)} \leq \frac{\left\|u_{n}\right\|_{\rho}^{2}}{\left\|u_{n}\right\|_{p, q, \rho}^{2}} \leq 1
$$

From (3.11), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{\rho}=\infty \tag{3.12}
\end{equation*}
$$

and when $n \geq n_{1}$ that

$$
\begin{equation*}
K_{6}\left\|u_{n}\right\|_{p, q, \rho} \leq\left\|u_{n}\right\|_{\rho} . \tag{3.13}
\end{equation*}
$$

Set

$$
\begin{gather*}
u_{n}=u_{n 1}+u_{n 2}+u_{n 3}, \bar{u}_{n}=-u_{n 1}-u_{n 2}+u_{n 3} \\
u_{n 1}=\sum_{k=1}^{J-1} \hat{u}_{n}(k) \varphi_{k}, \quad u_{n 2}=\sum_{k=J}^{J+J_{1}-1} \hat{u}_{n}(k) \varphi_{k}, \quad u_{n 3}=\sum_{k=J+J_{1}}^{n} \hat{u}_{n}(k) \varphi_{k} \tag{3.14}
\end{gather*}
$$

In the following, for $\forall n \geq n_{1}$, we propose to show the fact

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left[\left\|u_{n 1}\right\|_{p, q, \rho}+\left\|u_{n 3}\right\|_{p, q, \rho}\right]}{\left\|u_{n}\right\|_{\rho}}=0 \tag{3.15}
\end{equation*}
$$

In matter of fact, we obtain from (3.9) and (3.14) that

$$
\mathcal{L}\left(u_{n}, \bar{u}_{n}\right)-\left(\lambda_{J}+\gamma^{\prime}\right)\left\langle u_{n}, \bar{u}_{n}\right\rangle_{\rho}=\left(1-n^{-1}\right)\left\langle f\left(x, u_{n}\right)-\gamma^{\prime} u_{n}, \bar{u}_{n}\right\rangle_{\rho}-G\left(\bar{u}_{n}\right)
$$

and

$$
\begin{align*}
& \sum_{k=1}^{J+J_{1}-1}\left(\lambda_{J}+\gamma^{\prime}-\lambda_{k}\right)\left|\hat{u}_{n}(k)\right|^{2}+\sum_{k=J+J_{1}}^{n}\left(\lambda_{k}-\lambda_{J}-\gamma^{\prime}\right)\left|\hat{u}_{n}(k)\right|^{2} \\
& \quad=\left(1-n^{-1}\right)\left\langle f\left(x, u_{n}\right)-\gamma^{\prime} u_{n}, \bar{u}_{n}\right\rangle_{\rho}-G\left(\bar{u}_{n}\right) . \tag{3.16}
\end{align*}
$$

From (2.6) and (3.14), we conclude that

$$
\begin{equation*}
\left|\left\langle f\left(x, u_{n}\right)-\gamma^{\prime} u_{n}, \bar{u}_{n}\right\rangle_{\rho}\right| \leq \gamma^{\prime}\left\|u_{n}\right\|_{\rho}^{2}+\left\|f_{0}\right\|_{\rho}\left\|u_{n}\right\|_{\rho} . \tag{3.17}
\end{equation*}
$$

Taking $\delta=\gamma-\gamma^{\prime}$, from $\gamma=\left(\lambda_{J+J_{1}}-\lambda_{J}\right) / 2$, we also obtain from (3.16), (3.17), $\sum_{k=1}^{n}\left|\hat{u}_{n}(k)\right|^{2}=$ $\left\|u_{n}\right\|_{\rho}^{2}$ and $G \in\left(H_{p, q, \rho}^{1}(\Omega, \Gamma)\right)^{*}$ that

$$
\begin{align*}
& \gamma^{\prime}\left\|u_{n}\right\|_{\rho}^{2}+\sum_{k=1}^{J-1}\left(\lambda_{J}-\lambda_{k}\right)\left|\hat{u}_{n}(k)\right|^{2}+\sum_{k=J+J_{1}}^{n}\left(\lambda_{k}-\lambda_{J+J_{1}}+\delta\right)\left|\hat{u}_{n}(k)\right|^{2} \\
& \leq K_{0}\left\|u_{n}\right\|_{p, q, \rho}+\left(1-n^{-1}\right)\left(\gamma^{\prime}\left\|u_{n}\right\|_{\rho}^{2}+\left\|f_{0}\right\|_{\rho}\left\|u_{n}\right\|_{\rho}\right) \\
& \leq K_{0}\left\|u_{n}\right\|_{p, q, \rho}+\gamma^{\prime}\left\|u_{n}\right\|_{\rho}^{2}+\left\|f_{0}\right\|_{\rho}\left\|u_{n}\right\|_{\rho} . \tag{3.18}
\end{align*}
$$

It is clear that for fixed $n, \exists \gamma^{\prime \prime}>0$, such that

$$
\begin{equation*}
\gamma^{\prime \prime}\left(1+\lambda_{k}\right) \leq \lambda_{J}-\lambda_{k}, k=1,2, \cdots, J-1 ; \gamma^{\prime \prime}\left(1+\lambda_{k}\right) \leq\left(\lambda_{k}-\lambda_{J+1}\right)+\delta, k \geq J+J_{1} \tag{3.19}
\end{equation*}
$$

Since $f_{0}(x) \in L_{\rho}^{2}$, it is follows from Lemma 2.1, Lemma 2.2, (3.18) and (3.19) that

$$
\begin{equation*}
\gamma^{*}\left[\left\|u_{n 1}\right\|_{p, q, \rho}^{2}+\left\|u_{n 3}\right\|_{p, q, \rho}^{2}\right] \leq K_{7}\left\|u_{n}\right\|_{\rho}+K_{0}\left\|u_{n}\right\|_{p, q, \rho}, \tag{3.20}
\end{equation*}
$$

where $\forall n \geq n_{1}, K_{0}, K_{7}$ and γ^{*} are positive constants. Dividing both sides of (3.20) by $\left\|u_{n}\right\|_{\rho}^{2}$ and taking the limit as $n \rightarrow \infty$, from (3.12) and (3.13), we obtain (3.15).

Next, setting

$$
\begin{equation*}
w_{n}=u_{n 2}, v_{n}=u_{n 1}+u_{n 3}, \tag{3.21}
\end{equation*}
$$

then $u_{n}=w_{n}+v_{n}$. Observe that $\left\langle v_{n}, \varphi_{j}\right\rangle_{\rho}=0$ for $j=J, J+1, \cdots, J+J_{1}-1$ and that w_{n} is a λ_{J}-eigenfunction of \mathcal{L}, also from (3.15) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{p, q, \rho} /\left\|u_{n}\right\|_{\rho}=0 \tag{3.22}
\end{equation*}
$$

Taking $v=w_{n}$ in (3.9), from $\left(V_{L}-2\right)$, we obtain $\mathcal{L}\left(u_{n}, w_{n}\right)=\lambda_{n}\left\langle u_{n}, w_{n}\right\rangle_{\rho}$. Hence, for $\forall n \geq n_{1}$, we have

$$
\begin{equation*}
-\gamma^{\prime} n^{-1}\left\|w_{n}\right\|_{\rho}^{2}=\left(1-n^{-1}\right)\left\langle f\left(x, u_{n}\right), w_{n}\right\rangle_{\rho}-G\left(w_{n}\right) \tag{3.23}
\end{equation*}
$$

Therefore, we infer from (3.23) that

$$
\begin{equation*}
\left(1-n^{-1}\right)\left\langle f\left(x, u_{n}\right), w_{n}\right\rangle_{\rho}-G\left(w_{n}\right) \leq 0 . \tag{3.24}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[\left(1-n^{-1}\right)\left\langle f\left(x, u_{n}\right), w_{n}\right\rangle_{\rho}-G\left(w_{n}\right)\right] \leq 0 \tag{3.25}
\end{equation*}
$$

We obtain that (3.25) is contrary to (2.9). Hence (3.10) is true.
Theorem 3.3 Let Ω denote a bounded domain in $R^{N}(N \geq 1), p_{i}(x), \rho(x) \in C^{0}(\Omega)$ be positive functions, $q(x) \in C^{0}(\Omega)$ be a nonnegative function and satisfy (2.1), $\Gamma \subset \partial \Omega$ be a closed set(it may be the empty set), operator \mathcal{L} be given by (1.2) and assume (a-1)-(a-3), that \mathcal{L} satisfies $V_{L}(\Omega, \Gamma)$ conditions. Let $f(x, u)$ satisfy (f-1)-(f-3) and functional G satisfy G^{*} conditions. Then problem (1.1) at least has a weak solution, i.e. there exits $u^{*} \in H_{p, q, \rho}^{1}(\Omega, \Gamma)$ with the property that

$$
\begin{equation*}
\mathcal{L}\left(u^{*}, v\right)=\lambda_{J}\left\langle u^{*}, v\right\rangle_{\rho}+\left\langle f\left(x, u^{*}\right), v\right\rangle_{\rho}-G(v), \forall v \in H_{p, q, \rho}^{1}(\Omega, \Gamma) . \tag{3.26}
\end{equation*}
$$

Proof Since $H_{p, q, \rho}^{1}(\Omega, \Gamma)$ is a separable Hilbert space, we obtain from (3.10) and Lemma 2.3 that $\left\{u_{n}^{*}\right\}$ what we described above in $H_{p, q, \rho}^{1}(\Omega, \Gamma)$ is uniformly bounded, and that there exists a weak convergence subsequence (still denote by $\left\{u_{n}^{*}\right\}$) and a function $u^{*} \in H_{p, q, \rho}^{1}(\Omega, \Gamma)$, such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|u_{n}^{*}-u^{*}\right\|_{\rho}=0 \tag{3.27}\\
& \exists k(x) \in L_{\rho}^{2}, \quad\left|u_{n}^{*}(x)\right| \leq k(x), \text { a.e. } x \in \Omega \tag{3.28}
\end{align*}
$$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} u_{n}^{*}(x)=u^{*}(x), \text { a.e. } x \in \Omega \tag{3.29}\\
& \lim _{n \rightarrow \infty}\left\langle D_{i} u_{n}^{*}, v\right\rangle_{p_{i}}=\left\langle D_{i} u^{*}, v\right\rangle_{p_{i}}, \forall v \in L_{p_{i}}^{2}, i=1,2, \cdots, N \tag{3.30}\\
& \lim _{n \rightarrow \infty}\left\langle a_{0} u_{n}^{*}, v\right\rangle_{q}=\left\langle a_{0} u^{*}, v\right\rangle_{q}, \forall v \in L_{q}^{2} \tag{3.31}
\end{align*}
$$

From (2.7), (3.9), (3.27), (3.30) and (3.31), for $v_{j} \in S_{j}\left(j \geq n_{0}\right)$, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}\left(u_{n}^{*}, v_{j}\right)=\mathcal{L}\left(u^{*}, v_{j}\right) \tag{3.32}
\end{equation*}
$$

We see from ($\mathrm{f}-1$) and (3.29) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(x, u_{n}^{*}\right)=f\left(x, u^{*}\right), \text { a.e. } x \in \Omega \tag{3.33}
\end{equation*}
$$

From (f-2) and (3.28), we get

$$
\begin{equation*}
\left|f\left(x, u_{n}^{*}\right)\right| \leq 2 \gamma^{\prime} k(x)+f_{0}(x), \text { a.e. } x \in \Omega \tag{3.34}
\end{equation*}
$$

Consequently, we conclude from (3.33), (3.34) and the Lebesgue dominated convergence theorem ${ }^{[10]}$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle f\left(x, u_{n}\right), v_{j}\right\rangle_{\rho}=\left\langle f\left(x, u^{*}\right), v_{j}\right\rangle_{\rho} \tag{3.35}
\end{equation*}
$$

where $0<\gamma^{\prime}<\gamma$. Taking $v=v_{j}$ in (3.9) and letting $n \rightarrow \infty$, we have

$$
\begin{equation*}
\mathcal{L}\left(u^{*}, v_{j}\right)=\lambda_{J}\left\langle u^{*}, v_{j}\right\rangle_{\rho}+\left\langle f\left(x, u^{*}\right), v_{j}\right\rangle_{\rho}-G\left(v_{j}\right) \tag{3.36}
\end{equation*}
$$

Since $P_{j} v=\sum_{k=1}^{j} \hat{v}(k) \varphi_{k} \in S_{j}$, replacing v_{j} by $P_{j} v$ in (3.36), we observe

$$
\begin{equation*}
\mathcal{L}\left(u^{*}, P_{j} v\right)=\lambda_{J}\left\langle u^{*}, P_{j} v\right\rangle_{\rho}+\left\langle f\left(x, u^{*}\right), P_{j} v\right\rangle_{\rho}-G\left(P_{j} v\right) . \tag{3.37}
\end{equation*}
$$

From Lemma 2.1 and Lemma 2.2, we have

$$
\lim _{j \rightarrow \infty}\left\|P_{j} v-v\right\|_{p, q, \rho}=0, \forall v \in H_{p, q, \rho}^{1}(\Omega, \Gamma)
$$

Consequently, it follows that

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} \mathcal{L}\left(u^{*}, P_{j} v\right)=\mathcal{L}\left(u^{*}, v\right) \\
& \lim _{j \rightarrow \infty}\left\langle u^{*}, P_{j} v\right\rangle_{\rho}=\left\langle u^{*}, v\right\rangle_{\rho} \\
& \lim _{j \rightarrow \infty}\left\langle f\left(x, u^{*}\right), P_{j} v\right\rangle_{\rho}=\left\langle f\left(x, u^{*}\right), v\right\rangle_{\rho} \\
& \lim _{j \rightarrow \infty} G\left(P_{j} v\right)=G(v)
\end{aligned}
$$

Passing to the limit as $j \rightarrow \infty$ on both side of (3.37) and using the above established facts, for $\forall v \in H_{p, q, \rho}^{1}(\Omega, \Gamma)$, we obtain

$$
\mathcal{L}\left(u^{*}, v\right)=\lambda_{J}\left\langle u^{*}, v\right\rangle_{\rho}+\left\langle f\left(x, u^{*}\right), v\right\rangle_{\rho}-G(v)
$$

Hence the proof of Theorem 3.3 is complete.
Acknowledgements. The authors express their sincere thanks to the referees for their valuable suggestions.

References

[1] V.L. SHAPIRO, Quasilinear ellipticity and the 1th eigenvalue, Comm. Partial Differential Equations, 16(1991), 1819-1855.
[2] S.B. ROBINSON, A. RUMBOS, V.L. SHAPIRO, One-Sided resonance problems for quasilinear elliptic operators, Journal of Mathematical Analysis and Applications, 256(2001), 636-649.
[3] M. CONTRERAS, Double resonance for quasilinear elliptic higher order partial differential equations between the first and second eigenvalues, Nonlinear Analysis, 12(1995), 1257-1281.
[4] S. BENMEHIDI, B. KHODJA, Some results of nontrivial solutions for a nonlinear PDE in Sobolev space, Electronic Journal of Qualitative Theory of Differential Equations, 44(2009), 1-14.
[5] V.L. SHAPIRO, Singular Quasilinearity and Higher Eigenvalues, Providence, Rhode Island: Memoirs of the American Mathematical Society, 2001.
[6] A. RUMBOS, V.L. SHAPIRO, Jumping nonlinearities and weighted Sobolev space, Journal of Differential Equations, 214(2005), 326-357.
[7] H. BERESTYCKI, D. FIGUEIREDO, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations, 6(1981), 91-120.
[8] E.M. LANDESMAN, A.C. LAZE, Nonlinear perturbations of a linear elliptic boundary value problem at resonance, J Math. Mech., 19(1970), 609-623.
[9] W.D. LU, Variational Methods in Differential Equations, Science Press, Beijing, 2003.
[10] S. KESAVAN, Topics in Functional Analysis and Applications, John Wiley and Sons, New York, 1989.

[^0]: *Foundation item: National Natural Science Foundation of China(11171220) and Innovation Programm of Shanghai Municipal Education Commission (10ZZ93)
 ${ }^{\dagger}$ Corresponding author. Email: gaojia79@yahoo.com.cn; jiagao2012@163.com

