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Abstract: In this paper, we establish some new oscillation criteria for the third order
nonlinear delay dynamic equations

“

b(t)
“

[a(t)(x∆(t))α1 ]∆
”

α2
”∆

+ q(t)xα3(τ (t)) = 0

on a time scale T unbounded above, where αi are ratios of positive odd integers, i = 1, 2, 3,

b, a and q are positive real-valued rd-continuous functions defined on T, and the so-called

delay function τ : T → T is a strictly increasing function such that τ (t) ≤ t for t ∈ T and

τ (t) → ∞ as t → ∞. By using the Riccati transformation technique and integral averaging

technique, some new sufficient conditions which insure that every solution oscillates or tends

to zero are established. Our results are new for third order nonlinear delay dynamic equations

and complement the results established by Yu and Wang in J. Comput. Appl. Math., 2009,

and Erbe, Peterson and Saker in J. Comput. Appl. Math., 2005. Some examples are given

here to illustrate our main results.
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1 Introduction

In this paper, we are concerned with the oscillation criteria for the following certain third order
nonlinear delay dynamic equations

(

b(t)
(

[a(t)(x∆(t))α1 ]∆
)α2

)∆

+ q(t)xα3 (τ(t)) = 0 (1.1)
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on a time scale T. Throughout this paper and without further mention, we assume that the
following conditions are satisfied:
(C1) αi are ratios of positive odd integers, i = 1, 2, 3;
(C2) b, a and q are positive, real-valued, rd-continuous functions defined on T and

∫

∞

t0

(

1

b(t)

)
1

α2

∆t = ∞,

∫

∞

t0

(

1

a(t)

)
1

α1

∆t = ∞; (1.2)

(C3) τ : T → T, τ(t) ≤ t, τ∆(t) > 0 for all t ∈ T and τ(t) → ∞ as t → ∞.

The theory of time scales, which has recently received a lot of attention, was originally intro-
duced by Stefan Hilger [1] in his Ph. D. Thesis in 1988, in order to unify, extend and generalize
continuous and discrete analysis. The book on the subject of time scales by Bohner and Peterson
[2] summarizes and organizes much of time scale calculus and many applications. In recent years,
there has been increasing interest in obtaining sufficient conditions for the oscillation and nonoscil-
lation of solutions of various equations on time scales, and we refer the reader to the papers [3–21].
To the best of our knowledge, it seems to have much research activity concerning the oscillation
results for third order dynamic equations; see, for example, [3–12].

A time scale T is an arbitrary nonempty closed subset of the real numbers R and since we are
interested in the oscillatory behavior of solutions near infinity, we make the assumption throughout
this paper that the time scale T is unbounded above. We assume t0 ∈ T and it is convenient to
assume t0 > 0. We define the time scale interval [t0,∞)T by [t0,∞)T = [t0,∞)

⋂

T. We assume
throughout that T has the topology that it inherits from the standard topology on the real numbers
R. The forward and the backward jump operators are defined by:

σ(t) = inf {s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t},

where inf ∅ = sup T and sup ∅ = inf T. A point t ∈ T is said to be left-dense if ρ(t) = t and t > inf T,
right-dense if σ(t) = t, left-scattered if ρ(t) < t and right-scattered if σ(t) > t. A function g : T → R

is said to be rd-continuous provided g is continuous at right-dense points and at left-dense points
in T, left-hand limits exist and are finite. The set of all such rd-continuous functions is denoted
by Crd(T). The graininess function µ for a time scale T is defined by µ(t) = σ(t) − t and for any
function f : T → R, the notation fσ denotes f ◦ σ.

By a solution of Eq. (1.1), we mean a nontrivial real-valued function x ∈ C1
rd[tx,∞)T, tx ≥ t0,

which has the property that a(x∆)α1 ∈ C1
rd[tx,∞)T, b((a(x∆)α1)∆)α2 ∈ C1

rd[tx,∞)T and satisfies
Eq. (1.1) on [tx,∞)T. A solution of Eq. (1.1) is said to be oscillatory on [tx,∞)T in case it is neither
eventually positive nor eventually negative, otherwise it is nonoscillatory. Eq. (1.1) is said to be
oscillatory in case all its solutions are oscillatory. Our attention is restricted to those solutions of
Eq. (1.1) which exist on some half line [tx,∞)T and satisfy sup{|x(t)| : t ≥ T } > 0 for all T ≥ tx.

Recently, Erbe et al. [7–9] studied the oscillatory behavior of third order dynamic equations

(

c(t)
[

a(t)x∆(t)
]∆
)∆

+ q(t)f(x(t)) = 0, t ∈ T, (1.3)

x∆∆∆(t) + p(t)x(t) = 0, t ∈ T,

and
(

a(t)
{

[r(t)x∆(t)]∆
}γ
)∆

+ f(t, x(t)) = 0, t ∈ T.

Hassan [10] and Li et al. [5] considered the oscillation of third order nonlinear delay dynamic
equations on time scales

(

a(t)
{

[r(t)x∆(t)]∆
}γ
)∆

+ f(t, x(τ(t))) = 0. (1.4)

[5] established some new oscillation criteria for (1.4) that can be applied on any time scale T and
the results of [5] are different and complement the results established by [10].

Han et al. [3] considered the oscillation of third order nonlinear delay dynamic equations on
time scales

(

(

x∆∆(t)
)γ
)∆

+ p(t)xγ(τ(t)) = 0, t ∈ T, (1.5)
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where γ > 0 is a quotient of odd positive integers, p is positive, real-valued and rd-continuous
function defined on T, τ : T → T is an rd-continuous function such that τ(t) ≤ t and τ(t) → ∞ as
t → ∞, and established some new oscillation criteria for (1.5) which guarantee that every solution
of (1.5) oscillates or converges as t → ∞.

Yu and Wang [11] studied asymptotic behavior of solutions to more general third-order nonlin-
ear dynamic equations

(

1

a2(t)

(

(

1

a1(t)
(x∆(t))α1

)∆
)α2

)∆

+ q(t)f(x(t)) = 0, t ∈ T, (1.6)

and they showed that if

α1α2 = 1,

∫

∞

t0

[ai(s)]
1

αi ∆s = ∞, i = 1, 2,

there exists a positive ∆-differentiable function r on T, for all M > 0 and sufficiently large t1, t2
with t2 > t1,

lim sup
t→∞

∫ t

t0

[

Mr(s)q(s) −
(r∆(s))2

4Q(s)

]

∆s = ∞,

Q(t) = r(t) [a1(t)δ(t, t1)]
1

α1 , δ(t, t1) =

∫ t

t1

[a2(s)]
1

α2 ∆s,

then every solution x of (1.6) is either oscillatory or limt→∞ x(t) exists (finite). In addition to

∫

∞

t0

q(s)∆s = ∞, (1.7)

every solution x of (1.6) is either oscillatory or limt→∞ x(t) = 0.

Clearly, (1.1) is a special case of the above equations. In this paper, we will use a different
Riccati transformation with the above papers. The purpose of this paper is to establish some new
oscillation criteria for (1.1) which guarantee that every solution x of (1.1) oscillates or converges
to zero as t → ∞. Our results are new for third order nonlinear delay dynamic equations and
complement the results established in literature.

The paper is organized as follows: In Section 2, we present some lemmas which will be used
in the proof of our main results. In Section 3, by developing a Riccati transformation technique,
integral averaging technique and inequalities, we give some sufficient conditions which guarantee
that every solution of Eq. (1.1) oscillates or converges to zero. In Section 4, we give two examples
to illustrate Corollary 3.1 and Theorem 3.2, respectively.

2 Some preliminary lemmas

In this section, by employing the Riccati transformation technique, we state the main results which
guarantee that every solution of Eq. (1.1) oscillates or converges to zero.

It will be convenient to make the following notations:

d+(t) := max{0, d(t)}, d−(t) := max{0,−d(t)}.

Before stating our main results, we begin with the following lemmas which will play important
roles in the proof of the main results.

Lemma 2.1 [21] Let a, b ∈ T and τ ∈ C1
rd([a, b]T, T) be a strictly increasing function and

x ∈ C1
rd([τ(a), τ(b)]T, R). Then for t ∈ [a, b]T,

(x(τ(t)))∆ = x∆(τ(t))τ∆(t). (2.1)
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Lemma 2.2 Assume that (1.2) holds. Furthermore, assume that x is an eventually positive
solution of (1.1). Then there are only two possible cases for t ≥ t0 sufficiently large:

(I) x(t) > 0, x∆(t) > 0, (a(t)(x∆(t))α1 )∆ > 0;

or
(II) x(t) > 0, x∆(t) < 0, (a(t)(x∆(t))α1)∆ > 0.

Proof. Let x be an eventually positive solution of (1.1). Then there exists t1 ∈ [t0,∞)T such
that x(t) > 0 and x(τ(t)) > 0 for all t ∈ [t1,∞)T. From (C2) and (1.1), it is clear that

(

b(t)
(

(a(t)(x∆(t))α1 )∆
)α2

)∆

= −q(t)xα3 (τ(t)) < 0, t ∈ [t1,∞)T.

Then b(t)
(

(a(t)(x∆(t))α1 )∆
)α2

is decreasing on [t1,∞)T, thus (a(t)(x∆(t))α1 )∆ is eventually of one
sign. We claim that (a(t)(x∆(t))α1)∆ > 0. Otherwise, there exists t2 ∈ [t1,∞)T such that

(a(t)(x∆(t))α1 )∆ < 0, t ∈ [t2,∞)T.

Then a(t)(x∆(t))α1 is decreasing and there exist constants d and t3 ∈ [t2,∞)T, such that

b(t)
(

(a(t)(x∆(t))α1 )∆
)α2

≤ d < 0, t ∈ [t3,∞)T.

Dividing by b(t) and integrating from t3 to t, we get

a(t)(x∆(t))α1 ≤ a(t3)(x
∆(t3))

α1 + d
1

α2

∫ t

t3

(

1

b(s)

)
1

α2

∆s. (2.2)

Letting t → ∞ in (2.2), we obtain a(t)(x∆(t))α1 → −∞ by (1.2). Thus, there exist constants c
and t4 ∈ [t3,∞)T such that

a(t)(x∆(t))α1 ≤ a(t4)(x
∆(t4))

α1 = c < 0, t ∈ [t4,∞)T.

Dividing by a(t) and integrating the previous inequality from t4 to t, we have

x(t) − x(t4) ≤ c
1

α1

∫ t

t4

(

1

a(s)

)
1

α1

∆s, (2.3)

which implies that x(t) → −∞ as t → ∞ by (1.2), a contradiction with the fact that x(t) > 0. We
conclude that (a(t)(x∆(t))α1 )∆ > 0 for large t and we get (I) or (II). This completes the proof.

Lemma 2.3 Assume that (1.2) holds. If x is an eventually positive solution of (1.1) satisfying
Case (I) of Lemma 2.2, then there exists t1 ∈ [t0,∞)T such that

x∆(τ(t)) ≥

(

δ(τ(t), t1)

a(τ(t))

)
1

α1
(

b(σ(t))
(

(a(σ(t))(x∆(σ(t)))α1 )∆
)α2

)
1

α1α2

, t ∈ [t1,∞)T, (2.4)

where δ(t, t1) =
∫ t

t1
b−1/α2(s)∆s.

Proof. Let x is an eventually positive solution of (1.1) satisfying Case (I) of Lemma 2.2. Then
there exists t1 ∈ [t0,∞)T and from Eq. (1.1), we have

x∆(t) > 0, (a(t)(x∆(t))α1)∆ > 0,
(

b(t)
(

(a(t)(x∆(t))α1 )∆
)α2

)∆

< 0 for t ∈ [t1,∞)T.

So b(t)
(

(a(t)(x∆(t))α1)∆
)α2

is decreasing on [t1,∞)T. For t ∈ [t1,∞)T, we have

a(t)(x∆(t))α1 = a(t1)(x
∆(t1))

α1 +

∫ t

t1

b
1

α2 (s)(a(s)(x∆(s))α1)∆

b
1

α2 (s)
∆s
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≥ b
1

α2 (t)(a(t)(x∆(t))α1 )∆δ(t, t1),

that is,

x∆(t) ≥

(

δ(t, t1)b
1

α2 (t)

a(t)

(

a(t)(x∆(t))α1

)∆

)
1

α1

.

Since b(t)
(

(a(t)(x∆(t))α1 )∆
)α2

is decreasing on [t1,∞)T, we obtain

x∆(τ(t)) ≥

(

δ(τ(t), t1)

a(τ(t))
b

1

α2 (σ(t))
(

a(σ(t))(x∆(σ(t)))α1

)∆
)

1

α1

and this leads to (2.4). The proof is complete.

3 Main results

Now, we are in a position to state and prove the main results which guarantee that every solution
of Eq. (1.1) oscillates or converges to zero.

Theorem 3.1 Assume that (1.2) and α1α2 ≥ 1 hold. Furthermore, assume that there exists a
positive function r ∈ C1

rd([t0,∞)T, R) such that for sufficiently large t1, t2 with t2 ≥ t1 ≥ t0,

lim sup
t→∞

∫ t

t0

[

r(s)q(s)ξ(s) −
(r∆(s))2

4MQ(s)τ∆(s)

]

∆s = ∞ (3.1)

and
∫

∞

t0

[

1

a(u)

∫

∞

u

[

1

b(v)

∫

∞

v

q(s)∆s

]
1

α2

∆v

]
1

α1

∆u = ∞, (3.2)

where M is a positive constant, δ is defined as in Lemma 2.3, Q(t) = r(t) [δ(τ(t), t1)/a(τ(t))]
1/α1 ,

ξ(t) =











m1, m1 is any positive constant, if α3 > 1,

1, if α3 = 1,

m2η
α3−1(t, t2), m2 is any positive constant, if α3 < 1

and η(t, t2) =
∫ t

t2
(δ(s)/a(s))

1/α1 ∆s. Then every solution of (1.1) is either oscillatory or converges
to zero.

Proof. Suppose to the contrary that x is a nonoscillatory solution of (1.1). We may assume
without loss of generality that there exists a number t1 ∈ [t0,∞)T, such that x(t) > 0, x(τ(t)) > 0
and the conclusions of Lemmas 2.1 and 2.2 hold for all t ∈ [t1,∞)T. We only consider the case
when x is eventually positive, since the case when x is eventually negative is similar. Since (1.2)
holds, in view of Lemma 2.1, there are two possible cases.

Case (I): x∆(t) > 0, (a(t)(x∆(t))α1)∆ > 0, t ∈ [t1,∞)T.
Define the function ω by

ω(t) = r(t)
b(t)

(

(a(t)(x∆(t))α1)∆
)α2

x(τ(t))
, t ∈ [t1,∞)T. (3.3)

Then ω(t) > 0. Using the product rule, we have

ω∆(t) = b(σ(t))
(

(a(σ(t))(x∆(σ(t)))α1 )∆
)α2

(

r(t)

x(τ(t))

)∆

+
r(t)

x(τ(t))
(b(t)

(

(a(t)(x∆(t))α1 )∆
)α2

)∆.

By the quotient rule and applying (1.1) to the above equality, we get

ω∆(t) = b(σ(t))
(

(a(σ(t))(x∆(σ(t)))α1 )∆
)α2 r∆(t)x(τ(t)) − r(t)(x(τ(t)))∆

x(τ(t))x(τ(σ(t)))
− r(t)q(t)xα3−1(τ(t)).
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From (2.1) and (3.3), it follows that

ω∆(t) = −r(t)q(t)xα3−1(τ(t)) +
r∆(t)

r(σ(t))
ω(σ(t))

−b(σ(t))
(

(a(σ(t))(x∆(σ(t)))α1 )∆
)α2 r(t)x∆(τ(t))τ∆(t)

x(τ(t))x(τ(σ(t)))
. (3.4)

Since b(t)
(

(a(t)(x∆(t))α1 )∆
)α2

is decreasing on [t1,∞)T, there exists a constant b1 > 0 such that

b(σ(t))
(

(a(σ(t))(x∆(σ(t)))α1 )∆
)α2

≤ b(t)
(

(a(t)(x∆(t))α1 )∆
)α2

≤ b1, t ≥ t1, (3.5)

where b1 = b(t1)
(

(a(t1)(x
∆(t1))

α1)∆
)α2

. Applying (3.5) to (2.4) and noting that α1α2 ≥ 1, we
obtain

x∆(τ(t)) ≥ M

(

δ(τ(t), t1)

a(τ(t))

)
1

α1

b(σ(t))
(

(a(σ(t))(x∆(σ(t)))α1 )∆
)α2

, (3.6)

where M = b
1/(α1α2)−1
1 . From (3.4) and (3.6), we have

ω∆(t) ≤ −r(t)q(t)xα3−1(τ(t)) +
r∆(t)

r(σ(t))
ω(σ(t))

−M
r(t)τ∆(t)

x(τ(t))x(τ(σ(t)))

(

δ(τ(t), t1)

a(τ(t))

)
1

α1

b2(σ(t))
(

(a(σ(t))(x∆(σ(t)))α1 )∆
)2α2

.

Noting that x∆(t) > 0, t ∈ [t1,∞)T and from (3.3), we get

ω∆(t) ≤ −r(t)q(t)xα3−1(τ(t)) +
r∆(t)

r(σ(t))
ω(σ(t)) −

MQ(t)τ∆(t)

r2(σ(t))
ω2(σ(t)). (3.7)

Next, we consider the following three cases:
Case (i). Let α3 > 1. From x∆(t) > 0, there exist constants c1 and t2 ≥ t1, such that

x(t) ≥ x(t2) = c1.

Hence
xα3−1(τ(t)) ≥ m1, t ≥ t2, (3.8)

where m1 = cα3−1
1 .

Case (ii). Let α3 = 1. Then
xα3−1(τ(t)) = 1, t ≥ t1. (3.9)

Case (iii). Let α3 < 1. From (3.5), we obtain

(a(t)(x∆(t))α1 )∆ ≤ b
1

α2

1 b−
1

α2 (t), t ≥ t1. (3.10)

Integrating (3.10) from t1 to t, we have

a(t)(x∆(t))α1 ≤ a(t1)(x
∆(t1))

α1 + b
1

α2

1 δ(t, t1).

Thus there exist constants b2 > 0 and t2 ≥ t1, such that

a(t)(x∆(t))α1 ≤ b2δ(t, t1).

Dividing by a(t) and integrating from t2 to t, we get

x(t) ≤ x(t2) + b
1

α1

2

∫ t

t2

(

δ(s, t1)

a(s)

)
1

α1

∆s.
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Then there exists a constant b3 > 0 such that

x(t) ≤ b3

∫ t

t2

(

δ(s, t1)

a(s)

)
1

α1

∆s,

that is
xα3−1(τ(t)) ≥ m2η

α3−1(t, t2), t ≥ t2, (3.11)

where m2 = bα3−1
3 and η(t, t2) =

∫ t

t2
(δ(s, t1)/a(s))

1/α1 ∆s.

Combining (3.7) with (3.8), (3.9) and (3.11), we have

ω∆(t) ≤ −r(t)q(t)ξ(t) +
r∆(t)

r(σ(t))
ω(σ(t)) −

MQ(t)τ∆(t)

r2(σ(t))
ω2(σ(t)) (3.12)

= −r(t)q(t)ξ(t) −

[

√

MQ(t)τ∆(t)

r(σ(t))
ω(σ(t)) −

r∆(t)

2
√

MQ(t)τ∆(t)

]2

+
(r∆(t))2

4MQ(t)τ∆(t)

≤ −r(t)q(t)ξ(t) +
(r∆(t))2

4MQ(t)τ∆(t)
,

that is

ω∆(t) ≤ −

(

r(t)q(t)ξ(t) −
(r∆(t))2

4MQ(t)τ∆(t)

)

. (3.13)

Integrating (3.13) from t2 to t, we obtain

−ω(t2) < ω(t) − ω(t2) ≤ −

∫ t

t2

(

r(s)q(s)ξ(s) −
(r∆(s))2

4MQ(s)τ∆(s)

)

∆s,

which yields
∫ t

t2

(

r(s)q(s)ξ(s) −
(r∆(s))2

4MQ(s)τ∆(s)

)

∆s < ω(t2)

for all large t and this leads to a contradiction with (3.1).

Case (II): x∆(t) < 0, (a(t)(x∆(t))α1 )∆ > 0, t ∈ [t1,∞)T.
Since x(t) > 0 and x∆(t) < 0, limt→∞ x(t) exists and limt→∞ x(t) = l ≥ 0. We claim that l = 0.
Otherwise, limt→∞ x(t) = l > 0. Then x(t) ≥ l, for t ≥ t1. Integrating (1.1) from t to ∞, we get

b(t)
(

(a(t)(x∆(t))α1 )∆
)α2

≥

∫

∞

t

q(s)xα3 (s)∆s,

which yields

(a(t)(x∆(t))α1)∆ ≥

[

1

b(t)

∫

∞

t

q(s)xα3 (s)∆s

]
1

α2

.

Integrating again from t to ∞, we obtain

−a(t)(x∆(t))α1 ≥

∫

∞

t

[

1

b(v)

∫

∞

v

q(s)xα3(s)∆s

]
1

α2

∆v,

that is,

−x∆(t) ≥

[

1

a(t)

∫

∞

t

[

1

b(v)

∫

∞

v

q(s)xα3 (s)∆s

]
1

α2

∆v

]
1

α1

.

Integrating from t0 to ∞, we have

x(t0) ≥

∫

∞

t0

[

1

a(u)

∫

∞

u

[

1

b(v)

∫

∞

v

q(s)xα3 (s)∆s

]
1

α2

∆v

]
1

α1

∆u.
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Since x(t) ≥ l, we see that

x(t0) ≥ l
α3

α1α2

∫

∞

t0

[

1

a(u)

∫

∞

u

[

1

b(v)

∫

∞

v

q(s)∆s

]
1

α2

∆v

]
1

α1

∆u,

which is a contradiction with the condition (3.2). Therefore, l = 0, that is, limt→∞ x(t) = 0. This
completes the proof.

Remark 3.1 It is easy to see that when α3 = 1, (1.1) can be transformed into a similar form
with (1.6), where f(x(t)) = x(t). In this paper, replacing τ(t) with t, we use the same Riccati
transformation with [11], i.e.,

ω(t) = r(t)
b(t)

(

(a(t)(x∆(t))α1 )∆
)α2

x(t)
,

and Theorem 2.1 extends and improves Theorem 2.1 in [11]. Similarly, (1.1) can be simplified to
(1.3) and Theorem 2.1 complements Theorem 1 in [7].

Remark 3.2 In [7] and [11], Yu and Wang, Erbe, Peterson and Saker proved that every
solution converges to zero if (1.7) holds, respectively. But one can easily see that this result can’t
be applied if

∫

∞

t0

q(s)∆s < ∞,

so our results extend and improve the results in [11].

Remark 3.3 If the assumption (3.2) is not satisfied, we have some sufficient conditions which
ensure that every solution of (1.1) oscillates or limt→∞ x(t) exists (finite).

Remark 3.4 From Theorem 3.1, we can obtain different conditions for oscillation of all solu-
tions of (1.1) with different choices of r.

Taking r(t) = 1 and r(t) = t in Theorem 2.1 respectively, we have the following two results.

Corollary 3.1 Assume that (1.2), (3.2) and α1α2 ≥ 1 hold. Furthermore, assume that

∫

∞

t0

q(s)ξ(s)∆s = ∞, (3.14)

where ξ is defined as in Theorem 3.1. Then every solution of (1.1) is either oscillatory or converges
to zero.

Corollary 3.2 Assume that (1.2), (3.2) and α1α2 ≥ 1 hold. Furthermore, assume that

lim sup
t→∞

∫ t

t0

[

sq(s)ξ(s) −
1

4Msτ∆(s)

(

δ(τ(t), t1)

a(τ(t))

)

−
1

α1

]

∆s = ∞,

where M and ξ are defined as in Theorem 3.1. Then every solution of (1.1) is either oscillatory
or converges to zero.

Theorem 3.2 Assume that (1.2), (3.2) and α1α2 ≥ 1 hold. Furthermore, assume that there
exist m ≥ 1 and a positive function r ∈ C1

rd([t0,∞)T, R) such that for sufficiently large t1, t2 with
t2 ≥ t1 ≥ t0,

lim sup
t→∞

1

tm

∫ t

t0

(t − s)m

[

r(s)q(s)ξ(s) −
(r∆(s))2

4MQ(s)τ∆(s)

]

∆s = ∞, (3.15)

where M, Q and ξ are defined as in Theorem 3.1. Then every solution of (1.1) is either oscillatory
or converges to zero.
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Proof. Suppose to the contrary that x is a nonoscillatory solution of (1.1). We may assume
without loss of generality that there exists a number t1 ∈ [t0,∞)T, such that x(t) > 0, x(τ(t)) > 0
and the conclusions of Lemmas 2.1 and 2.2 hold for all t ∈ [t1,∞)T. We only consider the case
when x is eventually positive, since the case when x is eventually negative is similar. Since (1.2)
holds, in view of Lemma 2.1, there are two possible cases.

Case (I): x∆(t) > 0, (a(t)(x∆(t))α1)∆ > 0, t ∈ [t1,∞)T.
We define the function ω by (3.3) again and proceeding as in the proof of Theorem 3.1, we have
ω(t) > 0 and (3.13).

Multiplying (3.13) by (t − s)m and integrating from t1 to t, we get

∫ t

t1

(t − s)m

(

r(s)q(s)ξ(s) −
(r∆(s))2

4MQ(s)τ∆(s)

)

∆s ≤ −

∫ t

t1

(t − s)mω∆(s)∆s. (3.16)

Using the integration by parts formula, we obtain

∫ t

t1

(t − s)mω∆(s)∆s = −ω(t1)(t − t1)
m −

∫ t

t1

Q(t, s)ω(σ(s))∆s, (3.17)

where Q(t, s) = ((t − s)m)∆s . From (3.16), (3.17) and multiplying 1/tm, we have

1

tm

∫ t

t1

(t − s)m

[

r(s)q(s)ξ(s) −
(r∆(s))2

4MQ(s)τ∆(s)

]

∆s ≤ ω(t1)

(

t − t1
t

)m

+
1

tm

∫ t

t1

Q(t, s)ω(σ(s))∆s.

Since

Q(t, s) =

{

−m(t − s)m−1, if µ(s) = 0,
(t−σ(s))m

−(t−s)m

µ(s) , if µ(s) > 0,

and noting that m ≥ 1, Q(t, s) ≤ 0 for t ≥ σ(s), we obtain

1

tm

∫ t

t1

(t − s)m

[

r(s)q(s)ξ(s) −
(r∆(s))2

4MQ(s)τ∆(s)

]

∆s ≤ ω(t1)

(

t − t1
t

)m

,

that is

lim sup
t→∞

1

tm

∫ t

t1

(t − s)m

[

r(s)q(s)ξ(s) −
(r∆(s))2

4MQ(s)τ∆(s)

]

∆s ≤ ω(t1),

which is a contradiction with (3.15).

Case (II): x∆(t) < 0, (a(t)(x∆(t))α1 )∆ > 0, t ∈ [t1,∞)T.
Proceeding as in the proof of Theorem 3.1, we get a contradiction with (3.2). This completes the
proof.

Remark 3.5 From Theorem 3.2, we can obtain different conditions for oscillation of all solu-
tions of (1.1) with different choices of r.

Theorem 3.3 Assume that (1.2), (3.2) and α1α2 ≥ 1 hold. Furthermore, assume that there
exist m ≥ 1 and a positive function r ∈ C1

rd([t0,∞)T, R) such that for sufficiently large t1, t2 with
t2 ≥ t1 ≥ t0,

lim sup
t→∞

1

tm

∫ t

t0

[

(t − s)mr(s)q(s)ξ(s) −
r2(σ(s))

4M(t − s)mQ(s)τ∆(s)
P 2(t, s)

]

∆s = ∞, (3.18)

where M, Q and ξ are defined as in Theorem 3.1 and

P (t, s) = (t − s)m r∆(s)

r(σ(s))
+ Q(t, s), t ≥ s ≥ t0.

Then every solution of (1.1) is either oscillatory or converges to zero.

EJQTDE, 2011 No. 75, p. 9



Proof. Suppose to the contrary that x is a nonoscillatory solution of (1.1). We may assume
without loss of generality that there exists a number t1 ∈ [t0,∞)T, such that x(t) > 0, x(τ(t)) > 0
and the conclusions of Lemmas 2.1 and 2.2 hold for all t ∈ [t1,∞)T. We only consider the case
when x is eventually positive, since the case when x is eventually negative is similar. Since (1.2)
holds, in view of Lemma 2.1, there are two possible cases.

Case (I): x∆(t) > 0, (a(t)(x∆(t))α1)∆ > 0, t ∈ [t1,∞)T.
We define the function ω by (3.3) again and proceeding as in the proof of Theorem 3.1, we have
ω(t) > 0 and (3.12).

Multiplying (3.12) by (t − s)m and integrating from t1 to t, we have

∫ t

t1

(t − s)mω∆(s)∆s ≤ −

∫ t

t1

(t − s)mr(s)q(s)ξ(s)∆s

+

∫ t

t1

(t − s)m r∆(s)

r(s)
ω(σ(s))∆s −

∫ t

t1

M(t − s)m Q(s)τ∆(s)

r2(σ(s))
ω2(σ(s))∆s. (3.19)

From (3.17) and (3.19), it follows that

∫ t

t1

(t − s)mr(s)q(s)ξ(s)∆s ≤ ω(t1)(t − t1)
m +

∫ t

t1

[

(t − s)m r∆(s)

r(σ(s))
ω(σ(s)) + Q(t, s)ω(σ(s))

]

∆s

−

∫ t

t1

M(t − s)m Q(s)τ∆(s)

r2(σ(s))
ω2(σ(s))∆s

≤ ω(t1)(t − t1)
m +

∫ t

t1

r2(σ(s))

4M(t− s)mQ(s)τ∆(s)
P 2(t, s)∆s,

and this implies that

lim sup
t→∞

1

tm

∫ t

t1

[

(t − s)mr(s)q(s)ξ(s) −
r2(σ(s))

4M(t − s)mQ(s)τ∆(s)
P 2(t, s)

]

∆s ≤ ω(t1),

which contradicts (3.18).

Case (II): x∆(t) < 0, (a(t)(x∆(t))α1 )∆ > 0, t ∈ [t1,∞)T.
The remainder of the proof is similar to that of Theorem 3.1, so we omit the details. This completes
the proof.

Theorem 3.4 Assume that (1.2), (3.2) and α1α2 ≥ 1 hold. Furthermore, assume that there
exist functions H, h ∈ Crd(D, R), where D ≡ {(t, s) : t ≥ s ≥ t0} such that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0, (3.20)

H has a nonpositive continuous ∆−partial derivation H∆s(t, s) with respect to the second variable
and satisfies

H∆s(t, s) + H(t, s)
r∆(s)

r(σ(s))
= −

h(t, s)

r(σ(s))
H

1

2 (t, s) (3.21)

and for sufficiently large t1, t2 with t2 ≥ t1 ≥ t0,

lim sup
t→∞

1

H(t, s)

∫ t

t0

[

H(t, s)r(s)q(s)ξ(s) −
(h−(t, s))2

4MQ(s)τ∆(s)

]

∆s = ∞, (3.22)

where r ∈ C1
rd([t0,∞)T, R) is a positive function, M, Q and ξ are defined as in Theorem 3.1 and

h−(t, s) = max{0,−h(t, s)}. Then every solution of (1.1) is either oscillatory or converges to zero.

Proof. Suppose to the contrary that x is a nonoscillatory solution of (1.1). We may assume
without loss of generality that there exists a number t1 ∈ [t0,∞)T, such that x(t) > 0, x(τ(t)) > 0
and the conclusions of Lemmas 2.1 and 2.2 hold for all t ∈ [t1,∞)T. We only consider the case
when x is eventually positive, since the case when x is eventually negative is similar. Since (1.2)
holds, in view of Lemma 2.1, there are two possible cases.
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Case (I): x∆(t) > 0, (a(t)(x∆(t))α1)∆ > 0, t ∈ [t1,∞)T.
We define the function ω by (3.3) again and proceeding as in the proof of Theorem 3.1, we have
ω(t) > 0 and (3.12).

Multiplying (3.12) by H(t, s) and integrating from t1 to t, we see that

∫ t

t1

H(t, s)r(s)q(s)ξ(s)∆s ≤ −

∫ t

t1

H(t, s)ω∆(s)∆s

+

∫ t

t1

H(t, s)
r∆(s)

r(σ(s))
ω(σ(s))∆s −

∫ t

t1

MH(t, s)
Q(s)τ∆(s)

r2(σ(s))
ω2(σ(s))∆s.

From (3.20), (3.21) and the above inequality, we have

∫ t

t1

H(t, s)r(s)q(s)ξ(s)∆s ≤ H(t, t1)ω(t1) +

∫ t

t1

H∆s(t, s)ω(σ(s))∆s

+

∫ t

t1

H(t, s)
r∆(s)

r(σ(s))
ω(σ(s))∆s −

∫ t

t1

MH(t, s)
Q(s)τ∆(s)

r2(σ(s))
ω2(σ(s))∆s

= H(t, t1)ω(t1) +

∫ t

t1

[

−
h(t, s)

r(σ(s))
H

1

2 (t, s)ω(σ(s)) − MH(t, s)
Q(s)τ∆(s)

r2(σ(s))
ω2(σ(s))

]

∆s

≤ H(t, t1)ω(t1) +

∫ t

t1

[

h−(t, s)

r(σ(s))
H

1

2 (t, s)ω(σ(s)) − MH(t, s)
Q(s)τ∆(s)

r2(σ(s))
ω2(σ(s))

]

∆s.

This implies that

∫ t

t1

H(t, s)r(s)q(s)ξ(s)∆s ≤ H(t, t1)ω(t1) +

∫ t

t1

(h−(t, s))2

4MQ(s)τ∆(s)
∆s

−

∫ t

t1

[

√

MH(t, s)Q(s)τ∆(s)

r(σ(s))
ω(σ(s)) −

h−(t, s)

2
√

MQ(s)τ∆(s)

]2

∆s

≤ H(t, t1)ω(t1) +

∫ t

t1

(h−(t, s))2

4MQ(s)τ∆(s)
∆s,

that is
1

H(t, t1)

∫ t

t1

[

H(t, s)r(s)q(s)ξ(s) −
(h−(t, s))2

4MQ(s)τ∆(s)

]

∆s ≤ ω(t1),

which contradicts (3.22).

Case (II): x∆(t) < 0, (a(t)(x∆(t))α1 )∆ > 0, t ∈ [t1,∞)T.
Again the same arguments as in the proof of Theorem 3.1, we get a contradiction with (3.2). This
completes the proof.

4 Examples

In this section, we will show the applications of our oscillation criteria in two examples. Firstly,
we will give an example to illustrate Corollary 3.1.

Example 4.1 Consider the third order nonlinear dynamic equation





1

t

(

(

1

t
(x∆(t))5

)∆
)

1

3





∆

+
1

tλ
xα3(t − 1) = 0, t ≥ 1, (4.1)

where α3 > 1 is a ratio of odd positive integers and 0 < λ ≤ 1. Set

b(t) = a(t) = 1/t, q(t) = 1/tλ, α1 = 5, α2 = 1/3, τ(t) = t − 1.
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For any t ≥ 1 we have

δ(t, t1) =

∫ t

1

b−
1

α2 (s)∆s =

∫ t

1

s3∆s.

It is clear that the conditions (C1), (C2) and (1.2) are satisfied. Applying Corollary 3.1, it remains
to satisfy the conditions (3.2) and (3.14).

∫

∞

1

[

1

a(u)

∫

∞

u

[

1

b(v)

∫

∞

v

q(s)∆s

]
1

α2

∆v

]
1

α1

∆u

=

∫

∞

1

[

u

∫

∞

u

[

v

∫

∞

v

1

sλ
∆s

]3

∆v

]
1

5

∆u = ∞.

Noting that α3 > 1, we get ξ(t) = m1. Letting r(t) = 1 and from α1α2 = 5/3 > 1, we obtain

lim sup
t→∞

∫ t

1

[

r(s)q(s)ξ(s) −
(r∆(s))2

4MQ(s)τ∆(s)

]

∆s = lim sup
t→∞

∫ t

1

m1
1

sλ
∆s = ∞.

We can see that (3.2) and (3.14) hold. Hence, by Corollary 3.1, every solution of (4.1) oscillates
or converges to zero.

The next example illustrates Theorem 3.2.

Example 4.2 Examine the third order nonlinear dynamic equation

(

(

(

tα1(x∆(t))α1

)∆
)

1

α1

)∆

+

(

∫ t

1

(s − 1)
1

α1

s
∆s

)1−α3

xα3(τ(t)) = 0, t ≥ 1, (4.2)

where α1, α2 = 1/α1 and α3 < 1 are ratios of positive odd integers. Let

b(t) = 1, a(t) = tα1 , q(t) =

(

∫ t

1

(s − 1)
1

α1

s
∆s

)1−α3

.

For any t ≥ 1 we have

δ(t, t1) =

∫ t

1

b−
1

α2 (s)∆s = t − 1, η(t, t2) =

∫ t

1

(s − 1)
1

α1

s
∆s.

It is clear that the conditions (C1), (C2), (1.2) and (3.2) are satisfied. Applying Theorem 3.2,
it remains to satisfy the condition (3.15). Taking m = 2, r(t) = 1 for any t ≥ s ≥ 1 and from
α1α2 = 1, α3 < 1, we get

ξ(t) = m2η
α3−1(t, t2) = m2

(

∫ t

1

(s − 1)
1

α1

s
∆s

)α3−1

and

lim sup
t→∞

1

t2

∫ t

1

(t − s)2q(s)ξ(s)∆s = lim sup
t→∞

1

t2

∫ t

1

m2(t − s)2∆s = ∞.

Hence, by Theorem 3.2, every solution of (4.2) oscillates or converges to zero.
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