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Abstract: This paper is concerned with a kind of nonlinear fractional differential bound-

ary value problem at resonance with Caputo’s fractional derivative. Our main approach

is the recent Leggett-Williams norm-type theorem for coincidences due to O’Regan and

Zima. The most interesting point is the acquisition of positive solutions for fractional

differential boundary value problem at resonance. Moreover, an example is constructed

to show that our result here is valid.
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1. INTRODUCTION

This paper deals with positive solutions to the following boundary value problem:

cDα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1 (1.1)

u(0) = 0, u′(0) = u′(1), (1.2)

where cDα
0+ is the Caputo’s fractional derivative of order α, 1 < α ≤ 2 is a real number, and

f : [0, 1] × R → R is a L1-Carathéodory function.

∗Supported by NNSF of China (11071014).

†Corresponding author. E-mail address: yangaij2004@163.com

EJQTDE, 2011 No. 71, p. 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42933978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Due to the fact that the fractional differential operator cDα
0+ is not inventible under

Caputo’s derivative, boundary value problems (in short:BVPs) of this type are referred to

as problems at resonance.

Recently, fractional differential equations (in short:FDE) have been studied extensively.

For an extensive collection of such results, we refer the readers to the monographs [1-4] and

the reference therein.

Some basic theory for the initial value problems of FDE involving Riemann-Liouville

differential operator has been discussed [5-10]. Also, there are some papers which deal

with the existence of positive solutions for BVPs of nonlinear FDE by using techniques of

topological degree theory [11-16]. For example, the existence and multiplicity of positive

solutions for the equation

Dα
0+u(t) = f(t, u(t)), 0 < t < 1, 1 < α ≤ 2, (1.3)

subject to the Dirichlet boundary condition

u(0) = u(1) = 0 (1.4)

have been studied by Bai and Lü [13] by means of the well-known Krasnosel’skii fixed point

theorem and Leggett-Williams fixed point theorem. Dα
0+ is the standard Riemann-Liouville

fractional derivative there.

In [14] and [15], Zhang also studied the existence of positive solutions of Eq.(1.3) under

the boundary conditions

u(0) = ν 6= 0, u(1) = ρ 6= 0 (1.5)

and

u(0) + u′(0) = 0, u(1) + u′(1) = 0, (1.6)

respectively. Due to the fact that the BVPs based on Riemann-Liouville derivative with

non-zero boundary conditions can’t be converted into an equivalent integral equation, while

the Caputo’s derivative is to meet the requirements. The conditions (1.5) and (1.6) are

not zero boundary value, so the author investigated the BVPs (1.3)-(1.5) and (1.3)-(1.6) by

involving the Caputo’s fractional derivative.
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M. El-Shahed [16] established the existence of positive solutions to BVP

Dα
0+u(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < α ≤ 3, (1.7)

u(0) = u′(0) = u′(1) = 0 (1.8)

by applying Krasnosel’skii fixed point theorem.

From above works, we can see a fact, although the BVPs of nonlinear FDE have been

studied by some authors, to the best of our knowledge, all of existing works are limited to

non-resonance boundary conditions. For the resonance case, as far as we know, no contri-

butions exist. The aim of this paper is to fill the gap in the relevant literature. Our main

tool is the recent Leggett-Williams norm-type theorem for coincidences due to O’Regan and

Zima [17].

2. PRELIMINARIES

For the convenience of the reader, we demonstrate and study the definitions and some

fundamental facts of Caputo’s fractional derivative.

Definition 2.1. The Riemann-Liouville fractional integral of order α is defined by

(Iα
0+y)(t) =

1

Γ(α)

∫ t

0

y(s)

(t − s)1−α
ds, (t > 0, α > 0) (2.1)

where Γ(α) is the Euler gamma function defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt, (z > 0) (2.2)

for which, the reduction formula

Γ(z + 1) = zΓ(z), (z > 0), Γ(1) = 1, Γ(
1

2
) =

√
π (2.3)

and formula
∫ 1

0

tz−1(1 − t)ω−1dt =
Γ(z)Γ(ω)

Γ(z + ω)
, (z, ω 6∈ Z

−
0 ) (2.4)

hold.
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Definition 2.2. Caputo’s derivative of order α for a function y ∈ ACn[0, 1] can be repre-

sented by

(cDα
0+y)(t) =

1

Γ(n − α)

∫ t

0

y(n)(s)

(t − s)α+1−n
ds =: (In−α

0+ Dny)(t), (t > 0, α > 0) (2.5)

where Dn = dn

dtn
and n = [α] + 1, [α] denotes the integer part of α, and ACn[0, 1] = {f :

[0, 1] → R| Dn−1f ∈ AC[0, 1]}.

Remark 2.1. Under natural conditions on the function y(t), Caputo’s derivative becomes

a conventional m-th derivative of the function y(t) as α → m(see [2]).

From definitions 2.1 and 2.2, we can deduce the following statement.

Lemma 2.1[4]. The fractional differential equation

cDα
0+y(t) = 0

has solutions y(t) = c0 + c1t + c2t
2 + · · ·+ cn−1t

n−1, ci ∈ R, i = 0, 1, · · · , n− 1, n = [α] + 1.

Furthermore, for y ∈ ACn[0, 1],

(Iα c
0+ Dα

0+y)(t) = y(t) −
n−1
∑

k=0

y(k)(0)

k!
tk (2.6)

and

(cDα
0+Iα

0+y)(t) = y(t). (2.7)

In the following, we review some standard facts on Fredholm operators and cones in

Banach spaces. Let X, Y be real Banach spaces. Consider a linear mapping L : domL ⊂
X → Y and a nonlinear mapping N : X → Y .

Definition 2.3. Suppose that X1 ⊂ X is a subspace. A mapping P : X → X1 is a

projector provided that

(i) P 2x = Px for all x ∈ X,

(ii) P (λx + µy) = λPx + µPy for all x, y ∈ X, λ, µ ∈ R.

Throughout we assume

1◦ L is a Fredholm operator of index zero, i.e. ImL is closed and dimKerL = codimImL <

∞.
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The assumption 1◦ implies that there exist continuous projections P : X → X and Q :

Y → Y such that ImP = KerL and KerQ = ImL with X = KerL⊕KerP , Y = ImL⊕ ImQ

and dimImQ = dimKerL < ∞. And we can define an isomorphism J : ImQ → KerL.

Denote by Lp the restriction of L to KerP ∩ domL. Clearly, Lp is an isomorphism from

KerP ∩ domL to ImL, we denote its inverse by Kp : ImL → KerP ∩ domL. It is known (see

[19]) that the coincidence equation Lx = Nx is equivalent to

x = (P + JQN)x + KP (I − Q)Nx.

A nonempty closed convex set C ⊂ X is said to be a cone in X provided that:

(i) µx ∈ C for all x ∈ C and µ ≥ 0,

(ii) x,−x ∈ C implies x = θ.

It is well known that C induces a partial order in X by

x � y if and only if y − x ∈ C.

We will write x 6� y for y − x 6∈ C. Moreover, for every u ∈ C \ {0} there exists a positive

number σ(u) such that

||x + u|| ≥ σ(u)||x||

for all x ∈ C. It is clear that if σ(u) > 0 is such that ||x + u|| ≥ σ(u)||x|| for all x ∈ C, then

for every λ > 0,

||x + λu|| ≥ σ(u)||x|| for all x ∈ C.

Let γ : X → C be a retraction, that is, a continuous mapping such that γ(x) = x for all

x ∈ C. Set

Ψ := P + JQN + Kp(I − Q)N and Ψγ := Ψ ◦ γ.

We make use of the following result due to O’Regan and Zima [17].

Theorem 2.1. Let C be a cone in X and let Ω1, Ω2 be open bounded subsets of X with

Ω1 ⊂ Ω2 and C ∩ (Ω2 \ Ω1) 6= ∅. Assume that the following conditions hold.

2◦ QN : X → Y is continuous and bounded and Kp(I − Q)N : X → X is compact on

every bounded subset of X,

3◦ Lx 6= λNx for all x ∈ C ∩ ∂Ω2 ∩ ImL and λ ∈ (0, 1),
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4◦ γ maps subsets of Ω2 into bounded subsets of C,

5◦ deg{[I − (P + JQN)γ]|KerL, KerL ∩ Ω2, 0} 6= 0,

6◦ there exists u0 ∈ C \ {0} such that ||x|| ≤ σ(u0)||Ψx|| for x ∈ C(u0) ∩ ∂Ω1, where

C(u0) = {x ∈ C : µu0 � x for some µ > 0} and σ(u0) such that ||x + u0|| ≥ σ(u0)||x|| for

every x ∈ C,

7◦ (P + JQN)γ(∂Ω2) ⊂ C,

8◦ Ψγ(Ω2 \ Ω1) ⊂ C.

Then the equation Lx = Nx has a solution in the set C ∩ (Ω2 \ Ω1).

For simplicity of notation, we set

G(t, s) =

{

1 − Γ(α+1)
Γ(2α+1)

+ tα

Γ(α+2)
+ (1−s)2−α

Γ(α)

∫ 1

s

(τ−s)α−1

(1−τ)2−α dτ − (1−s)2−α(t−s)α−1

t(α−1)Γ(α+1)
0 ≤ s ≤ t ≤ 1,

1 − Γ(α+1)
Γ(2α+1)

+ tα

Γ(α+2)
+ (1−s)2−α

Γ(α)

∫ 1

s

(τ−s)α−1

(1−τ)2−α dτ, 0 ≤ t ≤ s ≤ 1.

Note that G(t, s) ≥ 0 for t, s ∈ [0, 1]. Set 0 < κ ≤ min{1, 1
max

t,s∈[0,1]
G(t,s)

}.

Remark 2.2. The computation of the function G(t, s) is shown in the proof of Theorem 3.1.

3. MAIN RESULTS

In order to prove the existence result, we present here a definition.

Definition 3.1. We say that the function f : [0, 1]×R → R satisfies the L1-Carathéodory

conditions, if

(A1) for each u ∈ R, the mapping t 7→ f(t, u) is Lebesgue measurable on [0,1],

(A2) for a.e. t ∈ [0, 1], the mapping u 7→ f(t, u) is continuous on R,

(A3) for each r > 0, there exists αr ∈ L1[0, 1] satisfying αr(t) > 0 on [0, 1] such that

|u| ≤ r implies |f(t, u)| ≤ αr(t).

In this paper, we consider the Banach spaces X = C[0, 1] and Y = L1[0, 1] with the

supper norm ||x|| = max
t∈[0,1]

|x(t)| and Lebesgue absolutely integrable norm ||y|| =
∫ 1

0
|y(t)|dt,

respectively. Define L : domL → Y by Lx(t) = −cDα
0+x(t) with

domL = {x ∈ X : x ∈ ACn[0, 1], x(0) = 0, x′(0) = x′(1), cDα
0+x ∈ L1[0, 1]}

EJQTDE, 2011 No. 71, p. 6



and N : X → Y by Nx(t) = f(t, x(t)).

In order to obtain our main results, we firstly present and prove the following lemma.

Lemma 3.1. L : domL ⊂ X → Y is a Fredholm operator of index zero, and the linear

operator Kp : ImL → domL ∩ KerP can be written as

(Kpy)(t) =

∫ 1

0

k(t, s)y(s)

(1 − s)2−α
ds,

where

k(t, s) =
(1 − s)2−α

Γ(α)

{

α(α − 1)t
∫ 1

s

(τ−s)α−1

(1−τ)2−α dτ − (t − s)α−1, 0 ≤ s ≤ t ≤ 1

α(α − 1)t
∫ 1

s

(τ−s)α−1

(1−τ)2−α dτ, 0 ≤ t ≤ s ≤ 1.

Proof. It is clear that

KerL = {x ∈ domL : x(t) = ct on [0, 1]}.

We will show that

ImL = {y ∈ Y :

∫ 1

0

y(s)

(1 − s)2−α
ds = 0}. (3.1)

Since the problem

− cDα
0+x(t) = y(t) (3.2)

has solution x(t) satisfies boundary conditions (1.2) if and only if

∫ 1

0

y(s)

(1 − s)2−α
ds = 0. (3.3)

In fact, if (3.2) has solution x(t) satisfies (1.2), then from (3.2) we have

x′(t) = − 1

Γ(α − 1)

∫ t

0

y(s)

(t − s)2−α
ds + x′(0).

In view of x′(0) = x′(1), we can obtain that

∫ 1

0

y(s)

(1 − s)2−α
ds = 0.

On the other hand, if (3.3) holds, setting

x(t) = − 1

Γ(α)

∫ t

0

y(s)

(t − s)1−α
ds + Ct,
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where C is arbitrary constant, then x(t) is a solution of (3.2), and x(0) = 0, x′(0) = x′(1).

Hence (3.1) holds.

Next, we define P : X → X by (Px)(t) = α(α − 1)t
∫ 1

0
x(s)

(1−s)2−α ds and Q : Y → Y by

(Qy)(t) = α(α − 1)t

∫ 1

0

y(s)

(1 − s)2−α
ds, t ∈ [0, 1].

It is easy to see that the operators P and Q are all projections. In fact, for t ∈ [0, 1],

(P 2x)(t) = P (Px)(t) = α(α − 1)t

∫ 1

0

(Px)(s)

(1 − s)2−α
ds

= α2(α − 1)2t

∫ 1

0

x(s)

(1 − s)2−α
ds ·

∫ 1

0

s

(1 − s)2−α
ds

= α(α − 1)t

∫ 1

0

x(s)

(1 − s)2−α
ds

= (Px)(t).

The same to the operator Q.

In the sense of isomorphism, ImP = KerL and KerQ = ImL. So dimKerL = 1 =

dimImQ = codimImL. Notice that ImL is closed, L is a Fredholm operator of index zero.

For y ∈ ImL, the inverse Kp : ImL → domL ∩ KerP of Lp can be given by

(Kpy)(t) =

∫ 1

0

k(t, s)
y(s)

(1 − s)2−α
ds

where

k(t, s) =
(1 − s)2−α

Γ(α)

{

α(α − 1)t
∫ 1

s

(τ−s)α−1

(1−τ)2−α dτ − (t − s)α−1, 0 ≤ s ≤ t ≤ 1

α(α − 1)t
∫ 1

s

(τ−s)α−1

(1−τ)2−α dτ, 0 ≤ t ≤ s ≤ 1.
(3.4)

In fact, for x ∈ domL ∩ KerP , we have y(t) = − cDα
0+x(t) ∈ ImL and

∫ 1

0
x(s)

(1−s)2−α ds = 0.

Then

(Kpy)(t) = x(t) = −Iα
0+y(t) + Ct = − 1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds + Ct,

and

0 =

∫ 1

0

x(τ)

(1 − τ)2−α
dτ

= − 1

Γ(α)

∫ 1

0

1

(1 − τ)2−α

∫ τ

0

(τ − s)α−1y(s)dsdτ + C

∫ 1

0

τ

(1 − τ)2−α
dτ
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= − 1

Γ(α)

∫ 1

0

y(s)

∫ 1

s

(τ − s)α−1

(1 − τ)2−α
dτds +

C

α(α − 1)
.

We can solve that

C =
α(α − 1)

Γ(α)

∫ 1

0

y(s)

∫ 1

s

(τ − s)α−1

(1 − τ)2−α
dτds.

Therefore,

(Kpy)(t) = − 1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds +
α(α − 1)t

Γ(α)

∫ 1

0

y(s)

∫ 1

s

(τ − s)α−1

(1 − τ)2−α
dτds

=

∫ 1

0

k(t, s)
y(s)

(1 − s)2−α
ds,

where k(t, s) is given by (3.4).

Remark 3.1. It is not difficult to see that |k(t, s)| ≤ 3 for t, s ∈ [0, 1].

Now we state our main result on the existence of a positive solution for BVP (1.1)-(1.2).

Theorem 3.1. Assume that

(H1) f : [0, 1] × R → R satisfies the L1-Carathéodory conditions, f(t, 0) 6≡ 0 for t ∈ [0, 1],

(H2) there exist positive constants b1, b2, b3, c1, c2 and B with B > c2
c1

α + 3b2c2
b1c1(α−1)

+ 3b3
b1(α−1)

such that

−κx ≤ f(t, x),

f(t, x) ≤ −c1x + c2,

f(t, x) ≤ −b1|f(t, x)| + b2x + b3

for t ∈ [0, 1], x ∈ [0, B],

(H3) there exist b ∈ (0, B), ρ ∈ (0, 1], δ ∈ (0, 1) and q ∈ L1[0, 1], q(t) ≥ 0 on [0, 1],

h ∈ C((0, b], R+) such that f(t, x) ≥ q(t)h(x) for t ∈ [0, 1] and x ∈ (0, b]. h(x)
xρ is non-

increasing on x ∈ (0, b] with

h(b)

∫ 1

0

G(
1

α
, s)

q(s)

(1 − s)2−α
ds ≥ b(1 − δ)

(α − 1)δρ
. (3.5)

Then the BVP (1.1)-(1.2) has at least one positive solution on [0, 1].

Proof. Consider the cone

C = {x ∈ X : x(t) ≥ 0 on [0, 1]}.
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Let

Ω1 = {x ∈ X : δ||x|| < |x(t)| < b on [0, 1]}

and

Ω2 = {x ∈ X : ||x|| < B}.

Clearly, Ω1 and Ω2 are bounded and open sets, and

Ω1 = {x ∈ X : δ||x|| ≤ |x(t)| ≤ b on [0, 1]} ⊂ Ω2

(see [17]). Moreover, C ∩ (Ω2 \Ω1) 6= ∅. Let J = I and (γx)(t) = |x(t)| for x ∈ X. Then γ is

a retraction and maps subsets of Ω2 into bounded subsets of C, which means that 4◦ holds.

In order to prove 3◦, suppose that there exist x0 ∈ ∂Ω2 ∩C ∩ domL and λ0 ∈ (0, 1) such

that Lx0 = λ0Nx0, then cDα
0+x0(t) + λ0f(t, x0(t)) = 0 for all t ∈ [0, 1]. In view of (H2), we

have

− 1

λ0

cDα
0+x0(t) = f(t, x0(t)) ≤ − 1

λ0
b1|cDα

0+x0(t)| + b2x0(t) + b3.

Hence,

0 = −x′
0(1) + x′

0(0)

= −(Iα−1
0+

cDα−1
0+ Dx0)(1)

≤ − b1

Γ(α − 1)

∫ 1

0

|cDα
0+x0(s)|

(1 − s)2−α
ds +

λ0b2

Γ(α − 1)

∫ 1

0

x0(s)

(1 − s)2−α
ds

+
λ0b3

Γ(α − 1)

∫ 1

0

1

(1 − s)2−α
ds,

which gives
∫ 1

0

|cDα
0+x0(s)|

(1 − s)2−α
ds ≤ b2

b1

∫ 1

0

x0(s)

(1 − s)2−α
ds +

b3

b1(α − 1)
. (3.6)

Similarly, from (H2), we also obtain

∫ 1

0

x0(s)

(1 − s)2−α
ds ≤ c2

c1(α − 1)
. (3.7)

On the other hand,

x0(t) = α(α − 1)t

∫ 1

0

x0(s)

(1 − s)2−α
ds −

∫ 1

0

k(t, s)
cDα

0+x0(s)

(1 − s)2−α
ds
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≤ c2

c1

α +

∫ 1

0

|k(t, s)| · |
cDα

0+x0(s)|
(1 − s)2−α

ds

≤ c2

c1

α +
3b2c2

b1c1(α − 1)
+

3b3

b1(α − 1)
. (3.8)

(3.6), (3.7) and (3.8) yield

B = ||x0|| ≤
c2

c1
α +

3b2c2

b1c1(α − 1)
+

3b3

b1(α − 1)
,

which contradicts (H2).

To prove 5◦, consider x ∈ KerL ∩ Ω2. Then x(t) = ct on [0, 1]. Let

H(ct, λ) = ct − λα(α − 1)t

∫ 1

0

|cs|
(1 − s)2−α

ds − λα(α − 1)t

∫ 1

0

f(s, |cs|)
(1 − s)α−2

ds

for c ∈ [−B, B] and λ ∈ [0, 1]. Define homeomorphism M : KerL ∩ Ω2 → R by M(ct) = c,

then

deg{H(ct, λ), KerL ∩ Ω2, 0} = deg{MH(M−1c, λ), M(KerL ∩ Ω2), M(0)}

and M(0) = 0. It is easy to show that 0 = MH(M−1c, λ) implies c ≥ 0. Suppose 0 =

MH(M−1B, λ) for some λ ∈ (0, 1], we would have

0 ≤ B(1−λ) = λα(α−1)

∫ 1

0

f(s, Bs)

(1 − s)α−2
ds ≤ λα(α−1)

∫ 1

0

−c1Bs + c2

(1 − s)α−2
ds = λ(−c1B+αc2) < 0,

which is a contradiction. In addition, if λ = 0, then B = 0, which is impossible. Thus,

MH(M−1x, λ) 6= 0 for x ∈ M(KerL ∩ ∂Ω2), λ ∈ [0, 1]. As a result,

deg{MH(M−1c, 1), M(KerL ∩ Ω2), 0} = deg{MH(M−1c, 0), M(KerL ∩ Ω2), 0}.

However,

deg{MH(M−1c, 0), M(KerL ∩ Ω2), 0} = deg{I, M(KerL ∩ Ω2), 0} = 1.

Then

deg{[I − (P + JQN)γ]KerL, KerL ∩ Ω2, 0}
= deg{H(·, 1), KerL ∩ Ω2, 0}
= deg{MH(M−1c, 1), M(KerL ∩ Ω2), 0} 6= 0.
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Next, we prove 8◦. Let x ∈ Ω2 \ Ω1 and t ∈ [0, 1],

(Ψγx)(t) = α(α − 1)t

∫ 1

0

|x(s)|
(1 − s)2−α

ds + α(α − 1)t

∫ 1

0

f(s, |x(s)|)
(1 − s)2−α

ds

+

∫ 1

0

k(t, s)

(1 − s)2−α
[f(s, |x(s)|) − α(α − 1)s

∫ 1

0

f(τ, |x(τ)|)dτ

(1 − τ)2−α
]ds

= α(α − 1)t

∫ 1

0

|x(s)|
(1 − s)2−α

ds + α(α − 1)t

∫ 1

0

G(t, s)
f(s, |x(s)|)
(1 − s)2−α

ds

≥ α(α − 1)t

∫ 1

0

(1 − κG(t, s))
|x(s)|

(1 − s)2−α
ds ≥ 0.

Hence, Ψγ(Ω2 \ Ω1) ⊂ C, i.e. 8◦ holds.

Since for x ∈ ∂Ω2,

(P + JQN)γx = α(α − 1)t

∫ 1

0

|x(s)|
(1 − s)2−α

ds + α(α − 1)t

∫ 1

0

f(s, |x(s)|)
(1 − s)2−α

ds

≥ α(α − 1)t

∫ 1

0

1 − κ

(1 − s)2−α
|x(s)|ds ≥ 0.

Thus, (P + JQN)γx ⊂ C for x ∈ ∂Ω2, 7◦ holds.

Next, we verify 6◦. Let u0(t) ≡ 1 on [0, 1]. Then u0 ∈ C \ {0}, C(u0) = {x ∈ C : x(t) >

0 on [0, 1]} and we can take σ(u0) = 1. Let x ∈ C(u0) ∩ ∂Ω1. Then x(t) > 0 on [0, 1],

0 < ||x|| ≤ b and x(t) ≥ δ||x|| on [0, 1]. For every x ∈ C(u0) ∩ ∂Ω1, by (H3), we have

(Ψx)(
1

α
) = α(α − 1)

1

α

∫ 1

0

x(s)

(1 − s)2−α
ds + α(α − 1)

1

α

∫ 1

0

G(
1

α
, s)

f(s, x(s))

(1 − s)2−α
ds

≥ δ||x|| + (α − 1)

∫ 1

0

G(
1

α
, s)

q(s)h(x(s))

(1 − s)2−α
ds

= δ||x|| + (α − 1)

∫ 1

0

G( 1
α
, s)q(s)

(1 − s)2−α
· h(x(s))

xρ(s)
xρ(s)ds

≥ δ||x|| + (α − 1)δρ||x||ρ
∫ 1

0

G(t0, s)q(s)

(1 − s)2−α
· h(b)

bρ
ds

= δ||x|| + (α − 1)δρ||x|| · h(b)

b
· b1−ρ

||x||1−ρ

∫ 1

0

G( 1
α
, s)q(s)

(1 − s)2−α
ds

≥ ||x||.

Thus, ||x|| ≤ σ(u0)||Ψx|| for all x ∈ C(u0) ∩ ∂Ω1.
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In view of Lemma 3.1, the condition 1◦ is satisfied. Since f is a L1-Carathéodory function,

2◦ holds.

By Theorem 2.1, the BVP (1.1)-(1.2) has a positive solution x∗ on [0, 1] with ||x∗|| ≤ B.

x∗(t) is not a trivial solution due to the fact that f(t, 0) 6≡ 0 for t ∈ [0, 1]. This completes

the proof of Theorem 3.1.

Remark 3.2. Note that with the projection P (x) = x(0), conditions 7◦ and 8◦ of Theorem

2.1 are no longer satisfied.

To illustrate how our main result can be used in practice, we present here an example.

Example 3.1. Consider

{

cD1.5
0+ x(t) + 1

500
(1 + t − t2)(x2 − 8x + 12)(x − 1) = 0, t ∈ (0, 1),

x(0) = 0, x′(0) = x′(1).
(3.9)

Corresponding to Eq. (1.1), here we take α = 1.5 and f(t, x) = 1
500

(1 + t− t2)(x2 − 8x +

12)(x − 1). And we can obtain that

G(t, s) =







1 −
√

π

8
+ 8

15
√

π
t

3
2 + 2

√
1−s√
π

∫ 1

s

√

τ−s
1−τ

dτ − 8
√

(1−s)(t−s)

3
√

πt
, 0 ≤ s ≤ t ≤ 1,

1 −
√

π

8
+ 8

15
√

π
t

3
2 + 2

√
1−s√
π

∫ 1

s

√

τ−s
1−τ

dτ, 0 ≤ t ≤ s ≤ 1.

Obviously, G(t, s) ≥ 0 for t, s ∈ [0, 1].

Let κ = 1
5
, B = 6 and b = 1

2
, we may choose b1 = 4, b2 = 3

20
, b3 = 1

3
, c1 = 1

50
, c2 = 1

25

such that (H2) holds, and take ρ = 1, δ = 0.995, q(t) = 1+ t(1− t), h(x) = 1
50

x for t ∈ [0, 1],

x ∈ (0, 1
2
] such that (H3) holds.

In addition, it is easy to check that (H1) is satisfied by the definition of f . Therefore,

the BVP (3.9) has at least one positive solution on [0, 1] according to Theorem 3.1.
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