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Abstract

In this paper, a delay model of plankton allelopathy is investigated. By using
the coincidence degree theory, sufficient conditions for existence of periodic solutions
are obtained. The presented criteria improve and extend previous results in the
literature.
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1 Introduction

Recently, Song and Chen proposed a nonautonomous system that arises in plankton
allelopathy involving discrete time delays and periodic environmental factors in [1]
as follows,

{

Ṅ1(t) = N1[k1(t) − α1(t)N1(t) − β12(t)N2(t) − γ1(t)N1(t)N2(t − τ2(t))],

Ṅ2(t) = N2[k2(t) − α2(t)N2(t) − β21(t)N1(t) − γ2(t)N2(t)N1(t − τ1(t))],
(1)

where N1(t) and N2(t) stand for the population density of two competing species,
γ1 and γ2 are the rates of toxic inhibition of the first species by the second and
vice versa, respectively. All the coefficients and time delays are positive ω−periodic
functions.

However, the following discrete time model is more appropriate when the popu-
lations have non–overlapping generations [2],















N1(n + 1) = N1(n) exp{k1(n) − α1(n)N1(n)
−β12(n)N2(n) − γ1(n)N1(n)N2(n − τ2(n))},

N2(n + 1) = N2(n) exp{k2(n) − α2(n)N2(n)
−β21(n)N1(n) − γ2(n)N2(n)N1(n − τ1(n))},

(2)

By using the coincidence degree theory, existences of periodic solutions for system
(1) and (2) were studied in [1–2]. It is obvious that the results and approaches are
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astonishingly similar. To unify these two models, we consider the dynamic equations
on time scales motivated by the new idea of Stefan Hilger in [3–4],

{

x∆
1 (t) = r1(t) − α1(t)e

x1(t) − β12(t)e
x2(t) − γ1(t)e

x1(t)+x2(t−τ2(t)),
x∆

2 (t) = r2(t) − α2(t)e
x2(t) − β21(t)e

x1(t) − γ2(t)e
x2(t)+x1(t−τ1(t)),

(3)

where ri(t), αi(t), βij(t), γi and τi(t) (i, j = 1, 2; i 6= j) are rd−continuous positive
ω−periodic functions on time scale T. Set Ni(t) = exi(t), i = 1, 2, then system (3)
can be reduced to (1) and (2) when T = R and T = Z, respectively.

The main purpose of this paper is to explore the periodic solutions of system (3)
by using coincidence degree theory and we refer the reader to [5–6]. Moreover, with
the help of new inequality on time scales [7], we can find the sharp priori bounds and
improve existence criteria for periodic solutions. In next section, some preliminary
results are presented. In Section 3, existence of periodic solutions is established.

2 Preliminaries

For convenience, we first present some basic definitions and lemmas about time
scales and the continuation theorem of the coincidence degree theory; more details
can be found in [3, 8]. A time scale T is an arbitrary nonempty closed subset of real
numbers R. Throughout this paper, we assume that the time scale T is unbounded
above and below, such as R, Z and

⋃

k∈Z
[2k, 2k + 1]. The following definitions and

lemmas about time scales are from [3].
Definition 2.1. The forward jump operator σ : T → T, the backward jump
operator ρ : T → T, and the graininess µ : T → R

+ = [0, +∞) are defined,
respectively, by σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, µ(t) = σ(t)−t.
If σ(t) = t, then t is called right-dense (otherwise: right-scattered), and if ρ(t) = t,
then t is called left-dense (otherwise: left-scattered).
Definition 2.2. Assume f : T → R is a function and let t ∈ T. Then we define
f∆(t) to be the number (provided it exists) with the property that given any ε > 0,
there is a neighborhood U of t such that

|f(σ(t)) − f(s) − f∆(t)(σ(t) − s)| ≤ ε|σ(t) − s| for all s ∈ U.

In this case, f∆(t) is called the delta (or Hilger) derivative of f at t. Moreover, f is
said to be delta or Hilger differentiable on T if f∆(t) exists for all t ∈ T. A function
F : T → R is called an antiderivative of f : T → R provided F∆(t) = f(t) for all
t ∈ T. Then we define

∫ s

r

f(t)∆t = F (s) − F (r) for r, s ∈ T.

Definition 2.3. A function f : T → R is said to be rd-continuous if it is continuous
at right-dense points in T and its left-sided limits exist(finite) at left-dense points
in T. The set of rd-continuous functions f : T → R will be denoted by Crd(T).
Lemma 2.4. Every rd-continuous function has an antiderivative.

EJQTDE, 2011 No. 28, p. 2



Lemma 2.5. If a, b ∈ T, α, β ∈ R and f, g ∈ Crd(T),then

(a)
∫ b

a
[αf(t) + βg(t)]∆t = α

∫ b

a
f(t)∆t + β

∫ b

a
g(t)∆t;

(b) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)∆t ≥ 0;

(c) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then |
∫ b

a
f(t)∆t| ≤

∫ b

a
g(t)∆t.

Lemma 2.6.([7]) Let t1, t2 ∈ Iω and t ∈ T. If g : T → R ∈ Crd(T) is ω−periodic,
then

g(t) ≤ g(t1) +
1

2

∫ k+ω

k

|g∆(s)|∆s

and

g(t) ≥ g(t2) −
1

2

∫ k+ω

k

|g∆(s)|∆s,

the constant factor 1
2

is the best possible.
For simplicity, we use the following notations throughout this paper. Let T be

ω-periodic, that is t ∈ T implies t + ω ∈ T,

k = min{R
+ ∩ T}, Iω = [k, k + ω] ∩ T, gL = inf

t∈T

g(t),

gM = sup
t∈T

g(t), ḡ =
1

ω

∫

Iω

g(s)∆s =
1

ω

∫ k+ω

k

g(s)∆s,

where g ∈ Crd(T) is an ω-periodic real function, i.e., g(t + ω) = g(t) for all t ∈ T.
Now, we introduce some concepts and a useful result from [8].
Let X, Z be normed vector spaces, L : DomL ⊂ X → Z be a linear mapping,

N : X → Z be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim ker L = codim Im L < +∞ and Im L is closed in Z. If
L is a Fredholm mapping of index zero and there exist continuous projections P :
X → X and Q : Z → Z such that Im P = ker L, Im L = ker Q = Im(I −Q), then it
follows that L|DomL∩ker P : (I−P )X → Im L is invertible. We denote the inverse
of that map by KP . If Ω is an open bounded subset of X, the mapping N will be
called L-compact on Ω̄ if QN(Ω̄) is bounded and KP (I −Q)N : Ω̄ → X is compact.
Since Im Q is isomorphic to ker L, there exists an isomorphism J : Im Q → ker L.

Next, we state the Mawhin’s continuation theorem, which is a main tool in the
proof of our theorem.
Lemma 2.7. Let L be a Fredholm mapping of index zero and N be L-compact
on Ω̄. Suppose

(a) for each λ ∈ (0, 1), every solution u of Lu = λNu is such that u /∈ ∂Ω;

(b) QNu 6= 0 for each u ∈ ∂Ω ∩ ker L and the Brouwer degree deg{JQN, Ω ∩
ker L, 0} 6= 0.

Then the operator equation Lu = Nu has at least one solution lying in DomL∩ Ω̄.
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3 Main Results

Theorem 3.1. If

ᾱi

β̄ji

> max(
γ̄i

γ̄j

,
r̄i

r̄j

er̄iω), (i, j = 1, 2; i 6= j)

then system (3) has at least one ω−periodic solution.
Let X = Z =

{

(u1, u2)
T ∈ C(T, R2) : ui(t + ω) = ui(t), i = 1, 2, ∀t ∈

T
}

, ‖(u1, u2)
T‖ =

∑2
i=1 maxt∈Iω

|ui(t)|, (u1, u2)
T ∈ X(Z).

Then X and Z are both Banach spaces when they are endowed with the above
norm ‖ · ‖.

Let

N

[

x1

x2

]

=

[

N1

N2

]

=









r1(t) − α1e
x1(t) − β12(t)e

x2(t)

−γ1e
x1(t)+x2(t−τ2(t))

r2(t) − α2e
x2(t) − β21(t)e

x1(t)

−γ2e
x2(t)+x1(t−τ1(t))









,

L

[

x1

x2

]

=

[

x∆
1

x∆
2

]

,

P

[

x1

x2

]

= Q

[

x1

x2

]

=

[

1
ω

∫ κ+ω

κ
x1(t)∆t

1
ω

∫ κ+ω

κ
x2(t)∆t

]

.

Obviously, ker L =
{

(x1, x2)
T ∈ X : (x1(t), x2(t))

T = (h1, h2)
T ∈ R

2, t ∈ T
}

, ImL =
{

(x1, x2)
T ∈ Z : x̄1 = x̄2 = 0, t ∈ T

}

, dim ker L = 2 = codim Im L. Since Im L is
closed in Z, then L is a Fredholm mapping of index zero. It is easy to show that
P and Q are continuous projections such that Im P = ker L and Im L = ker Q =
Im(I −Q). Furthermore, the generalized inverse (of L) KP : Im L → ker P ∩DomL
exists and is given by

KP

[

x1

x2

]

=

[∫ t

κ
x1(s)∆s − 1

ω

∫ κ+ω

κ

∫ t

κ
x1(s)∆s∆t

∫ t

κ
x2(s)∆s − 1

ω

∫ κ+ω

κ

∫ t

κ
x2(s)∆s∆t

]

.

Thus,

QN

[

x1

x2

]

=









1
ω

∫ κ+ω

κ

(

r1(t) − α1e
x1(t) − β12(t)e

x2(t)

−γ1e
x1(t)+x2(t−τ2(t))

)

∆t
1
ω

∫ κ+ω

κ

(

r2(t) − α2e
x2(t) − β21(t)e

x1(t)

−γ2e
x2(t)+x1(t−τ1(t))

)

∆t









,

and

KP (I − Q)N

[

x1

x2

]

=













∫ t

κ
N1(s)∆s − 1

ω

∫ κ+ω

κ

∫ t

κ
N1(s)∆s∆t

−
(

t − κ − 1
ω

∫ κ+ω

κ
(t − κ)∆t

)

N̄1
∫ t

κ
N2(s)∆s − 1

ω

∫ κ+ω

κ

∫ t

κ
N2(s)∆s∆t

−
(

t − κ − 1
ω

∫ κ+ω

κ
(t − κ)∆t

)

N̄2













.
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Clearly, QN and KP (I − Q)N are continuous. According to Arzela-Ascoli the-
orem, it is not difficulty to show that KP (I − Q)N(Ω̄) is compact for any open
bounded set Ω ⊂ X and QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄.

Now, we shall search an appropriate open bounded subset Ω for the application
of the continuation theorem, Lemma 2.7. For the operator equation Lu = λNu,
where λ ∈ (0, 1), we have















x∆
1 (t) = λ

(

r1(t) − α1e
x1(t) − β12(t)e

x2(t)

−γ1e
x1(t)+x2(t−τ2(t))

)

,
x∆

2 (t) = λ
(

r2(t) − α2e
x2(t) − β21(t)e

x1(t)

−γ2e
x2(t)+x1(t−τ1(t))

)

.

(4)

Assume that (u1, u2)
T ∈ X is a solution of (4) for a certain λ ∈ (0, 1). Integrating

(4) on both sides from k to k + ω, we obtain



















r̄1ω =
∫ κ+ω

κ
α1e

x1(t)∆t +
∫ κ+ω

κ
β12(t)e

x2(t)∆t

+
∫ κ+ω

κ
γ1e

x1(t)+x2(t−τ2(t))∆t,

r̄2ω =
∫ κ+ω

κ
α2e

x2(t)∆t +
∫ κ+ω

κ
β21(t)e

x1(t)∆t

+
∫ κ+ω

κ
γ2e

x2(t)+x1(t−τ1(t))∆t.

(5)

Since (x1, x2)
T ∈ X, there exist ξi, ηi ∈ [k, k + ω], i = 1, 2, such that

xi(ξi) = min
t∈[κ,κ+ω]

{xi(t)}, xi(ηi) = max
t∈[κ,κ+ω]

{xi(t)}. (6)

From (4) and (5), we have

∫ κ+ω

κ

∣

∣x∆
1 (t)

∣

∣ ∆t < 2r̄1ω

and
∫ κ+ω

κ

∣

∣x∆
2 (t)

∣

∣ ∆t < 2r̄2ω.

From the first equation of (5) and (6), we have

r̄1ω > ᾱ1ωex1(ξ1),

and

x1(ξ1) < ln
r̄1

ᾱ1
:= l1,

thus,

x1(t) ≤ x1(ξ1) +
1

2

∫ κ+ω

κ

|x∆
1 (t)|∆t < ln

r̄1

ᾱ1

+ r̄1ω := M1.

Similarly, we have

x2(ξ2) < ln
r̄2

ᾱ2

:= l2,
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so,

x2(t) ≤ x2(ξ2) +
1

2

∫ κ+ω

κ

|x∆
2 (t)|∆t ≤ ln

r̄2

ᾱ2
+ r̄2ω := M2.

By (5) and (6),

r̄iω ≤ ω(ᾱie
xi(ηi) + β̄ije

xj(ηj) + γie
xi(ηi)+xj(ηj)),

where i, j = 1, 2; i 6= j. Hence,

r̄i ≤ (ᾱi + γie
Mj )exi(ηi) + β̄ije

Mj ,

and

xi(ηi) ≥ ln
r̄i − β̄ije

Mj

ᾱi + γieMj
:= Li, i = 1, 2.

Thus,

xi(t) ≥ xi(ηi) −
1

2

∫ κ+ω

κ

|x∆
i (t)|∆t ≥ Li − r̄1ω := Mi+2.

So, we have

max
t∈Iω

|x1(t)| ≤ max{|M1|, |M3|} := R1,

max
t∈Iω

|x2(t)| ≤ max{|M2|, |M4|} := R2.

Clearly, R1 and R2 are independent of λ. Let R = R1 + R2 + R0, where R0 is
taken sufficiently large such that R0 ≥ |l1|+ |l2|+ |L1|+ |L2|. Now, we consider the
algebraic equations:

{

r̄1 − ᾱ1e
x − β̄12e

y − γ̄1e
x+y = 0,

r̄2 − ᾱ2e
x − β̄21e

y − γ̄2e
x+y = 0,

(7)

every solution (x∗, y∗)T of (7) satisfies ‖(x∗, y∗)T‖ < R. Now, we define Ω =
{(u1(t), u2(t))

T ∈ X, ‖(u1(t), u2(t))
T‖ < R}. Then it is clear that Ω verifies the

requirement (a) of Lemma 2.7. If (x1, x2)
T ∈ ∂Ω ∩ ker L = ∂Ω ∩ R

2, then (x1, x2)
T

is a constant vector in R
2 with ‖(x1, x2)

T‖ = |x1| + |x2| = R, so we have

QN

[

x1

x2

]

6=

[

0
0

]

.

By direct computation, we can obtain deg(JQN, Ω ∩ ker L, 0) = 1 6= 0. By now, we
have verified that Ω fulfills all requirements of Lemma 2.7; therefore, (3) has at least
one ω-periodic solution in DomL ∩ Ω̄. The proof is complete.

4 Conclusion

We investigated a time–delay plankton allelopathy model on time scales. By using
the analytical approach, we show that the time delays have no influence on the
periodicity of both species. If T = R, then system (1) is the special case of (3)
and our results are more general than those in [1]. We can also obtain the existence
theorem of periodic solutions for difference equations (2) when T = Z. Furthermore,
the conditions in Theorem 3.1 are easier then the corresponding conditions in [1–2]
with the help of sharp inequality.
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