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Abstract. For all µ > 0, a locally Lipschitz continuous map f with xf (x) > 0,

x ∈ R\{0}, is constructed, such that the scalar equation ẋ (t) = −µx (t)−f (x (t− 1))

with delayed negative feedback has an infinite number of periodic orbits. All periodic

solutions defining these orbits oscillate slowly around 0 in the sense that they admit

at most one sign change in each interval of length of 1. Moreover, if f is continuously

differentiable, then the periodic orbits are hyperbolic and stable. In this example f is

not bounded, but the Lipschitz constants for the restrictions of f to certain intervals

are small. Based on this property, an infinite sequence of contracting return maps is

given. Their fixed points are the initial segments of the periodic solutions.
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1. Introduction

Set µ > 0, and let f : R → R be a continuous function with f (0) = 0 and

xf (x) > 0 for all x ∈ R \ {0}. A periodic solution p : R → R of the scalar delay

differential equation

(1.1) ẋ (t) = −µx (t) − f (x (t− 1))
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is called a slowly oscillating periodic (or SOP) solution if the successive zeros of p are

spaced at distances larger than the delay 1.

In [8] Walther has given a class of Lipschitz continuous nonlinearities f for which

Eq. (1.1) admits an SOP solution. A nonlinearity f in the function class considered

is close to a · sgn (x) outside a small neighborhood of 0; the Lipschitz constant for f is

sufficiently small on (−∞,−ε)∪(ε,∞), ε > 0 small. Hence the associated return map

is a contraction, and a periodic solution arises as the fixed point of the return map.

In case f is C1-smooth, the corresponding periodic orbit is hyperbolic and stable.

In a subsequent paper [6], Ou and Wu have verified that the same result holds for a

wider class of nonlinearities.

In case f in Eq. (1.1) is continuously differentiable with f ′ (x) > 0 for x ∈ R, Cao

[1] and Krisztin [3] have given sufficient conditions for the uniqueness of the SOP

solution. In these works, x 7→ f (x) /x is strictly decreasing on (0,∞).

In this paper we follow the technique used by Walther in [8] to show that one may

guarantee the existence of an arbitrary number of SOP solutions. For the nonlinearity

f in the next theorem, x 7→ f (x) /x is not monotone.

Theorem 1.1. Assume µ > 0. There exists a locally Lipschitz continuous odd non-

linear map f satisfying xf (x) > 0 for all x ∈ R \ {0}, for which Eq. (1.1) admits

an infinite sequence of SOP solutions (pn)∞n=1 with pn (R) ( pn+1 (R) for n ≥ 0. If

f is continuously differentiable, then the corresponding periodic orbits are stable and

hyperbolic.

We point out that a similar result appears in paper [5] of Nussbaum for the case

µ = 0. Although the construction of Nussbaum is different from the one presented

here, x 7→ f (x) /x is likewise not monotone for the nonlinear map f given by him.

Suppose f in Theorem 1.1 is smooth with f ′ (x) > 0 for x ∈ R. Based on [9], it can

be confirmed that for the hyperbolic and stable SOP solutions pn, pn+1 with ranges

pn (R) ( pn+1 (R), there exists an SOP solution p∗ with range pn (R) ( p∗ (R) (

pn+1 (R). Also, we have a Poincaré–Bendixson type result. For each globally defined

bounded slowly oscillating solution (i.e., for each bounded solution defined on R with

at most 1 sign change on each interval of length 1), the ω-limit set is either {0} or

a single periodic orbit defined by an SOP solution. Analogously for the α-limit set.
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Moreover, the subset

{x0 : x : R → R is a bounded, slowly oscillating solution of Eq. (1.1)} ∪ {0}

of the phase space C = C ([−1, 0] ,R) is homeomorphic to the 2-dimensional plane.

There are results similar to [8] for the positive feedback case, i.e., for equation

ẋ (t) = −µx (t) + f (x (t− 1)) with µ > 0, f ∈ C (R,R) and xf (x) > 0 for x 6= 0, see

e.g. Stoffer [7]. In [4] a feedback function f with f (0) = 0, f ′ (x) > 0, x ∈ R, is given,

for which there exist exactly two periodic orbits so that the corresponding periodic

solutions oscillate slowly around zero in the sense that there are no 3 different zeros

in any interval of length 1. The nonlinear map considered in [4] is close to the step

function f 1 given by f 1 (x) = 0 for |x| ≤ 1, and f 1 (x) = K · sgn (x) for |x| > 1.

Equations with such nonlinearities model neural networks of identical neurons that

do not react upon small feedback; the feedback has to reach a certain threshold value

to have a considerable effect [2]. Eq. (1.1) with nonlinearity f 1 is investigated in the

next section.

The nonlinear map in Theorem 1.1 is close to the odd step function f ∗ with f ∗ (x) =

0 for all x ∈ [0, 1], and f ∗ (x) = Krn for all n ≥ 0 and x ∈ (rn, rn+1]. We conjecture

that with similar nonlinearities, equation ẋ (t) = −µx (t) + f (x (t− 1)) also admits

an infinite number of periodic solutions oscillating slowly around zero in the sense

that they have no 3 different zeros in any interval of length 1.

Some notations used in this paper are introduced.

The natural phase space for Eq. (1.1) is the space C = C ([−1, 0] ,R) of conti-

nuous real functions defined on [−1, 0] equipped with the supremum norm ‖ϕ‖ =

sup−1≤s≤0 |ϕ (s)|.
If I ⊂ R is an interval, u : I → R is continuous, then for [t − 1, t] ⊂ I, segment

ut ∈ C is defined by ut(s) = u(t+ s), −1 ≤ s ≤ 0.

In the sequel we consider Eq. (1.1) with continuous or step function nonlinearities

f . For any ϕ ∈ C, there is a unique solution xϕ,f : [−1,∞) → R with initial segment

xϕ,f0 = ϕ computed recursively using the variation-of-constants formula

(1.2) x (t) = x (n) e−µ(t−n) +

ˆ t

n

e−µ(t−s)f (x (s− 1)) ds
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for all n ≥ 0 and t ∈ [n, n + 1]. Then xϕ,f is absolutely continuous on (0,∞). If for

some (α, β) ⊂ (0,∞), the map (α, β) ∋ t 7→ f (x (t− 1)) ∈ R is continuous, then it

is clear that xϕ,f is continuously differentiable on (α, β), moreover, (1.1) holds for all

t ∈ (α, β).

The solutions of Eq. (1.1) define the continuous semiflow

(1.3) F = Ff : R+ × C ∋ (t, ϕ) 7→ xϕ,ft ∈ C.

For odd nonlinearities f , we have the following simple observation concluding from

the variation-of-constants formula (1.2).

Remark 1.2. If f : R → R is odd, i.e. f (−x) = −f (x) for all x ∈ R, then for all

ϕ ∈ C and t ≥ −1, x−ϕ,f (t) = −xϕ,f (t).

2. Periodic solutions for step functions

Fix µ > 0 and

(2.1) K > µ
eµ +

√
2e2µ − 2eµ + 1

eµ − 1

in this paper. As a starting point we look for periodic solutions of

(2.2) ẋ (t) = −µx (t) − fR (x (t− 1)) ,

where R > 0 and

(2.3) fR (x) =





−KR if x < −R,
0 if |x| ≤ R,

KR if x > R.

Remark 2.1. For each R > 0 and x ∈ R, fR (x) = Rf 1 (x/R). Hence all solutions of

Eq. (2.2) are of the form Rx (t) , where x (t) is a solution of

(2.4) ẋ (t) = −µx (t) − f 1 (x (t− 1)) .

In particular, all periodic solutions of Eq. (2.2) are of the form Rx (t) , where x (t)

is a periodic solution of Eq. (2.4). Thus the study of Eq. (2.2) is reduced to the

investigation of Eq. (2.4).

EJQTDE, 2011 No. 18, p. 4



Set R = 1 and Ji = (f 1)
−1

(i) for i ∈ {−K, 0, K}.
If t0 < t1 and x : [t0 − 1, t1] → R is a solution of Eq. (2.4) such that for some

i ∈ {−K, 0, K}, we have x (t− 1) ∈ J−i for all t ∈ (t0, t1), then Eq. (2.4) reduces to

the ordinary differential equation

ẋ (t) = −µx (t) + i

on the interval (t0, t1), and thus

(2.5) x(t) =
i

µ
+

(
x (t0) −

i

µ

)
e−µ(t−t0) for t ∈ [t0, t1] .

In coherence with [4], we say that a function x : [t0, t1] → R is of type (i/µ) on [t0, t1]

with i ∈ {−K, 0, K} if (2.5) holds.

It is an easy calculation to show that if µ > 0, and K satisfy (2.1), then K > 2µ.

As we shall see later, condition (2.1) comes from assumptions

(2.6) K > 0 and
K2 − 2Kµ− µ2

K2 − µ2
> e−µ.

As for any µ > 0 fixed, the second inequality is of second order in K, the solution

formula gives (2.1) and (2.6) are equivalent.

Fix ϕ ∈ C with ϕ (s) > 1 for s ∈ [−1, 0) and ϕ (0) = 1. This choice implies that

solution x = xϕ,f
1

: [−1,∞) 7→ R is of type (−K/µ) on [0, 1], that is

(2.7) x (t) = −K
µ

+

(
1 +

K

µ

)
e−µt for t ∈ [0, 1] .

Clearly, x is strictly decreasing on [0, 1]. We claim that

(2.8) x (1) = −K
µ

+

(
1 +

K

µ

)
e−µ

is smaller than −1, that is e−µ < (K − µ) / (K + µ). Indeed, (2.6) (which condition

is equivalent to the initial assumption (2.1)) gives

e−µ <
K2 − 2Kµ− µ2

K2 − µ2
<

(K − µ)2

K2 − µ2
=
K − µ

K + µ
.
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Therefore equation x (t) = −1 has a unique solution τ in (0, 1). It comes from (2.7)

that

(2.9) τ =
1

µ
ln
K + µ

K − µ
.

Note that x maps [0, τ ] onto [−1, 1]. Hence x is of type (0) on [1, τ + 1]. Relations

(2.5) and (2.8) yield

(2.10) x (t) = x (1) e−µ(t−1) = −K
µ
e−µ(t−1) +

(
1 +

K

µ

)
e−µt for t ∈ [1, τ + 1] .

In particular,

(2.11) x (τ + 1) =
K − µ

µ

(
e−µ − K

K + µ

)

by (2.9).

Assumption (2.6) implies x (τ + 1) < −1. In addition, x (1) < −1 and (2.10) give

that x is strictly increasing on [1, τ + 1]. So x (t) < −1 for t ∈ [1, τ + 1]. Also,

x (t) < −1 for t ∈ (τ, 1) because x (τ) = −1, τ ∈ (0, 1), and x strictly decreases on

[0, 1].

In consequence, x is of type (K/µ) on [τ + 1, τ + 2]. Then (2.5), (2.9) and (2.11)

imply

(2.12) x (t) =
K

µ
+

1

µ

(
K + µ− 2K2eµ

K − µ

)
e−µt for t ∈ [τ + 1, τ + 2] ,

and

x (τ + 2) =
1

µ

(
K − 2K2

K + µ
e−µ + (K − µ) e−2µ

)
.

We claim x (τ + 2) > −1. This statement is equivalent to

(eµ − 1)2K2 + 2µe2µK + µ2
(
e2µ − 1

)
> 0.

So it suffices to show that

K > K0 (µ) = µ
−e2µ +

√
e4µ − (eµ − 1)2 (e2µ − 1)

(eµ − 1)2
.
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This condition is clearly fulfilled, as K > 0 and K0 (µ) < 0 for all µ > 0. Hence

x (τ + 2) > −1.

Hypothesis (2.6) implies

K + µ− 2K2eµ

K − µ
< 0,

thus x is strictly increasing on [τ + 1, τ + 2] by formula (2.12). This result and

x (τ + 1) < −1 < x (τ + 2) yield that there exists a unique z ∈ (τ + 1, τ + 2) with

x (z) = −1. From (2.12) we get

(2.13) z = 1 +
1

µ
ln

(
2K2

K2 − µ2
− e−µ

)
.

Clearly, 2 < τ + 2. We show that z < 2. Indeed, z < 2 is equivalent to

µ

√
e2µ + 1

eµ − 1
< K,

which is a direct consequence of (2.1). So the monotonicity of x on [τ + 1, τ + 2]

gives x (2) > −1.

It follows from the definition of z, from the estimate x (t) < −1 for t ∈ (τ, z) and

from z − τ > 1 that

xz (s) < −1 for s ∈ [−1, 0) , and xz (0) = −1.

Remark 1.2 and the previous argument give

x2z (s) = xxz ,f
1

z (s) > 1 for s ∈ [−1, 0) , and x2z (0) = xxz ,f
1

z (0) = 1.

Hence x can be extended to a periodic solution of Eq. (2.4) on R. Let x1 : R → R

be a periodic function with minimal period 2z, and with

x1 (t) =

{
x (t) , t ∈ [0, z] ,

−x (t− z) , t ∈ (z, 2z) .

Then x1 satisfies Eq. (2.4) for t ∈ R.

Note that for all ϕ ∈ C with ϕ (s) > 1 for s ∈ [−1, 0) and ϕ (0) = 1, we have

xϕ,f
1

t = x1
t for all t ≥ 1.

By Remark 2.1, our reasoning gives the following result for Eq. (2.2).
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Proposition 2.2. Assume R > 0, µ > 0, and K is chosen such that (2.1) holds. Let

τ ∈ (0, 1) and z ∈ (τ + 1, 2) be given by (2.9) and (2.13), respectively. Then Eq. (2.2)

admits a periodic solution xR : R → R with the following properties.

(i) The minimal period of xR is 2z.

(ii) xR (0) = −xR (τ) = −xR (z) = R.

(iii) xR (t) > R on [−1, 0), xR (t) ∈ (−R,R) on (0, τ), xR (t) < −R on (τ, z) and

xR (t) > −R for all t ∈ (z, 2].

(iv) xR strictly decreases on [0, 1], and it strictly increases on [1, 2].

(v) xR (t) = Rx1 (t) for all t ∈ R.

In consequence,

(vi) maxt∈R

∣∣xR (t)
∣∣ = Rmaxt∈R |x1 (t)|, where

max
t∈R

∣∣x1 (t)
∣∣ = −x1 (1) =

K

µ
− K + µ

µ
e−µ ∈

(
1,
K

µ

)
.

Proposition 2.2 is applied in the next section with R = rn, where r > 1 is fixed

and n ≥ 0. We are going to construct a feedback function f so that Eq. (1.1) has an

SOP solution close to xr
n

in a sense to be clarified.

For technical purposes, we need the following notation. For ξ ∈ (0, 1), set Ti (ξ) >

0, i ∈ {1, 2, 3}, so that T1 (ξ), T2 (ξ), T3 (ξ) is the time needed by a function of type

(−K/µ) to decrease from 1 to 1 − ξ, from −1 + ξ to −1, and from −1 to −1 − ξ,

respectively.

Using (2.5), one gets

T1 (ξ) =
1

µ
ln

(
1 +

µξ

K + µ (1 − ξ)

)
.

As ln (1 + x) < x for all x > 0, we obtain

(2.14) T1 (ξ) <
ξ

K + µ (1 − ξ)
<

ξ

K
.

Similarly,

(2.15) T2 (ξ) <
ξ

K − µ
and T3 (ξ) <

ξ

K − 2µ
.
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As x1 is of type (−K/µ) on [0, 1] (see (2.7)), and xR (t) = Rx1 (t) for all R > 0

and t ∈ R, the definition of Ti (ξ), i ∈ {1, 2}, clearly gives

xR (T1 (ξ)) = R (1 − ξ) and xR (τ − T2 (ξ)) = −R (1 − ξ)

for R > 0, ξ ∈ (0, 1) and τ defined by (2.9). Analogously, xR (τ + T3 (ξ)) =

−R (1 + ξ) for R > 0 and ξ ∈ (0,min {1, |x1 (1) + 1|}).

3. Slowly oscillating solutions for continuous nonlinearities

Now we turn attention to continuous nonlinearities. In addition to parameters

µ > 0 and K satisfying condition (2.1), fix a constant M > K.

For r > 1, ε ∈ (0, r − 1) and η ∈ (0,M −K), let N = N (r, ε, η) be the set of all

continuous odd functions f : R → R with

|f (x)| < η for x ∈ [0, 1] ,
∣∣∣∣
f (x)

rn

∣∣∣∣ < M for all x ∈ (rn, rn (1 + ε)) and n ≥ 0

and with ∣∣∣∣
f (x)

rn
−K

∣∣∣∣ < η for all x ∈
[
rn (1 + ε) , rn+1

]
and n ≥ 0.

Elements of N restricted to [−rn, rn], n ≥ 1, can be viewed as perturbations of f r
n−1

introduced in the previous section.

Observe that

(3.1) max
f∈N(r,ε,η), x∈[−rn,rn]

|f (x)| < Mrn−1 for all n ≥ 1.

For f ∈ N (r, ε, η), we look for SOP solutions of Eq. (1.1) with initial functions in

the nonempty closed convex sets An = An (r, ε) defined as

An =
{
ϕ ∈ C : rn (1 + ε) ≤ ϕ (s) ≤ rn+1 for s ∈ [−1, 0) , ϕ (0) = rn (1 + ε)

}

for each n ≥ 0.

Solutions of Eq. (1.1) with f ∈ N (r, ε, η) and with initial segment in An (r, ε)

converge to xr
n

on [0, 2] as r → ∞, ε→ 0+ and η → 0+ in the following sense.
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Proposition 3.1. For each δ > 0 there are r0 = r0 (δ) > 1, ε0 = ε0 (δ) > 0 and

η0 = η0 (δ) > 0, such that for all r > r0, ε ∈ (0, ε0), η ∈ (0, η0) and n ≥ 0,

sup
f∈N(r,ε,η), ϕ∈An(r,ε), t∈[0,2]

∣∣xϕ,f (t) − xr
n

(t)
∣∣ < δrn.

Proof. Fix δ > 0 arbitrarily. Set r, ε, η as in the definition of N (r, ε, η), and choose r

to be greater that −x1 (1). In addition, assume that

(3.2) ε+η < r + x1 (1) , and 2ε+ η < min
{
1,

∣∣x1 (1) + 1
∣∣} .

This is clearly possible. Fix any n ≥ 0, ϕ ∈ An (r, ε) and f ∈ N (r, ε, η).

1. By Proposition 2.2 (iii), xr
n

(t) > rn for t ∈ [−1, 0). Hence the definition of

f r
n

, the definitions of the function classes N (r, ε, η) and An (r, ε) and the variation-

of-constants formula give that
∣∣xϕ,f (t) − xr

n

(t)
∣∣ ≤

∣∣xϕ,f (0) − xr
n

(0)
∣∣ e−µt

+

∣∣∣∣
ˆ t

0

e−µ(t−s)f (ϕ (s− 1)) ds−
ˆ t

0

e−µ(t−s)f r
n
(
xr

n

(s− 1)
)
ds

∣∣∣∣

≤ εrne−µt +

ˆ t

0

e−µ(t−s) |f (ϕ (s− 1)) − rnK| ds(3.3)

< rn (ε+ η)

for t ∈ [0, 1].

2. Similarly, for t ∈ [1, 2] we have
∣∣xϕ,f (t) − xr

n

(t)
∣∣ ≤

∣∣xϕ,f (1) − xr
n

(1)
∣∣ e−µ(t−1)

+

ˆ t

1

e−µ(t−s)
∣∣f

(
xϕ,f (s− 1)

)
− f r

n
(
xr

n

(s− 1)
)∣∣ ds(3.4)

≤
∥∥∥xϕ,f1 − xr

n

1

∥∥∥ +

ˆ 1

0

∣∣f
(
xϕ,f (s)

)
− f r

n
(
xr

n

(s)
)∣∣ds.

By the previous step,
∥∥∥xϕ,f1 − xr

n

1

∥∥∥ < rn (ε+ η). Since
∣∣xrn

(t)
∣∣ ≤ rn |x1 (1)| holds

for all real t by Proposition 2.2 (vi) and since ε+η < r + x1 (1) holds, it follows that

(3.5)
∣∣xϕ,f (t)

∣∣ <
∣∣xrn

(t)
∣∣ + rn (ε+ η) ≤ rn

(
−x1 (1) + ε+ η

)
< rn+1 for t ∈ [0, 1] .
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We give an upper estimate for the integral on the right hand side in (3.4).

2.a. First we consider interval [0, τ ], where τ ∈ (0, 1) is defined by (2.9). Recall

from Proposition 2.2 (iii) that xr
n

(t) ∈ [−rn, rn], thus f r
n
(
xr

n

(t)
)

= 0 for t ∈ [0, τ ].

Parameters ε, η are set so that 0 < ε + η < 1, therefore Ti (ε+ η), i ∈ {1, 2}, is

defined, and T1 (ε+ η) < τ−T2 (ε+ η). By the monotonicity property of xr
n

on [0, 1]

(see Proposition 2.2 (iv)) and the definitions of Ti, i ∈ {1, 2}, we have
∣∣xrn

(t)
∣∣ ≤ rn − rn (ε+ η) for t ∈ [T1 (ε+ η) , τ − T2 (ε+ η)] .

So with T1 = T1 (ε+ η) and T2 = T2 (ε+ η), the estimate given in the first step

implies ∣∣xϕ,f (t)
∣∣ <

∣∣xrn

(t)
∣∣ + rn (ε+ η) ≤ rn for t ∈ [T1, τ − T2] .

In case n ≥ 1, property (3.1) yields

∣∣f
(
xϕ,f (t)

)
− f r

n
(
xr

n

(t)
)∣∣ =

∣∣f
(
xϕ,f (t)

)∣∣ < M

r
rn, t ∈ [T1, τ − T2] .

For n = 0,
∣∣f

(
xϕ,f (t)

)
− f 1

(
x1 (t)

)∣∣ =
∣∣f

(
xϕ,f (t)

)∣∣ < ηr0, t ∈ [T1, τ − T2] ,

by the definition of the function class N (r, ε, η). As 0 < τ − T1 − T2 < 1, it follows

that

(3.6)

ˆ τ−T2

T1

∣∣f
(
xϕ,f (s)

)
− f r

n
(
xr

n

(s)
)∣∣ ds < max

{
M

r
, η

}
rn

for each n ≥ 0.

For t ∈ [0, T1)∪ (τ − T2, τ ], we have
∣∣xϕ,f (t)

∣∣ < rn+1 by (3.5). Hence (2.14), (2.15)

and (3.1) imply

(
ˆ T1

0

+

ˆ τ

τ−T2

) ∣∣f
(
xϕ,f (s)

)
− f r

n
(
xr

n

(s)
)∣∣ ds=

(
ˆ T1

0

+

ˆ τ

τ−T2

) ∣∣f
(
xϕ,f (s)

)∣∣ds

< Mrn (T1 + T2)<
2M

K − µ
(ε+ η) rn.(3.7)
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2.b. Estimates for the interval (τ, 1]. For t ∈ (τ, 1], xr
n

(t) < −rn, hence

f r
n
(
xr

n

(t)
)

= −Krn.
Parameters ε, η are fixed so that 0 < 2ε + η < min {1, |x1 (1) + 1|} holds, thus

T3 (2ε+ η) is defined and τ +T3 (2ε+ η) < 1. The fact that xr
n

strictly decreases on

[0, 1] and the definition of T3 give that

xr
n

(t) ≤ −rn − rn (2ε+ η) for t ∈ [τ + T3 (2ε+ η) , 1] .

Hence

xϕ,f (t) < xr
n

(t) + rn (ε+ η) ≤ −rn (1 + ε) for t ∈ [τ + T3, 1] ,

where T3 = T3 (2ε+ η). Also, xϕ,f (t) > −rn+1 for t in this interval. It follows from

the definition of N (r, ε, η) that
∣∣f

(
xϕ,f (t)

)
− f r

n
(
xr

n

(t)
)∣∣ =

∣∣f
(
xϕ,f (t)

)
− (−Krn)

∣∣ < rnη

for t ∈ [τ + T3, 1] , and

(3.8)

ˆ 1

τ+T3

∣∣f
(
xϕ,f (s)

)
− f r

n
(
xr

n

(s)
)∣∣ ds < (1 − τ − T3) r

nη < rnη.

It remains to consider the interval (τ, τ + T3). From (2.15), (3.1) and (3.5) we

obtain that
ˆ τ+T3

τ

∣∣f
(
xϕ,f (s)

)
− f r

n
(
xr

n

(s)
)∣∣ ds ≤

ˆ τ+T3

τ

(∣∣f
(
xϕ,f (s)

)∣∣ +
∣∣f rn

(
xr

n

(s)
)∣∣) ds

< T3 (M +K) rn <
M +K

K − 2µ
(2ε+ η) rn.(3.9)

Set r0, ε0, η0 as in the definition of N (r, ε, η) with r0 > −x1 (1) and M/r0 < δ/2.

If necessary, decrease ε0 > 0 and η0 > 0 so that (3.2) holds for r0, ε0, η0, and

(ε0 + η0) + η0 +
2M

K − µ
(ε0 + η0) + η0 +

M +K

K − 2µ
(2ε0 + η0) <

δ

2
.

Then summing up the estimates (3.3), (3.4) and (3.6)-(3.9), we conclude that
∣∣xϕ,f (t) − xr

n

(t)
∣∣ < δrn on [0, 2]

for all r > r0, ε ∈ (0, ε0), η ∈ (0, η0), n ≥ 0, ϕ ∈ An (r, ε) and f ∈ N (r, ε, η). �
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Fix any w ∈ (τ, z − 1). Then w + 1 ∈ (τ + 1, z), and xr
n

(t) < −rn on [w,w + 1]

for all n ≥ 0 by Proposition 2.2 (iii).

In the subsequent result, we apply Proposition 3.1 and confirm that with an appro-

priate choice of parameters r, ε and η, we have xϕ,f (t) < −rn (1 + ε) on [w,w + 1] for

all f ∈ N (r, ε, η), ϕ ∈ An (r, ε) and n ≥ 0. The same proposition and xr
n

(2) > −rn
guarantee xϕ,f (2) > −rn. Hence there exists q ∈ (w + 1, 2) with xϕ,fq ∈ −An (r, ε).

Before reading the proof, recall that xr
n

(t) = rnx1 (t), t ∈ R, and

K

µ
>

∣∣x1 (1)
∣∣ ≥ x1 (2) > −1 > x1 (1) .

Proposition 3.2. There exist r1 > 1, ε1 > 0 and η1 > 0 so that for each r > r1,

ε ∈ (0, ε1), η ∈ (0, η1), n ≥ 0, f ∈ N (r, ε, η) and ϕ ∈ An (r, ε), the solution xϕ,f :

[−1,∞) → R of Eq. (1.1) has the following properties.

(i) −rn+1 < xϕ,f (t) < rn+1 for t ∈ [0, 2].

(ii) xϕ,f (t) < −rn (1 + ε) for t ∈ [w,w + 1], and xϕ,f (2) > −rn.
(iii) ẋϕ,f (t) < 0 for t ∈ (0, 1), and ẋϕ,f (t) > 0 for t ∈ (w + 1, 2].

(iv) If q = q (ϕ, f) ∈ (1 + w, 2) is set so that xϕ,f (q) = −rn (1 + ε), then q is unique,

and xϕ,fq ∈ −An (r, ε) .

(v) If in addition ψ ∈ An (r, ε), then for the semiflow (1.3) the equality F (1 + w, ψ) =

F (1 + w, ϕ) implies q (ψ, f) = q (ϕ, f).

Proof. Assume

0 < δ < min

{
1

2

(
K

µ
+ x1 (1)

)
,−1

2

(
max

t∈[w,w+1]
x1 (t) + 1

)
, 1 + x1 (2)

}
.

Note that all expressions on the right hand side are positive.

Choose r1 = max {K/µ, r0 (δ)},

ε1 = min

{
ε0 (δ) ,−1

2

(
max

t∈[w,w+1]
x1 (t) + 1

)}
, η1 = min

{
η0 (δ) ,

1

2

(
K + µx1 (1)

)}
,

where r0 (δ), ε0 (δ) and η0 (δ) are given by Proposition 3.1. Consider r > r1, ε ∈
(0, ε1), η ∈ (0, η1), n ≥ 0, f ∈ N (r, ε, η) and ϕ ∈ An (r, ε).

(i) For t ∈ [0, 2], it follows from Proposition 2.2 (vi) and Proposition 3.1, that
∣∣xϕ,f (t)

∣∣ < xr
n

(t) + rnδ ≤ rn
(∣∣x1 (1)

∣∣ + δ
)
.
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As we chose δ to be smaller than K/µ+x1 (1) ≤ r+x1 (1), we deduce that
∣∣xϕ,f (t)

∣∣ <
rn+1.

(ii) For t ∈ [w,w + 1] we get

xϕ,f (t) < xr
n

(t) + rnδ ≤ rn
(

max
t∈[w,w+1]

x1 (t) + δ

)
< −rn (1 + ε)

because δ + ε < −maxt∈[w,w+1] x
1 (t) − 1. For t = 2 we obtain that

xϕ,f (2) > xr
n

(2) − rnδ ≥ rn
(
x1 (2) − δ

)
> −rn,

as δ < 1 + x1 (2).

(iii) For t ∈ (0, 1),

ẋϕ,f (t) = −µxϕ,f (t) − f (ϕ (t− 1))

< −µ
(
xr

n

(t) − rnδ
)
− rn (K − η)

≤ rn
(
−µx1 (1) + µδ −K + η

)
< 0,

as the parameters are set so that

δ +
η

µ
<
K

µ
+ x1 (1) .

For t ∈ (w + 1, 2], we have t− 1 ∈ (w, 1]. Thus −rn+1 < xϕ,f (t− 1) < −rn (1 + ε)

by assertions (i) and (ii) of this proposition, and

ẋϕ,f (t) = −µxϕ,f (t) − f
(
xϕ,f (t− 1)

)

> −µ
(
xr

n

(t) + rnδ
)

+ rn (K − η)

≥ rn
(
−µx1 (2) − µδ +K − η

)
> 0,

since

δ +
η

µ
<
K

µ
+ x1 (1) <

K

µ
− x1 (2) .

Assertion (iv) now follows immediately.

(v) If ψ ∈ An (r, ε) and F (1 + w, ψ) = F (1 + w, ϕ), then xψ,f (t) = xϕ,f (t) for

t ≥ 1 + w. As q (ψ, f) > 1 + w and q (ϕ, f) > 1 + w, q (ψ, f) = q (ϕ, f) follows. �
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4. Lipschitz continuous return maps

Recall that µ > 0, and (2.1) holds in this paper. In addition, from now on we

assume that K > µeµ. M > K is fixed as before.

Set r > r1, ε ∈ (0, ε1) and η ∈ (0, η1) in this section, where r1, ε1 and η1 are specified

by Proposition 3.2. Following Walther [8] and based on the results of Proposition

3.2, we introduce the Lipschitz continuous return map

Rn
f : An (r, ε) ∋ ϕ 7→ −F (q (ϕ, f) , ϕ) ∈ An (r, ε)

for each f ∈ N (r, ε, η) and n ≥ 0. As it is discussed in [8], the fixed point of Rn
f ,

n ≥ 0, is the initial segment of a periodic solution pn of Eq. (1.1) with minimal period

2q and special symmetry pn (t) = −pn (t+ q), t ∈ R. As pn has at most 1 zero on

[0, q] and q > 1, the special symmetry property implies that pn is an SOP solution.

In order to verify the Lipschitz continuity of Rn
f , we define the map

snf : F (1 + w,An (r, ε)) ∋ ψ 7→ q (ϕ, f)−1−w ∈ (0, 1 − w) , where ψ = F (1 + w, ϕ) ,

for each n ≥ 0 and f ∈ N (r, ε, η). Also, set

F n
1 : An (r, ε) ∋ ϕ 7→ F (1, ϕ) ∈ C,

F n
w : F (1, An (r, ε)) ∋ ϕ 7→ F (w, ϕ) ∈ C,

Snf : F (1 + w,An (r, ε)) ∋ ϕ 7→ −F
(
snf (ϕ) , ϕ

)
∈ An (r, ε)

for all f ∈ N (r, ε, η) and n ≥ 0. Proposition 3.2 implies that snf and Snf are well-

defined. Then Rn
f is the composite of F n

1 , followed by F n
w , then by Snf .

We give Lipschitz constants for the maps above. As next result we state Proposition

3.1 of [8] without proof.

Proposition 4.1. Set r > r1, ε ∈ (0, ε1) and η ∈ (0, η1). Assume n ≥ 0, and

f ∈ N (r, ε, η) is locally Lipschitz continuous. If Ln = Ln (f) and Ln∗ = Ln∗ (f) are

Lipschitz constants for the restrictions f |[−rn+1,rn+1] and f |[rn(1+ε),rn+1], respectively,

then Ln∗ is a Lipschitz constant for F n
1 , and 1 + wLn is a Lipschitz constant for F n

w .

The following result is analogous to Proposition 3.2 in [8], and the proof needs only

slight modifications.
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Proposition 4.2. Let r > r1, ε ∈ (0, ε1), η ∈ (0, η1) and n ≥ 0. Assume in addition

that

K − η > (1 + ε)µeµ.

If f |[rn(1+ε),rn+1] is Lipschitz continuous with Lipschitz constant Ln∗ = Ln∗ (f), then snf
is Lipschitz continuous with Lipschitz constant

L
(
snf

)
=

1 + eµLn∗
rn [K − η − µeµ (1 + ε)]

,

and Snf is Lipschitz continuous with Lipschitz constant

1 + eµLn∗
[K − η − µeµ (1 + ε)]

(µr +M) + 1 + Ln∗ .

Proof. Choose ϕ, ϕ̄ ∈ F (1 + w,An (r, ε)). With s = snf (ϕ) ∈ (0, 1 − w) ⊂ (0, 1) and

s̄ = snf (ϕ̄) ∈ (0, 1 − w) ⊂ (0, 1), we have

− (1 + ε) rn = ϕ (0) e−µs −
ˆ s

0

e−µ(s−ξ)f (ϕ (ξ − 1)) dξ,

and

− (1 + ε) rn = ϕ̄ (0) e−µs̄ −
ˆ s̄

0

e−µ(s̄−ξ)f (ϕ̄ (ξ − 1)) dξ.

Hence

(1 + ε) rn |eµs − eµs̄| ≥
∣∣∣∣
ˆ s

0

eµξf (ϕ (ξ − 1)) dξ −
ˆ s̄

0

eµξf (ϕ (ξ − 1)) dξ

∣∣∣∣
− |ϕ (0) − ϕ̄ (0)|

−
∣∣∣∣
ˆ s̄

0

eµξ {f (ϕ (ξ − 1)) − f (ϕ̄ (ξ − 1))}dξ

∣∣∣∣

≥
∣∣∣∣
ˆ s

s̄

eµξf (ϕ (ξ − 1)) dξ

∣∣∣∣
− ‖ϕ− ϕ̄‖

−
∣∣∣∣
ˆ s̄

0

eµξ {f (ϕ (ξ − 1)) − f (ϕ̄ (ξ − 1))}dξ

∣∣∣∣ .

Since −rn+1 < ϕ (t) < −rn (1 + ε) and −rn+1 < ϕ̄ (t) < −rn (1 + ε) for each t ∈
[−1, 0], we conclude that

(1 + ε) rn |eµs − eµs̄| ≥ |s− s̄| rn (K − η) − ‖ϕ− ϕ̄‖ − eµLn∗ ‖ϕ− ϕ̄‖ .
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On the other hand, |eµs − eµs̄| ≤ µeµ |s− s̄|. Thus

|s− s̄| ≤ 1 + eµLn∗
rn [K − η − µeµ (1 + ε)]

‖ϕ− ϕ̄‖ ,

and the proof of the first assertion is complete.

If ϕ = F (1 + w, ψ) with ψ ∈ An (r, ε), then for t ∈ [−1, 0],

F (s̄, ϕ) (t) − F (s, ϕ) (t) = xψ1+w+s̄ (t) − xψ1+w+s (t)

=

ˆ 1+w+s̄

1+w+s

ẋψ (ξ) dξ

=

ˆ 1+w+s̄

1+w+s

{
−µxψ (ξ) − f

(
xψ (ξ − 1)

)}
dξ.

So Proposition 3.2 (i) and (3.1) imply

|F (s̄, ϕ) (t) − F (s, ϕ) (t)| ≤ |s− s̄| (µr +M) rn ≤ L
(
snf

)
(µr +M) rn ‖ϕ− ϕ̄‖

for t ∈ [−1, 0]. Also, it is easy to see using s̄ ∈ (0, 1), −rn+1 < ϕ (t) , ϕ̄ (t) <

−rn (1 + ǫ) , t ∈ [−1, 0], the oddness of f and the variation-of-constants formula,

that

‖F (s̄, ϕ) − F (s̄, ϕ̄)‖ ≤ (1 + Ln∗ ) ‖ϕ− ϕ̄‖ .
Hence

‖S (ϕ) − S (ϕ̄)‖ ≤ ‖F (s, ϕ) − F (s̄, ϕ)‖ + ‖F (s̄, ϕ) − F (s̄, ϕ̄)‖

≤
{

1 + eµLn∗
K − η − µeµ (1 + ε)

(µr +M) + 1 + Ln∗

}
‖ϕ− ϕ̄‖ ,

and the proof is complete. �

It follows that under the assumptions of the last two propositions, Rn
f is Lipschitz

continuous, and

L
(
Rn
f

)
= Ln∗ (1 + wLn)

(
1 + eµLn∗

K − η − µeµ (1 + ε)
(µr +M) + 1 + Ln∗

)

is a Lipschitz constant for Rn
f . Clearly, if L

(
Rn
f

)
< 1, then Rn

f is a strict contraction

with a unique fixed point in An (r, ε), and Eq. (1.1) has an SOP solution with initial

function in An (r, ε).
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Proof of Theorem 1.1. Choose r > r1, ε ∈ (0, ε1) and η ∈ (0, η1) with

K − η > (1 + ε)µeµ.

We give a nonlinearity f ∈ N (r, ε, η) so that Rn
f is a contraction for each n ≥ 0. The

function f is defined recursively on [−rn, rn] for n ≥ 1.

First step. Let f : [−1 − ε, 1 + ε] → R be a Lipschitz continuous odd function

with |f (x)| < η for x ∈ [0, 1] , |f (x)| < M for all x ∈ (1, 1 + ε) and f (1 + ε) ∈
(K − η,K + η). Let L0

∗∗ be a Lipschitz constant for f |[−1−ε,1+ε]. Extend the definition

of f to domain [−r, r] so that f remains odd, |f (x) −K| < η for x ∈ [1 + ε, r], and

f |[1+ε,r] is Lipschitz continuous with Lipschitz constant L0
∗ satisfying

L0
∗

(
1 + wmax

{
L0
∗, L

0
∗∗

})(
1 + eµL0

∗

K − η − µeµ (1 + ε)
(µr +M) + 1 + L0

∗

)
< 1.

This is possible by choosing L0
∗ sufficiently small. Then L0 = max {L0

∗, L
0
∗∗} is a

Lipschitz constant for f |[−r,r], and R0
f is a strict contraction.

Recursive step. If f is defined for [−rn, rn] with some n ≥ 1, extend the definition

of f to the domain [−rn+, rn+1] so that f remains odd, Lipschitz continuous,
∣∣∣∣
f (x)

rn

∣∣∣∣ < M for all x ∈ (rn, rn (1 + ε)) ,

∣∣∣∣
f (x)

rn
−K

∣∣∣∣ < η for all x ∈
[
rn (1 + ε) , rn+1

]
,

and if Ln∗∗ is a Lipschitz constant for f |(rn,rn(1+ε)), then f |[rn(1+ε),rn+1] has a Lipschitz

constant Ln∗ with

Ln∗

(
1 + w max

0≤k≤n

{
Lk∗, L

k
∗∗

}) (
1 + eµLn∗

K − η − µeµ (1 + ε)
(µr +M) + 1 + Ln∗

)
< 1.

Then Ln = max0≤k≤n

{
Lk∗, L

k
∗∗

}
is a Lipschitz constant for f |[−rn+1,rn+1], and Rn

f is a

strict contraction.

Thereby we obtain a locally Lipschitz continuous odd function f for which Rn
f is a

strict contraction for all n ≥ 0. For such f , Eq. (1.1) has an infinite sequence of SOP

solutions with initial segments in An (r, ε), n ≥ 0. It is clear that one may set f in

this construction so that xf (x) > 0 holds for all x ∈ R \ {0}.
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It follows from Section 4 in [8], that if f is continuously differentiable, then the

corresponding periodic orbits are stable and hyperbolic. �

5. A possible modification

As before, set K > 0 satisfying condition (2.1) and choose M > K. For r > 1,

ε ∈ (0, r − 1) and η ∈ (0,M −K), let Ñ (r, ε, η) be the set of all continuous odd

functions f : R → R with
∣∣∣∣
f (x)

rn

∣∣∣∣ < M for all x ∈ (rn, rn (1 + ε)) and n ∈ Z

and with ∣∣∣∣
f (x)

rn
−K

∣∣∣∣ < η for all x ∈
[
rn (1 + ε) , rn+1

]
and n ∈ Z.

Then minor modifications of our results in Section 3 and in Section 4 yield the

subsequent theorem.

Theorem 5.1. Assume µ > 0. There exists a locally Lipschitz continuous odd non-

linear map f ∈ Ñ (r, ε, η) satisfying xf (x) > 0 for all x ∈ R\{0}, for which Eq. (1.1)

admits a two-sided infinite sequence of SOP solutions (pn)∞
−∞

with

lim
n→−∞

max
x∈R

|pn (x)| = 0, lim
n→∞

max
x∈R

|pn (x)| = ∞,

and with pn (R) ( pn+1 (R) for n ∈ Z.

It is easy to see that the elements of Ñ (r, ε, η) are not differentiable at x = 0.

Hence the hyperbolicity and stability of the periodic orbits given by the theorem

does not follow directly from paper [8] of Walther. Still we conjecture that these

periodic orbits are hyperbolic and stable.
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