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Abstract

Our main objective is to consider a concept of nonuniform behavior

and obtain appropriate versions of the well-known stability due to

R. Datko and L. Barbashin. This concept has been considered in

the works of L. Barreira and C. Valls. Our approach is based on

the extension of techniques for exponential stability to the case of

polynomial stability.
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1 Introduction

In the theory of differential equations both in finite-dimensional and
infinite-dimensional spaces, there is a very extensive literature concerning
uniform exponential stability.

For some of the most relevant early contributions in this area we refer to
the books of J.L.Massera and J.J.Schäffer [9] and by J. Daletski and M.G.
Krein [7].

In their notable contribution [2], L. Barreira and C. Valls obtain results in
the case of a notion of nonuniform exponential dichotomy, which is motivated
by ergodic theory.

A principal motivation for weakening the assumption of uniform expo-
nential behavior is that from the point of view of ergodic theory, almost all
linear variational equations in a finite-dimensional space admit a nonuniform
exponential dichotomy.

In this paper we consider a concept of nonuniform stability for evolution
operators in Banach spaces. This concept has been considered in the works
[2] and [3] due to L. Barreira and C. Valls. This causes that the stability
results discussed in the paper hold for a much larger class of differential
equations than in the classical theory of uniform exponential stability.

The obtained results are generalizations of some well-known theorems in
the case of uniform exponential stability given in [1], [5], [7], [8], [10], [13],
[14] and in the case of nonuniform exponential stability given in [4], [6],

EJQTDE, 2011 No. 33, p. 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42933954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


[11], [12] and [15]. Our approach is based on the extension of techniques for
exponential stability to the case of polynomial stability.

2 Evolution operators

In this section we recall some definitions which will be used in what
follows.

Let X be a real or complex Banach space and let I be the identity ope-
rator on X. The norm on X and on B(X) the Banach algebra of all bounded
linear operators on X , will be denoted by ‖·‖.

Let
∆ =

{

(t, s) ∈ R2
+ : t ≥ s

}

T = {(t, s, t0) ∈ R3
+ : t ≥ s ≥ t0}

We recall that an operator-valued function Φ : ∆ → B(X) is called an evo-
lution operator on the Banach spaces X iff:

e1)Φ (t, t) = I for every t ≥ 0;

e2)Φ (t, s) Φ (s, t0) = Φ (t, t0) for all (t, s)and (s, t0) ∈ ∆.

Remark 2.1 In the examples considered in this paper we consider evolution
operators on X defined by

Φ : ∆ → B(X), Φ(t, s)x =
u(s)

u(t)
x

where u : R+ → R
∗

+ = (0,∞).

An evolution operator Φ : ∆ → B(X) with the property
e3) there exists a nondecreasing function ϕ : R+ → [1,∞) such that:

‖Φ(t, s)‖ ≤ ϕ(t − s) for all (t, s) ∈ ∆

then Φ is called the evolution operator with uniform growth.

The evolution operator Φ : ∆ → B(X) is said to be strongly measurable,
iff
e4) for all (s, x) ∈ R+ × X the mapping defined by t 7→ ‖Φ (t, s) x‖ is mea-
surable on [s,∞).

An evolution operator Φ is called ∗-strongly measurable, iff
e5) for all (t, x∗) ∈ R+ × X∗ the mapping defined by s 7→ ‖Φ(t, s)∗x∗‖ is
measurable on [0, t]
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3 Polynomial stability

Let Φ : ∆ → B(X) be an evolution operator on Banach space X.

Definition 3.1 The evolution operator Φ is called:
(i) uniformly polynomially stable (and denoted as u.p.s.) iff there are N ≥ 1
and α > 0 such that

tα ‖Φ(t, s)x‖ ≤ Nsα‖x‖
for all (t, s, x) ∈ ∆ × X;
(ii) (nonuniformly) polynomially stable (and denoted as p.s.) iff there exist
α > 0 and a nondecreasing function N : R+ → [1,∞) such that

tα ‖Φ(t, s)x‖ ≤ N(s)‖x‖
for every (t, s, x) ∈ ∆ × X;
(iii) polynomially stable in the sense of Barreira and Valls (and denoted as
B.V.p.s.) iff there are N ≥ 1, α > 0 and β ≥ α such that:

tα ‖Φ(t, s)x‖ ≤ Nsβ‖x‖
for all (t, s, x) ∈ ∆ × X.

Remark 3.1 The evolution operator Φ is polynomially stable in the sense
of Barreira and Valls if and only if there are N ≥ 1, α > 0 and β ≥ 0 such
that

tα‖Φ(t, s)x‖ ≤ Ns(α+β) ‖x‖
for all (t, s, x) ∈ ∆ × X.

Remark 3.2 The evolution operator Φ is :
(i) uniformly polynomially stable iff there are N ≥ 1 and α > 0 such that

tα ‖Φ(t, t0)x0‖ ≤ Nsα‖Φ(s, t0)x0‖
for all (t, s, t0, x0) ∈ T × X;
(ii) (nonuniformly) polynomially stable iff there exist α > 0 and a nondecrea-
sing function N : R+ → [1,∞) such that

tα ‖Φ(t, t0)x0‖ ≤ N(s)‖Φ(s, t0)x0‖
for every (t, s, t0, x0) ∈ T × X;
(iii) polynomially stable in the sense of Barreira and Valls iff there are N ≥ 1,
α > 0 and β ≥ α such that:

tα ‖Φ(t, t0)x0‖ ≤ Nsβ‖Φ(s, t0)x0‖
for all (t, s, t0, x) ∈ T × X.
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Remark 3.3 It is obvious that

u.p.s. ⇒ B.V.p.s. ⇒ p.s.

The converse implications between these stability concepts are not valid.
This is proved in the following two examples.

The following example shows an evolution operator that is B.V.p.s which
is not u.p.s.

Example 3.1 Let u : R+ → R
∗

+ be the function defined by

u(t) = (t + 2)5−sinln(t+2)

. Then Φ : ∆ → B(X), Φ(t, s)x = u(s)
u(t)

x is an evolution operator on X with:

‖Φ(t, s)x‖ ≤ (s + 2)6

(t + 2)4
‖x‖ ≤ s2(s + 2)2

t2
‖x‖ ≤ 9s4t−2 ‖x‖

for all (t, s, x) ∈ ∆ × X with s ≥ t0 = 2 and hence Φ is B.V.p.s.
If we suppose that Φ is u.p.s then there exist N ≥ 1 and α > 0 such that:

(s + 2)5(t + 2)sinln(t+2) ≤ Nt−αsα(t + 2)5(s + 2)sinln(s+2)

for all (t, s) ∈ ∆.
From here, for t = exp(2nπ + π

2
)− 2 and s = exp(2nπ − π

2
)− 2 we obtain

e4nπ ≤ Ne5π

(

e−
π

2 − 2e−2nπ

e
π

2 − 2e−2nπ

)α

which for n → ∞ yields to a contradiction.

Example 3.2 (Evolution operator which is p.s. and is not B.V.p.s.)
Let u : R+ → [1,∞) be a function with

u(n) = en2

and u
(

n + 1
n2

)

= e4

for every n ∈ N
∗. Then

Φ : ∆ → B(X), Φ(t, s)x =
su(s)

tu(t)
x

is an evolution operator on X with the property

t ‖Φ(t, s)x‖ =
su(s) ‖x‖

u(t)
≤ N(s) ‖x‖
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for all (t, s, x) ∈ ∆ × X, where N(s) = 1 + su(s). This shows that Φ is p.s.

If we suppose that Φ is B.V.p.s then there are N ≥ 1 and β ≥ α > 0 such
that

tαsu(s) ≤ Ntsβu(t)

for all (t, s) ∈ ∆.

Then for s = n and t = n + 1
n2 we obtain

(

1 +
1

n3

)α−1

≤ N
nβ−α

en2
e4

which for n → ∞ gives a contradiction and hence Φ is not B.V.p.s.

Theorem 3.1 Let Φ : ∆ → B(X) be a strongly measurable evolution ope-
rator with uniform growth. If there are D ≥ 1, γ > 0 and δ ≥ 0 such
that:

∫ t

s

(τ

s

)γ

‖Φ(τ, t0)x0‖ dτ ≤ Dsδ ‖Φ(s, t0)x0‖

for all (t, s, x) ∈ ∆×X, then Φ is polynomially stable in the sense of Barreira
and Valls.

Proof
If t ≥ s + 1 then

(

t

s

)γ

‖Φ(t, s)x‖ =

∫ t

t−1

(

t

s

)γ

‖Φ(t, s)x‖ dτ =

=

∫ t

t−1

(

t

τ

)γ
(τ

s

)γ

‖Φ(t, τ)Φ(τ, s)x‖ dτ ≤

≤ 2γϕ(1)

∫ t

s

(τ

s

)γ

‖Φ(τ, s)x‖ dτ ≤ Dϕ(1)2γsδs ‖x‖

for all x ∈ X.

If t ∈ [s, s + 1) then
(

t

s

)γ

‖Φ(t, s)x‖ = 2γ ‖Φ(t, s)x‖ ≤ 2γϕ(1) ‖x‖ ≤ Dϕ(1)2γsδ ‖x‖

for all x ∈ X.
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Finally, we obtain that

tγ ‖Φ(t, s)x‖ ≤ Ns(γ+δ) ‖x‖
for all (t, s, x) ∈ ∆ × X, where N = Dϕ(1)2γ.

Remark 3.4 Theorem 3.1 is a generalization for the case of polynomial sta-
bility in the sense of Barreira and Valls of the classic result proved by R.Datko
in Theorem 11 of [8] for the case of uniform exponential stability. The case
of exponential stability has been considered by Buse in [4].

Remark 3.5 The converse of the preceding theorem is valid in the case when
the constant α given by Definition 3.1 (iii) satisfies the condition α > 1 and
we consider 0 < γ < α − 1 and δ = β + 1.

For the case when α ∈ (0, 1) and β > 0 the converse of Theorem 3.1 is
not valid, result illustrated by

Example 3.3 The evolution operator

Φ : ∆ → B(X), Φ(t, s)x =
s + 1

t + 1
x

satifies the condition
3
√

t ‖Φ(t, s)x‖ ≤
√

s ‖x‖
for all t ≥ s ≥ t0 = 1 and all x ∈ X. Hence Φ is B.V.p.s. with α = 1

3
∈ (0, 1)

and β = 1
2
.

We observe that
∫

∞

s

τγ ‖Φ(τ, s)x‖ dτ ≥ ‖x‖ (s + 1)

∫

∞

s

dτ

τ + 1
= ∞

Some immediate characterizations of the polynomial stability in the sense
of Barreira and Valls are given by:

Proposition 3.1 Let Φ : ∆ → B(X) be an evolution operator.
The following statements are equivalent:
(i) Φ is polynomially stable in the sense of Barreira and Valls;
(ii) there are N ≥ 1 , ν > 0 and β ∈ [0, ν) such that:

tνs−ν‖Φ(t, s)x‖ ≤ Ntβ ‖x‖ (1)

for all (t, s, x) ∈ ∆ × X;
(iii) there are N ≥ 1, a, b > 0 and b ≥ a such that:

ta‖Φ(t, s)x‖ ≤ Nsb ‖x‖ (2)

for all (t, s, x) ∈ ∆ × X.
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Proof
(i) ⇒ (ii) If Φ is B.V.p.s. then there are N ≥ 1 , α > 0 and β ≥ 0 such that,
for all (t, s, x) ∈ ∆ × X, we have that:

Ntβ ‖x‖ = Ntβs−βsβ‖x‖ ≥ tβs−βtαs−α‖Φ(t, s)x‖ = tνs−ν‖Φ(t, s)x‖

where ν = α + β > β.
(ii) ⇒ (iii) We have that:

‖Φ(t, s)x‖ ≤ Nt−νsνtβ‖x‖ = Nt(β−ν)sν‖x‖ = Nt−asb‖x‖

with b = ν ≥ a = ν − β.
(iii) ⇒ (i) If we denote by c = b − a ≥ 0 then:

‖Φ(t, s)x‖ ≥ Ns(c+a)t−a‖x‖

for all (t, s, x) ∈ ∆ × X, where c ≥ 0 and a > 0. Hence Φ is B.V.p.s.

Corollary 3.1 Let Φ : ∆ → B(X) be an evolution operator. The following
statements are equivalent:
(i) Φ is polynomially stable in the sense of Barreira and Valls;
(ii) there are N ≥ 1 , ν > 0 and β ∈ [0, ν) such that:

tνs−ν‖Φ(t, t0)x0‖ ≤ Ntβ ‖Φ(s, t0)x0‖ (3)

for all (t, s, x0) ∈ ∆ × X;
(iii) there are N ≥ 1, a, b > 0 and b ≥ a such that:

ta‖Φ(t, t0)x0‖ ≤ Nsb ‖Φ(s, t0)x0‖ (4)

for all (t, s, x0) ∈ ∆ × X.

Proof. It results from Proposition 3.1 and Remark 3.2.

An integral characterization for B.V.p.s. is given by

Theorem 3.2 Let Φ : ∆ → B(X) be a ∗-strongly measurable evolution ope-
rator with uniform growth. Then Φ is polynomially stable in the sense of
Barreira and Valls if and only if there are B ≥ 1, b > 0 and δ ∈ [0, b) such
that

∫ t

0

(

t

τ

)b

‖Φ(t, τ)∗x∗‖ dτ ≤ Btδ ‖x∗‖

for all (t, x∗) ∈ R+ × X∗.
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Proof
Necessity. If Φ is exponentially stable in the sense of Barreira and Valls
there exist N ≥ 1, t1 ≥ 1, α > 0 si β ∈ [0, α) such that for all (b, x∗) ∈
(β + 1, α + 1) × X∗ we have:

∫ t

0

(

t

τ

)b

‖Φ(t, τ)∗x∗‖ dτ ≤ Ntβ
∫ t

0

(

t

τ

)(b−α)

‖x∗‖ dτ ≤ N

α − b + 1
tβ+1 ‖x∗‖ ≤

≤ Btδ ‖x∗‖
where B = 1 + N

α−b+1
and δ = β + 1.

Sufficiency.
If t ≥ s + 1 and s ≥ 0 then:

(

t

s

)b

|〈x∗, Φ(t, s)x〉| =

∫ s+1

s

(

t

s

)b

|〈Φ(t, τ)∗x∗, Φ(τ, s)x〉| dτ ≤

≤
∫ s+1

s

(

t

τ

)b
(τ

s

)b

‖Φ(t, τ)∗x∗‖ ‖Φ(τ, s)x‖ dτ ≤

≤ ϕ(1)2b

∫ s+1

s

(

t

τ

)b

‖Φ(t, τ)∗x∗‖ ‖x‖ dτ ≤

≤ ϕ(1)2b

∫ t

0

(

t

τ

)b

‖Φ(t, τ)∗x∗‖ ‖x‖ dτ ≤ Bϕ(1)2btδ ‖x‖ ‖x∗‖

for all (x, x∗) ∈ X ×X∗. Taking supremum in raport with ‖x∗‖ ≤ 1 we have:

‖Φ(t, s)x‖ ≤ Bϕ(1)2bsbtδ−b ‖x‖

Taking β = b − δ we have

‖Φ(t, s)x‖ ≤ Bϕ(1)2bsδ+βt−β ‖x‖

for all t ≥ s + 1 and all x ∈ X.
If t ∈ [s, s + 1) then

‖Φ(t, s)x‖ tβ ≤ ϕ(1)tβ ‖x‖ =

(

t

s

)β

sβϕ(1) ‖x‖ ≤ Bϕ(1)2bsδ+β ‖x‖

for all x ∈ X.
Finally, it results that:

‖Φ(t, s)x‖ ≤ Nt−βsβ+δ ‖x‖

for all (t, s, x) ∈ ∆ × X, where N = Bϕ(1)2b + 1, b > 0 and δ ∈ [0, b).
In conclusion, Φ is B.V.p.s.
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Remark 3.6 Theorem 3.2 is a generalization for the case of polynomial sta-
bility in the sense Barreira-Valls of a classic result due to Barbashin [1](see
also [5] and [13]) for uniform exponential stability. The case of exponential
stability has been considered by Buse in [6].
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