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Abstract

In this paper, we study with a periodic porous medium equation with nonlinear
convection terms and weakly nonlinear sources under Dirichlet boundary conditions.
Based on the theory of Leray-Shauder fixed point theorem, we establish the existence
of periodic solutions.
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1 Introduction

In this paper, we consider the following periodic porous medium equation with nonlinear
convection terms and weakly nonlinear sources

∂u

∂t
− ∆(|u|m−1u) + b(u) · ∇u = B(x, t, u) + h(x, t), (x, t) ∈ Qω, (1.1)

u(x, t) = 0, (x, t) ∈ ∂Ω × [0, ω], (1.2)

u(x, 0) = u(x, ω), x ∈ Ω, (1.3)

where m > 1, Ω is a bounded domain in R
N with smooth boundary ∂Ω, Qω = Ω× (0, ω)

and we assume that
(A1) b(u) = (b1(u), b2(u), . . . , bN(u)) is a R

N -valued function on R with bi(u) ∈ C(R)∩
C(R − {0}), and there exist β, k ≥ 0 such that |b(u)| ≤ k|u|β.

(A2) B(x, t, u) is Hölder continuous in Ω × R × R, periodic in t with period ω and
satisfies B(x, t, u)u ≤ b0|u|

α+1 with constants b0 ≥ 0 and 0 ≤ α < m.
(A3) h(x, t) ∈ Cω(Qω) ∩ L∞(0, ω; W 1,∞

0 (Ω)), h(x, t) > 0 for Ω × R, where Cω(Qω)
denotes the set of functions which are continuous in Ω × R and ω-periodic with respect
to t.

In recent years, periodic problems for degenerate parabolic equations have been the
subject of extensive study, see [2, 5, 7, 9, 11, 12, 13] and references therein. Among the
earliest works of this aspect, we refer to Nakao [9], in which one can find the related result
for the special case of the equation (1.1), that is

∂u

∂t
− ∆β(u) = B(x, t, u) + h(x, t),

with Dirichlet boundary value conditions, where B, h are periodic in t with period ω > 0,
β(u) satisfies β ′(u) > 0 except for u = 0 and β(u) is fulfilled by |u|m−1u if m > 1.
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Under the assumption that B(x, t, u)u ≤ b0|u|, Nakao established the existence of periodic
solutions by Leray-Shauder fixed point theorem. In [12], Wang et al. considered the
following porous medium equation with weakly nonlinear sources

∂u

∂t
− ∆(|u|m−1u) = B(x, t, u) + h(x, t).

By Moser’s technique and the Leray-Schauder fixed point theorem [6, Th2.1, pp.140], the
authors established the existence of periodic solutions when the assumption (A2) holds .

The work of this paper is an extension of [9, 12], that is, we consider the porous
medium equation (1.1) with weakly nonlinear sources and nonlinear convection terms.
The convection term b(u) · ∇u describes an effect of convection with a velocity field b(u).
Our aim is to establish the existence of periodic solutions of the equation (1.1) under
Dirichlet boundary value conditions.

This paper is organized as follows: In Section 2, we state some necessary preliminaries
including the definition of the generalized solution, some useful lemmas and the statement
of the main results. In Section 3, we show the proof of the main results of this paper.

2 Preliminaries

Due to the degeneracy of the equation considered, the problem (1.1)–(1.3) admits no
classical solutions in general, so we consider generalized solutions in the following sense.

Definition 2.1. A function u is said to be a generalized solution of the problem (1.1)–
(1.3), if u ∈ L2(0, ω; H1

0(Ω)) ∩ Cω(Qω) and for any ϕ ∈ C1(Qω) with ϕ(x, 0) = ϕ(x, ω)
and ϕ|∂Ω×(0,ω) = 0, we have

∫∫

Qω

(

−u
∂ϕ

∂t
+ ∇(|u|m−1u)∇ϕ − β(u) · ∇ϕ − B(x, t, u)ϕ − h(x, t)ϕ

)

dxdt = 0, (2.1)

where β(u) = (β1(u), β2(u), · · · , βN(u)) and βi(u) =
∫ u

0
bi(s)ds, i = 1, · · · , N .

For convenience, we let ‖·‖p and ‖·‖m,p denote Lp(Ω) and W m,p(Ω) norms, respectively.
In the following, we introduce some useful lemmas which play an important role in the
proof of the main results of this paper.

Lemma 2.1. [3] (Gagliardo-Nirenberg) Let β ≥ 0, N > p ≥ 1, β + 1 ≤ q, and 1 ≤ r ≤
q ≤ (β + 1)Np/(N − p), then for u such that |u|βu ∈ W 1,p(Ω),

‖u‖q ≤ C
1

β+1 ‖u‖1−θ
r

∥

∥|u|βu
∥

∥

θ/(β+1)

1,p
, (2.2)

with θ = (β +1)(r−1 − q−1)/{N−1 −p−1 +(β +1)r−1}, where C is a constant independent
of q, r, β and θ.

Lemma 2.2. [10] Let y(t) ∈ C1(R1) be a nonnegative ω periodic function satisfying the
differential inequality

y′(t) + Ayα+1(t) ≤ By(t) + C, t ∈ R,

with some α, A > 0, B ≥ 0 and C ≥ 0, then

y(t) ≤ max{1, (A−1(B + C))
1
α}.
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Our results will be proved by means of parabolic generalization, that is we consider
the following regularized problem

∂uε

∂t
− ∆(|uε|

m−1uε + εuε) + b(uε) · ∇uε = B(x, t, uε) + h(x, t), (x, t) ∈ Qω, (2.3)

uε(x, t) = 0, (x, t) ∈ ∂Ω × [0, ω], (2.4)

uε(x, 0) = uε(x, ω), x ∈ Ω, (2.5)

where ε is some positive constant. We will apply the Leray-Schauder fixed point theorem
to establish the existence of the solution uε of the problem (2.3)–(2.5). The desired
solution of the problem (1.1)–(1.3) will be obtained as a limit point of uε.

Our main results is the following theorem.

Theorem 2.1. If (A1), (A2) and (A3) hold, then the problem (1.1)–(1.3) admits at least
one periodic solution u.

3 Proof of the Main Results

First, we establish the following a priori estimate.

Lemma 3.1. Let uε be a solution of

∂uε

∂t
− ∆(|uε|

m−1uε + εuε) + b(uε) · ∇uε = σB(x, t, uε) + σh(x, t), (x, t) ∈ Qω, (3.1)

uε(x, t) = 0, (x, t) ∈ ∂Ω × [0, ω], (3.2)

uε(x, 0) = uε(x, ω), x ∈ Ω, (3.3)

with σ ∈ [0, 1], then
‖uε(t)‖∞ < R, (3.4)

where uε(t) = uε(·, t) and R is a positive constant independent of ε and σ.

Proof. Suppose uε is a solution of the problem (3.1)–(3.3). Multiplying the equation (3.1)
by |uε|

puε (p ≥ 0) and integrating the resulting relation over Ω, noticing that
∫

Ω

b(uε) · ∇uε|uε|
puεdx

=

∫

Ω

N
∑

i=1

bi(uε)|uε|
puε

∂uε

∂xi
dx =

N
∑

i=1

∫

Ω

(
∫ uε

0

bi(s)|s|
psds

)

xi

dx

=
N

∑

i=1

∫

∂Ω

(
∫ uε

0

bi(s)|s|
psds

)

cos(n, xi)dx = 0,

where n is the outer normal to ∂Ω, we have

1

p + 2

d

dt

∫

Ω

|uε(t)|
p+2dx +

∫

Ω

∆(|uε(t)|
m−1uε(t) + εuε(t))|uε(t)|

puε(t)dx

≤b0

∫

Ω

|uε(t)|
p+α+1dx +

∫

Ω

|uε(t)|
puε(t)hdx.

(3.5)

Notice that the second term on the left hand can be written by
∫

Ω

∆
[

|uε(t)|
m−1uε(t) + εuε(t)

]

|uε(t)|
puε(t)dx

EJQTDE, 2011 No. 42, p. 3



=

∫

Ω

∇
[

|uε(t)|
m−1uε(t)

]

· ∇ [|uε(t)|
puε(t)] + ε∇uε(t) · ∇ [|uε(t)|

puε(t)] dx

=

∫

Ω

[

m|uε(t)|
m−1∇uε(t)

]

· [(p + 1)|uε(t)|
p∇uε(t)] dx + ε(p + 1)|uε(t)|

p|∇uε(t)|
2dx

≥m(p + 1)

∫

Ω

|uε(t)|
p+m−1|∇uε(t)|

2dx

=
4m(p + 1)

(p + m + 1)2

∫

Ω

∣

∣

∣
∇

[

|uε(t)|
m+p−1

2 uε(t)
]
∣

∣

∣

2

dx,

and
∫

Ω

|uε(t)|
puε(t)hdx ≤

(
∫

Ω

|uε(t)|
p+2dx

)
p+1
p+2

(
∫

Ω

hp+2dx

)
1

p+2

,

from (3.5) we have

1

p + 2

d

dt
‖uε(t)‖

p+2
p+2 +

4m(p + 1)

(p + m + 1)2
‖∇(|uε(t)|

m+p−1
2 uε(t))‖

2
2

≤b0‖uε(t)‖
p+α+1
p+α+1 + ‖uε‖

p+1
p+2‖h‖p+2.

(3.6)

Then we have

d

dt
‖uε(t)‖

p+2
p+2 + C1‖∇(|uε(t)|

m+p−1
2 uε(t))‖

2
2 ≤ C2(p + 2)

(

‖uε(t)‖
p+α+1
p+α+1 + ‖uε‖

p+1
p+2

)

, (3.7)

where C1, C2 are positive constants independent of uε(t), p.
First, we consider the case of 1 ≤ α < m. If N > 2, by Hölder’s inequality, we have

∫

Ω

|uε(t)|
p+α+1dx =

∫

Ω

|uε(t)|
(p+2)(m−α)

m−1 |uε(t)|
(α−1)(p+m+1)

m−1 dx

≤

(
∫

Ω

|uε(t)|
(p+2)(m−α)

m−1
·

m−1
m−α dx

)
m−α
m−1

(
∫

Ω

|uε(t)|
(α−1)(p+m+1)

m−1
·
m−1
α−1 dx

)
α−1
m−1

≤

(
∫

Ω

|uε(t)|
p+2dx

)
m−α
m−1

(
∫

Ω

|uε(t)|
p+m+1dx

)
α−1
m−1

≤

(
∫

Ω

|uε(t)|
p+2dx

)
m−α
m−1

(
∫

Ω

|uε(t)|
(p+m+1)N

N−2 dx

)

(α−1)(N−2)
N(m−1)

|Ω|
2(α−1)

N(m−1)

=‖uε(t)‖
(p+2)(m−α)

m−1

p+2 ‖uε(t)‖
(α−1)(m+p+1)

m−1
q |Ω|

2(α−1)
N(m−1) ,

(3.8)

with q = N(m+p+1)
N−2

. By Sobolev’s imbeding theorem in [1, Th5.4, pp.114]

‖uε(t)‖
m+p+1
q ≤ C‖∇(|uε(t)|

m+p−1
2 uε(t))‖

2
2

and Young’s inequality, we have

‖uε(t)‖
p+α+1
p+α+1

≤C‖uε(t)‖
(p+2)(m−α)

m−1

p+2 ‖∇(|uε(t)|
m+p−1

2 uε(t))‖
2(α−1)
m−1

2

≤
2m(p + 1)

(m + p + 1)2
‖∇(|uε(t)|

m+p−1
2 |uε(t))‖

2
2 + C

[

2m(p + 1)

(m + p + 1)2

]
1−α
m−α

‖uε(t)‖
p+2
p+2.

(3.9)
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Combining (3.6) with (3.9), we have

d

dt
‖uε(t)‖

p+2
p+2 + C1‖∇(|uε(t)|

m+p−1
2 uε(t))‖

2
2

≤C2

(

(p + 2)‖uε(t)‖
p+1
p+2 + (p + 1)1+ α−1

m−α‖uε(t)‖
p+2
p+2

)

,
(3.10)

where C1, C2 are positive constants independent of u, p.
If N ≤ 2, by Hölder’s inequality, we have

∫

Ω

|uε(t)|
p+α+1dx =

∫

Ω

|uε(t)|
(p+2)(m−α)

m−1 |uε(t)|
(α−1)(p+m+1)

m−1 dx

≤

(
∫

Ω

|uε(t)|
(p+2)(m−α)

m−1
·

m−1
m−α dx

)
m−α
m−1

(
∫

Ω

|uε(t)|
(α−1)(p+m+1)

m−1
·
m−1
α−1 dx

)
α−1
m−1

=‖uε(t)‖
(p+2)(m−α)

m−1

p+2 ‖uε(t)‖
(p+m+1)(α−1)

m−1

p+m+1 .

Then also by Sobolev’s imbeding theorem for ‖uε(t)‖m+p+1, we can also get (3.9) and
(3.10).

Now we consider the case of 0 ≤ α < 1. By Hölder’s inequality and Young’s inequality,
we have

∫

Ω

|uε(t)|
p+α+1dx ≤

(
∫

Ω

|uε(t)|
p+2dx

)
p+α+1

p+2

|Ω|
1−α
p+2

≤max{1, |Ω|
1
2}‖uε(t)‖

p+α+1
p+2

=max{1, |Ω|
1
2}‖uε(t)‖

(p+2)α
p+2 ‖uε(t)‖

(p+1)(1−α)
p+2

≤‖uε(t)‖
p+2
p+2 + C‖uε(t)‖

p+1
p+2.

(3.11)

Combining (3.11) with (3.6), we can also obtain (3.10).
By Young’s inequality, from (3.10) that we have

d

dt
‖uε(t)‖

p+2
p+2 + C1‖∇(|uε(t)|

m+p−1
2 uε(t))‖

2
2 ≤ C2((p + 1)σ‖uε(t)‖

p+2
p+2 + 1), (3.12)

where C1, C2 are various positive constants independent of p.
Set

k1 = m + 1, ki = 2ki−1, αi =
m + (1 − θi)ki − 1

θi
> 0, θi =

N(m + ki − 1)

2ki + Nki + 2N(m − 1)
.

By Gagliardo-Nirenberg inequality, we have

‖uε(t)‖ki
≤ C‖uε(t)‖

1−θi

ki−1
‖∇(|uε(t)|

m+ki−3

2 uε(t))‖
2θi

m+ki−1

2 . (3.13)

Set p + 2 = ki in (3.12), by (3.13) we have

d

dt
‖uε(t)‖

ki

ki
+ C1‖uε(t)‖

(θi−1)(m+ki−1)

θi

ki−1
‖uε(t)‖

m+ki−1

θi

ki
≤ C2((p + 1)σ‖uε(t)‖

ki

ki
+ 1),

that is

d

dt
‖uε(t)‖ki

+ C1C
−

m+ki−1

θi k−1
i ‖uε(t)‖

(θi−1)(m+ki−1)
θi

ki−1
‖uε(t)‖

1+αi

ki
≤ C((p + 1)σ‖uε(t)‖ki

+ 1).
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Let χi = sup
t
‖uε(t)‖ki

, by Lemma 2.2, we obtain

χi ≤ max

{

1,

(

Cχ
(1−θi)(m+ki−1)

θi

i−1

)

1
α i

= B
1
α i

i

}

.

We set without loss of generality that Bi > 1, which implies χi ≤ B
1/αi

i . It is easy to
verify that {αi} is bounded (see [9]), and

sup
t
‖uε(t)‖∞ ≤ lim

i→∞

χi ≤ C < ∞.

The proof is completed.

Now, we show the proof of the main results.
Proof of Theorem 2.1 First, we introduce a map by considering the following prob-

lem

∂uε

∂t
− ∆(|u|m−1u + εuε) + b(uε) · ∇uε = g(x, t), (x, t) ∈ Qω, (3.14)

uε(x, t) = 0, (x, t) ∈ ∂Ω × [0, ω], (3.15)

uε(x, 0) = uε(x, ω), x ∈ Ω, (3.16)

where g ∈ Cω(Qω). With a similar method of [9], we conclude that for any g ∈ Cω(Qω), the
problem (3.14)–(3.16) admits a unique solution uε ∈ L∞(0, ω; H1

0(Ω)) and ∂uε

∂t
∈ L1(Qω).

Define a map T : Cω(Qω) → Cω(Qω) by uε = Tg. Then we can infer that the map
uε = Tg is compact and continuous.

In fact, by [4] and the periodicity of uε, we have

|uε(x1, t1) − uε(x2, t2)| ≤ γ(|x1 − x2| + |t1 − t2|
1/2)β,

for every pair of points (x1, t1), (x2, t2) ∈ Qω, where the constants γ, β ∈ (0, 1) are in-
dependent of ε. By Ascoli-Arezela theorem, we can see that T maps any bounded set
of Cω(Qω) into a compact set of Cω(Qω). Suppose that gk → g as k → ∞ and denote
uk = Tgk, then there exist a subsequence of uk and a function uε ∈ Cω(Qω) such that

uk(x, t) → uε(x, t), uniformly in Qω.

Noticing that
∫

Ω

b(uε) · ∇uεuεdx = 0.

So we can prove that uε = Tg is compact and continuous by using the argument similar
to [13].

Let Φ(uε) = B(x, t, uε) + h(x, t), by (A2)–(A3) and the estimates above, we can see
that T (σΦ) is also the complete continuous map for σ ∈ [0, 1]. By Lemma 3.1, we can see
that any fixed point uε of the map T (σΦ) satisfies

‖uε‖∞ ≤ C,

where C is a constant independent of ε, σ. So we conclude that the generalized problem
(2.3)–(2.5) admits a periodic solution uε by Leray-Schauder fixed point theorem [6, Th2.1,
pp.140]. Then by using a similar argument as that in [8, 14], we can obtain a periodic
solution u of the problem (1.1)–(1.3) as a limit point of uε. The proof is completed.
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