On the superlinear problem involving the $p(x)$-Laplacian

Chao Ji*

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, P.R. China

Abstract

This paper deals with the superlinear elliptic problem without Ambrosetti and Rabinowitz type growth condition of the form: $$
\left\{\begin{array}{l} -\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=\lambda f(x, u) \quad \text { in } \Omega, \\ u=0 \quad \text { on } \partial \Omega, \end{array}\right.
$$ where $\Omega \subset R^{N}(N \geq 2)$ is a bounded domain with smooth boundary $\partial \Omega$, $\lambda>0$ is a parameter. Existence of nontrivial solution is established for arbitrary $\lambda>0$. Firstly, by using the mountain pass theorem a nontrivial solution is constructed for almost every parameter $\lambda>0$. Then, it is considered the continuation of the solutions. Our results are a generalization of Miyagaki and Souto.

2000 Mathematics Subject Classification: 35J60, 58E30
Keywords: Superlinear problem; $p(x)$-Laplacian; Variational method; Variable exponent spaces

1 Introduction

In this paper we consider the following nonlinear eigenvalue problem involving the $p(x)$-Laplacian:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=\lambda f(x, u) \quad \text { in } \Omega, \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

where $\Omega \subset R^{N}(N \geq 2)$ is a bounded domain with smooth boundary $\partial \Omega, 1<p(x) \in$ $C(\bar{\Omega}), f \in C(\bar{\Omega} \times R)$ is superlinear and don't satisfy Ambrosetti and Rabinowitz type growth condition, $\lambda>0$ is a parameter.

Fan and Zhang in [1] established an existence of nontrivial solution for problem (1.1), by assuming the following conditions: $\left(f_{0}\right) f: \Omega \times R \rightarrow R$ satisfies Caratheodory condition and

$$
|f(x, t)| \leq C_{1}+C_{2}|t|^{\alpha(x)-1}, \quad \forall(x, t) \in \Omega \times R,
$$

[^0]where $\alpha(x) \in C_{+}(\bar{\Omega})=\{h \mid h \in C(\bar{\Omega}), h(x)>1$ for any $x \in \bar{\Omega}\}$ and $\alpha(x)<p^{*}(x)$, $p^{*}(x)$ is the Sobolev critical exponent and
\[

p^{*}(x)= $$
\begin{cases}\frac{N p(x)}{N-p(x)}, & p(x)<N \\ \infty, & p(x) \geq N\end{cases}
$$
\]

$\left(f_{1}\right) \exists M>0, \theta>p^{+}:=\max _{\bar{\Omega}} p(x)$ such that

$$
0<\theta F(x, t) \leq t f(x, t), \quad|t| \geq M, x \in \Omega,
$$

where $F(x, t)=\int_{0}^{t} f(x, s) d s$.
$\left(f_{2}\right) f(x, t)=o\left(|t|^{p^{+}-1}\right), t \rightarrow 0$, for $x \in \Omega$ uniformly and $\alpha^{-}:=\min _{\bar{\Omega}} \alpha(x)>p^{+}$.
When $p(x) \equiv 2$, several researchers that studied problem (1.1) tried to drop above condition $\left(f_{1}\right)$ (see $\left.[2,3,4,5]\right)$, that is
$\left(f_{1}^{\prime}\right) \exists M>0, \theta>2$ such that

$$
0<\theta F(x, t) \leq t f(x, t), \quad|t| \geq M, x \in \Omega,
$$

where $F(x, t)=\int_{0}^{t} f(x, s) d s$.
$\left(f_{1}^{\prime}\right)$ is the famous Ambrosetti and Rabinowitz growth condition and $\left(f_{1}\right)$ is a generalization of $\left(f_{1}^{\prime}\right)$ to problem involving the $p(x)$-Laplacian, here we call it Ambrosetti and Rabinowitz type grow condition. For the case $p(x) \equiv p$, we may refer [6]. It's well known (see [1]) that $\left(f_{1}\right)$ is quite important not only to ensure that the Eulerlagrange functional associated to problem (1.1) has a mountain pass geometry, but also to guarantee that Palais-Smale sequence of the Euler-Lagrange functional is bounded. But this condition is very restrictive eliminating many nonlinearities. We recall that $\left(f_{1}\right)$ implies a weaker condition

$$
F(x, t) \geq c_{1}|t|^{\theta}-c_{2}, \quad c_{1}, c_{2}>0, x \in \Omega, t \in R \text { and } \theta>p^{+} .
$$

The above condition implies another much weaker condition, which is a consequence of the superlinearity of f at infinity:
(f_{3})

$$
\lim _{|t| \rightarrow \infty} \frac{F(x, t)}{|t|^{p^{+}}}=+\infty, \quad \text { uniformly a.e. } x \in \Omega .
$$

When $p(x) \equiv 2$, under conditions $\left(f_{0}\right),\left(f_{2}\right),\left(f_{3}\right)$ and the following condition: $\left(f_{4}^{\prime}\right)$ There is $t_{0}>0$ such that

$$
\frac{f(x, t)}{t} \text { is increasing in } t \geq t_{0} \text { and decreasing in } t \leq-t_{0}, \forall x \in \Omega
$$

if $f \in C(\bar{\Omega} \times R)$, Miyagaki and Souto in [3] got a nontrivial solution of problem (1.1), for all $\lambda>0$. Here we will generalize results in [3] to the variable exponent case. Because the $p(x)$-Laplacian possesses more complicated nonlinearities than Laplacian and p-laplacian, for example, it is inhomogeneous, thus our problem is the more difficult.

The following is our main result, namely,
Theorem 1.1. Under hypotheses $\left(f_{0}\right),\left(f_{2}\right),\left(f_{3}\right)$ and
$\left(f_{4}\right)$ There is $t_{0}>0$ such that

$$
\frac{f(x, t)}{t^{p^{+}-1}} \text { is increasing in } t \geq t_{0} \text { and decreasing in } t \leq-t_{0}, \forall x \in \Omega .
$$

Moreover, $f \in C(\bar{\Omega} \times R)$, then problem (1.1) has a nontrivial weak solution, for all $\lambda>0$.

Example 1.1. Function $f(x, t)=t^{\alpha(x)-1}(\alpha(x) \ln t+1)\left(F(x, t)=t^{\alpha(x)} \ln t\right)$ where $\alpha(x) \in C_{+}(\bar{\Omega})$ satisfies condition $\left(f_{4}\right)$, but it does not satisfy $\left(f_{1}\right)$ if $2 \alpha^{-}>p^{+}>\alpha^{+}$.

Remark 1.1. Actually our result still holds if we consider a weaker condition than $\left(f_{4}\right)$, namely
(f_{4}^{\prime}) There is $C_{*}>0$ such that

$$
t f(x, t)-p^{+} F(x, t) \leq s f(x, s)-p^{+} F(x, s)+C_{*}
$$

for all $0<t<s$ or $s<t<0$.
The variational problems and differential equations with nonstandard growth conditions have been a very attractive topic in recent years. We refer to $[7,8]$ for applied background, to $[9,10]$ for the variable exponent Lebesgue-Sobolev spaces and to $[1,11,12,13,14]$ for the $p(x)$-Laplacian equations and the corresponding variational problems.

The paper is divided into three sections. In Section 2 we present some preliminary knowledge on the variable exponent spaces. In Section 3, we give some preliminary lemmas and the proof of Theorem 1.1.

2 Preliminary

Throughout this paper, we always assume $p(x) \in C_{+}(\bar{\Omega})$ and $f \in C(\bar{\Omega} \times R)$. Set

$$
L^{p(x)}(\Omega)=\left\{u \mid u \text { is a measurable real-valued function : } \int_{\Omega}|u|^{p(x)} d x<\infty\right\}
$$

with the norm

$$
|u|_{L^{p(x)}(\Omega)}=|u|_{p(x)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u}{\lambda}\right|^{p(x)} d x \leq 1\right\}
$$

and $\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ becomes a Banach space, that is generalized Lebesgue space.
Proposition 2.1([1]).
(1) The space $\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ is separable, uniform convex Banach space, and its conjugate space is $L^{q(x)}(\Omega)$ where $\frac{1}{q(x)}+\frac{1}{p(x)}=1$. For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{q(x)}(\Omega)$, we have

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)|u|_{p(x)}|v|_{q(x)} .
$$

(2) If $p_{1}, p_{2} \in C_{+}(\bar{\Omega}), p_{1}(x) \leq p_{2}(x)$ for any $x \in \bar{\Omega}$, then $L^{p_{2}(x)}(\Omega) \hookrightarrow L^{p_{1}(x)}(\Omega)$ and the imbedding is continuous.

Proposition 2.2([1], [9], [10]). Set $\rho(u)=\int_{\Omega}|u(x)|^{p(x)} d x$. If $u, u_{k} \in L^{p(x)}(\Omega)$, we have
(1) For $u \neq 0, \quad|u|_{p(x)}=\lambda \Leftrightarrow \rho\left(\frac{u}{\lambda}\right)=1$.
(2) $|u|_{p(x)}<1(=1$; >1) $\Leftrightarrow \rho(u)<1(=1 ;>1)$.
(3) If $|u|_{p(x)}>1$, then $|u|_{p(x)}^{p^{-}} \leq \rho(u) \leq|u|_{p(x)}^{p^{+}}$.
(4) If $|u|_{p(x)}<1$, then $|u|_{p(x)}^{p^{+}} \leq \rho(u) \leq|u|_{p(x)}^{p^{-}}$.
(5) $\lim _{k \rightarrow \infty}\left|u_{k}\right|_{p(x)}=0 \Leftrightarrow \lim _{k \rightarrow \infty} \rho\left(u_{k}\right)=0$.
(6) $\lim _{k \rightarrow \infty}\left|u_{k}\right|_{p(x)}=\infty \Leftrightarrow \lim _{k \rightarrow \infty} \rho\left(u_{k}\right)=\infty$.

The space $W^{1, p(x)}(\Omega)$ is defined by

$$
W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega)| | \nabla u \mid \in L^{p(x)}(\Omega)\right\}
$$

and it can be equipped with the norm

$$
\|u\|=|u|_{p(x)}+|\nabla u|_{p(x)}, \quad \forall u \in W^{1, p(x)}(\Omega)
$$

We denote by $W_{0}^{1, p(x)}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p(x)}(\Omega)$. Moreover, we have Proposition 2.3([1]).
(1) $W^{1, p(x)}(\Omega)$ and $W_{0}^{1, p(x)}(\Omega)$ are separable, reflexive Banach spaces;
(2) If $q \in C_{+}(\bar{\Omega})$ and $q(x)<p^{*}(x)$ for all $x \in \bar{\Omega}$, then the imbedding from $W^{1, p(x)}(\Omega)$ to $L^{q(x)}(\Omega)$ is compact and continuous;
(3) There is constant $C>0$, such that

$$
|u|_{p(x)} \leq C|\nabla u|_{p(x)}, \quad \forall u \in W_{0}^{1, p(x)}(\Omega)
$$

By (3) of Proposition 2.3, we know that $|\nabla u|_{p(x)}$ and $\|u\|$ are equivalent norms on $W_{0}^{1, p(x)}(\Omega)$. We will use $|\nabla u|_{p(x)}$ to replace $\|u\|$ in the following discussions.

3 Main Results

Now we introduce the energy functional $I_{\lambda}: W_{0}^{1, p(x)}(\Omega) \rightarrow R$ associated with problem (1.1), defined by

$$
I_{\lambda}(u)=\int_{\Omega} \frac{1}{p(x)}|\nabla u(x)|^{p(x)} d x-\lambda \int_{\Omega} F(x, u) d x
$$

From the hypotheses on f, it is standard to check that $I_{\lambda} \in C^{1}\left(W_{0}^{1, p(x)}(\Omega), R\right)$ and its Gateaux derivative is

$$
I_{\lambda}^{\prime}(u) \cdot v=\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \cdot \nabla v-\lambda \int_{\Omega} f(x, u) v d x, u, v \in W_{0}^{1, p(x)}(\Omega)
$$

Thus the critical points of I_{λ} are precisely the weak solutions of problem (1.1).
First of all, notice that I_{λ} verifies the mountain pass geometry, in a uniform way on compact sets:

Lemma 3.1.

(1) Under the condition $\left(f_{3}\right)$, the functional I_{λ} is unbounded from below;
(2) Under the conditions $\left(f_{0}\right)$ and $\left(f_{2}\right), u=0$ is a strict local minimum for the functional I_{λ}.

Proof of (1). From $\left(f_{3}\right)$ follows that, for all $M>0$ there exists $C_{M}>0$, such that

$$
\begin{equation*}
F(x, t) \geq M|t|^{p^{+}}-C_{M}, \quad \forall x \in \Omega, \forall t>0 \tag{3.1}
\end{equation*}
$$

Take $\phi \in W_{0}^{1, p(x)}(\Omega)$ with $\phi>0$, from (3.1) we obtain

$$
I_{\lambda}(t \phi) \leq t^{p^{+}}\left(\int_{\Omega} \frac{|\nabla \phi|^{p(x)}}{p(x)}-\lambda M \int_{\Omega}|\phi|^{p^{+}}\right)+C_{M}|\Omega|,
$$

where $t \geq 1$ and $|\Omega|$ denotes the Lebesgue measure of Ω. If M is large, then

$$
\lim _{t \rightarrow \infty} I_{\lambda}(t \phi)=-\infty
$$

This proves (1).
Proof of (2). From $\left(f_{0}\right)$ and $\left(f_{2}\right)$, we have

$$
F(x, t) \leq \epsilon|t|^{p^{+}}+C(\epsilon)|t|^{\alpha(x)}, \forall(x, t) \in \Omega \times R
$$

Then

$$
\begin{aligned}
I_{\lambda}(u) & \geq \int_{\Omega} \frac{1}{p^{+}}|\nabla u|^{p^{+}} d x-\epsilon \lambda \int_{\Omega}|u|^{p^{+}} d x-C(\epsilon) \lambda \int_{\Omega}|u|^{\alpha(x)} d x \\
& \geq \frac{1}{p^{+}}\|u\|^{p^{+}}-\epsilon \lambda C_{0}^{p^{+}}\|u\|^{p^{+}}-C(\epsilon) \lambda\|u\|^{\alpha^{-}} \\
& \geq \frac{1}{2 p^{+}}\|u\|^{p^{+}}-\lambda C(\epsilon)\|u\|^{\alpha^{-}}, \quad \text { when }\|u\| \leq 1,
\end{aligned}
$$

there exist $r>0$ and $\delta>0$ such that $I_{\lambda}(u) \geq \delta>0$ for every $u \in W_{0}^{1, p(x)}(\Omega)$ and $\|u\|=r$. The proof is complete.

Fix $0<\lambda_{0}<\mu_{0}$. Now, we can see that the geometry on I_{λ} works uniformly on [λ_{0}, μ_{0}]. From the proof of Lemma 3.1 (2), we obtain

$$
I_{\lambda}(u) \geq \frac{1}{2 p^{+}}\|u\|^{p^{+}}-\mu_{0} C(\epsilon)\|u\|^{\alpha^{-}}, \text {when }\|u\| \leq 1,0<\lambda \leq \mu_{0}
$$

That is, there exist $r>0$ and $\delta>0$ such that $I_{\lambda}(u) \geq \delta>0$ for every $u \in W_{0}^{1, p(x)}(\Omega)$, $\|u\|=r$ and $\forall \lambda \leq \mu_{0}$.

By choosing $e \in W_{0}^{1, p(x)}(\Omega)$ such that $I_{\lambda_{0}}(e)<0$, we infer that

$$
\frac{I_{\lambda}(e)}{\lambda} \leq \frac{I_{\lambda_{0}}(e)}{\lambda_{0}}<0, \quad \lambda_{0} \leq \lambda \leq \mu_{0}
$$

We also have

$$
\begin{equation*}
\frac{I_{\lambda}(u)}{\lambda} \leq \frac{I_{\mu}(u)}{\mu}, \quad \forall u \in W_{0}^{1, p(x)}(\Omega), \mu<\lambda \tag{3.2}
\end{equation*}
$$

Define

$$
P=\left\{\gamma:[0,1] \rightarrow W_{0}^{1, p(x)}(\Omega): \gamma \text { is continuous and } \gamma(0)=0 \text { and } \gamma(1)=e\right\},
$$

and for $\lambda_{0} \leq \lambda \leq \mu_{0}$, let

$$
c_{\lambda}=\inf _{\gamma \in P} \max _{t \in[0,1]} I_{\lambda}(\gamma(t)) .
$$

We recall that the map $c:\left[\lambda_{0}, \mu_{0}\right] \rightarrow R_{+}$, given by $c(\lambda)=c_{\lambda}$, is such that $\frac{c_{\lambda}}{\lambda}$ is decreasing, left semi-continuous and bounded from below by $c_{\mu_{0}}>0$.

In fact, from (3.2) follows the monotonicity. While the estimate in Lemma 3.1 (2) implies that $c_{\lambda} \geq \delta>0$.

Now, we check the left semi-continuous of $\frac{c_{\lambda}}{\lambda}$. Fix $\mu \in\left[\lambda_{0}, \mu_{0}\right]$ and $\epsilon>0$. Then fix $\gamma \in P$ such that

$$
c(\mu) \leq \max _{t \in[0,1]} I_{\mu}(\gamma(t)) \leq c(\mu)+\frac{\epsilon \mu}{4} .
$$

Let $R_{0}=\max _{t \in[0,1]} \int_{\Omega} F(x, \gamma(t)) d x$. Then, for $\lambda>\frac{\mu}{2}$ and such that $\frac{1}{\lambda}<\frac{1}{\mu}+\frac{\epsilon}{2 \mu}$,

$$
\begin{aligned}
I_{\lambda}(\gamma(t)) & =\left(I_{\lambda}(\gamma(t))-I_{\mu}(\gamma(t))\right)+I_{\mu}(\gamma(t)) \\
& =I_{\mu}(\gamma(t))+(\mu-\lambda) \int_{\Omega} F(x, \gamma(t)) d x \\
& \leq R_{0}|\lambda-\mu|+c_{\mu}+\frac{\epsilon \mu}{4}, \forall t \in[0,1],
\end{aligned}
$$

that is,

$$
c(\lambda) \leq c(\mu)+\frac{\epsilon \mu}{2}, \text { if }|\lambda-\mu|<\frac{\epsilon \mu}{4 R_{0}} .
$$

Hence, if $\mu>\lambda$, it follows that

$$
\frac{c_{\mu}}{\mu}-\epsilon<\frac{c_{\mu}}{\mu} \leq \frac{c_{\lambda}}{\lambda} \leq \frac{c_{\mu}}{\lambda}+\frac{2 \epsilon}{3} \leq \frac{c_{\mu}}{\mu}+\epsilon
$$

This proves the left semi-continuity of $\frac{c_{\lambda}}{\lambda}$ and c_{λ}.
Lemma 3.2. There exists $d>0$, such that

$$
\left\|I_{\mu}^{\prime}(u)-I_{\lambda}^{\prime}(u)\right\|_{*} \leq d\left(1+\|u\|^{\alpha^{+}-1}\right)|\mu-\lambda|, \forall \lambda, \mu>0 .
$$

Proof. For $\alpha(x) \in C_{+}(\bar{\Omega})$, define $\alpha^{\prime}(x)$ such that $\frac{1}{\alpha(x)}+\frac{1}{\alpha^{\prime}(x)}=1$ for $\forall x \in \bar{\Omega}$. From condition $\left(f_{0}\right)$, one has

$$
|f(x, t)|^{\alpha^{\prime}(x)}=|f(x, t)|^{\frac{\alpha(x)}{\alpha(x)-1}} \leq d_{1}+d_{2}|t|^{\alpha(x)}, \forall x \in \Omega, \forall t \in R,
$$

for some constants $d_{1}, d_{2}>0$ and then

$$
\int_{\Omega}|f(x, u)|^{\alpha^{\prime}(x)} \leq d_{1}|\Omega|+d_{2} \int_{\Omega}|u|^{\alpha(x)} d x .
$$

Therefore, there exist positive constants d_{3} and $d_{4}>0$, such that

$$
\int_{\Omega}|f(x, u)|^{\alpha^{\prime}(x)} \leq d_{3}+d_{4}\|u\|^{\alpha^{+}}, \forall u \in W_{0}^{1, p(x)}(\Omega)
$$

Now, for all $v \in W_{0}^{1, p(x)}(\Omega)$ with $\|v\| \leq 1$, we have

$$
I_{\mu}^{\prime}(u) v-I_{\lambda}^{\prime}(u) v=(\lambda-\mu) \int_{\Omega} f(x, u) v d x
$$

Moreover, one has

$$
\begin{aligned}
\left|I_{\mu}^{\prime}(u) v-I_{\lambda}^{\prime}(u) v\right| & \leq|\lambda-\mu| \int_{\Omega}|f(x, u) v| d x \\
& \leq 2|\lambda-\mu||f(x, u)|_{\alpha^{\prime}(x)}|v|_{\alpha(x)} \\
& \leq 2 C_{0}|\lambda-\mu|\left(d_{3}+d_{4}\|u\|^{\alpha^{+}}\right)^{\frac{\alpha^{+}-1}{\alpha+}}\|v\| .
\end{aligned}
$$

So there exists constant $d>0$ such that

$$
\left\|I_{\mu}^{\prime}(u)-I_{\lambda}^{\prime}(u)\right\|_{*} \leq d\left(1+\|u\|^{\alpha^{+}-1}\right)|\mu-\lambda|, \forall \lambda, \mu>0 .
$$

Remark 3.1. We recall that the map $b:\left[\lambda_{0}, \mu_{0}\right] \rightarrow R_{+}$, given by $b(\lambda)=\frac{c_{\lambda}}{\lambda}$, is monotone decreasing. Thus b_{λ} and c_{λ} are differentiable at almost all values $\lambda \in\left(\lambda_{0}, \mu_{0}\right)$.

Lemma 3.3. Suppose the map $c:\left[\lambda_{0}, \mu_{0}\right] \rightarrow R_{+}$, given by $c(\lambda)=c_{\lambda}$, is differentiable in μ, then there exists a sequence $\left\{u_{n}\right\} \subset W_{0}^{1, p(x)}(\Omega)$ such that

$$
I_{\mu}\left(u_{n}\right) \rightarrow c_{\mu}, \quad I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0, \quad \text { and } \quad\left\|u_{n}\right\|^{p^{-}} \leq C^{\prime}
$$

as $n \rightarrow \infty$ and actually $C^{\prime}=p^{+} c_{\mu}+p^{+} \mu\left(2-c^{\prime}(\mu)\right)+1$.
The proof of the Lemma is similar to the proof of Lemma 2.3 in [3], so omit it.

The next lemma follows directly Lemma 3.3.
Lemma 3.4. For almost all $\lambda>0, c_{\lambda}$ is a critical value for I_{λ}.
Combining above Lemmas and arguments, now we give the proof of Theorem 1.1.
Proof. As c_{λ} is left semi-continuous, from Lemma 3.4, for each $\mu>0$ we can fix sequence $\left\{u_{n}\right\}$ in $W_{0}^{1, p(x)}(\Omega)$ and $\left\{\lambda_{n}\right\} \subset R$ such that $\lambda_{n} \rightarrow \mu, c_{\lambda_{n}} \rightarrow c_{\mu}$ as $n \rightarrow \infty$,

$$
I_{\lambda_{n}}\left(u_{n}\right)=c_{\lambda_{n}} \quad \text { and } \quad I_{\lambda_{n}}^{\prime}\left(u_{n}\right)=0 .
$$

For the proof of Theorem, it is enough that one can prove that the sequence $\left\{u_{n}\right\}$ is bounded. If it is unbounded we define $\omega_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. Without loss of generality, suppose that there is $\omega \in W_{0}^{1, p(x)}(\Omega)$ such that

$$
\begin{gathered}
\omega_{n}(x) \rightharpoonup \omega(x) \quad \text { in } W_{0}^{1, p(x)}(\Omega), n \rightarrow \infty \\
\omega_{n}(x) \rightarrow \omega(x) \quad \text { in } L^{\alpha(x)}(\Omega), n \rightarrow \infty \\
\omega_{n}(x) \rightarrow \omega(x) \quad \text { for } \text { a.e. } x \in \Omega, n \rightarrow \infty .
\end{gathered}
$$

Let $\Omega_{\neq}=\{x \in \Omega: \omega(x) \neq 0\}$. If $x \in \Omega_{\neq}$, then

$$
\lim _{n \rightarrow \infty} \frac{F\left(x, u_{n}(x)\right)}{\left|u_{n}(x)\right|^{p^{+}}}\left|\omega_{n}(x)\right|^{p^{+}}=\infty .
$$

Applying the Fatou Lemma and the limit

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \frac{F\left(x, u_{n}(x)\right)}{\left|u_{n}(x)\right|^{p^{+}}}\left|\omega_{n}(x)\right|^{p^{+}} \leq \frac{1}{\mu p^{-}}
$$

These two last limits are incompatible if $\left|\Omega_{\neq}\right|>0$, so Ω_{\neq}has zero measure, that is $\omega=0$ a.e. in Ω.
Let $t_{n} \in[0,1]$ such that

$$
I_{\lambda_{n}}\left(t_{n} u_{n}\right)=\max _{t \in[0,1]} I_{\lambda_{n}}\left(t u_{n}\right) .
$$

If $t_{n}=1, I_{\lambda_{n}}\left(t u_{n}\right)$ is bounded for all $t \in[0,1]$. If $t_{n}<1, I_{\lambda_{n}}^{\prime}\left(t_{n} u_{n}\right) u_{n}=0$. Since $I_{\lambda_{n}}^{\prime}\left(t_{n} u_{n}\right)\left(t_{n} u_{n}\right)=0$, from $\left(f_{4}^{\prime}\right)$, we have

$$
\begin{aligned}
I_{\lambda_{n}}\left(t u_{n}\right) & \leq I_{\lambda_{n}}\left(t_{n} u_{n}\right)-\frac{1}{p^{+}} I_{\lambda_{n}}^{\prime}\left(t_{n} u_{n}\right)\left(t_{n} u_{n}\right) \\
& =\int_{\Omega}\left(\frac{1}{p(x)}-\frac{1}{p^{+}}\right)\left|\nabla t_{n} u_{n}\right|^{p(x)} d x \\
& +\lambda_{n} \int_{\Omega}\left(\frac{1}{p^{+}} t_{n} u_{n} f\left(x, t_{n} u_{n}\right)-F\left(x, t_{n} u_{n}\right)\right) d x \\
& \leq \int_{\Omega}\left(\frac{1}{p(x)}-\frac{1}{p^{+}}\right)\left|\nabla u_{n}\right|^{p(x)} d x \\
& +\lambda_{n} \int_{\Omega}\left(\frac{1}{p^{+}} u_{n} f\left(x, u_{n}\right)-F\left(x, u_{n}\right)+\frac{C_{*}}{p^{+}}\right) d x \\
& =c_{\lambda_{n}}+\frac{C_{*} \lambda_{n}}{p^{+}}|\Omega|
\end{aligned}
$$

for all $t \in[0,1]$.
On the other hand, for all $R>1$, set $R^{\prime}=\left(2 p^{+} R\right)^{\frac{1}{p^{-}}}$

$$
I_{\lambda_{n}}\left(R^{\prime} \omega_{n}\right) \geq 2 R-\lambda_{n} \int_{\Omega} F\left(x, R^{\prime} \omega_{n}\right) d x \geq R
$$

which contradicts $I_{\lambda_{n}}\left(R^{\prime} \omega_{n}\right) \leq c_{\lambda_{n}}+\frac{C_{* \lambda_{n}}}{p^{+}}|\Omega|$, for n large.
Now we have a bounded sequence $\left\{u_{n}\right\}$ such that

$$
I_{\mu}\left(u_{n}\right) \rightarrow c_{\mu} \quad \text { and } \quad I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

The proof is complete.

Acknowledgement

The author is grateful to the reviewers for useful comments.

References

[1] X.L. Fan, Q.H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal. 52 (2003) 1843-1852.
[2] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on R^{N}, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809.
[3] O.H. Miyagaki, M.A.S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245 (2008) 3628-3638.
[4] A. Szulkin, W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal. 187 (2001) 25-41.
[5] H.S. Zhou, Positive solution for a semilinear elliptic equations which is almost linear at infinity, Z. Angew. Math. Phys. 49 (1998) 896-906.
[6] S. Liu, On superlinear problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal. 73 (2010) 788-795.
[7] M. Rǔžička, Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.
[8] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 9 (1987) 33-66.
[9] X.L. Fan, D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001) 424-446.
[10] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, Czechoslovak Math. J. 41 (1991) 592-618.
[11] X.L. Fan, X.Y. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in R^{N}, Nonlinear Anal. 59 (2004) 173-188.
[12] X.L. Fan, C. Ji, Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian, J. Math. Anal. Appl. 334 (2007) 248-260.
[13] C. Ji, Perturbation for a $p(x)$-Laplacian equation involving oscillating nonlinearities in R^{N}, Nonlinear Anal. 69 (2008) 2393-2402.
[14] C. Ji, An eigenvalue of an anisotropic quasilinear elliptic equation with variable exponent and Neumann boundary condition, Nonlinear Anal. 71 (2009) 45074514.

[^0]: *E-mail address: jichao@ecust.edu.cn

