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Abstract

In this paper we investigate the step-type contrast structure of a second-order

semilinear differential equation with integral boundary conditions. The asymptotic

solution is constructed by the boundary function method, and the uniform validity

of the formal solution is proved by the theory of differential equalities.
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1. Introduction

We shall consider the existence of contrast structure for the following singularly perturbed

differential equation with integral boundary conditions

µ2d2y

dt2
= f(t, y), 0 < t < 1, (1.1)

y(0, µ) =

∫ 1

0

h1(y(s, µ))ds, y(1, µ) =

∫ 1

0

h2(y(s, µ))ds, (1.2)

where µ is a small and positive parameter, and f : [0, 1] × R → R, hi : R → R (i = 1, 2)

are C(2)-functions.
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Singularly perturbed boundary value problems arise naturally in various applications,

and have received more and more attention in recent years. Contrast structures, namely

solutions which have internal transition layers, are initially investigated by using the bound-

ary function method by Butuzov and Vasil’eva in 1987 [1], and have recently been one of

the hot topics in singular perturbation problems; see [2-8], for instance. The step-type

contrast structure of the equation (1.2) with two-point boundary conditions y(0, µ) = y0

and y(1, µ) = y1 was considered by Butuzov and Vasil’eva [1]. They gave the conditions

which ensure the existence of step-type contrast structure and applied the boundary func-

tion method to construct the corresponding asymptotic solution. Recently, Ni and Lin [7]

proved rigorously the uniform validity of asymptotic solution by using Nagumo’s Theorem.

In 2009, Ni and Wang [8] extended the equation (1.2) to higher dimension and studied

the following semilinear singularly perturbed system

µ2y′′
1 = f1(y1, y2, . . . , yn, t),

µ2y′′
2 = f2(y1, y2, . . . , yn, t),

...

µ2y′′
n = fn(y1, y2, . . . , yn, t),

subject to the conditions

yk(0, µ) = y0
k, k = 1, 2, . . . , n,

y′
j(0, µ) = z1

j , k = 1, 2, . . . , n − 1,

y′
n(1, µ) = z1

n′.

The authors gave the conditions under which there exists an internal transition layer,

and constructed the uniformly valid asymptotic expansion of a solution with a step-type

contrast structure.

To our knowledge, contrast structures of singularly perturbed problems with integral

boundary conditions have not been investigated. Boundary value problems with integral

boundary conditions have significant applications in thermal conduction [9], semiconductor

problems [10], biomedical science [11], and so on. In [12], Cakir and Amiraliyev studied

the singularly perturbed nonlocal boundary value problem

ε2y′′ + εa(t)y′ − b(t)y = f(t), 0 < t < l, 0 < ε ≪ 1,

y(0) = y0, y(1) = y1 +

∫ l1

l0

g(s)y(s)ds, 0 ≤ l0 < l1 ≤ l,

where y0, y1 are given constants, and a(t) ≥ α > 0, b(t) ≥ β > 0, g(t) and f(t) are

sufficiently smooth functions in [0, 1]. The authors presented a finite difference method for
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numerical solutions of the problem which exhibited two boundary layers at t = 0 and t = l.

In [13], Xie and Zhang extended the above problem to general weakly nonlinear singular

perturbation problems with integral boundary conditions by using the boundary function

method.

The present paper is devoted to investigate the existence of step-type contrast struc-

ture for the problem (1.1)-(1.2). Integral boundary conditions (1.2) can be viewed as the

generalization of two-point and nonlocal boundary conditions. The boundary function

method and the theory of differential inequalities will be applied to obtain the uniformly

valid asymptotic solution of the problem (1.1) -(1.2). The main difficulty different from

the corresponding two-point boundary value problem lies in that the integral boundary

conditions of the two associated problems are coupled, which will be overcome with the aid

of the property that boundary layer functions decay exponentially.

The remainder of this paper is organized as follows. In section 2 we give some assump-

tions and construct the formal asymptotic solution of the original problem. In section 3

the uniform validity of formal solution is proved by the theory of differential equalities.

2. Basic Assumptions and Construction of Asymptotic Solution

Let us begin with two basic assumptions.

[H1] f : [0, 1] × R → R, hi : R → R (i = 1, 2) are C(2)-functions, and h′
i(x) ≥ 0.

[H2] The reduced equation f(t, y) = 0 has three isolated solutions ϕi(t) (i = 1, 2, 3) on

[0, 1], satisfying

ϕ1(t) < ϕ2(t) < ϕ3(t),
∂f

∂y
(t, ϕi(t)) > 0 (i = 1, 3),

∂f

∂y
(t, ϕ2(t)) < 0.

Assumption [H2] is a so-called stability condition. It follows from the assumption [H2]

that in the phase plane (y, y′), the equilibria (ϕ1,3, 0) is a saddle point and (ϕ2, 0) is a center.

We are interested in the solution of step-type which has a transition from the vicinity of

ϕ1(t) to that of ϕ3(t) at some point t = t∗. That is, for some t∗ ∈ (0, 1) the following limit

holds:

lim
µ→0

y(t, µ) =





ϕ1(t), 0 < t < t∗,

ϕ3(t), t∗ < t < 1.

t = t∗ is called the transition point.

We shall adopt the following strategy which is due to Butuzov and Vasil’eva [1]. We

divide the original problem into the two associated pure boundary layer problems, that is,
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the associated left problem

µ2d2y(−)

dt2
= f(t, y(−)), 0 < t < t∗,

y(−)(0, µ) =

∫ t∗

0

h1(y
(−)(s, µ))ds +

∫ 1

t∗
h1(y

(+)(s, µ))ds,

y(−)(t∗, µ) = ϕ2(t
∗),

and the associated right problem

µ2d2y(+)

dt2
= f(t, y(+)), t∗ < t < 1,

y(+)(1, µ) =

∫ t∗

0

h2(y
(−)(s, µ))ds +

∫ 1

t∗
h2(y

(+)(s, µ))ds,

y(+)(t∗, µ) = ϕ2(t
∗).

Considering that the solution y(t, µ) is smooth at t = t∗, it follows that

dy(−)

dt
(t∗, µ) =

dy(+)

dt
(t∗, µ), (2.1)

which is the condition determining the position of transition point.

Here the main difficulty different from the corresponding two-point boundary value

problem lies in that the integral boundary conditions of the two associated problems are

coupled. In order to overcome this difficulty, we need to handle these two associated

problems simultaneously, and have the aid of properties of boundary layer functions to

uncouple the boundary conditions.

Let us describe the formal scheme of seeking an asymptotic solution of the problem

(1.1)-(1.2) of the form

y(t, µ) =





y(−)(t, µ) + Π(−)y(τ0, µ) + Q(−)y(τ, µ), 0 ≤ t ≤ t∗,

y(+)(t, µ) + R(+)y(τ1, µ) + Q(+)y(τ, µ), t∗ ≤ t ≤ 1,
(2.2)

where

y(∓)(t, µ) = y
(∓)
0 (t) + µy

(∓)
1 (t) + µ2y

(∓)
2 (t) + · · ·

are the regular parts of the left problem and the right problem, respectively,

Π(−)y(τ0, µ) = Π
(−)
0 y(τ0) + µΠ

(−)
1 y(τ0) + µ2Π

(−)
2 y(τ0) + · · · , τ0 =

t

µ

is the left boundary layer part of the left problem,

Q(∓)y(τ, µ) = Q
(∓)
0 y(τ) + µQ

(∓)
1 y(τ) + µ2Q

(∓)
2 y(τ) + · · · , τ =

t − t∗

µ
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are the right boundary layer part of the left problem and the left boundary layer part of

the right problem, respectively, and

R(+)y(τ1, µ) = R
(+)
0 y(τ1) + µR

(+)
1 y(τ1) + µ2R

(+)
2 y(τ1) + · · · , τ1 =

t − 1

µ

is the right boundary layer part of the right problem. We also seek the asymptotic expansion

of the transition point t∗:

t∗ = t0 + µt1 + µ2t2 + · · · .

Substituting (2.2) into (1.1) and equating the coefficients in like powers of µ, we get a

recurrent sequence of algebraic equations for the functions y
(∓)
i (t) (i = 1, 2, . . .).

f
(
t, y

(∓)
0 (t)

)
= 0,

d2y
(∓)
0

dt2
=

∂f

∂y

(
t, y

(∓)
0 (t)

)
y

(∓)
2 (t),

d2y
(∓)
2

dt2
=

∂f

∂y

(
t, y

(∓)
0 (t)

)
y

(∓)
4 (t) + g

(±)
4 ,

· · ·

d2y
(∓)
2k−2

dt2
=

∂f

∂y

(
t, y

(∓)
0 (t)

)
y

(∓)
2k (t) + g

(±)
2k ,

where g
(±)
2k are the determined functions of y

(∓)
i (0 ≤ i ≤ 2k − 2). From the assumption

[H2], the coefficients y
(∓)
i can be obtained recurrently. In particular, we have

y
(−)
0 = ϕ1(t), y

(+)
0 = ϕ3(t).

For simplicity, we only consider the approximation of first order for the boundary layer

series. The left boundary layer functions Π
(−)
0 y(τ0, µ) and Π

(−)
1 y(τ0, µ) satisfy






d2Π
(−)
0 y

dτ 2
0

= f
(
0, ϕ1(0) + Π

(−)
0 y

)
,

Π
(−)
0 y(0) =

∫ t0

0

h1(ϕ1(s))ds +

∫ 1

t0

h1(ϕ3(s))ds − ϕ1(0),

Π
(−)
0 y(+∞) = 0,

(2.3)

and

d2Π
(−)
1 y

dτ 2
0

=
∂f

∂y

(
0, ϕ1(0) + Π

(−)
0 y

)
Π

(−)
1 y + ∆

(−)
1 ,

Π
(−)
1 y(0) =

∫ +∞

0

h′
1(ϕ1(0))Π

(−)
0 y(s)ds +

∫ 0

−∞

h′
1(ϕ1(t0))Q

(−)
0 y(s)ds

+

∫ +∞

0

h′
1(ϕ3(t0))Q

(+)
0 y(s)ds +

∫ 0

−∞

h′
1(ϕ3(1))R

(+)
0 y(s)ds,

Π
(−)
1 y(+∞) = 0,
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respectively, where

∆
(−)
1 =

∂f

∂y

(
0, ϕ1(0) + Π

(−)
0 y

)(
y

(−)
0

′(0)τ0 + y
(−)
1 (0)

)
+

∂f

∂t

(
0, ϕ1(0) + Π

(−)
0 y

)
τ0

−
∂f

∂y
(0, ϕ1(0))

(
y

(−)
0

′(0)τ0 + y
(−)
1 (0)

)
−

∂f

∂t
(0, ϕ1(0)) τ0.

Analogously, the right boundary layer functions R
(+)
0 y(τ1) and R

(+)
1 y(τ1) satisfy the

following boundary value problems





d2R
(+)
0 y

dτ 2
1

= f
(
1, ϕ3(1) + R

(+)
0 y

)
,

R
(+)
0 y(1) =

∫ t0

0

h2(ϕ1(s))ds +

∫ 1

t0

h2(ϕ3(s))ds − ϕ3(1),

R
(+)
0 y(−∞) = 0,

(2.4)

and

d2R
(+)
1 y

dτ 2
1

=
∂f

∂y

(
1, ϕ3(1) + R

(+)
0 y

)
R

(+)
1 y + ∆

(+)
1 ,

R1y
(+)(1) =

∫ +∞

0

h′
2(ϕ1(0))Π

(−)
0 y(s)ds +

∫ 0

−∞

h′
2(ϕ1(t0))Q

(−)
0 y(s)ds

+

∫ +∞

0

h′
2(ϕ3(t0))Q

(+)
0 y(s)ds +

∫ 0

−∞

h′
2(ϕ3(1))R

(+)
0 y(s)ds,

R
(+)
1 y(−∞) = 0,

respectively, where

∆
(+)
1 =

∂f

∂y

(
1, ϕ3(1) + R

(+)
0 y

)(
y

(+)
0

′(1)τ1 + y
(+)
1 (1)

)
+

∂f

∂t

(
1, ϕ3(1) + R

(+)
0 y

)
τ1

−
∂f

∂y
(1, ϕ3(1))

(
y

(+)
0

′(1)τ1 + y
(+)
1 (1)

)
−

∂f

∂t
(1, ϕ3(1)) τ1.

In order to ensure the existence of solutions for the boundary value problems (2.3) and

(2.4), we need the following assumptions. See [3] for their geometrical interpretation.

[H3] In the phase plane

(
Π

(−)
0 y,

dΠ
(−)
0 y

dτ0

)
, let the straight line

dΠ
(−)
0 y

dτ0
=

∫ t0

0

h1(ϕ1(s))ds+

∫ 1

t0

h1(ϕ3(s))ds intersect the separatrix entering the saddle (0, ϕ1(0)) as τ0 → +∞;

[H4] In the phase plane

(
R

(+)
0 y,

dR
(+)
0 y

dτ1

)
, let the straight line

dR
(+)
0 y

dτ1
=

∫ t0

0

h2(ϕ1(s))ds+

∫ 1

t0

h2(ϕ3(s))ds intersect the separatrix entering the saddle (0, ϕ3(1)) as τ1 → −∞.
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Note that t0 in the above assumptions is unknown, which is determined by (2.10).

From the assumptions [H1], [H2] and [H3], we have the following estimates of decay-

ing exponentially for the boundary layer functions Π
(−)
0 y(τ0), Π

(−)
1 y(τ0), R

(+)
0 y(τ1) and

R
(+)
1 y(τ1).

Lemma 2.1 Under the assumptions [H1], [H2] and [H3], the following estimates

∣∣∣Π(−)
0 y

∣∣∣ ≤ c1 exp(−κ1τ0),

∣∣∣∣∣
dΠ

(−)
0 y

dτ0

∣∣∣∣∣ ≤ c1 exp(−κ1τ0), τ0 ≥ 0,

∣∣∣R(+)
0 y

∣∣∣ ≤ c2 exp(κ2τ1),

∣∣∣∣∣
dR

(+)
0 y

dτ1

∣∣∣∣∣ ≤ c2 exp(κ2τ1), τ1 ≤ 0,

∣∣∣Π(−)
1 y

∣∣∣ ≤ c3 exp(−κ3τ0), τ0 ≥ 0;
∣∣∣R(+)

1 y
∣∣∣ ≤ c4 exp(κ4τ1), τ1 ≤ 0

hold, where ci and κi (i = 1, 2, 3, 4) are positive constants.

Proof. The proof is essential similar to that of [3], and we omit it here.

Let us now consider the right boundary layer of the left problem and the left boundary

layer of the right problem, that is, the interior layer of the original problem. We rewrite

the equation (1.1) into the equivalent system

µ
dz

dt
= f(t, y), µ

dy

dt
= z. (2.5)

Substituting (2.2) into (2.5), and separate the equations according to the scales t and τ ,

we obtain

µ
dz(∓)

dt
= f

(
t, y(∓)(t, µ)

)
, µ

dy(∓)

dt
= z(∓),

dQ(∓)z

dτ
= f

(
t∗ + µτ, y(∓)(t∗ + µτ, µ) + Q(∓)y

)
− f

(
t∗ + µτ, y(∓)(t∗ + µτ, µ)

)
,

dQ(∓)y

dτ
= Q(∓)z.

Therefore, the coefficients Q
(∓)
0 y and Q

(∓)
0 z are determined by the following boundary

value problems 



dQ
(∓)
0 z

dτ
= f

(
t0, ϕ1,3(t0) + Q

(∓)
0 y

)
,

dQ
(∓)
0 y

dτ
= Q

(∓)
0 z,

Q
(∓)
0 y(0) = ϕ2(t0) − ϕ1,3(t0),

Q
(∓)
0 y(∓∞) = Q

(∓)
0 z(∓∞) = 0.

(2.6)
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By the transformations ỹ(∓) = y
(∓)
0 (t0) + Q

(∓)
0 y, z̃(∓) = z

(∓)
0 (t0) + Q

(∓)
0 z = Q

(∓)
0 z, the

problem (2.6) becomes 



dz̃(∓)

dτ
= f

(
t0, ỹ

(∓)
)
,

dỹ(∓)

dτ
= z̃(∓),

ỹ(∓)(0) = ϕ2(t0),

ỹ(∓)(∓∞) = ϕ1,3(t0),

z̃(∓)(∓∞) = 0.

(2.7)

It follows from the assumption [H2] that there exists a solution of the problem (2.7) for

given t0. In what follows we will give the condition determining t0. Integrating the first

two equations in (2.7) we have

[
z̃(−)(τ)

]2
= 2

∫
ey(−)(τ)

ϕ1(t0)

f(t0, y)dy,
[
z̃(+)(τ)

]2
= 2

∫
ey(+)(τ)

ϕ3(t0)

f(t0, y)dy. (2.8)

Note that the zero order approximation of the smooth connection condition (2.1) becomes

z̃(−)(0) = z̃(+)(0). (2.9)

It follows from (2.8) and (2.9) that

I(t0) ≡

∫ ϕ3(t0)

ϕ1(t0)

f(t0, y)dy = 0, (2.10)

which is the equation determining the dominant term t0 of t∗.

[H4] Assume that the equation (2.10) has a root t = t0 with I ′(t0) < 0.

In a similar way, we can also get the expression t1 which is closely related to the

equations for y(∓), Q
(∓)
1 y and Q

(∓)
1 z, and the details are omitted here.

Similar to Lemma 2.1, for the boundary layer functions Q
(∓)
i y and Q

(∓)
1 z (i = 0, 1) we

have the following estimates of decaying exponentially.

Lemma 2.2 Under the assumptions [H1], [H2] and [H3], the following estimates
∣∣∣Q(−)

0 y(τ)
∣∣∣ ≤ c5 exp(κ5τ),

∣∣∣Q(−)
0 z(τ)

∣∣∣ ≤ c5 exp(κ5τ), τ ≤ 0,

∣∣∣Q(−)
1 y(τ)

∣∣∣ ≤ c6 exp(κ6τ),
∣∣∣Q(−)

1 z(τ)
∣∣∣ ≤ c5 exp(κ5τ), τ ≤ 0,

∣∣∣Q(+)
0 y(τ)

∣∣∣ ≤ c7 exp(−κ7τ),
∣∣∣Q(+)

0 z(τ)
∣∣∣ ≤ c7 exp(−κ7τ), τ ≥ 0,

∣∣∣Q(+)
1 y(τ)

∣∣∣ ≤ c8 exp(−κ8τ),
∣∣∣Q(+)

1 z(τ)
∣∣∣ ≤ c8 exp(−κ8τ), τ ≥ 0

hold, where ci and κi (i = 5, 6, 7, 8) are positive constants.
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3. Existence of Step-type Solution

In this section we will prove the existence of step-type solution for the original problem

and give the estimate for the remainder term.

Theorem 3.3 Under the assumptions [H1]−[H4], there exists a step-type contrast structure

solution y(t, µ) of the problem (1.1)-(1.2) for sufficiently small µ > 0. Moreover, the

following asymptotic expansion holds

y(t, µ) =





ϕ1(t) + Π
(−)
0 y(τ0) + Q

(−)
0 y(τ) + O(µ), 0 ≤ t < t0 + µt1;

ϕ3(t) + R
(+)
0 y(τ1) + Q

(+)
0 y(τ) + O(µ), t0 + µt1 < t ≤ 1.

(3.1)

In order to prove Theorem 3.3 we need the following lemma which is a slight modification

of Theorem 2.2 in [14].

Lemma 3.4 Assume that the assumption [H1] holds and the continuous functions α(t, µ)

and β(t, µ) are of C(2) class on the intervals (0, tα)∪(tα, 1) and (0, tβ)∪(tβ , 1), respectively,

having the following properties

(1) α(t, µ) ≤ β(t, µ), t ∈ [0, 1];

(2) µ2d2α

dt2
≥ f(t, α), t ∈ (0, tα) ∪ (tα, 1); µ2d2β

dt2
≤ f(t, β), t ∈ (0, tβ) ∪ (tβ, 1);

(3) α(0, µ) ≤

∫ 1

0

h1(α(s, µ))ds, α(1, µ) ≤

∫ 1

0

h2(α(s, µ))ds,

β(0, µ) ≥

∫ 1

0

h1(β(s, µ))ds, β(1, µ) ≥

∫ 1

0

h2(β(s, µ))ds;

(4)
dα

dt
(tα−) ≤

dα

dt
(tα+),

dβ

dt
(tβ−) ≥

dβ

dt
(tβ+),

where tα, tβ ∈ (0, 1). Then, there exists a solution y(t, µ) of the problem (1.1)-(1.2) such

that

α(t, µ) ≤ y(t, µ) ≤ β(t, µ), t ∈ [0, 1].

Remark 3.5 The functions α(t, µ) and β(t, µ) satisfying the above conditions are called

lower and upper solutions of the problem (1.1)-(1.2), respectively.

Remark 3.6 It is requested in [14] that the functions α(t, µ), β(t, µ) ∈ C(2)[0, 1]. Here we

only need the functions α(t, µ) and β(t, µ) to be piecewise C(2)- smooth and an additional

condition (4). It should be noted that the proof of Lemma 3.4 has no essential difference

from that of Theorem 2.2 in [14], but some slight modifications.
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Proof of Theorem 3.3. We select the auxiliary functions

α(t, µ) =





ϕ1(t) + Π
(−)
0 y(τ0) + µΠ

(−)
1 y(τ0) + Q

(−)
0α y(τα) + µQ

(−)
1α y(τα) − γµ, 0 ≤ t ≤ tα,

ϕ3(t) + R
(+)
0 y(τ1) + µR

(+)
1 y(τ1) + Q

(+)
0α y(τα) + µQ

(+)
1α y(τα) − γµ, tα ≤ t ≤ 1,

and

β(t, µ) =





ϕ1(t) + Π
(−)
0 y(τ0) + µΠ

(−)
1 y(τ0) + Q

(−)
0β y(τβ) + µQ

(−)
1β y(τβ) + γµ, 0 ≤ t ≤ tβ,

ϕ3(t) + R
(+)
0 y(τ1) + µR

(+)
1 y(τ1) + Q

(+)
0β y(τβ) + µQ

(+)
1β y(τβ) + γµ, tβ ≤ t ≤ 1,

where

tα = t0 + µδ, tβ = t0 − µδ, τα =
t − tα

µ
, τβ =

t − tβ
µ

,

while γ, δ are sufficiently large positive parameters. The functions Q
(∓)
0α y and Q

(∓)
1α y satisfy

respectively the following boundary value problems

d2Q
(∓)
0α y

dτ 2
α

= f
(
τα, ϕ1,3(tα) + Q

(∓)
0α y

)
,

Q
(∓)
0α y(0) = ϕ2(tα) − ϕ1,3(tα), Q

(∓)
0α y(∓∞) = 0,

and

d2Q
(∓)
1α y

dτ 2
α

=
∂f

∂y

(
τα, ϕ1,3(tα) + Q

(∓)
0α y

)
Q

(∓)
1α y + ∆

(∓)
1α − ω exp(±κ0τα),

Q
(∓)
1α y(0) =

(
ϕ′

2(t0) − ϕ′
1,3(t0)

)
t1, Q

(∓)
1α y(∓∞) = 0,

where ω, κ0 are positive constants and

∆
(∓)
1α =

∂f

∂y

(
τα, ϕ1,3(tα) + Q

(∓)
0α y

)
ϕ′

1,3(tα)τα +
∂f

∂t

(
τα, ϕ1,3(tα) + Q

(∓)
0α y

)
τα.

The functions Q
(∓)
0β y and Q

(∓)
1β y are also determined by the corresponding boundary value

problems.

To verify the conditions in Lemma 3.4 we divide the interval [0, 1] into five subintervals

[0, tβ/2], [tβ/2, tβ], [tβ, tα], [tα, (tα + 1)/2] and [(tα + 1)/2, 1].

Let us first check the condition (1). On the intervals [0, tβ/2] and [(tα+1)/2, 1], β(t, µ)−

α(t, µ) = 2γµ + EST > 0, where EST denotes exponentially small terms. On the interval

[tβ , tα], β(t, µ)−α(t, µ) = ϕ3(t)−ϕ1(t)+Q
(+)
0β y(τβ)−Q

(−)
0α y(τα)+µ

(
Q

(+)
1β y(τβ) − Q

(−)
1α y(τα)

)
+

2γµ + EST > 0. On the interval [tβ/2, tβ],

β(t, µ) − α(t, µ) = 2γµ + Q
(−)
0β y(τβ) − Q

(−)
0α y(τα) + µ

(
Q

(−)
1β y(τβ) − Q

(−)
1α y(τα)

)
> 0,
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where we have used the following formula

Q
(−)
0β y(τβ) − Q

(−)
0α y(τα) =

dQ
(−)
0 y

dτ
(τ ∗)2δ > 0, τα ≤ τ ∗ ≤ τβ.

Similarly, on the interval [tα, (tα + 1)/2],

β(t, µ) − α(t, µ) = 2γµ + Q
(+)
0β y(τβ) − Q

(+)
0α y(τα) + µ

(
Q

(+)
1β y(τβ) − Q

(+)
1α y(τα)

)
> 0.

Next we check the condition (2). Here we only verify the condition (2) on the interval

[tβ/2, tβ], which are similar on other subintervals.

µ2d2β

dt2
− f(t, β) = µ2ϕ′′

1(t) +
d2Q

(−)
0β y

dτ 2
+ µ

d2Q
(−)
1β y

dτ 2

−f
(
t, ϕ1(t) + γµ + Q

(−)
0β y + µQ

(−)
1β y

)
+ EST. (3.2)

We rewrite f in f = f̃(µ) + f(µ), where

f̃(µ) = f
(
τµ, ϕ1(τµ) + γµ + Q

(−)
0β y + µQ

(−)
1β y

)
− f (τµ, ϕ1(τµ) + γµ)

=
d2Q

(−)
0β y

dτ 2
+ µ

(
d2Q

(−)
1β y

dτ 2
− ω exp(κ0τ)

)
+ O

(
µ2
)
, (3.3)

and

f(µ) = f (t, ϕ1(t) + γµ) =
∂f

∂y
(t, ϕ1(t)) γµ + O

(
µ2
)
. (3.4)

Inserting (3.3) and (3.4) into (3.2) we have

µ2d2β

dt2
− f(t, β) = −

∂f

∂y
(t, ϕ1(t)) γµ + µω exp(κ0τ) + O

(
µ2
)

< 0.

In a similar way we can show that

µ2d2α

dt2
≥ f(t, α), t ∈ (0, tα) ∪ (tα, 1).

We now show that

β(0, µ) ≥

∫ 1

0

h1(β(s, µ))ds.

It follows from the construction of asymptotic solution that

β(0, µ) −

∫ 1

0

h1(β(s, µ))ds

= ϕ1(0) + Π
(−)
0 y(0) + µΠ

(−)
1 y(0) + γµ −

∫ tβ

0

h1(β(s, µ))ds −

∫ 1

tβ

h1(β(s, µ))ds + EST
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= µΠ
(−)
1 y(0) + γµ +

∫ t0

t0−δµ

(h1(ϕ1(s)) − h1(ϕ3(s))) ds − µ

∫ t0−δµ

µ

0

h′
1(ϕ1(0))Π

(−)
0 y(s)ds

−µ

∫ 0

δ−
t0
µ

h′
1(ϕ1(t0))Q

(−)
0 y(s)ds − µ

∫ 1−t0
µ

−δ

0

h′
1(ϕ3(t0))Q

(+)
0 y(s)ds

−µ

∫ 0

−
1−t0

µ
−δ

h′
1(ϕ3(1))R

(+)
0 y(s)ds + O

(
µ2
)

= γµ + O (µ) > 0,

provided that γ is large enough.

Other inequalities in the condition (3) can be proved analogously.

Finally, let us check the condition (4).

µ
dβ

dt
(tβ−) − µ

dβ

dt
(tβ+) = µ

[
dβ

dt

](−)

(+)

=

[
µy′

0(tβ) +
dQ0βy

dτβ

+ µ
dQ1βy

dτβ

](−)

(+)

=

[
dQ0βy

dτβ

](−)

(+)

+ O(µ). (3.5)

From the process similar to (2.6)-(2.10) we can obtain
[
dQ0βy

dτβ

](−)

(+)

=

∫ ϕ3(tβ)

ϕ1(tβ )

f(tβ, y)dy = −I ′(t0)δµ + O
(
µ2
)

> 0. (3.6)

It follows from (3.5) and (3.6) that

dβ

dt
(tβ−) ≥

dβ

dt
(tβ+).

We can prove in a similar way that

dα

dt
(tα−) ≤

dα

dt
(tα+).

Thus from Lemma 3.4 there exists a step-type contrast structure solution y(t, µ) of the

problem (1.1)-(1.2) for sufficiently small µ > 0, and the asymptotic formula (3.1) holds.

The proof is completed.
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