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Abstract

This paper is concerned with the multiplicity of positive solutions of boundary
value problem for the fourth-order quasilinear singular differential equation

(|u′′|p−2u′′)′′ = λg(t)f(u), 0 < t < 1,

where p > 1, λ > 0. We apply the fixed point index theory and the upper and lower
solutions method to investigate the multiplicity of positive solutions. We have found
a threshold λ∗ < +∞, such that if 0 < λ ≤ λ∗, then the problem admits at least
one positive solution; while if λ > λ∗, then the problem has no positive solution. In
particular, there exist at least two positive solutions for 0 < λ < λ∗.
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1 Introduction

In this paper, we consider the multiplicity of positive solutions for the following fourth-
order quasilinear singular differential equation

(|u′′|p−2u′′)′′ = λg(t)f(u), 0 < t < 1, (1.1)

subject to the boundary value conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.2)

where p > 1 and λ is a positive parameter.
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In the past few years, some fourth-order nonlinear equations have been proposed for
image (signal) processing (i.e., edge detection, image denoising, etc.). And a number of
authors hoped that these methods might perform better than some second-order equations
[15–19]. Indeed, there are good reasons to consider fourth-order nonlinear equations.
First, fourth-order differential damps oscillations at high frequencies (e.g., noise) much
faster than second-order differential. Second, there is the possibility of having schemes
that include effects of curvature, i.e., the second derivatives of the image (signal), in the
dynamics. The equation (1.1) can be regarded as the analogue of the Euler-Lagrange
equations from the variation problem in [15]. Similarly, the solution of the equation (1.1)
can be regarded as the steady-state case of the fourth-order anisotropic diffusion equation
in [16–19].

Equations of the form (1.1), especially the special case p = 2, have been the subject
of intensive study during the last thirty years, see for example [1,2,5,9–14]. In particular,
in a recent paper [5], under some structure conditions which permit some singularities
for g(t), the authors discussed the special case p = 2 subject to the boundary value
conditions (1.2), and revealed the relation between the existence of positive solutions and
the parameter λ. While for the case p > 1 with g(t) ≡ 1 and f(s) being of power type,
in [6], P. Dráek, M. Ôani considered the corresponding initial value problem, and obtain
the local existence and uniqueness of solutions, see also [7] for some extension of the
results.

In this paper, we mainly discuss the boundary value problem for the fourth-order
quasilinear differential equation (1.1), namely, the problem (1.1), (1.2). Throughout this
paper, we assume the following basic conditions:

(H1) f ∈ C([0, +∞), (0, +∞)) and is nondecreasing on [0, +∞). Furthermore, there exist
δ > 0, m > p − 1 such that f(u) > δum, u ∈ [0, +∞);

(H2) g ∈ C((0, 1), (0, +∞)) and g(t) 6≡ 0 on any subinterval of (0, 1).

The main purpose of this paper is to investigate the existence, nonexistence and mul-
tiplicity of positive solutions of the problem (1.1), (1.2). Different from the known works,
the equation we consider is quasilinear, which might have degeneracy or singularities.
In fact, if p > 2, then the equation is degenerate at the points where u′′ = 0; while if
1 < p < 2, then the equation has singularity at the points where u′′ = 0. It should be
noticed that there is no Green’s function compared with the special case p = 2.

The main result of this paper is the following

Theorem 1.1 Let (H1) and (H2) be satisfied. If
∫ 1

0

s(1 − s)g(s)ds < +∞, (1.3)

then there exists a threshold 0 < λ∗ < +∞ such that the problem (1.1), (1.2) has no
positive solution for λ > λ∗, has at least one positive solution for λ = λ∗, and has at least
two positive solutions for 0 < λ < λ∗.

Our method can also be applied to the discussion of the equation subject to another
boundary value condition

u(0) = u′(1) = u′′(0) = (|u′′(t)|p−2u′′(t))′|t=1 = 0. (1.4)

The corresponding extension of the result is as follows.
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Theorem 1.2 Let (H1) and (H2) be satisfied. If

∫ 1

0

sg(s)ds < +∞, (1.5)

then there exists a threshold 0 < λ∗ < +∞ such that the problem (1.1), (1.4) has no
positive solution for λ > λ∗, has at least one positive solution for λ = λ∗, and has at least
two positive solutions for 0 < λ < λ∗.

This paper is organized as follows. As preliminaries, we state some necessary lemmas
in Section 2. Subsequently, in Section 3, we apply the fixed point index theory and the
upper and lower solutions method to the proof of Theorem 1.1. In the last section, we
are concerned with the proof of Theorem 1.2. Owing to the similarity with the proof of
Theorem 1.1, we only give a sketch and omit the details of the proof of Theorem 1.2.

2 Preliminaries

In this section, we first present necessary definitions and introduce some auxiliary lemmas,
including those from the fixed point index theory and the theory based on the upper and
lower solutions method. Subsequently, we construct some key integral operators, which
is closely related to the problem (1.1), (1.2). As an important preparation to the proof of
our main result, we devote the remaining part of this section to the proof of the complete
continuity and monotonicity of the operator. We also give the a priori estimates on the
positive solutions of the problem (1.1), (1.2).

First, because of the possible degeneracy and singularities, the exact meaning of solu-
tions should be clarified.

Definition 2.1 A function u(t) is said to be a positive solution of the problem (1.1),
(1.2), if u(t) > 0, for t ∈ (0, 1), u(t) ∈ C2[0, 1] ∩ C4(0, 1), |u′′|p−2u′′ ∈ C2(0, 1), and u(t)
satisfies (1.1) and (1.2).

The following two lemmas from the fixed point index theory and the theory based
on upper and lower solutions method will be used to obtain the multiplicity of positive
solutions, see [4].

Lemma 2.1 Let D be a cone in a real Banach space X, Ω be a bounded open subset of
X with θ ∈ Ω, and A : D ∩ Ω → D is a completely continuous operator. If

Ax = µx, x ∈ D ∩ ∂Ω ⇒ µ < 1,

then i(A, D ∩ Ω, D) = 1; While if

(1) inf
x∈D∩∂Ω

‖Ax‖ > 0;

(2) Ax = µx, x ∈ D ∩ ∂Ω ⇒ µ 6∈ (0, 1],

then i(A, D ∩ Ω, D) = 0.
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Lemma 2.2 Suppose X is a partially ordered Banach space, D is a normal cone of X,
and A : D → X is an increasing and completely continuous operator. If there exist x0,
y0 ∈ D such that x0 ≤ y0, 〈x0, y0〉 ⊂ D, and x0, y0 are a lower solution and an upper
solution of the equation

x − Ax = 0,

respectively, then the above equation has a minimal solution x∗ and a maximal solution
y∗ in the ordered interval 〈x0, y0〉, and x∗ ≤ y∗.

The following technical lemma, see [8], will be used to characterize some properties of
a related operator.

Lemma 2.3 If y ∈ C2(0, 1) ∩ C[0, 1] with y(t) ≥ 0 for 0 ≤ t ≤ 1, and y′′(t) ≤ 0 for
0 < t < 1, then

y(t) ≥
ξ

4
max
0≤s≤1

|y(s)|,
ξ

4
≤ t ≤ 1 −

ξ

4
,

where 0 ≤ ξ ≤ 1.

We also need the following technical lemma on the property of the function f , see [3].

Lemma 2.4 Suppose that f : [0, +∞) → (0, +∞) is continuous. For s > 0 and M > 0,
there exists s > s and h0 > 0 such that

sf(u + h) < sf(u), u ∈ [0, M ], h ∈ (0, h0).

We are now in the position to make preparation to prove our main result. We use the
notation ϕp(s) = |s|p−2s, for p > 1. Let q = p

p−1
. Then ϕq is the inverse function of ϕp.

Let E = C[0, 1] with the norm ‖u‖ = max
0≤t≤1

|u(t)| and

P = {u ∈ E; u(t) ≥ 0, t ∈ [0, 1]}.

It is clear that P is a normal cone of E. Define a set

S={λ > 0; such that the problem (1.1), (1.2) has at least one positive solution }.

To show the existence, it is necessary to construct an appropriate operator and solve
the corresponding operator equation. For this purpose, we first notice that u(t) is a
solution of the problem (1.1), (1.2), if and only if u(t) is a solution of the following
problem

v′′ = λg(t)f(u), (2.1)

u′′ = ϕq(v), (2.2)

v(0) = v(1) = 0, (2.3)

u(0) = u(1) = 0. (2.4)

Because of (2.1) and (2.3), v(t) can be expressed by

v(t) = −λ

∫ 1

0

k(t, s)g(s)f(u(s))ds,
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where k(t, s) is the Green function of the equation (2.1) with the boundary value (2.3),
and

k(t, s) =

{

t(1 − s), t ≤ s,

s(1 − t), t ≥ s.

Then u(t) can be expressed by

u(t) = λ
1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(u(s))ds

)

dτ. (2.5)

It is easy to prove that the Green function k(t, s) has the following properties.

Lemma 2.5 For all t, s ∈ [0, 1], we have

k(t, s) > 0, for (t, s) ∈ (0, 1) × (0, 1);

k(t, s) ≤ k(s, s) = s(1 − s), for t, s ∈ [0, 1];

0 ≤ k(t, s) ≤
1

4
, for t, s ∈ [0, 1].

Lemma 2.6 For all t ∈ [θ, 1 − θ], we have

k(t, s) ≥ θk(s, s), θ ∈ (0,
1

2
), s ∈ [0, 1].

Proof. In fact, for all t ∈ [θ, 1 − θ], we have

k(t, s)

k(s, s)
=











t

s
, 1 ≥ s ≥ t ≥ 0,

1 − t

1 − s
, 0 ≤ s ≤ t ≤ 1,

≥

{

t ≥ θ, s ≥ t,

1 − t ≥ θ, s ≤ t.

Therefore, For all t ∈ [θ, 1 − θ], we have

k(t, s) ≥ θk(s, s), θ ∈ (0,
1

2
), s ∈ [0, 1].

The proof is complete. �

Next, we consider the following approximate problem

(|u′′|p−2u′′)′′ = λg(t)f(u), 0 < t < 1, (2.6)

u(0) = u(1) = h ≥ 0, u′′(0) = u′′(1) = 0. (2.7)

Define a cone K ⊂ P as follows

K =

{

u ∈ E; u(t) ≥ 0, t ∈ [0, 1] and min
1/8≤t≤7/8

u(t) ≥
1

8
‖u‖

}

.

And we define an integral operator T h
λ on K by

T h
λ u(t) = h + λ

1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(u(s))ds

)

dτ. (2.8)

Now, we discuss the properties of the operator T h
λ . First, by the definition of T h

λ and
the assumption (H1), we have
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Lemma 2.7 Let (H1) and (H2) be satisfied. Then the operator T h
λ defined by (2.8) is

non-decreasing, that is, the inequality u1 ≤ u2 implies T h
λ u1 ≤ T h

λ u2, where “ ≤ ” is the
partial order defined on K.

The complete continuity of T h
λ can be obtained by the following lemma.

Lemma 2.8 Let (H1), (H2) and (1.3) be satisfied. Then the operator T h
λ defined by (2.8)

is completely continuous, and T h
λ K ⊂ K.

Proof. Firstly, we testify the complete continuity of T h
λ . Let {un} ⊂ K, u ∈ K with

‖un − u‖ → 0 as n → +∞. Then we have

‖(T h
λ un)(t) − (T h

λ u)(t)‖

≤ λ
1

p−1

∫ 1

0

k(t, τ)

∣

∣

∣

∣

ϕq

(
∫ 1

0

k(τ, s)g(s)f(un(s))ds

)

− ϕq

(
∫ 1

0

k(τ, s)g(s)f(u(s))ds

)
∣

∣

∣

∣

dτ

≤ λ
1

p−1 sup
t∈[0,1]

∣

∣

∣

∣

ϕq

(
∫ 1

0

k(t, s)g(s)f(un(s))ds

)

− ϕq

(
∫ 1

0

k(t, s)g(s)f(u(s))ds

)
∣

∣

∣

∣

.

Since ‖un − u‖ → 0 as n → ∞ and un, u ∈ K, {un(t)} is bounded uniformly. Then there
exists a constant M0 > 0, such that |u(t)| ≤ M0, |un(t)| ≤ M0, for any t ∈ [0, 1], n =
1, 2, · · · . Due to the continuity of f(s), f(un) is bounded uniformly in [0, M0]. Moreover,
because of the continuity of ϕq(s), (1.3) and (H2), by the Lebesgue dominated convergence
theorem, we have

‖T h
λ un − T h

λ u‖ → 0 (n → ∞).

Therefore, we see that T h
λ is continuous. And the compactness of the operator T h

λ is easily
obtained from the Arzela-Ascoli theorem.

Next, we testify that T h
λ K ⊂ K. For each u ∈ K, it is easy to check that (T h

λ u)′′(t) ≤ 0
for 0 < t < 1 and (T h

λ u)(t) ≥ 0 for 0 ≤ t ≤ 1. Then according to Lemma 2.3, the following
inequality holds

(T h
λ u)(t) ≥

1

8
‖T h

λ u‖,
1

8
≤ t ≤

7

8
,

which implies that (T h
λ u)(t) ∈ K. Hence we testify that T h

λ K ⊂ K. The proof is complete.
�

By the definition of T h
λ , namely (2.8), and a direct computation, we obtain the following

lemma.

Lemma 2.9 Let (H1) and (H2) be satisfied. Then the problem (1.1), (1.2) has a positive
solution u if and only if u is a fixed point of T 0

λ . And the problem (2.6), (2.7) has a
positive solution u if and only if u is a fixed point of T h

λ .

In order to apply the fixed point index lemmas, we need the a priori estimates on
positive solutions of the problem (1.1), (1.2).

Lemma 2.10 Let (H1), (H2) and (1.3) be satisfied. And suppose that λ ∈ S, S1 =
(λ, +∞) ∩ S 6≡ ∅. Then there exists a constant R(λ) > 0, such that ‖uλ′‖ ≤ R(λ), where
λ′ ∈ S1, and the function uλ′ ∈ K is a positive solution of the problem (1.1), (1.2) with λ

replaced by λ′.

EJQTDE, 2010 No. 27, p. 6



Proof. For any fixed λ′ ∈ S, let uλ′ be a positive solution of the problem (1.1), (1.2).
Then, by Lemma 2.9, we have

uλ′(t) = T 0
λ′uλ′(t) = (λ′)

1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(uλ′(s))ds

)

dτ.

Let

R(λ) = max







(

λ
1

p−1

(

1

8

)
m+p

p−1
∫ 7/8

1/8

k(τ, τ)ϕq

(

∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ

)−(p−1)/(m−p+1)

, 1







.

We conclude that ‖uλ′‖ ≤ R(λ). Indeed, if ‖uλ′‖ < 1, the result is easily obtained; while
if ‖uλ′‖ ≥ 1, by (H1), Lemma 2.3 and Lemma 2.6, we have

‖uλ′‖ ≥ (λ′)
1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(uλ′(s))ds

)

dτ

≥ λ
1

p−1

∫ 7/8

1/8

k(t, τ)ϕq

(

(

1

8

)m+1

‖uλ′‖m

∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ

≥ λ
1

p−1

(

1

8

)(m+p)/(p−1)

‖uλ′‖m/(p−1)

∫ 7/8

1/8

k(τ, τ)ϕq

(

∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ.

Consequently,

‖uλ′‖m/(p−1)−1 ≤

(

λ
1

p−1

(

1

8

)(m+p)/(p−1) ∫ 7/8

1/8

k(τ, τ)ϕq

(

∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ

)−1

,

‖uλ′‖ ≤

(

λ
1

p−1

(

1

8

)(m+p)/(p−1) ∫ 7/8

1/8

k(τ, τ)ϕq

(

∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ

)−(p−1)/(m−p+1)

.

Therefore, ‖uλ′‖ ≤ R(λ), which completes the proof of the lemma. �

3 Proofs of the Main Result

In this section, we give the proof of the main result, that is, Theorem 1.1. The proof
will be divided into two parts. Firstly, by the upper and lower solutions method, we
investigate the basic existence of positive solutions of the problem (1.1), (1.2). Exactly,
we will determine the threshold λ∗ of the parameter λ, such that the problem is solvable
if and only if 0 < λ ≤ λ∗. Furthermore, by the fixed point index theory, we establish the
multiplicity of positive solutions for 0 < λ < λ∗.

We first present and prove the basic existence result of positive solutions of the problem
(1.1), (1.2).

Proposition 3.1 Let (H1), (H2) and (1.3) be satisfied. Then there exists a threshold λ∗

with 0 < λ∗ < +∞, such that the problem (1.1), (1.2) admits at least one positive solution
for any λ ∈ (0, λ∗], and has no positive solution for any λ > λ∗.
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Proof. Let S be the set defined in the previous section, namely

S = {λ > 0; such that the problem (1.1), (1.2) has at least one positive solution}.

We first show that S 6= ∅. Let β(t) be a solution of the boundary value problem

(|u′′|p−2u′′)′′ = g(t), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(3.1)

Then, by (2.5) we have

β(t) =

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)ds

)

dτ.

Let β0 = max
t∈[0,1]

β(t). Then by (H1) and (2.8), we have

T 0
λβ(t) ≤ T 0

λβ0

≤ λ
1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(β0)ds

)

dτ.

≤ λ
1

p−1 f(β0)
1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)ds

)

dτ.

≤ β(t), ∀ 0 < λ <
1

f(β0)
,

which implies that β(t) is an upper solution of T 0
λ . On the other hand, let α(t) ≡ 0, t ∈

[0, 1]. Then α(t) is a lower solution of T 0
λ , and α(t) ≤ β(t), t ∈ (0, 1). Hence, by Lemma

2.2, Lemma 2.7 and Lemma 2.8, T 0
λ has a fixed point uλ ∈ [α, β], for 0 < λ < 1

f(β0)
. So

uλ is a positive solution of the problem (1.1), (1.2). Therefore, for any 0 < λ < 1
f(β0)

, we

have λ ∈ S, which implies that S 6= ∅.
Next, we show that if λ1 ∈ S, then (0, λ1) ⊂ S. In fact, if uλ1

be a positive solution of
the problem (1.1), (1.2), then, by Lemma 2.9, we have

uλ1
(t) = T 0

λ1
uλ1

(t), t ∈ [0, 1].

Therefore, for any λ ∈ (0, λ1), by (2.8), we have

T 0
λuλ1

(t) = λ
1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(uλ1
(s))ds

)

dτ

≤ λ1

1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(uλ1
(s))ds

)

dτ

= T 0
λ1

uλ1
(t)

= uλ1
(t),

which implies that uλ1
is an upper solution of T 0

λ . Taking this into account, noticing the
fact that the function α(t) ≡ 0 is a lower solution of T 0

λ , and using Lemma 2.2, Lemma 2.7
and Lemma 2.8, we see that the problem (1.1), (1.2) has a positive solution, and therefore
λ ∈ S, which implies that (0, λ1) ⊂ S.
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Now, we conclude that sup S < +∞. If this were not true, then we would have N ⊂ S,
where N denotes the set of natural numbers. Therefore, for any n ∈ N, by Lemma 2.8,
there exists un ∈ K satisfying

un = T 0
nun = n

1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(un(s))ds

)

dτ.

If ‖un‖ ≥ 1, then we have

‖un‖ ≥ n
1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(un(s))ds

)

dτ

≥ n
1

p−1

∫ 7/8

1/8

k(t, τ)ϕq

(

(

1

8

)m+1

‖un‖
m

∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ

≥ n
1

p−1

(

1

8

)(m+p)/(p−1)

‖un‖
m/(p−1)

∫ 7/8

1/8

k(τ, τ)ϕq

(

∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ.

Consequently,

1 ≥ n
1

p−1

(

1

8

)(m+p)/(p−1) ∫ 7/8

1/8

k(τ, τ)ϕq

(

∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ. (3.2)

If ‖un‖ ≤ 1, then

1 ≥ ‖un‖ ≥ n
1

p−1

(

1

8

)p/(p−1) ∫ 7/8

1/8

k(τ, τ)ϕq

(

∫ 7/8

1/8

k(s, s)g(s)f(0)ds

)

dτ > 0. (3.3)

Letting n → +∞ in (3.2) and (3.3), we get a contradiction. Therefore, sup S < +∞.
We are now in a position to determine the threshold λ∗. We conclude that

λ∗ = sup S.

It remains to show that λ∗ ∈ S. Let {λn} be an increasing sequence in [λ∗

2
, λ∗) with

λn → λ∗(n → +∞), and let un be the corresponding solutions of the problem (1.1), (1.2)
with λ replaced by λn. By Lemma 2.10, there exists R(λ∗

2
) > 0 such that

‖un‖ ≤ R

(

λ∗

2

)

, n = 1, 2, · · · .

Therefore, {un} is an equicontinuous and uniformly bounded subset of C[0, 1]. By the
Arzela-Ascoli theorem, {un} has a convergent subsequence, and denoted also by itself,
with un → u∗ as n → +∞. Since un = T 0

λn
un, due to the continuity of f(s), we see that

f(un) is bounded uniformly in [0, R(λ∗

2
)], which together with the continuity of ϕq(s) and

(H2), by the Lebesgue dominated convergence theorem, implies that u∗ = T 0
λ∗u∗. Hence,

by Lemma 2.9, u∗ is a positive solution of the problem (1.1), (1.2) with λ replaced by λ∗.
Summing up, we have completed the proof of the proposition. �

To complete the proof of our main result, that is Theorem 1.1, it remains to show the
multiplicity of solutions for 0 < λ < λ∗. To do this, we need also the following lemma.
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Lemma 3.1 Let (H1), (H2) and (1.3) be satisfied. Then there exists h0 ∈ (0, 1), such
that for any h̄ ∈ (0, h0) and λ ∈ (0, λ∗), the problem (2.6), (2.7) admits at least one
positive solution.

Proof. Let α(t) ≡ h̄ for t ∈ [0, 1]. It is obvious that, for any fixed λ ∈ (0, λ∗), α(t)
is a lower solution of the operator T h̄

λ . On the other hand, by Lemma 2.10, there exists
R(λ) > 0 such that ‖uλ′‖ ≤ R(λ), where λ′ ∈ [λ, λ∗] and uλ′ is a positive solution of the
problem (1.1), (1.2) with λ replaced by λ′. By Lemma 2.4, there exist λ ∈ (λ, λ∗) and
h0 ∈ (0, 1) satisfying

λf(u + h̄) < λf(u), u ∈ [0, R(λ)], h̄ ∈ (0, h0).

Let uλ be a positive solution of the problem (1.1), (1.2) with λ replaced by λ, and uλ(t) =
uλ + h̄, h̄ ∈ (0, h0). Then

uλ(t) = uλ + h̄

= h̄ +

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)λg(s)f(uλ(s))ds

)

dτ

≥ h̄ + λ
1

p−1

∫ 1

0

k(t, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(uλ(s) + h̄)ds

)

dτ

= T h̄
λ uλ(t),

which implies that uλ(t) is an upper solution of the operator T h̄
λ . Then, by Lemma

2.2, Lemma 2.7 and Lemma 2.8, the problem (2.6), (2.7) has a positive solution, which
completes the proof. �

We can now establish the multiplicity of positive solutions by the fixed point index
theory.

Proposition 3.2 Let (H1), (H2) and (1.3) be satisfied. If 0 < λ < λ∗, then there exist
at least two positive solutions of the problem (1.1), (1.2).

Proof. Just as mentioned above, the arguments are based on fixed point index theory.
Exactly, we apply Lemma 2.1 to calculate the indexes of the corresponding operator in
two different domains, and then complete the proof by the index theory.

Let K be the set defined in the previous section, namely

K =

{

u ∈ E; u(t) ≥ 0, t ∈ [0, 1] and min
1/8≤t≤7/8

u(t) ≥
1

8
‖u‖

}

.

To calculate the index of the operator T 0
λ on some subset of K, we need to check the

validity of the conditions in Lemma 2.1. By Lemma 3.1, there exists h0 ∈ (0, 1), such
that for any h̄ ∈ (0, h0) and λ ∈ (0, λ∗), the problem (2.6), (2.7) admits at least one
positive solution. Let vλ(t) be a positive solution of the problem (2.6), (2.7), and Ω =
{u ∈ K; u(t) < vλ(t), t ∈ [0, 1]}. It is clear that the set Ω ⊂ K is nonempty, bounded and
open. If u ∈ ∂Ω, then there exists t0 ∈ [0, 1], such that u(t0) = vλ(t0). Therefore, for any
µ ≥ 1, h̄ ∈ (0, h0) and u ∈ ∂Ω, we have

T 0
λu(t0) < h̄ + T 0

λu(t0)
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≤ h̄ + T 0
λvλ(t0)

= T h̄
λ vλ(t0),

and by Lemma 2.9, we have

T h̄
λ vλ(t0) = vλ(t0) = u(t0) ≤ µu(t0).

Hence, for any µ ≥ 1, we see that T 0
λu 6= µu, u ∈ ∂Ω. Therefore, by Lemma 2.1,

i(T 0
λ , Ω, K) = 1. (3.4)

Now, we calculate the index of the operator T 0
λ on another relevant subset of K. For

this purpose, we check the conditions of Lemma 2.1. Firstly, we check the validity of the
condition (1) of the second part of Lemma 2.1. In fact, for any u ∈ K, we have

T 0
λu(

1

2
) = λ

1

p−1

∫ 1

0

k(
1

2
, τ)ϕq

(
∫ 1

0

k(τ, s)g(s)f(u(s))ds

)

dτ

≥ λ
1

p−1

∫ 7/8

1/8

k(
1

2
, τ)ϕq

(

(

1

8

)m+1

‖u‖m

∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ

≥ λ
1

p−1‖u‖m/(p−1)

∫ 7/8

1/8

k(
1

2
, τ)ϕq

(

(

1

8

)m+1 ∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ

≥ λ
1

p−1‖u‖(m−p+1)/(p−1)

∫ 7/8

1/8

k(
1

2
, τ)ϕq

(

(

1

8

)m+1 ∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ‖u‖.

(3.5)

Choose R > 0 such that

λ
1

p−1 R
(m−p+1)/(p−1)

∫ 7/8

1/8

k(
1

2
, τ)ϕq

(

(

1

8

)m+1 ∫ 7/8

1/8

k(s, s)g(s)δds

)

dτ > 1. (3.6)

Therefore, for any R > R > 0 and BR ⊂ K, by (3.5) and (3.6) we have

‖T 0
λu‖ > ‖u‖ > 0, u ∈ ∂BR, (3.7)

where BR = {u ∈ K; ‖u‖ < R}. Hence the condition (1) of the second part of Lemma
2.1 is fulfilled. It remains to check the validity of the condition (2) of the second part of
Lemma 2.1. In fact, if this condition were not satisfied, then there would exist a function
u1 ∈ K ∩ ∂BR, 0 < µ1 ≤ 1, such that T 0

λu1 = µ1u1. Then, we have ‖T 0
λu1‖ ≤ ‖u1‖, which

conflicts with (3.7). Therefore by Lemma 2.1, we have

i(T 0
λ , BR, K) = 0. (3.8)

Finally, from (3.8), by the additivity of the fixed point index, we can now complete
the proof of the proposition. In fact, we have

0 = i(T 0
λ , BR, K) = i(T 0

λ , Ω, K) + i(T 0
λ , BR\Ω, K),
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which, together with (3.4), implies that

i(T 0
λ , BR\Ω, K) = −1. (3.9)

Consequently, from (3.4) and (3.9), by the properties of the fixed point index, there are a
fixed point of T 0

λ in Ω and a fixed point of T 0
λ in BR\Ω, respectively. Therefore by Lemma

2.9, the problem (1.1), (1.2) has at least two positive solutions. The proof is complete.�
Combining Proposition 3.1 with Proposition 3.2, we have completed the proof of The-

orem 1.1.

4 The Extension

Just as mentioned in the introduction, our approach for treating the problem (1.1), (1.2)
can also be applied to the problem (1.1), (1.4). Since several details are quite similar, we
only give a sketch for the proof of Theorem 1.2.

Similar to the proof of the Theorem 1.1, it is necessary to construct an appropriate
operator and solve the corresponding operator equation. For this purpose, we first notice
that u(t) is a solution of the problem (1.1), (1.4), if and only if u(t) is a solution of the
following problem

v′′ = λg(t)f(u), (4.1)

u′′ = ϕq(v), (4.2)

v(0) = v′(1) = 0, (4.3)

u(0) = u′(1) = 0, (4.4)

where ϕq is the inverse function of ϕp. Because of (4.1) and (4.3), v(t) can be expressed
by

v(t) = −λ

∫ 1

0

k̂(t, s)g(s)f(u(s))ds, (4.5)

where k̂(t, s) is the Green function of the equation (4.1) with the boundary value (4.3),
and

k̂(t, s) =

{

t, t ≤ s,

s, t ≥ s.

From (4.2), (4.4), and (4.5), u(t) can be expressed by

u(t) = λ
1

p−1

∫ 1

0

k̂(t, τ)ϕq

(
∫ 1

0

k̂(τ, s)g(s)f(u(s))ds

)

dτ.

Next, we consider the following approximate problem

(|u′′|p−2u′′)′′ = λg(t)f(u), 0 < t < 1, (4.6)

u(0) = u′(1) = h ≥ 0, (|u′′(t)|p−2u′′(t))|t=0 = (|u′′(t)|p−2u′′(t))′|t=1 = 0. (4.7)

Define an integral operator T h
λ : E → E related to the problem (4.6), (4.7) by

(T h
λ u)(t) = (1 + t)h + λ

1

p−1

∫ 1

0

k̂(t, τ)ϕq

(
∫ 1

0

k̂(τ, s)g(s)f(u(s))ds

)

dτ. (4.8)

A direct computation shows that
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Lemma 4.1 Let (H1) and (H2) be satisfied. Then the problem (1.1), (1.4) has a positive
solution u if and only if u is a fixed point of T 0

λ . And the problem (4.6), (4.7) has a
positive solution u if and only if u is a fixed point of T h

λ .

Now, we discuss the properties of the operator T h
λ . From (H1), we can easily obtain

the monotonicity of the operator T h
λ . While the complete continuity of T h

λ can be
obtained by the following lemma.

Lemma 4.2 Let (H1), (H2) and (1.5) be satisfied. Then the operator T h
λ is completely

continuous, and T h
λ K ⊂ K.

Proof. Firstly, we testify the complete continuity of T h
λ . The proof is parallel to that

of the front part of Lemma 2.8, and so, we omit the details.
Now, we testify T h

λ K ⊂ K. For each u ∈ K, it is easy to check that (T 0
λ )′′(t) ≤ 0 for

0 < t < 1 and (T 0
λ )(t) ≥ 0 for 0 < t < 1. Then according to Lemma 2.3, the following

inequality holds

(T 0
λ u)(t) ≥

1

8
‖T 0

λ u‖,
1

8
≤ t ≤

7

8
, (4.9)

which implies that (T 0
λ u)(t) ∈ K. For any u ∈ K, by (4.8), we have

‖T h
λ u‖ ≤ ‖T 0

λ u‖ + 2h.

On the other hand, by (4.9), we have

min
1/8≤t≤7/8

T
h

λ u(t) ≥ min
1/8≤t≤7/8

T
0

λ + min
1/8≤t≤7/8

((1 + t)h)

≥ min
1/8≤t≤7/8

T
0

λ +
9

8
h

≥
1

8
‖T 0

λ u‖ +
9

8
h

≥
1

8
‖T h

λ u‖,

which implies that T h
λ K ⊂ K. The proof is complete. �

Similar to Lemma 2.10, we obtain the following a priori estimates on positive solutions
of the problem (1.1), (1.4).

Lemma 4.3 Let (H1), (H2) and (1.5) be satisfied. Suppose that λ ∈ S and S1 =
(λ, +∞) ∩ S 6≡ ∅, where S={λ > 0; such that the problem (1.1), (1.4) has at least one
positive solution }. Then there exists R(λ) > 0, such that ‖uλ′‖ ≤ R(λ), where λ′ ∈ S1,
and uλ′ ∈ K is a positive solution of the problem (1.1), (1.4) with λ replaced by λ′.

The Proof of Theorem 1.2. The proof is parallel to that of Theorem 1.1, and so,
we omit the details. �
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