Existence of solutions for a class of fourth-order m-point boundary value problems*

Jian-Ping Sun, Qiu-Yan Ren
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
E-mail: jpsun@lut.cn (Sun)

Abstract

Some existence criteria are established for a class of fourth-order m-point boundary value problem by using the upper and lower solution method and the Leray-Schauder continuation principle. Keywords: Fourth-order m-point boundary value problem; Upper and lower solution method; Leray-Schauder continuation principle; Nagumo condition 2000 AMS Subject Classification: 34B10, 34B15

1 Introduction

Boundary value problems (BVPs for short) of fourth-order differential equations have been used to describe a large number of physical, biological and chemical phenomena. For example, the deformations of an elastic beam in the equilibrium state can be described as some fourth-order BVP. Recently, fourth-order BVPs have received much attention. For instance, $[3,5,6,7]$ discussed some fourth-order two-point BVPs, while $[1,2,4,9]$ studied some fourth-order three-point or four-point BVPs. It is worth mentioning that Ma, Zhang and Fu [7] employed the upper and lower solution method to prove the existence of solutions for the BVP

$$
\left\{\begin{array}{l}
u^{(4)}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right), t \in(0,1), \\
u(0)=u^{\prime}(1)=u^{\prime \prime}(0)=u^{\prime \prime \prime}(1)=0,
\end{array}\right.
$$

and Bai [3] considered the existence of a solution for the BVP

$$
\left\{\begin{array}{l}
u^{(4)}(t)=f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right), t \in(0,1), \\
u(0)=u^{\prime}(1)=u^{\prime \prime}(0)=u^{\prime \prime \prime}(1)=0
\end{array}\right.
$$

by using the upper and lower solution method and Schauder's fixed point theorem.
Although there are many works on fourth-order two-point, three-point or four-point BVPs, a little work has been done for more general fourth-order m-point BVPs [8]. Motivated greatly by the

[^0]above-mentioned excellent works, in this paper, we will investigate the following fourth-order m-point BVP
\[

\left\{$$
\begin{array}{l}
u^{(4)}(t)+f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right)=0, t \in[0,1] \tag{1.1}\\
u(0)=\sum_{i=1}^{m-2} a_{i} u\left(\eta_{i}\right), u^{\prime}(1)=0 \\
u^{\prime \prime}(0)=\sum_{i=1}^{m-2} b_{i} u^{\prime \prime}\left(\eta_{i}\right), u^{\prime \prime \prime}(1)=0
\end{array}
$$\right.
\]

Throughout this paper, we always assume that $0<\eta_{1}<\eta_{2}<\cdots<\eta_{m-2}<1, a_{i}$ and $b_{i}(i=$ $1,2, \cdots, m-2$) are nonnegative constants and $f:[0,1] \times R^{4} \rightarrow R$ is continuous. Some existence criteria are established for the BVP (1.1) by using the upper and lower solution method and the Leray-Schauder continuation principle.

2 Preliminaries

Let $E=C[0,1]$ be equipped with the norm $\|v\|_{\infty}=\max _{t \in[0,1]}|v(t)|$ and

$$
K=\{v \in E \mid v(t) \geq 0 \text { for } t \in[0,1]\} .
$$

Then K is a cone in E and (E, K) is an ordered Banach space. For Banach space $X=C^{1}[0,1]$, we use the norm $\|v\|=\max \left\{\|v\|_{\infty},\left\|v^{\prime}\right\|_{\infty}\right\}$.

Lemma 2.1 Let $\sum_{i=1}^{m-2} a_{i} \neq 1$. Then for any $h \in E$, the second-order m-point BVP

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(t)=h(t), t \in[0,1], \tag{2.1}\\
u(0)=\sum_{i=1}^{m-2} a_{i} u\left(\eta_{i}\right), u^{\prime}(1)=0
\end{array}\right.
$$

has a unique solution

$$
u(t)=\int_{0}^{1} G_{1}(t, s) h(s) d s,
$$

where

$$
G_{1}(t, s)=K(t, s)+\frac{1}{1-\sum_{i=1}^{m-2} a_{i}} \sum_{i=1}^{m-2} a_{i} K\left(\eta_{i}, s\right),
$$

here

$$
K(t, s)=\left\{\begin{array}{l}
s, 0 \leq s \leq t \leq 1, \\
t, 0 \leq t \leq s \leq 1
\end{array}\right.
$$

is Green's function of the second-order two-point BVP

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(t)=0, t \in[0,1] \\
u(0)=u^{\prime}(1)=0
\end{array}\right.
$$

Proof. If u is a solution of the BVP (2.1), then we may suppose that

$$
u(t)=\int_{0}^{1} K(t, s) h(s) d s+A t+B
$$

By the boundary conditions in (2.1), we know that

$$
A=0 \text { and } B=\frac{1}{1-\sum_{i=1}^{m-2} a_{i}} \sum_{i=1}^{m-2} a_{i} \int_{0}^{1} K\left(\eta_{i}, s\right) h(s) d s
$$

Therefore, the unique solution of the BVP (2.1)

$$
\begin{aligned}
u(t) & =\int_{0}^{1} K(t, s) h(s) d s+\frac{1}{1-\sum_{i=1}^{m-2} a_{i}} \sum_{i=1}^{m-2} a_{i} \int_{0}^{1} K\left(\eta_{i}, s\right) h(s) d s \\
& =\int_{0}^{1} G_{1}(t, s) h(s) d s
\end{aligned}
$$

In the remainder of this paper, we always assume that $\sum_{i=1}^{m-2} a_{i}<1$ and $\sum_{i=1}^{m-2} b_{i}<1$, which imply that $G_{1}(t, s)$ and $G_{2}(t, s)$ are nonnegative on $[0,1] \times[0,1]$, where

$$
G_{2}(t, s)=K(t, s)+\frac{1}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} K\left(\eta_{i}, s\right)
$$

Now, we define operators A and $B: E \rightarrow E$ as follows:

$$
\begin{equation*}
(A v)(t)=-\int_{0}^{1} G_{1}(t, s) v(s) d s, t \in[0,1] \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
(B v)(t)=-\int_{t}^{1} v(s) d s, t \in[0,1] \tag{2.3}
\end{equation*}
$$

Remark 2.1 A and B are decreasing operators on E.

Lemma 2.2 If the following $B V P$

$$
\left\{\begin{array}{l}
v^{\prime \prime}(t)+f\left(t,(A v)(t),(B v)(t), v(t), v^{\prime}(t)\right)=0, t \in[0,1] \tag{2.4}\\
v(0)=\sum_{i=1}^{m-2} b_{i} v\left(\eta_{i}\right), v^{\prime}(1)=0
\end{array}\right.
$$

has a solution, then does the BVP (1.1).

Proof. Suppose that v is a solution of the BVP (2.4). Then it is easy to prove that $u=A v$ is a solution of the BVP (1.1).

Definition 2.1 If $\alpha \in C^{2}[0,1]$ satisfies

$$
\left\{\begin{array}{l}
\alpha^{\prime \prime}(t)+f\left(t,(A \alpha)(t),(B \alpha)(t), \alpha(t), \alpha^{\prime}(t)\right) \geq 0, t \in[0,1] \tag{2.5}\\
\alpha(0) \leq \sum_{i=1}^{m-2} b_{i} \alpha\left(\eta_{i}\right), \alpha^{\prime}(1) \leq 0
\end{array}\right.
$$

then α is called a lower solution of the BVP (2.4).
Definition 2.2 If $\beta \in C^{2}[0,1]$ satisfies

$$
\left\{\begin{array}{l}
\beta^{\prime \prime}(t)+f\left(t,(A \beta)(t),(B \beta)(t), \beta(t), \beta^{\prime}(t)\right) \leq 0, t \in[0,1] \tag{2.6}\\
\beta(0) \geq \sum_{i=1}^{m-2} b_{i} \beta\left(\eta_{i}\right), \beta^{\prime}(1) \geq 0
\end{array}\right.
$$

then β is called an upper solution of the BVP (2.4).
Remark 2.2 If the inequality in Definition (2.1)

$$
\alpha^{\prime \prime}(t)+f\left(t,(A \alpha)(t),(B \alpha)(t), \alpha(t), \alpha^{\prime}(t)\right) \geq 0, t \in[0,1]
$$

is replaced by

$$
\alpha^{\prime \prime}(t)+f\left(t,(A \alpha)(t),(B \alpha)(t), \alpha(t), \alpha^{\prime}(t)\right)>0, t \in[0,1]
$$

then α is called a strict lower solution of the BVP (2.4). Similarly, we can also give the definition of a strict upper solution for the BVP (2.4).

Definition 2.3 Assume that $f \in C\left([0,1] \times R^{4}, R\right), \alpha, \beta \in E$ and $\alpha(t) \leq \beta(t)$ for $t \in[0,1]$. We say that f satisfies Nagumo condition with respect to α and β provided that there exists a function $h \in C([0,+\infty),(0,+\infty))$ such that

$$
\left|f\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)\right| \leq h\left(\left|x_{4}\right|\right)
$$

for all $\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right) \in[0,1] \times[(A \beta)(t),(A \alpha)(t)] \times[(B \beta)(t),(B \alpha)(t)] \times[\alpha(t), \beta(t)] \times R$, and

$$
\begin{equation*}
\int_{\lambda}^{+\infty} \frac{s}{h(s)} d s>\max _{t \in[0,1]} \beta(t)-\min _{t \in[0,1]} \alpha(t) \tag{2.7}
\end{equation*}
$$

where $\lambda=\max \{|\beta(1)-\alpha(0)|,|\beta(0)-\alpha(1)|\}$.
Lemma 2.3 Assume that α and β are, respectively, the lower and the upper solution of the $B V P$ (2.4) with $\alpha(t) \leq \beta(t)$ for $t \in[0,1]$, and f satisfies the Nagumo condition with respect to α and β. Then there exists $N>0$ (depending only on α and β) such that any solution ω of the BVP (2.4) lying in $[\alpha, \beta]$ satisfies

$$
\left|\omega^{\prime}(t)\right| \leq N, t \in[0,1]
$$

Proof. It follows from the definition of λ and the mean-value theorem that there exists $t_{0} \in(0,1)$ such that

$$
\begin{equation*}
\left|\omega^{\prime}\left(t_{0}\right)\right|=|\omega(1)-\omega(0)| \leq \lambda \tag{2.8}
\end{equation*}
$$

By (2.7), we know that there exists $N>\lambda$ such that

$$
\begin{equation*}
\int_{\lambda}^{N} \frac{s}{h(s)} d s>\max _{t \in[0,1]} \beta(t)-\min _{t \in[0,1]} \alpha(t) \tag{2.9}
\end{equation*}
$$

Now, we will prove that $\left|\omega^{\prime}(t)\right| \leq N$ for any $t \in[0,1]$. Suppose on the contrary that there exists $t_{1} \in[0,1]$ such that

$$
\begin{equation*}
\left|\omega^{\prime}\left(t_{1}\right)\right|>N . \tag{2.10}
\end{equation*}
$$

In view of (2.8) and (2.10), we know that there exist $t_{2}, t_{3} \in(0,1)$ with $t_{2}<t_{3}$ such that one of the following cases holds:

Case 1. $\lambda<\omega^{\prime}(t)<N$ for $t \in\left(t_{2}, t_{3}\right), \omega^{\prime}\left(t_{2}\right)=\lambda$ and $\omega^{\prime}\left(t_{3}\right)=N$;
Case 2. $\lambda<\omega^{\prime}(t)<N$ for $t \in\left(t_{2}, t_{3}\right), \omega^{\prime}\left(t_{2}\right)=N$ and $\omega^{\prime}\left(t_{3}\right)=\lambda$;
Case 3. $-N<\omega^{\prime}(t)<-\lambda$ for $t \in\left(t_{2}, t_{3}\right), \omega^{\prime}\left(t_{2}\right)=-N$ and $\omega^{\prime}\left(t_{3}\right)=-\lambda$;
Case 4. $-N<\omega^{\prime}(t)<-\lambda$ for $t \in\left(t_{2}, t_{3}\right), \omega^{\prime}\left(t_{2}\right)=-\lambda$ and $\omega^{\prime}\left(t_{3}\right)=-N$.
Since the others is similar, we only consider Case 1. By the Nagumo condition, we have

$$
\begin{aligned}
\left|\omega^{\prime \prime}(t)\right| \cdot \omega^{\prime}(t) & =\left|f\left(t,(A \omega)(t),(B \omega)(t), \omega(t), \omega^{\prime}(t)\right)\right| \cdot \omega^{\prime}(t) \\
& \leq h\left(\left|\omega^{\prime}(t)\right|\right) \cdot \omega^{\prime}(t), t \in\left[t_{2}, t_{3}\right]
\end{aligned}
$$

So,

$$
\frac{\left|\omega^{\prime \prime}(t)\right| \cdot \omega^{\prime}(t)}{h\left(\omega^{\prime}(t)\right)} \leq \omega^{\prime}(t), t \in\left[t_{2}, t_{3}\right]
$$

and so,

$$
\left|\int_{t_{2}}^{t_{3}} \frac{\omega^{\prime \prime}(t) \cdot \omega^{\prime}(t)}{h\left(\omega^{\prime}(t)\right)} d t\right| \leq \int_{t_{2}}^{t_{3}}\left|\frac{\omega^{\prime \prime}(t) \cdot \omega^{\prime}(t)}{h\left(\omega^{\prime}(t)\right)}\right| d t \leq \int_{t_{2}}^{t_{3}} \omega^{\prime}(t) d t
$$

which implies that

$$
\int_{\lambda}^{N} \frac{s}{h(s)} d s \leq \omega\left(t_{3}\right)-\omega\left(t_{2}\right) \leq \max _{t \in[0,1]} \beta(t)-\min _{t \in[0,1]} \alpha(t)
$$

which contradicts with (2.9) and the proof is complete.

3 Main result

Theorem 3.1 Assume that α and β are, respectively, the strict lower and the strict upper solution of the BVP (2.4) with $\alpha(t) \leq \beta(t)$ for $t \in[0,1]$, and f satisfies the Nagumo condition with respect to α and β. Then the $B V P$ (2.4) has a solution v_{0} and

$$
\alpha(t) \leq v_{0}(t) \leq \beta(t) \text { for } t \in[0,1]
$$

Proof. It follows from Lemma 2.3 that there exists $N>0$ such that any solution ω of the BVP (2.4) lying in $[\alpha, \beta]$ satisfies

$$
\left|\omega^{\prime}(t)\right| \leq N \text { for } t \in[0,1]
$$

We denote $C=\max \left\{N, \max _{t \in[0,1]}\left|\alpha^{\prime}(t)\right|, \max _{t \in[0,1]}\left|\beta^{\prime}(t)\right|\right\}$ and define the auxiliary functions f_{1}, f_{2}, f_{3} and $F:[0,1] \times R^{4} \rightarrow R$ as follows:

$$
f_{1}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\{\begin{array}{l}
f\left(t, x_{1}, x_{2}, x_{3}, C\right), x_{4}>C \\
f\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right),-C \leq x_{4} \leq C \\
f\left(t, x_{1}, x_{2}, x_{3},-C\right), x_{4}<-C
\end{array}\right.
$$

$$
\begin{aligned}
& f_{2}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\{\begin{array}{l}
f_{1}\left(t,(A \alpha)(t), x_{2}, x_{3}, x_{4}\right), x_{1}>(A \alpha)(t), \\
f_{1}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right),(A \beta)(t) \leq x_{1} \leq(A \alpha)(t), \\
f_{1}\left(t,(A \beta)(t), x_{2}, x_{3}, x_{4}\right), x_{1}<(A \beta)(t) ;
\end{array}\right. \\
& f_{3}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\{\begin{array}{l}
f_{2}\left(t, x_{1},(B \alpha)(t), x_{3}, x_{4}\right), x_{2}>(B \alpha)(t), \\
f_{2}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right),(B \beta)(t) \leq x_{2} \leq(B \alpha)(t), \\
f_{2}\left(t, x_{1},(B \beta)(t), x_{3}, x_{4}\right), x_{2}<(B \beta)(t)
\end{array}\right.
\end{aligned}
$$

and

$$
F\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left\{\begin{array}{l}
f_{3}\left(t, x_{1}, x_{2}, \beta(t), x_{4}\right), x_{3}>\beta(t), \\
f_{3}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right), \alpha(t) \leq x_{3} \leq \beta(t), \\
f_{3}\left(t, x_{1}, x_{2}, \alpha(t), x_{4}\right), x_{3}<\alpha(t) .
\end{array}\right.
$$

Consider the following auxiliary BVP

$$
\left\{\begin{array}{l}
v^{\prime \prime}(t)+F\left(t,(A v)(t),(B v)(t), v(t), v^{\prime}(t)\right)=0, t \in[0,1], \tag{3.1}\\
v(0)=\sum_{i=1}^{m-2} b_{i} v\left(\eta_{i}\right), v^{\prime}(1)=0 .
\end{array}\right.
$$

If we define an operator $T: X \rightarrow X$ by

$$
(T v)(t)=\int_{0}^{1} G_{2}(t, s) F\left(s,(A v)(s),(B v)(s), v(s), v^{\prime}(s)\right) d s, t \in[0,1],
$$

then it is obvious that fixed points of T are solutions of the BVP (3.1). Now, we will apply the Leray-Schauder continuation principle to prove that the operator T has a fixed point. Since it is easy to verify that $T: X \rightarrow X$ is completely continuous by using the Arzela-Ascoli theorem, we only need to prove that the set of all possible solutions of the homotopy group problem $v=\lambda T v$ is a priori bounded in X by a constant independent of $\lambda \in(0,1)$. Denote

$$
\begin{gathered}
\alpha_{m}=\min _{t \in[0,1]} \alpha(t), \beta_{M}=\max _{t \in[0,1]} \beta(t), \\
(A \beta)_{m}=\min _{t \in[0,1]}(A \beta)(t),(A \alpha)_{M}=\max _{t \in[0,1]}(A \alpha)(t), \\
(B \beta)_{m}=\min _{t \in[0,1]}(B \beta)(t),(B \alpha)_{M}=\max _{t \in[0,1]}(B \alpha)(t), \\
L=\sup \left\{\left|f\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)\right|:\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right) \in[0,1] \times\left[(A \beta)_{m},(A \alpha)_{M}\right]\right. \\
\left.\times\left[(B \beta)_{m},(B \alpha)_{M}\right] \times\left[\alpha_{m}, \beta_{M}\right] \times[-C, C]\right\} .
\end{gathered}
$$

Let $v=\lambda T v$. Then we have

$$
\begin{aligned}
|v(t)| & =|\lambda(T v)(t)| \\
& =\lambda\left|\int_{0}^{1} G_{2}(t, s) F\left(s,(A v)(s),(B v)(s), v(s), v^{\prime}(s)\right) d s\right| \\
& \leq \int_{0}^{1}\left(K(t, s)+\frac{1}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} K\left(\eta_{i}, s\right)\right)\left|F\left(s,(A v)(s),(B v)(s), v(s), v^{\prime}(s)\right)\right| d s \\
& \leq \frac{L}{1-\sum_{i=1}^{m-2} b_{i}}=: R, t \in[0,1]
\end{aligned}
$$

and

$$
\begin{aligned}
\left|v^{\prime}(t)\right| & =\left|\lambda(T v)^{\prime}(t)\right| \\
& =\lambda\left|\int_{0}^{1} \frac{\partial G_{2}(t, s)}{\partial t} F\left(s,(A v)(s),(B v)(s), v(s), v^{\prime}(s)\right) d s\right| \\
& \leq \int_{t}^{1}\left|F\left(s,(A v)(s),(B v)(s), v(s), v^{\prime}(s)\right)\right| d s \\
& \leq L \leq R, t \in[0,1],
\end{aligned}
$$

which imply that

$$
\|v\|=\max \left\{\|v\|_{\infty},\left\|v^{\prime}\right\|_{\infty}\right\} \leq R
$$

It is now immediate from the Leray-Schauder continuation principle that the operator T has a fixed point v_{0}, which solves the BVP (3.1).

Now, let us prove that v_{0} is a solution of the BVP (2.4). Therefor, we only need to verify that $\alpha(t) \leq v_{0}(t) \leq \beta(t)$ and $\left|v_{0}^{\prime}(t)\right| \leq C$ for $t \in[0,1]$.

First, we will verify that $v_{0}(t) \leq \beta(t)$ for $t \in[0,1]$. Suppose on the contrary that there exists $t_{0} \in[0,1]$ such that

$$
v_{0}\left(t_{0}\right)-\beta\left(t_{0}\right)=\max _{t \in[0,1]}\left\{v_{0}(t)-\beta(t)\right\}>0
$$

We consider the following three cases:
Case 1: If $t_{0} \in(0,1)$, then $v_{0}\left(t_{0}\right)>\beta\left(t_{0}\right), v_{0}^{\prime}\left(t_{0}\right)=\beta^{\prime}\left(t_{0}\right)$ and $v_{0}^{\prime \prime}\left(t_{0}\right) \leq \beta^{\prime \prime}\left(t_{0}\right)$. Since β is a strict upper solution of the BVP (2.4), one has

$$
\begin{aligned}
v_{0}^{\prime \prime}\left(t_{0}\right) & =-F\left(t_{0},\left(A v_{0}\right)\left(t_{0}\right),\left(B v_{0}\right)\left(t_{0}\right), v_{0}\left(t_{0}\right), v_{0}^{\prime}\left(t_{0}\right)\right) \\
& =-f_{3}\left(t_{0},\left(A v_{0}\right)\left(t_{0}\right),\left(B v_{0}\right)\left(t_{0}\right), \beta\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)\right) \\
& =-f_{2}\left(t_{0},\left(A v_{0}\right)\left(t_{0}\right),(B \beta)\left(t_{0}\right), \beta\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)\right) \\
& =-f_{1}\left(t_{0},(A \beta)\left(t_{0}\right),(B \beta)\left(t_{0}\right), \beta\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)\right) \\
& =-f\left(t_{0},(A \beta)\left(t_{0}\right),(B \beta)\left(t_{0}\right), \beta\left(t_{0}\right), \beta^{\prime}\left(t_{0}\right)\right) \\
& >\beta^{\prime \prime}\left(t_{0}\right),
\end{aligned}
$$

which is a contradiction.
Case 2: If $t_{0}=0$, then $v_{0}(0)>\beta(0)$. On the other hand, $v_{0}(0)=\sum_{i=1}^{m-2} b_{i} v_{0}\left(\eta_{i}\right) \leq \sum_{i=1}^{m-2} b_{i} \beta\left(\eta_{i}\right) \leq$ $\beta(0)$. This is a contradiction.

Case 3: If $t_{0}=1$, then $v_{0}(1)-\beta(1)=\max _{t \in[0,1]}\left\{v_{0}(t)-\beta(t)\right\}>0$, which shows that $v_{0}^{\prime}(1) \geq \beta^{\prime}(1)$. On the other hand, $v_{0}^{\prime}(1)=0 \leq \beta^{\prime}(1)$. Consequently, $v_{0}^{\prime}(1)=\beta^{\prime}(1)$, and so, $v_{0}^{\prime \prime}(1) \leq \beta^{\prime \prime}(1)$. With the similar arguments as in Case 1, we can obtain a contradiction also.

Thus, $v_{0}(t) \leq \beta(t)$ for $t \in[0,1]$. Similarly, we can prove that $\alpha(t) \leq v_{0}(t)$ for $t \in[0,1]$.
Next, we will show that $\left|v_{0}^{\prime}(t)\right| \leq C$ for $t \in[0,1]$. In fact, since f satisfies the Nagumo condition with respect to α and β, with the similar arguments as in Lemma 2.3, we can obtain that

$$
\left|v_{0}^{\prime}(t)\right| \leq N \leq C \text { for } t \in[0,1]
$$

Therefore, v_{0} is a solution of the $\operatorname{BVP}(2.4)$ and $\alpha(t) \leq v_{0}(t) \leq \beta(t)$ for $t \in[0,1]$.

References

[1] C. Z. Bai, Triple positive solutions of three-point boundary value problems for fourth-order differential equations, Computers and Mathematics with Applications 56 (2008) 1364-1371.
[2] C. Z. Bai, D. D. Yang and H. B. Zhu, Existence of solutions for fourth order differential equation with four-point boundary conditions, Appl. Math. Lett. 20 (2007) 1131-1136.
[3] Z. B. Bai, The upper and lower solution method for some fourth-order boundary value problems, Nonlinear Anal. 67 (2007) 1704-1709.
[4] J. R. Graef, C. X. Qian and B. Yang, A three point boundary value problem for nonlinear fourth order differential equations, J. Math. Anal. Appl. 287 (2003) 217-233.
[5] B. Liu, Positive solutions of fourth-order two point boundary value problems, Appl. Math. Comput. 148 (2004) 407-420.
[6] R. Ma, Positive solutions of fourth-order two point boundary value problems, Ann. Differential Equations 15 (1999) 305-313.
[7] R. Ma, J. Zhang and S. Fu, The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl. 215 (1997) 415-422.
[8] Z. L. Wei and C. C. Pang, The method of lower and upper solutions for fourth order singular m-point boundary value problems, J. Math. Anal. Appl. 322 (2006) 675-692.
[9] Y. L. Zhong, S. H. Chen and C. P. Wang, Existence results for a fourth-order ordinary differential equation with a four-point boundary condition, Appl. Math. Lett. 21 (2008) 465-470.
(Received October 8, 2009)

[^0]: *Supported by the National Natural Science Foundation of China (10801068).

