EXISTENCE OF A POSITIVE SOLUTION TO A RIGHT FOCAL BOUNDARY VALUE PROBLEM

RICHARD I. AVERY, JOHNNY HENDERSON AND DOUGLAS R. ANDERSON

Abstract

In this paper we apply the recent extension of the Leggett-Williams Fixed Point Theorem which requires neither of the functional boundaries to be invariant to the second order right focal boundary value problem. We demonstrate a technique that can be used to deal with a singularity and provide a non-trivial example.

1. Introduction

The recent topological proof and extension of the Leggett-Williams fixed point theorem [3] does not require either of the functional boundaries to be invariant with respect to a functional wedge and its proof uses topological methods instead of axiomatic index theory. Functional fixed point theorems (including [2, 4, 5, 6, 8]) can be traced back to Leggett and Williams [7] when they presented criteria which guaranteed the existence of a fixed point for a completely continuous map that did not require the operator to be invariant with regard to the concave functional boundary of a functional wedge. Avery, Henderson, and O'Regan [1], in a dual of the Leggett-Williams fixed point theorem, gave conditions which guaranteed the existence of a fixed point for a completely continuous map that did not require the operator to be invariant relative to the concave functional boundary of a functional wedge. We will demonstrate a technique to take advantage of the added flexibility of the new fixed point theorem for a right focal boundary value problem.

2. Preliminaries

In this section we will state the definitions that are used in the remainder of the paper.
Definition 1. Let E be a real Banach space. A nonempty closed convex set $P \subset E$ is called a cone if it satisfies the following two conditions:
(i) $x \in P, \lambda \geq 0$ implies $\lambda x \in P$;
(ii) $x \in P,-x \in P$ implies $x=0$.

Every cone $P \subset E$ induces an ordering in E given by

$$
x \leq y \text { if and only if } y-x \in P .
$$

Definition 2. An operator is called completely continuous if it is continuous and maps bounded sets into precompact sets.

Definition 3. A map α is said to be a nonnegative continuous concave functional on a cone P of a real Banach space E if $\alpha: P \rightarrow[0, \infty)$ is continuous and

$$
\alpha(t x+(1-t) y) \geq t \alpha(x)+(1-t) \alpha(y)
$$

for all $x, y \in P$ and $t \in[0,1]$. Similarly we say the map β is a nonnegative continuous convex functional on a cone P of a real Banach space E if $\beta: P \rightarrow[0, \infty)$ is continuous and

$$
\beta(t x+(1-t) y) \leq t \beta(x)+(1-t) \beta(y)
$$

for all $x, y \in P$ and $t \in[0,1]$.
Let α and ψ be non-negative continuous concave functionals on P and δ and β be non-negative continuous convex functionals on P; then, for non-negative real numbers a, b, c and d, we define the following sets:

$$
\begin{gather*}
A:=A(\alpha, \beta, a, d)=\{x \in P: a \leq \alpha(x) \text { and } \beta(x) \leq d\}, \tag{1}\\
B:=B(\alpha, \delta, \beta, a, b, d)=\{x \in A: \delta(x) \leq b\}, \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
C:=C(\alpha, \psi, \beta, a, c, d)=\{x \in A: c \leq \psi(x)\} \tag{3}
\end{equation*}
$$

We say that A is a functional wedge with concave functional boundary defined by the concave functional α and convex functional boundary defined by the convex functional β. We say that an operator $T: A \rightarrow P$ is invariant with respect to the concave functional boundary, if $a \leq \alpha(T x)$ for all $x \in A$, and that T is invariant with respect to the convex functional boundary, if $\beta(T x) \leq d$ for all $x \in A$. Note that A is a convex set. The following theorem is an extension of the original Leggett-Williams fixed point theorem [7].
Theorem 4. [Extension of Leggett-Williams] Suppose P is a cone in a real Banach space E, α and ψ are non-negative continuous concave functionals on P, δ and β are non-negative continuous convex functionals on P, and for non-negative real numbers a, b, c and d the sets A, B and C are as defined in (1), (2) and (3). Furthermore, suppose that A is a bounded subset of P, that $T: A \rightarrow P$ is completely continuous and that the following conditions hold:
(A1) $\{x \in A: c<\psi(x)$ and $\delta(x)<b\} \neq \emptyset$ and $\{x \in P: \alpha(x)<a$ and $d<\beta(x)\}=\emptyset$;
(A2) $\alpha(T x) \geq a$ for all $x \in B$;
(A3) $\alpha(T x) \geq a$ for all $x \in A$ with $\delta(T x)>b$;
(A4) $\beta(T x) \leq d$ for all $x \in C$; and,
(A5) $\beta(T x) \leq d$ for all $x \in A$ with $\psi(T x)<c$.
Then T has a fixed point $x^{*} \in A$.

3. Right Focal Boundary Value Problem

In this section we will illustrate the key techniques for verifying the existence of a positive solution for a boundary value problem using the newly developed extension of the LeggettWilliams fixed point theorem, applying the properties of a Green's function, bounding the EJQTDE, 2010 No. 5, p. 2
nonlinearity by constants over some intervals, and using concavity to deal with a singularity. Consider the second order nonlinear focal boundary value problem

$$
\begin{gather*}
x^{\prime \prime}(t)+f(x(t))=0, \quad t \in(0,1) \tag{4}\\
x(0)=0=x^{\prime}(1) \tag{5}
\end{gather*}
$$

where $f: \mathbb{R} \rightarrow[0, \infty)$ is continuous. If x is a fixed point of the operator T defined by

$$
T x(t):=\int_{0}^{1} G(t, s) f(x(s)) d s
$$

where

$$
G(t, s)= \begin{cases}t & : t \leq s \\ s & : s \leq t\end{cases}
$$

is the Green's function for the operator L defined by

$$
L x(t):=-x^{\prime \prime},
$$

with right-focal boundary conditions

$$
x(0)=0=x^{\prime}(1),
$$

then it is well known that x is a solution of the boundary value problem (4), (5). Throughout this section of the paper we will use the facts that $G(t, s)$ is nonnegative, and for each fixed $s \in[0,1]$, the Green's function is nondecreasing in t.

Define the cone $P \subset E=C[0,1]$ by

$$
P:=\{x \in E: x \text { is nonnegative, nondecreasing, and concave }\} .
$$

For fixed $\nu, \tau, \mu \in[0,1]$ and $x \in P$, define the concave functionals α and ψ on P by

$$
\alpha(x):=\min _{t \in[\tau, 1]} x(t)=x(\tau), \quad \psi(x):=\min _{t \in[\mu, 1]} x(t)=x(\mu),
$$

and the convex functionals δ and β on P by

$$
\delta(x):=\max _{t \in[0, \nu]} x(t)=x(\nu), \quad \beta(x):=\max _{t \in[0,1]} x(t)=x(1) .
$$

In the following theorem, we demonstrate how to apply the Extension of the Leggett-Williams Fixed Point Theorem (Theorem 4), to prove the existence of at least one positive solution to (4), (5).

Theorem 5. If $\tau, \nu, \mu \in(0,1]$ are fixed with $\tau \leq \mu<\nu \leq 1, d$ and m are positive real numbers with $0<m \leq d \mu$ and $f:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that
(a) $f(w) \geq \frac{d}{\nu-\tau}$ for $w \in[\tau d, \nu d]$,
(b) $f(w)$ is decreasing for $w \in[0, m]$ with $f(m) \geq f(w)$ for $w \in[m, d]$, and
(c) $\int_{0}^{\mu} s f\left(\frac{m s}{\mu}\right) d s \leq \frac{2 d-f(m)\left(1-\mu^{2}\right)}{2}$,
then the operator T has at least one positive solution $x^{*} \in A(\alpha, \beta, \tau d, d)$.
EJQTDE, 2010 No. 5, p. 3

Proof. Let $a=\tau d, b=\nu d=\frac{a \nu}{\tau}$, and $c=d \mu$. Let $x \in A(\alpha, \beta, a, d)$ then if $t \in(0,1)$, by the properties of the Green's function $(T x)^{\prime \prime}(t)=-f(x(t))$ and $T x(0)=0=(T x)^{\prime}(1)$, thus

$$
T: A(\alpha, \beta, a, d) \rightarrow P .
$$

We will also take advantage of the following property of the Green's function. For any $y, w \in$ $[0,1]$ with $y \leq w$ we have

$$
\begin{equation*}
\min _{s \in[0,1]} \frac{G(y, s)}{G(w, s)} \geq \frac{y}{w} . \tag{6}
\end{equation*}
$$

By the Arzela-Ascoli Theorem it is a standard exercise to show that T is a completely continuous operator using the properties of G and f, and by the definition of β, we have that A is a bounded subset of the cone P. Also, if $x \in P$ and $\beta(x)>d$, then by the properties of the cone P,

$$
\alpha(x)=x(\tau) \geq\left(\frac{\tau}{1}\right) x(1)=\tau \beta(x)>\tau d=a .
$$

Therefore,

$$
\{x \in P: \alpha(x)<a \text { and } d<\beta(x)\}=\emptyset .
$$

For any $K \in\left(\frac{2 d}{2-\mu}, \frac{2 d}{2-\nu}\right)$ the function x_{K} defined by

$$
x_{K}(t) \equiv \int_{0}^{1} K G(t, s) d s=\frac{K t(2-t)}{2} \in A,
$$

since

$$
\begin{gathered}
\alpha\left(x_{K}\right)=x_{K}(\tau)=\frac{K \tau(2-\tau)}{2}>\frac{d \tau(2-\tau)}{2-\mu} \geq d \tau=a, \\
\beta\left(x_{K}\right)=x_{K}(1)=\frac{K}{2}<\frac{d}{2-\nu} \leq d,
\end{gathered}
$$

and x_{K} has the properties that

$$
\psi\left(x_{K}\right)=x_{K}(\mu)=\frac{K \mu(2-\mu)}{2}>\left(\frac{2 d}{2-\mu}\right)\left(\frac{\mu(2-\mu)}{2}\right)=d \mu=c
$$

and

$$
\delta\left(x_{K}\right)=x_{K}(\nu)=\frac{K \nu(2-\nu)}{2}<\left(\frac{2 d}{2-\nu}\right)\left(\frac{\nu(2-\nu)}{2}\right)=d \nu=b .
$$

Hence

$$
\{x \in A: c<\psi(x) \text { and } \delta(x)<b\} \neq \emptyset .
$$

Claim 1: $\alpha(T x) \geq a$ for all $x \in B$.
Let $x \in B$. Thus by condition (a),

$$
\begin{aligned}
\alpha(T x) & =\int_{0}^{1} G(\tau, s) f(x(s)) d s \geq\left(\frac{a}{\tau(\nu-\tau)}\right) \int_{\tau}^{\nu} G(\tau, s) d s \\
& =\left(\frac{a}{\tau(\nu-\tau)}\right)(\tau(\nu-\tau))=a .
\end{aligned}
$$

EJQTDE, 2010 No. 5, p. 4

Claim 2: $\alpha(T x) \geq a$, for all $x \in A$ with $\delta(T x)>b$.
Let $x \in A$ with $\delta(T x)>b$. Thus by the properties of $G(6)$,

$$
\begin{aligned}
\alpha(T x) & =\int_{0}^{1} G(\tau, s) f(x(s)) d s \geq\left(\frac{\tau}{\nu}\right) \int_{0}^{1} G(\nu, s) f(x(s)) d s \\
& =\left(\frac{\tau}{\nu}\right) \delta(T x)>\left(\frac{\tau}{\nu}\right)(d \nu)=a
\end{aligned}
$$

Claim 3: $\beta(T x) \leq d$, for all $x \in C$.
Let $x \in C$, thus by the concavity of x, for $s \in[0, \mu]$ we have

$$
x(s) \geq \frac{c s}{\mu} \geq \frac{m s}{\mu} .
$$

Hence by properties (b) and (c),

$$
\begin{aligned}
\beta(T x) & =\int_{0}^{1} G(1, s) f(x(s)) d s=\int_{0}^{1} s f(x(s)) d s \\
& =\int_{0}^{\mu} s f(x(s)) d s+\int_{\mu}^{1} s f(x(s)) d s \\
& \leq \int_{0}^{\mu} s f\left(\frac{m s}{\mu}\right) d s+f(m) \int_{\mu}^{1} s d s \\
& \leq \frac{2 d-f(m)\left(1-\mu^{2}\right)}{2}+\frac{f(m)\left(1-\mu^{2}\right)}{2}=d .
\end{aligned}
$$

Claim 4: $\beta(T x) \leq d$, for all $x \in A$ with $\psi(T x)<c$.
Let $x \in A$ with $\psi(T x)<c$. Thus by the properties of $G(6)$,

$$
\begin{aligned}
\beta(T x) & =\int_{0}^{1} G(1, s) f(x(s)) d s \leq\left(\frac{1}{\mu}\right) \int_{0}^{1} G(\mu, s) f(x(s)) d s \\
& =\left(\frac{1}{\mu}\right) T x(\mu)=\left(\frac{1}{\mu}\right) \psi(T x) \leq\left(\frac{1}{\mu}\right) c=d .
\end{aligned}
$$

Therefore, the hypotheses of Theorem 4 have been satisfied; thus the operator T has at least one positive solution $x^{*} \in A(\alpha, \beta, a, d)$.

We note that because of the concavity of solutions, the proof of Theorem 5 remains valid for certain singular nonlinearities as presented in this example.
Example: Let

$$
d=\frac{5}{4}, \tau=\frac{1}{16}, \mu=\frac{3}{4}, \text { and } \nu=\frac{15}{16} .
$$

EJQTDE, 2010 No. 5, p. 5

Then the boundary value problem

$$
x^{\prime \prime}+\frac{1}{\sqrt{x}}+\sqrt{x}=0,
$$

with right-focal boundary conditions

$$
x(0)=0=x^{\prime}(1),
$$

has at least one positive solution x^{*} which can be verified by the above theorem, with

$$
5 / 64 \leq x^{*}(1 / 16) \quad \text { and } \quad x^{*}(1) \leq 5 / 4 .
$$

References

[1] R. I. Avery, J. Henderson and D. O'Regan, Dual of the compression-expansion fixed point theorems, Fixed Point Theory and Applications, 2007 (2007), Article ID 90715, 11 pages.
[2] D. R. Anderson and R. I. Avery, Fixed point theorem of cone expansion and compression of functional type, J. Difference Equations Appl., 8(2002), 1073-1083.
[3] D. R. Anderson, R. I. Avery and J. Henderson, A topological proof and extension of the Leggett-Williams fixed point theorem, Communications on Applied Nonlinear Analysis, 16(2009), 39-44.
[4] D. Guo, A new fixed point theorem, Acta Math. Sinica, 24(1981), 444-450.
[5] D. Guo, Some fixed point theorems on cone maps, Kexeu Tongbao, 29(1984), 575-578.
[6] M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff, Groningen, The Netherlands, 1964.
[7] R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28(1979), 673-688.
[8] J. Sun and G. Zhang, A generalization of the cone expansion and compression fixed point theorem and applications, Nonlin. Anal., 67(2007), 579-586.
[9] E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems, Springer-Verlag, New York, 1986.
(Received November 23, 2009)

College of Arts and Sciences, Dakota State University, Madison, South Dakota 57042 USA
E-mail address: rich.avery@dsu.edu
Department of Mathematics, Baylor University, Waco, Texas 76798 USA
E-mail address: Johnny_Henderson@baylor.edu
Department of Mathematics and Computer Science, Concordia College, Moorhead, MN 56562 USA

E-mail address: andersod@cord.edu

