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Abstract. An existence result of a renormalized solution for a class of non-
linear parabolic equations in Orlicz spaces is proved. No growth assumption
is made on the nonlinearities.

1. Introduction

In this paper we consider the following problem:

∂b(x, u)

∂t
− div

(

a(x, t, u,∇u) + Φ(u)
)

= f in Ω × (0, T ),(1.1)

b(x, u)(t = 0) = b(x, u0) in Ω,(1.2)

u = 0 on ∂Ω × (0, T ),(1.3)

where Ω is a bounded open subset of R
N and T > 0, Q = Ω × (0, T ). Let b be a

Carathéodory function (see assumptions (3.1)-(3.2) of Section 3), the data f and

b(x, u0) in L1(Q) and L1(Ω) respectively, Au = −div
(

a(x, t, u,∇u)
)

is a Leray-

Lions operator defined on W 1,x
0 LM (Ω), M is an appropriate N -function and which

grows like M̄−1M(β4
K |∇u|) with respect to ∇u, but which is not restricted by any

growth condition with respect to u (see assumptions (3.3)-(3.6)). The function Φ
is just assumed to be continuous on R.

Under these assumptions, the above problem does not admit, in general, a weak
solution since the fields a(x, t, u,∇u) and Φ(u) do not belong in (L1

loc(Q)N in gen-
eral. To overcome this difficulty we use in this paper the framework of renormalized
solutions. This notion was introduced by Lions and DiPerna [31] for the study of
Boltzmann equation (see also [27], [11], [29], [28], [2]).

A large number of papers was devoted to the study the existence of renormalized
solution of parabolic problems under various assumptions and in different contexts:
for a review on classical results see [7], [30], [9], [8], [4], [5], [34], [12], [13], [14].

The existence and uniqueness of renormalized solution of (1.1)-(1.3) has been

proved in H. Redwane [34, 35] in the case where Au = −div
(

a(x, t, u,∇u)
)

is

a Leray-Lions operator defined on Lp(0, T ;W 1,p
0 (Ω)), the existence of renormal-

ized solution in Orlicz spaces has been proved in E. Azroul, H. Redwane and M.
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Rhoudaf [32] in the case where b(x, u) = b(u) and where the growth of a(x, t, u,∇u)
is controlled with respect to u. Note that here we extend the results in [34, 32]
in three different directions: we assume b(x, u) depend on x , and the growth of
a(x, t, u,∇u) is not controlled with respect to u and we prove the existence in Orlicz
spaces.

The paper is organized as follows. In section 2 we give some preliminaries and
gives the definition ofN -function and the Orlicz-Sobolev space. Section 3 is devoted
to specifying the assumptions on b, a, Φ, f and b(x, u0). In Section 4 we give
the definition of a renormalized solution of (1.1)-(1.3). In Section 5 we establish
(Theorem 5.1) the existence of such a solution.

2. Preliminaries

Let M : R
+ → R

+ be an N -function, i.e., M is continuous, convex, with

M(t) > 0 for t > 0, M(t)
t

→ 0 as t → 0 and M(t)
t

→ ∞ as t → ∞. Equivalently,

M admits the representation : M(t) =
∫ t

0 a(s) ds where a : R
+ → R

+ is non-
decreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0 and a(t) → ∞ as

t→ ∞. The N -function M conjugate to M is defined by M(t) =
∫ t

0 a(s) ds, where

a : R
+ → R

+ is given by a(t) = sup{s : a(s) ≤ t}.
The N-function M is said to satisfy the ∆2 condition if, for some k > 0,

(2.1) M(2t) ≤ kM(t) for all t ≥ 0.

When this inequality holds only for t ≥ t0 > 0, M is said to satisfy the ∆2-condition
near infinity.

Let P and Q be two N -functions. P ≪ Q means that P grows essentially less
rapidly than Q ; i.e., for each ε > 0,

(2.2)
P (t)

Q(ε t)
→ 0 as t→ ∞.

This is the case if and only if,

(2.3)
Q−1(t)

P−1(t)
→ 0 as t→ ∞.

We will extend these N-functions into even functions on all R. Let Ω be an open
subset of R

N . The Orlicz class LM (Ω) (resp. the Orlicz space LM (Ω)) is defined
as the set of (equivalence classes of) real-valued measurable functions u on Ω such
that :

(2.4)

∫

Ω

M(u(x))dx < +∞ (resp.

∫

Ω

M(
u(x)

λ
)dx < +∞ for some λ > 0).

Note that LM (Ω) is a Banach space under the norm

(2.5) ‖u‖M,Ω = inf
{

λ > 0 :

∫

Ω

M(
u(x)

λ
)dx ≤ 1

}

and LM (Ω) is a convex subset of LM (Ω). The closure in LM (Ω) of the set of
bounded measurable functions with compact support in Ω is denoted by EM (Ω).
The equality EM (Ω) = LM (Ω) holds if and only if M satisfies the ∆2-condition,
for all t or for t large according to whether Ω has infinite measure or not.
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The dual of EM (Ω) can be identified with LM (Ω) by means of the pairing
∫

Ω
u(x)v(x)dx, and the dual norm on LM (Ω) is equivalent to ‖.‖M,Ω. The space

LM (Ω) is reflexive if and only if M and M satisfy the ∆2 condition, for all t or for
t large, according to whether Ω has infinite measure or not.

We now turn to the Orlicz-Sobolev space. W 1LM (Ω) (resp. W 1EM (Ω)) is the
space of all functions u such that u and its distributional derivatives up to order 1
lie in LM (Ω) (resp. EM (Ω)). This is a Banach space under the norm

(2.6) ‖u‖1,M,Ω =
∑

|α|≤1

‖∇αu‖M,Ω.

Thus W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of the prod-
uct of N + 1 copies of LM (Ω). Denoting this product by ΠLM , we will use the
weak topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ). The space W 1

0EM (Ω) is de-
fined as the (norm) closure of the Schwartz space D(Ω) in W 1EM (Ω) and the
space W 1

0LM (Ω) as the σ(ΠLM ,ΠEM ) closure of D(Ω) in W 1LM (Ω). We say
that un converges to u for the modular convergence in W 1LM (Ω) if for some

λ > 0,

∫

Ω

M
(∇αun −∇αu

λ

)

dx → 0 for all |α| ≤ 1. This implies convergence

for σ(ΠLM ,ΠLM ). If M satisfies the ∆2 condition on R
+(near infinity only when

Ω has finite measure), then modular convergence coincides with norm convergence.
Let W−1LM (Ω) (resp. W−1EM (Ω)) denote the space of distributions on Ω

which can be written as sums of derivatives of order ≤ 1 of functions in LM (Ω)
(resp. EM (Ω)). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space D(Ω) is dense in
W 1

0LM (Ω) for the modular convergence and for the topology σ(ΠLM ,ΠLM ) (cf.
[21]). Consequently, the action of a distribution in W−1LM (Ω) on an element of
W 1

0LM (Ω) is well defined. For more details see [1], [23].
For K > 0, we define the truncation at height K, TK : R → R by

(2.7) TK(s) = min(K,max(s,−K)).

The following abstract lemmas will be applied to the truncation operators.

Lemma 2.1. [21] Let F : R → R be uniformly lipschitzian, with F (0) = 0. Let M
be an N -function and let u ∈W 1LM (Ω) (resp. W 1EM (Ω)).

Then F (u) ∈W 1LM (Ω) (resp. W 1EM (Ω)). Moreover, if the set of discontinuity
points D of F ′ is finite, then

∂

∂xi

F (u) =

{

F ′(u) ∂u
∂xi

a.e. in {x ∈ Ω : u(x) /∈ D}

0 a.e. in {x ∈ Ω : u(x) ∈ D}

Lemma 2.2. [21] Let F : R → R be uniformly lipschitzian, with F (0) = 0. We
suppose that the set of discontinuity points of F ′ is finite. Let M be an N-function,
then the mapping F : W 1LM (Ω) → W 1LM (Ω) is sequentially continuous with
respect to the weak* topology σ(ΠLM ,ΠEM ).

Let Ω be a bounded open subset of R
N , T > 0 and set Q = Ω× (0, T ). M be an

N -function. For each α ∈ N
N , denote by ∇α

x the distributional derivative on Q of
EJQTDE, 2010 No. 2, p. 3



order α with respect to the variable x ∈ N
N . The inhomogeneous Orlicz-Sobolev

spaces are defined as follows,

(2.8)
W 1,xLM (Q) = {u ∈ LM (Q) : ∇α

xu ∈ LM (Q) ∀ |α| ≤ 1}
and W 1,xEM (Q) = {u ∈ EM (Q) : ∇α

xu ∈ EM (Q) ∀ |α| ≤ 1}

The last space is a subspace of the first one, and both are Banach spaces under
the norm,

(2.9) ‖u‖ =
∑

|α|≤1

‖∇α
xu‖M,Q.

We can easily show that they form a complementary system when Ω satisfies
the segment property. These spaces are considered as subspaces of the product
space ΠLM (Q) which have as many copies as there is α-order derivatives, |α| ≤ 1.
We shall also consider the weak topologies σ(ΠLM ,ΠEM ) and σ(ΠLM ,ΠLM ). If
u ∈ W 1,xLM (Q) then the function : t 7−→ u(t) = u(t, .) is defined on (0, T ) with
values in W 1LM (Ω). If, further, u ∈ W 1,xEM (Q) then the concerned function is
a W 1EM (Ω)-valued and is strongly measurable. Furthermore the following imbed-
ding holds: W 1,xEM (Q) ⊂ L1(0, T ;W 1EM (Ω)). The space W 1,xLM (Q) is not
in general separable, if u ∈ W 1,xLM (Q), we can not conclude that the function
u(t) is measurable on (0, T ). However, the scalar function t 7→ ‖u(t)‖M,Ω is in

L1(0, T ). The space W 1,x
0 EM (Q) is defined as the (norm) closure in W 1,xEM (Q)

of D(Q). We can easily show as in [22] that when Ω has the segment property,
then each element u of the closure of D(Q) with respect of the weak * topology
σ(ΠLM ,ΠEM ) is a limit, in W 1,xLM (Q), of some subsequence (ui) ⊂ D(Q) for the
modular convergence; i.e., there exists λ > 0 such that for all |α| ≤ 1,

(2.10)

∫

Q

M
(∇α

xui −∇α
xu

λ

)

dx dt → 0 as i→ ∞.

This implies that (ui) converges to u in W 1,xLM (Q) for the weak topology
σ(ΠLM ,ΠLM ). Consequently,

(2.11) D(Q)
σ(ΠLM ,ΠEM )

= D(Q)
σ(ΠLM ,ΠLM)

.

This space will be denoted byW 1,x
0 LM (Q). Furthermore,W 1,x

0 EM (Q) = W 1,x
0 LM (Q)∩

ΠEM . Poincaré’s inequality also holds inW 1,x
0 LM (Q), i.e., there is a constantC > 0

such that for all u ∈W 1,x
0 LM (Q) one has,

(2.12)
∑

|α|≤1

‖∇α
xu‖M,Q ≤ C

∑

|α|=1

‖∇α
xu‖M,Q.

Thus both sides of the last inequality are equivalent norms on W 1,x
0 LM (Q). We

have then the following complementary system

(2.13)

(

W 1,x
0 LM (Q) F

W 1,x
0 EM (Q) F0

)

F being the dual space of W 1,x
0 EM (Q). It is also, except for an isomorphism,

the quotient of ΠLM by the polar set W 1,x
0 EM (Q)⊥, and will be denoted by F =
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W−1,xLM (Q) and it is shown that,

(2.14) W−1,xLM (Q) =
{

f =
∑

|α|≤1

∇α
xfα : fα ∈ LM (Q)

}

.

This space will be equipped with the usual quotient norm

(2.15) ‖f‖ = inf
∑

|α|≤1

‖fα‖M,Q

where the infimum is taken on all possible decompositions

(2.16) f =
∑

|α|≤1

∇α
xfα, fα ∈ LM (Q).

The space F0 is then given by,

(2.17) F0 =
{

f =
∑

|α|≤1

∇α
xfα : fα ∈ EM (Q)

}

and is denoted by F0 = W−1,xEM (Q).

Remark 2.3. We can easily check, using lemma 2.1, that each uniformly lipschitzian
mapping F , with F (0) = 0, acts in inhomogeneous Orlicz-Sobolev spaces of order

1 : W 1,xLM (Q) and W 1,x
0 LM (Q).

3. Assumptions and statement of main results

Throughout this paper, we assume that the following assumptions hold true:
Ω is a bounded open set on R

N (N ≥ 2), T > 0 is given and we set Q = Ω× (0, T ).
Let M and P be two N -function such that P ≪M.

b : Ω × R → R is a Carathéodory function such that,(3.1)

for every x ∈ Ω : b(x, s) is a strictly increasing C1-function, with b(x, 0) = 0.
For any K > 0, there exists λK > 0, a function AK in L∞(Ω) and a function BK

in LM (Ω) such that

(3.2) λK ≤
∂b(x, s)

∂s
≤ AK(x) and

∣

∣

∣
∇x

(∂b(x, s)

∂s

)
∣

∣

∣
≤ BK(x),

for almost every x ∈ Ω, for every s such that |s| ≤ K.
Consider a second order partial differential operator A : D(A) ⊂W 1,xLM (Q) →

W−1,xLM (Q) in divergence form,

A(u) = −div
(

a(x, t, u,∇u)
)

where

(3.3) a : Ω × (0, T ) × R × R
N → R

N is a Carathéodory function satisfying

for any K > 0, there exist βi
K > 0 (for i = 1, 2, 3, 4) and a function CK ∈ EM̄ (Q)

such that:

(3.4) |a(x, t, s, ξ)| ≤ CK(x, t) + β1
KM̄

−1P (β2
K |s|) + β3

KM̄
−1M(β4

K |ξ|)
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for almost every (x, t) ∈ Q and for every |s| ≤ K and for every ξ ∈ R
N .

(3.5)
[

a(x, t, s, ξ) − a(x, t, s, ξ∗)
][

ξ − ξ∗
]

> 0

(3.6) a(x, t, s, ξ)ξ ≥ αM(|ξ|)

for almost every (x, t) ∈ Q, for every s ∈ R and for every ξ 6= ξ∗ ∈ R
N , where

α > 0 is a given real number.

Φ : R → R
N is a continuous function(3.7)

f is an element of L1(Q).(3.8)

(3.9) u0 is an element of L1(Ω) such that b(x, u0) ∈ L1(Ω).

Remark 3.1. As already mentioned in the introduction, problem (1.1)-(1.3) does
not admit a weak solution under assumptions (3.1)-(3.9) (even when b(x, u) = u)
since the growths of a(x, t, u,Du) and Φ(u) are not controlled with respect to u (so
that these fields are not in general defined as distributions, even when u belongs to
W 1,x

0 LM (Q).

4. Definition of a renormalized solution

The definition of a renormalized solution for problem (1.1)-(1.3) can be stated
as follows.

Definition 4.1. A measurable function u defined on Q is a renormalized solution
of Problem (1.1)-(1.3) if

(4.1) TK(u) ∈W 1,x
0 LM (Q) ∀K ≥ 0 and b(x, u) ∈ L∞(0, T ;L1(Ω)),

(4.2)

∫

{(t,x)∈Q ; m≤|u(x,t)|≤m+1}

a(x, t, u,∇u)∇u dx dt −→ 0 as m→ +∞ ;

and if, for every function S in W 2,∞(R), which is piecewise C1 and such that S′

has a compact support, we have

(4.3)
∂BS(x, u)

∂t
− div

(

S′(u)a(x, t, u,∇u)
)

+ S′′(u)a(x, t, u,∇u)∇u

− div
(

S′(u)Φ(u)
)

+ S′′(u)Φ(u)∇u = fS′(u) in D′(Q),

and

(4.4) BS(x, u)(t = 0) = BS(x, u0) in Ω,

where BS(x, z) =

∫ z

0

∂b(x, r)

∂r
S′(r) dr.

The following remarks are concerned with a few comments on definition 4.1.
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Remark 4.2. Equation (4.3) is formally obtained through pointwise multiplication
of equation (1.1) by S′(u). Note that due to (4.1) each term in (4.3) has a meaning
in L1(Q) +W−1,xLM (Q).

Indeed, if K is such that suppS′ ⊂ [−K,K], the following identifications are
made in (4.3).
⋆ BS(x, u) ∈ L∞(Q), because |BS(x, u)| ≤ K‖AK‖L∞(Ω)‖S

′‖L∞(R).

⋆ S′(u)a(x, t, u,∇u) identifies with S′(u)a
(

x, t, TK(u),∇TK(u)
)

a.e. in Q. Since

indeed |TK(u)| ≤ K a.e. in Q. Since S′(u) ∈ L∞(Q) and with (3.4), (4.1) we obtain
that

S(u)a
(

x, t, TK(u),∇TK(u)
)

∈ (LM (Q))N .

⋆ S′(u)a(x, t, u,∇u)∇u identifies with S′(u)a
(

x, t, TK(u),∇TK(u)
)

∇TK(u) and

in view of (3.2) and (4.1) one has

S′(u)a
(

x, t, TK(u),∇TK(u)
)

∇TK(u) ∈ L1(Q).

⋆ S′(u)Φ(u) and S′′(u)Φ(u)∇u respectively identify with S′(u)Φ(TK(u)) and
S′′(u)Φ(TK(u))∇TK(u). Due to the properties of S and (3.7), the functions S′, S′′

and Φ◦TK are bounded on R so that (4.1) implies that S′(u)Φ(TK(u)) ∈ (L∞(Q))N ,
and S′′(u)Φ(TK(u))∇TK(u) ∈ (LM (Q))N .

The above considerations show that equation (4.3) takes place in D′(Q) and that

(4.5)
∂BS(x, u)

∂t
belongs to W−1,xLM (Q) + L1(Q).

Due to the properties of S and (3.2), we have

(4.6)
∣

∣

∣
∇BS(x, u)

∣

∣

∣
≤ ‖AK‖L∞(Ω)|∇TK(u)|‖S′‖L∞(Ω) +K‖S′‖L∞(Ω)BK(x)

and

(4.7) BS(x, u) belongs to W 1,x
0 LM (Q).

Moreover (4.5) and (4.7) implies that BS(x, u) belongs to C0([0, T ];L1(Ω)) (for a
proof of this trace result see [30]), so that the initial condition (4.4) makes sense.

Remark 4.3. For every S ∈ W 2,∞(R), nondecreasing function such that suppS′ ⊂
[−K,K] and (3.2), we have

(4.8) λK |S(r) − S(r′)| ≤
∣

∣

∣
BS(x, r) −BS(x, r′)

∣

∣

∣
≤ ‖AK‖L∞(Ω)|S(r) − S(r′)|

for almost every x ∈ Ω and for every r, r′ ∈ R.

5. Existence result

This section is devoted to establish the following existence theorem.

Theorem 5.1. Under assumption (3.1)-(3.9) there exists at at least a renormalized
solution of Problem (1.1)-(1.3).

Proof. The proof is divided into 5 steps. �
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⋆ Step 1. For n ∈ N
∗, let us define the following approximations of the data:

(5.1) bn(x, r) = b(x, Tn(r)) +
1

n
r a.e. in Ω, ∀s ∈ R,

(5.2) an(x, t, r, ξ) = a(x, t, Tn(r), ξ) a.e. in Q, ∀s ∈ R, ∀ξ ∈ R
N ,

(5.3) Φn is a Lipschitz continuous bounded function from R into R
N ,

such that Φn uniformly converges to Φ on any compact subset of R as n tends to
+∞.

(5.4) fn ∈ C∞
0 (Q) : ‖fn‖L1 ≤ ‖f‖L1 and fn −→ f in L1(Q) as n tends to +∞,

(5.5)
u0n ∈ C∞

0 (Ω) : ‖bn(x, u0n)‖L1 ≤ ‖b(x, u0)‖L1 and bn(x, u0n) −→ b(x, u0) in L1(Ω)

as n tends to +∞.
Let us now consider the following regularized problem:

(5.6)
∂bn(x, un)

∂t
− div

(

an(x, t, un,∇un) + Φn(un)
)

= fn in Q,

un = 0 on (0, T )× ∂Ω,(5.7)

bn(x, un)(t = 0) = bn(x, u0n) in Ω.(5.8)

As a consequence, proving existence of a weak solution un ∈ W 1,x
0 LM (Q) of (5.6)-

(5.8) is an easy task (see e.g. [25], [33]).

⋆ Step 2. The estimates derived in this step rely on usual techniques for problems
of the type (5.6)-(5.8).

Proposition 5.2. Assume that (3.1)-(3.9) hold true and let un be a solution of
the approximate problem (5.6) − (5.8). Then for all K, n > 0, we have

(5.9) ‖TK(un)‖
W

1,x
0

LM(Q) ≤ K
(

‖f‖L1(Q) + ‖b(x, u0)‖L1(Ω)

)

≡ CK,

where C is a constant independent of n.

(5.10)

∫

Ω

Bn
K(x, un)(τ) dx ≤ K(‖f‖L1(Q) + ‖b(x, u0)‖L1(Ω)) ≡ CK,

for almost any τ in (0, T ), and where Bn
K(x, r) =

∫ r

0

TK(s)
∂bn(x, s)

∂s
ds.

(5.11) lim
K→∞

meas
{

(x, t) ∈ Q : |un| > K
}

= 0 uniformly with respect to n.

Proof. We take TK(un)χ(0,τ) as test function in (5.6), we get for every τ ∈ (0, T )
(5.12)

〈
∂bn(x, un)

∂t
, TK(un)χ(0,τ)〉 +

∫

Qτ

an(x, t, TK(un),∇TK(un))∇TK(un) dx dt

+

∫

Qτ

Φn(un)∇TK(un) dx dt =

∫

Qτ

fnTK(un) dx dt,
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which implies that,
(5.13)

∫

Ω

Bn
K(x, un)(τ) dx +

∫

Qτ

an(x, t, TK(un),∇TK(un))∇TK(un) dx dt

+

∫

Qτ

Φn(un)∇TK(un) dx dt =

∫

Qτ

fnTK(un) dx dt+

∫

Ω

Bn
K(x, u0n) dx

where, Bn
K(x, r) =

∫ r

0

TK(s)
∂bn(x, s)

∂s
ds.

The Lipschitz character of Φn, Stokes formula together with the boundary con-
dition (5.7), make it possible to obtain

(5.14)

∫

Qτ

Φn(un)∇TK(un) dx dt = 0.

Due to the definition of Bn
K we have,

(5.15) 0 ≤

∫

Ω

Bn
K(x, u0n) dx ≤ K

∫

Ω

|bn(x, u0n)| dx ≤ K‖b(x, u0)‖L1(Ω).

By using (5.14), (5.15) and the fact that Bn
K(x, un) ≥ 0, permit to deduce from

(5.13) that
(5.16)
∫

Q

an(x, t, TK(un),∇TK(un))∇TK(un) dx dt ≤ K(‖fn‖L1(Q)+‖bn(x, u0n)‖L1(Ω)) ≤ CK,

which implies by virtue of (3.6), (5.4) and (5.5) that,

(5.17)

∫

Q

M(∇TK(un)) dx dt ≤ K(‖f‖L1(Q) + ‖b(x, u0)‖L1(Ω)) ≡ CK.

We deduce from that above inequality (5.13) and (5.15) that

(5.18)

∫

Ω

Bn
K(x, un)(τ) dx ≤ (‖f‖L1(Q) + ‖b(x, u0)‖L1(Ω)) ≡ CK.

for almost any τ in (0, T ).
We prove (5.11). Indeed, thanks to lemma 5.7 of [21], there exist two positive

constants δ, λ such that,

(5.19)

∫

Q

M(v) dx dt ≤ δ

∫

Q

M(λ|∇v|) dx dt for all v ∈W 1,x
0 LM (Q).

Taking v =
TK(un)

λ
in (5.19) and using (5.17), one has

(5.20)

∫

Q

M
(TK(un)

λ

)

dx dt ≤ CK,

where C is a constant independent of K and n. Which implies that,

(5.21) meas
{

(x, t) ∈ Q : |un| > K
}

≤
C′K

M(K
λ

)
.
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where C′ is a constant independent of K and n. Finally,

lim
K→∞

meas
{

(x, t) ∈ Q : |un| > K
}

= 0 uniformly with respect to n.

�

We prove de following proposition:

Proposition 5.3. Let un be a solution of the approximate problem (5.6)-(5.8),
then

(5.22) un → u a.e. in Q,

(5.23) bn(x, un) → b(x, u) a.e. in Q,

(5.24) b(x, u) ∈ L∞(0, T ;L1(Ω)),

(5.25) an

(

x, t, Tk(un),∇Tk(un)
)

⇀ ϕk in (LM (Q))N for σ(ΠLM ,ΠEM )

for some ϕk ∈ (LM (Q))N .

(5.26) lim
m→+∞

lim
n→+∞

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt = 0.

Proof. Proceeding as in [5, 9, 7], we have for any S ∈W 2,∞(R) such that S′ has a
compact support (supp S′ ⊂ [−K,K])

(5.27) Bn
S(x, un) is bounded in W 1,x

0 LM (Q),

and

(5.28)
∂Bn

S(x, un)

∂t
is bounded in L1(Q) +W−1,xLM (Q),

independently of n.
As a consequence of (4.6) and (5.17) we then obtain (5.27). To show that (5.28)

holds true, we multiply the equation for un in (5.6) by S′(un) to obtain

(5.29)
∂Bn

S(x, un)

∂t
= div

(

S′(un)an(t, x, un,∇un)
)

−S′′(un)an(x, t, un,∇un)∇un + div
(

S′(un)Φn(un)
)

+ fnS
′(un) in D′(Q).

Where Bn
S(x, r) =

∫ r

0

S′(s)
∂bn(x, s)

∂s
ds. Since supp S′ and supp S′′ are both

included in [−K,K], uε may be replaced by TK(un) in each of these terms. As
a consequence, each term in the right hand side of (5.29) is bounded either in
W−1,xLM (Q) or in L1(Q). As a consequence of (3.2), (5.29) we then obtain (5.28).
Arguing again as in [5, 7, 6, 9] estimates (5.27), (5.28) and (4.8), we can show (5.22)
and (5.23).

We now establish that b(x, u) belongs to L∞(0, T ;L1(Ω)). To this end, recalling
(5.23) makes it possible to pass to the limit-inf in (5.18) as n tends to +∞ and to
obtain

1

K

∫

Ω

BK(x, u)(τ) dx ≤ (‖f‖L1(Q) + ‖b(x, u0)‖L1(Ω)) ≡ C,
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for almost any τ in (0, T ). Due to the definition of BK(x, s), and because of the
pointwise convergence of 1

K
BK(x, u) to b(x, u) as K tends to +∞, which shows

that b(x, u) belongs to L∞(0, T ;L1(Ω)).
We prove (5.25). Let ϕ ∈ (EM (Q))N with ‖ϕ‖M.Q = 1. In view of the mono-

tonicity of a one easily has,
(5.30)
∫

Q

an

(

x, t, Tk(un),∇Tk(un)
)

ϕ dx dt ≤

∫

Q

an

(

x, t, Tk(un),∇Tk(un)
)

∇Tk(un) dx dt

+

∫

Q

an

(

x, t, Tk(un), ϕ
)

[∇Tk(un) − ϕ] dx dt.

and
(5.31)

−

∫

Q

an

(

x, t, Tk(un),∇Tk(un)
)

ϕ dx dt ≤

∫

Q

an

(

x, t, Tk(un),∇Tk(un)
)

∇Tk(un) dx dt

−

∫

Q

an

(

x, t, Tk(un),−ϕ
)

[∇Tk(un) + ϕ] dx dt,

since Tk(un) is bounded inW 1,x
0 LM (Q), one easily deduce that an

(

x, t, Tk(un),∇Tk(un)
)

is a bounded sequence in (LM (Q))N , and we obtain (5.25).
Now we prove (5.26). We take of T1(un − Tm(un)) as test function in (5.6), we

obtain

(5.32) 〈
∂bn(x, un)

∂t
, T1(un−Tm(un))〉+

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt

+

∫

Q

div

[
∫ un

0

Φ(r)T ′
1(r − Tm(r))

]

dx dt =

∫

Q

fnT1(un − Tm(un)) dx dt.

Using the fact that

∫ un

0

Φ(r)T ′
1(r−Tm(r)) dx dt ∈ W 1,x

0 LM (Q) and Stokes formula,

we get

(5.33)

∫

Ω

Bm
n (x, un(T )) dx+

∫

{m≤|un|≤m+1}

a(x, t, un,∇un)∇un dx dt

≤

∫

Q

|fnT1(un − Tm(un))| dx dt+

∫

Ω

Bm
n (x, u0n) dx,

where Bm
n (x, r) =

∫ r

0

∂bn(x, s)

∂s
T1(s− Tm(s)) ds.

In order to pass to the limit as n tends to +∞ in (5.33), we use Bm
n (x, un(T )) ≥ 0

and (5.4)-(5.5), we obtain that

(5.34) lim
n→+∞

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt

≤

∫

{|u|>m}

|f | dx dt+

∫

{|u0|>m}

|b(x, u0)| dx.

Finally by (3.8), (3.9) and (5.34) we obtain (5.26).
�
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⋆ Step 3. This step is devoted to introduce for K ≥ 0 fixed, a time regularization
wi

µ,j of the function TK(u) and to establish the following proposition:

Proposition 5.4. Let un be a solution of the approximate problem (5.6)-(5.8).
Then, for any k ≥ 0:

(5.35) ∇Tk(un) → ∇Tk(u) a.e. in Q,

(5.36)

an

(

x, t, Tk(un),∇Tk(un)
)

⇀ a
(

x, t, Tk(u),∇Tk(u)
)

weakly in (LM (Q))N ,

(5.37) M(|∇Tk(un)|) →M(|∇Tk(u)|) strongly in L1(Q),

as n tends to +∞.

Let use give the following lemma which will be needed later:

Lemma 5.5. Under assumptions (3.1) − (3.9), and let (zn) be a sequence in

W 1,x
0 LM (Q) such that,

(5.38) zn ⇀ z in W 1,x
0 LM (Q) for σ(ΠLM (Q),ΠEM (Q)),

(5.39) (an(x, t, zn,∇zn))n is bounded in (LM (Q))N ,

(5.40)

∫

Q

[

an(x, t, zn,∇zn) − an(x, t, zn,∇zχs)
][

∇zn −∇zχs

]

dx dt −→ 0,

as n and s tend to +∞, and where χs is the characteristic function of

Qs =
{

(x, t) ∈ Q ; |∇z| ≤ s
}

.

Then,

(5.41) ∇zn → ∇z a.e. in Q,

(5.42) lim
n→∞

∫

Q

an(x, t, zn,∇zn)∇zn dx dt =

∫

Q

a(x, t, z,∇z)∇z dx dt,

(5.43) M(|∇zn|) →M(|∇z|) in L1(Q).

Proof. See [32]. �

Proof. (Proposition 5.4). The proof is almost identical of the one given in, e.g. [32].
where the result is established for b(x, u) = u and where the growth of a(x, t, u,Du)
is controlled with respect to u. This proof is devoted to introduce for k ≥ 0 fixed,
a time regularization of the function Tk(u), this notion, introduced by R. Landes
(see Lemma 6 and Proposition 3, p. 230 and Proposition 4, p. 231 in [24]). More
recently, it has been exploited in [10] and [15] to solve a few nonlinear evolution
problems with L1 or measure data.

Let vj ∈ D(Q) be a sequence such that vj → u in W 1,x
0 LM (Q) for the modular

convergence and let ψi ∈ D(Ω) be a sequence which converges strongly to u0 in
L1(Ω).
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Let wµ
i,j = Tk(vj)µ+e−µtTk(ψi) where Tk(vj)µ is the mollification with respect to

time of Tk(vj), note that wµ
i,j is a smooth function having the following properties:

(5.44)
∂wµ

i,j

∂t
= µ(Tk(vj) − wµ

i,j), w
µ
i,j(0) = Tk(ψi), |w

µ
i,j | ≤ k,

(5.45) wµ
i,j → Tk(u)µ + e−µtTk(ψi) in W 1,x

0 LM (Q),

for the modular convergence as j → ∞.

(5.46) Tk(u)µ + e−µtTk(ψi) → Tk(u) in W 1,x
0 LM (Q),

for the modular convergence as µ→ ∞.
Let now the function hm defined on R with m ≥ k by: hm(r) = 1 if |r| ≤

m, h(r) = −|r| +m+ 1 if m ≤ |r| ≤ m+ 1 and h(r) = 0 if |r| ≥ m+ 1.

Using the admissible test function ϕµ,i
n,j,m = (Tk(un) − wµ

i,j)hm(un) as test func-

tion in (5.6) leads to

(5.47) 〈
∂bn(x, un)

∂t
, ϕµ,i

n,j,m〉+

∫

Q

an(x, t, un,∇un)(∇Tk(un) −∇wµ
i,j)hm(un) dx dt

+

∫

Q

an(x, t, un,∇un)(Tk(un) − wµ
i,j)∇unh

′
m(un) dx dt

+

∫

{m≤|un|≤m+1}

Φn(un)∇unh
′
m(un)(Tk(un) − wµ

i,j) dx dt

+

∫

Q

Φn(un)hm(un)(∇Tk(un) −∇wµ
i,j) dx dt =

∫

Q

fnϕ
µ,i
n,j,m dx dt.

Denoting by ǫ(n, j, µ, i) any quantity such that,

lim
i→∞

lim
µ→∞

lim
j→∞

lim
n→∞

ǫ(n, j, µ, i) = 0.

The very definition of the sequence wµ
i,j makes it possible to establish the fol-

lowing lemma.

Lemma 5.6. Let ϕµ,i
n,j,m = (Tk(un) − wµ

i,j)hm(un), we have for any k ≥ 0:

(5.48) 〈
∂bn(x, un)

∂t
, ϕµ,i

n,j,m〉 ≥ ǫ(n, j, µ, i),

where 〈, 〉 denotes the duality pairing between L1(Q) +W−1,xLM (Q) and L∞(Q)∩

W 1,x
0 LM (Q).

Proof. See [34, 32]. �

Now, we turn to complete the proof of proposition 5.4. First, it is easy to see
that (see also [32]):

(5.49)

∫

Q

fnϕ
µ,i
n,j,m dx dt = ǫ(n, j, µ),

(5.50)

∫

Q

Φn(un)hm(un)(∇Tk(un) −∇wµ
i,j) dx dt = ǫ(n, j, µ),
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and

(5.51)

∫

{m≤|un|≤m+1}

Φn(un)∇un(Tk(un) − wµ
i,j) dx dt = ǫ(n, j, µ).

Concerning the third term of the right hand side of (5.47) we obtain that

(5.52)

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇unh
′
m(un)(Tk(un) − wµ

i,j) dx dt

≤ 2k

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt.

Then by (5.26). we deduce that,
(5.53)

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇unh
′
m(un)(Tk(un) − wµ

i,j) dx dt ≤ ǫ(n, µ,m).

Finally, by means of (5.47)-(5.53), we obtain,

(5.54)

∫

Q

an(x, t, un,∇un)(∇Tk(un) −∇wµ
i,j)hm(un) dx dt ≤ ǫ(n, j, µ,m).

Splitting the first integral on the left hand side of (5.54) where |un| ≤ k and |un| > k,
we can write,

∫

Q

an(x, t, un,∇un)(∇Tk(un) −∇wµ
i,j)hm(un) dx dt

=

∫

Q

an(x, t, Tk(un),∇Tk(un))(∇Tk(un) −∇wµ
i,j)hm(un) dx dt

−

∫

{|un|>k}

an(x, t, un,∇un)∇wµ
i,jhm(un) dx dt.

Since hm(un) = 0 if |un| ≥ m+ 1, one has

(5.55)

∫

Q

an(x, t, un,∇un)(∇Tk(un) −∇wµ
i,j)hm(un) dx dt

=

∫

Q

an(x, t, Tk(un),∇Tk(un))(∇Tk(un) −∇wµ
i,j)hm(un) dx dt

−

∫

{|un|>k}

an(x, t, Tm+1(un),∇Tm+1(un))∇wµ
i,jhm(un) dx dt = I1 + I2

In the following we pass to the limit in (5.55) as n tends to +∞, then j then µ and
then m tends to +∞. We prove that

I2 =

∫

Q

ϕm∇Tk(u)µhm(u)χ{|u|>k}
dx dt+ ǫ(n, j, µ).

Using now the term I1 of (5.55), we conclude that, it is easy to show that,

(5.56)

∫

Q

an

(

x, t, Tk(un),∇Tk(un)
)

(∇Tk(un) −∇wµ
i,j)hm(un) dx dt

=

∫

Q

[

an(x, t, Tk(un),∇Tk(un)) − an(x, t, Tk(un),∇Tk(vj)χ
s
j)

]
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×
[

∇Tk(un) −∇Tk(vj)χ
s
j

]

hm(un) dx dt

+

∫

Q

an

(

x, t, Tk(un),∇Tk(vj)χ
s
j

)[

∇Tk(un) −∇Tk(vj)χ
s
j

]

hm(un) dx dt

+

∫

Q

an

(

x, t, Tk(un),∇Tk(un)
)

∇Tk(vj)χ
s
jhm(un) dx dt

−

∫

Q

an

(

x, t, Tk(un),∇Tk(un)
)

∇wµ
i,jhm(un) dx dt = J1 + J2 + J3 + J4,

where χs
j denotes the characteristic function of the subset

Ωj
s =

{

(x, t) ∈ Q : |∇Tk(vj)| ≤ s
}

In the following we pass to the limit in (5.56) as n tends to +∞, then j then µ
then m tends and then s tends to +∞ in the last three integrals of the last side.
We prove that

(5.57) J2 = ǫ(n, j),

(5.58) J3 =

∫

Q

ϕk∇Tk(u)χs dx dt+ ǫ(n, j),

and

(5.59) J4 = −

∫

Q

ϕk∇Tk(u) dx dt+ ǫ(n, j, µ, s).

We conclude then that,
(5.60)
∫

Q

[

an

(

x, t, Tk(un),∇Tk(un)
)

−an

(

x, t, Tk(un),∇Tk(u)χs

)][

∇Tk(un)−∇Tk(u)χs

]

dx dt

=

∫

Q

[

an

(

x, t, Tk(un),∇Tk(un)
)

− an

(

x, t, Tk(un),∇Tk(u)χs

)]

×
[

∇Tk(un) −∇Tk(u)χs

]

hm(un) dx dt

+

∫

Q

an

(

x, t, Tk(un),∇Tk(un)
)[

∇Tk(un) −∇Tk(u)χs
]

(1 − hm(un)) dx dt

−

∫

Q

an

(

x, t, Tk(un),∇Tk(u)χs

)[

∇Tk(un) −∇Tk(u)χs

]

(1 − hm(un)) dx dt.

Combining (5.48), (5.56), (5.57), (5.58), (5.59) and (5.60) we deduce,
(5.61)
∫

Q

[

an

(

x, t, Tk(un),∇Tk(un)
)

−an

(

x, t, Tk(un),∇Tk(u)χs

)][

∇Tk(un)−∇Tk(u)χs

]

dx dt

≤ ǫ(n, j, µ,m, s).

To pass to the limit in (5.61) as n, j, m, s tends to infinity, we obtain

(5.62) lim
s→∞

lim
n→∞

∫

Q

[

an

(

x, t, Tk(un),∇Tk(un)
)

− an

(

x, t, Tk(un),∇Tk(u)χs

)]

×
[

∇Tk(un) −∇Tk(u)χs

]

dx dt = 0.
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This implies by the lemma 5.5, the desired statement and hence the proof of Propo-
sition 5.4 is achieved. �

⋆ Step 4. In this step we prove that u satisfies (4.2).

Lemma 5.7. The limit u of the approximate solution un of (5.6)-(5.8) satisfies

(5.63) lim
m→+∞

∫

{m≤|u|≤m+1}

a(x, t, u,∇u)∇u dx dt = 0.

Proof. Remark that for any fixed m ≥ 0 one has
∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt

=

∫

Q

an(x, t, un,∇un)
[

∇Tm+1(un) −∇Tm(un)
]

dx dt

=

∫

Q

an

(

x, t, Tm+1(un),∇Tm+1(un)
)

∇Tm+1(un) dx dt

−

∫

Q

an

(

x, t, Tm(un),∇Tm(un)
)

∇Tm(un) dx dt

According to (5.42) (with zn = Tm(un) or zn = Tm+1(un)), one is at liberty to pass
to the limit as n tends to +∞ for fixed m ≥ 0 and to obtain

(5.64) lim
n→+∞

∫

{m≤|un|≤m+1}

an(x, t, un,∇un)∇un dx dt

=

∫

Q

a
(

x, t, Tm+1(u),∇Tm+1(u)
)

∇Tm+1(u) dx dt

−

∫

Q

a
(

x, t, Tm(u),∇Tm(u)
)

∇Tm(u) dx dt

=

∫

{m≤|u|≤m+1}

a(x, t, u,∇u)∇u dx dt

Taking the limit asm tends to +∞ in (5.64) and using the estimate (5.26) it possible
to conclude that (5.63) holds true and the proof of Lemma 5.7 is complete. �

⋆ Step 5. In this step, u is shown to satisfies (4.3) and (4.4). Let S be a function in
W 2,∞(R) such that S′ has a compact support. LetK be a positive real number such
that supp(S′) ⊂ [−K,K]. Pointwise multiplication of the approximate equation
(5.6) by S′(un) leads to

(5.65)
∂Bn

S(x, un)

∂t
− div

(

S′(un)an(x, t, un,∇un)
)

+ S′′(un)an(x, t, un,∇un)∇un

− div
(

S′(un)Φ(un)
)

+ S′′(un)Φ(un)∇un = fS′(un) in D′(Q),

where Bn
S(x, z) =

∫ z

0

S′(r)
∂bn(x, r)

∂r
dr.

It what follows we pass to the limit as n tends to +∞ in each term of (5.65).
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⋆ Since S′ is bounded, and Bn
S(x, un) converges to BS(x, u) a.e. in Q and in L∞(Q)

weak ⋆. Then
∂Bn

S (x,un)
∂t

converges to ∂BS(x,u)
∂t

in D′(Q) as n tends to +∞.

⋆ Since suppS ⊂ [−K,K], we have

S′(un)an(x, t, un,∇un) = S′(un)an

(

x, t, TK(un),∇TK(un)
)

a.e. in Q.

The pointwise convergence of un to u as n tends to +∞, the bounded character of
S′, (5.22) and (5.36) of Lemma 5.4 imply that

S′(un)an

(

x, t, TK(un),∇TK(un)
)

⇀ S′(u)a
(

x, t, TK(u),∇TK(u)
)

weakly in (LM (Q))N ,

for σ(ΠLM ,ΠEM ) as n tends to +∞, because S(u) = 0 for |u| ≥ K a.e. in Q. And

the term S′(u)a
(

x, t, TK(u),∇TK(u)
)

= S′(u)a(x, t, u,∇u) a.e. in Q.

⋆ Since suppS′ ⊂ [−K,K], we have

S′′(un)an(x, t, un,∇un)∇un = S′′(un)an

(

x, t, TK(un),∇TK(un)
)

∇TK(un) a.e. inQ.

The pointwise convergence of S′′(un) to S′′(u) as n tends to +∞, the bounded
character of S′′ and (5.22)-(5.36) of Lemma 5.4 allow to conclude that

S′(un)an(x, t, un,∇un)∇un ⇀ S′(u)a
(

x, t, TK(u),∇TK(u)
)

∇TK(u) weakly in L1(Q),

as n tends to +∞. And

S′′(u)a
(

x, t, TK(u),∇TK(u)
)

∇TK(u) = S′′(u)a(x, t, u,∇u)∇u a.e. in Q.

⋆ Since suppS′ ⊂ [−K,K], we have S′(un)Φn(un) = S′(un)Φn(TK(un)) a.e. in Q.
As a consequence of (3.7), (5.3) and (5.22), it follows that:

S′(un)Φn(un) → S′(u)Φ(TK(u)) strongly in (EM (Q))N ,

as n tends to +∞. The term S′(u)Φ(TK(u)) is denoted by S′(u)Φ(u).

⋆ Since S ∈ W 1,∞(R) with suppS′ ⊂ [−K,K], we have S′′(un)Φn(un)∇un =
Φn(TK(un))∇S′′(un) a.e. in Q, we have, ∇S′′(un) converges to ∇S′′(u) weakly in

LM (Q)N as n tends to +∞, while Φn(TK(un)) is uniformly bounded with respect
to n and converges a.e. in Q to Φ(TK(u)) as n tends to +∞. Therefore

S′′(un)Φn(un)∇un ⇀ Φ(TK(u))∇S′′(u) weakly in LM (Q).

⋆ Due to (5.4) and (5.22), we have fnS(un) converges to fS(u) strongly in L1(Q),
as n tends to +∞.

As a consequence of the above convergence result, we are in a position to pass
to the limit as n tends to +∞ in equation (5.65) and to conclude that u satisfies
(4.3).

It remains to show that BS(x, u) satisfies the initial condition (4.4). To this end,
firstly remark that, S′ has a compact support, we have Bn

S(x, un) is bounded in
L∞(Q). Secondly, (5.65) and the above considerations on the behavior of the terms
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of this equation show that
∂Bn

S(x, un)

∂t
is bounded in L1(Q) + W−1,xLM (Q). As

a consequence, an Aubin’s type Lemma (see e.g., [36], Corollary 4) (see also [16])
implies that Bn

S(x, un) lies in a compact set of C0([0, T ];L1(Ω)). It follows that,
Bn

S(x, un)(t = 0) converges to BS(x, u)(t = 0) strongly in L1(Ω). Due to (4.8) and
(5.5), we conclude that Bn

S(x, un)(t = 0) = Bn
S(x, u0n) converges to BS(x, u)(t = 0)

strongly in L1(Ω). Then we conclude that

BS(x, u)(t = 0) = BS(x, u0) in Ω.

As a conclusion of step 1 to step 5, the proof of theorem 5.1 is complete.
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[2] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J.-L. Vazquez, An

L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola

Norm. Sup. Pisa, 22, (1995), pp. 241-273.
[3] A. Benkirane and J. Bennouna, Existence and uniqueness of solution of unilateral problems

with L1 data in Orlicz spaces, Italian Journal of Pure and Applied Mathematics, 16, (2004),
pp. 87-102.

[4] D. Blanchard, Truncation and monotonicity methods for parabolic equations equations,
Nonlinear Anal., 21, (1993), pp. 725-743.

[5] D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic problems with
L1 data, Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect., A127, (1997), pp.
1137-1152.

[6] D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized
solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations,

177, (2001), pp. 331-374.
[7] D. Blanchard, F. Murat and H. Redwane, Existence et unicité de la solution renormalisée
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