Electronic Journal of Qualitative Theory of Differential Equations 2010, No. 2, 1-19; http://www.math.u-szeged.hu/ejqtde/

EXISTENCE RESULTS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS IN ORLICZ SPACES

HICHAM REDWANE

Faculté des Sciences Juridiques, Économiques et Sociales. Université Hassan 1, B.P. 784. Settat. Morocco

Abstract. An existence result of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces is proved. No growth assumption is made on the nonlinearities.

1. INTRODUCTION

In this paper we consider the following problem:

(1.1)
$$
\frac{\partial b(x, u)}{\partial t} - div \Big(a(x, t, u, \nabla u) + \Phi(u) \Big) = f \quad \text{in } \Omega \times (0, T),
$$

(1.2)
$$
b(x, u)(t = 0) = b(x, u_0) \text{ in } \Omega,
$$

(1.3)
$$
u = 0 \text{ on } \partial\Omega \times (0, T),
$$

where Ω is a bounded open subset of \mathbb{R}^N and $T > 0$, $Q = \Omega \times (0, T)$. Let b be a Carathéodory function (see assumptions $(3.1)-(3.2)$ of Section 3), the data f and $b(x, u_0)$ in $L^1(Q)$ and $L^1(\Omega)$ respectively, $Au = -div\Big(a(x, t, u, \nabla u)\Big)$ is a Leray-

Lions operator defined on $W_0^{1,x} L_M(\Omega)$, M is an appropriate N-function and which grows like $\bar{M}^{-1}M(\beta_K^4|\nabla u|)$ with respect to ∇u , but which is not restricted by any growth condition with respect to u (see assumptions $(3.3)-(3.6)$). The function Φ is just assumed to be continuous on R.

Under these assumptions, the above problem does not admit, in general, a weak solution since the fields $a(x, t, u, \nabla u)$ and $\Phi(u)$ do not belong in $(L_{loc}^1(Q)^N)$ in general. To overcome this difficulty we use in this paper the framework of renormalized solutions. This notion was introduced by Lions and DiPerna [31] for the study of Boltzmann equation (see also [27], [11], [29], [28], [2]).

A large number of papers was devoted to the study the existence of renormalized solution of parabolic problems under various assumptions and in different contexts: for a review on classical results see [7], [30], [9], [8], [4], [5], [34], [12], [13], [14].

The existence and uniqueness of renormalized solution of $(1.1)-(1.3)$ has been proved in H. Redwane [34, 35] in the case where $Au = -div(a(x, t, u, \nabla u))$ is a Leray-Lions operator defined on $L^p(0,T;W_0^{1,p}(\Omega))$, the existence of renormalized solution in Orlicz spaces has been proved in E. Azroul, H. Redwane and M.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A15; Secondary 46A32, 47D20.

Key words and phrases. Nonlinear parabolic equations. Orlicz spaces. Existence. Renormalized solutions.

Rhoudaf [32] in the case where $b(x, u) = b(u)$ and where the growth of $a(x, t, u, \nabla u)$ is controlled with respect to u . Note that here we extend the results in [34, 32] in three different directions: we assume $b(x, u)$ depend on x, and the growth of $a(x, t, u, \nabla u)$ is not controlled with respect to u and we prove the existence in Orlicz spaces.

The paper is organized as follows. In section 2 we give some preliminaries and gives the definition of N-function and the Orlicz-Sobolev space. Section 3 is devoted to specifying the assumptions on b, a, Φ , f and $b(x, u_0)$. In Section 4 we give the definition of a renormalized solution of $(1.1)-(1.3)$. In Section 5 we establish (Theorem 5.1) the existence of such a solution.

2. Preliminaries

Let $M : \mathbb{R}^+ \to \mathbb{R}^+$ be an *N*-function, i.e., *M* is continuous, convex, with $M(t) > 0$ for $t > 0$, $\frac{M(t)}{t} \to 0$ as $t \to 0$ and $\frac{M(t)}{t} \to \infty$ as $t \to \infty$. Equivalently, M admits the representation : $M(t) = \int_0^t a(s) ds$ where $a : \mathbb{R}^+ \to \mathbb{R}^+$ is nondecreasing, right continuous, with $a(0) = 0$, $a(t) > 0$ for $t > 0$ and $a(t) \to \infty$ as $t \to \infty$. The N-function \overline{M} conjugate to M is defined by $\overline{M}(t) = \int_0^t \overline{a}(s) ds$, where \overline{a} : $\mathbb{R}^+ \to \mathbb{R}^+$ is given by $\overline{a}(t) = \sup\{s : a(s) \leq t\}.$

The N-function M is said to satisfy the Δ_2 condition if, for some $k > 0$,

(2.1)
$$
M(2t) \le k M(t) \text{ for all } t \ge 0.
$$

When this inequality holds only for $t \geq t_0 > 0$, M is said to satisfy the Δ_2 -condition near infinity.

Let P and Q be two N-functions. $P \ll Q$ means that P grows essentially less rapidly than Q ; i.e., for each $\varepsilon > 0$,

(2.2)
$$
\frac{P(t)}{Q(\varepsilon t)} \to 0 \quad \text{as } t \to \infty.
$$

This is the case if and only if,

(2.3)
$$
\frac{Q^{-1}(t)}{P^{-1}(t)} \to 0 \quad \text{as } t \to \infty.
$$

We will extend these N-functions into even functions on all \mathbb{R} . Let Ω be an open subset of \mathbb{R}^N . The Orlicz class $\mathcal{L}_M(\Omega)$ (resp. the Orlicz space $L_M(\Omega)$) is defined as the set of (equivalence classes of) real-valued measurable functions u on Ω such that :

(2.4)
$$
\int_{\Omega} M(u(x))dx < +\infty \quad (\text{resp. } \int_{\Omega} M(\frac{u(x)}{\lambda})dx < +\infty \text{ for some } \lambda > 0).
$$

Note that $L_M(\Omega)$ is a Banach space under the norm

(2.5)
$$
||u||_{M,\Omega} = \inf \left\{ \lambda > 0 : \int_{\Omega} M(\frac{u(x)}{\lambda}) dx \le 1 \right\}
$$

and $\mathcal{L}_M(\Omega)$ is a convex subset of $L_M(\Omega)$. The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$. The equality $E_M(\Omega) = L_M(\Omega)$ holds if and only if M satisfies the Δ_2 -condition, for all t or for t large according to whether Ω has infinite measure or not.

The dual of $E_M(\Omega)$ can be identified with $L_{\overline{M}}(\Omega)$ by means of the pairing $\int_{\Omega} u(x)v(x)dx$, and the dual norm on $L_{\overline{M}}(\Omega)$ is equivalent to $\|\cdot\|_{\overline{M},\Omega}$. The space $L_M(\Omega)$ is reflexive if and only if M and \overline{M} satisfy the Δ_2 condition, for all t or for t large, according to whether Ω has infinite measure or not.

We now turn to the Orlicz-Sobolev space. $W^1L_M(\Omega)$ (resp. $W^1E_M(\Omega)$) is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega)$ (resp. $E_M(\Omega)$). This is a Banach space under the norm

(2.6)
$$
||u||_{1,M,\Omega} = \sum_{|\alpha| \le 1} ||\nabla^{\alpha} u||_{M,\Omega}.
$$

Thus $W¹L_M(\Omega)$ and $W¹E_M(\Omega)$ can be identified with subspaces of the product of $N + 1$ copies of $L_M(\Omega)$. Denoting this product by ΠL_M , we will use the weak topologies $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ and $\sigma(\Pi L_M, \Pi L_{\overline{M}})$. The space $W_0^1 E_M(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W¹E_M(\Omega)$ and the space $W_0^1 L_M(\Omega)$ as the $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ closure of $\mathcal{D}(\Omega)$ in $W^1 L_M(\Omega)$. We say that u_n converges to u for the modular convergence in $W¹L_M(\Omega)$ if for some $\lambda > 0,$ Ω $M\left(\frac{\nabla^{\alpha}u_n-\nabla^{\alpha}u}{\lambda}\right)$ λ $\int dx \to 0$ for all $|\alpha| \leq 1$. This implies convergence for $\sigma(\Pi L_M^{\sigma}, \Pi L_{\overline{M}})$. If M satisfies the Δ_2 condition on \mathbb{R}^+ (near infinity only when Ω has finite measure), then modular convergence coincides with norm convergence.

Let $W^{-1}L_{\overline{M}}(\Omega)$ (resp. $W^{-1}E_{\overline{M}}(\Omega)$) denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\overline{M}}(\Omega)$ (resp. $E_{\overline{M}}(\Omega)$). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space $\mathcal{D}(\Omega)$ is dense in $W_0^1 L_M(\Omega)$ for the modular convergence and for the topology $\sigma(\Pi L_M, \Pi L_M)$ (cf. [21]). Consequently, the action of a distribution in $W^{-1}L_{\overline{M}}(\Omega)$ on an element of $W_0^1 L_M(\Omega)$ is well defined. For more details see [1], [23].

For $K > 0$, we define the truncation at height $K, T_K : \mathbb{R} \to \mathbb{R}$ by

$$
(2.7) \t\t TK(s) = min(K, max(s, -K)).
$$

The following abstract lemmas will be applied to the truncation operators.

Lemma 2.1. [21] *Let* $F : \mathbb{R} \to \mathbb{R}$ *be uniformly lipschitzian, with* $F(0) = 0$ *. Let* M *be an* N-function and let $u \in W¹L_M(\Omega)$ (resp. $W¹E_M(\Omega)$).

Then $F(u) \in W¹L_M(\Omega)$ *(resp.* $W¹E_M(\Omega)$ *). Moreover, if the set of discontinuity points* D *of* F ′ *is finite, then*

$$
\frac{\partial}{\partial x_i}F(u) = \begin{cases} F'(u)\frac{\partial u}{\partial x_i} & a.e. \in \Omega : u(x) \notin D \\ 0 & a.e. \in \Omega : u(x) \in D \end{cases}
$$

Lemma 2.2. [21] Let $F : \mathbb{R} \to \mathbb{R}$ be uniformly lipschitzian, with $F(0) = 0$. We *suppose that the set of discontinuity points of* F ′ *is finite. Let* M *be an N-function, then the mapping* $F : W^1L_M(\Omega) \to W^1L_M(\Omega)$ *is sequentially continuous with respect to the weak* topology* $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ *.*

Let Ω be a bounded open subset of \mathbb{R}^N , $T > 0$ and set $Q = \Omega \times (0, T)$. M be an *N*-function. For each $\alpha \in \mathbb{N}^N$, denote by ∇_x^{α} the distributional derivative on Q of EJQTDE, 2010 No. 2, p. 3

order α with respect to the variable $x \in \mathbb{N}^N$. The inhomogeneous Orlicz-Sobolev spaces are defined as follows,

(2.8)
$$
W^{1,x} L_M(Q) = \{ u \in L_M(Q) : \nabla_x^{\alpha} u \in L_M(Q) \ \forall \ |\alpha| \le 1 \}
$$

and
$$
W^{1,x} E_M(Q) = \{ u \in E_M(Q) : \nabla_x^{\alpha} u \in E_M(Q) \ \forall \ |\alpha| \le 1 \}
$$

The last space is a subspace of the first one, and both are Banach spaces under the norm,

(2.9)
$$
||u|| = \sum_{|\alpha| \le 1} ||\nabla_x^{\alpha} u||_{M,Q}.
$$

We can easily show that they form a complementary system when Ω satisfies the segment property. These spaces are considered as subspaces of the product space $\Pi L_M(Q)$ which have as many copies as there is α -order derivatives, $|\alpha| \leq 1$. We shall also consider the weak topologies $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ and $\sigma(\Pi L_M, \Pi L_{\overline{M}})$. If $u \in W^{1,x}L_M(Q)$ then the function : $t \longmapsto u(t) = u(t,.)$ is defined on $(0, T)$ with values in $W^1L_M(\Omega)$. If, further, $u \in W^{1,x}E_M(Q)$ then the concerned function is a $W¹E_M(\Omega)$ -valued and is strongly measurable. Furthermore the following imbedding holds: $W^{1,x}E_M(Q) \subset L^1(0,T;W^1E_M(\Omega))$. The space $W^{1,x}L_M(Q)$ is not in general separable, if $u \in W^{1,x}L_M(Q)$, we can not conclude that the function $u(t)$ is measurable on $(0, T)$. However, the scalar function $t \mapsto ||u(t)||_{M,\Omega}$ is in $L^1(0,T)$. The space $W_0^{1,x}E_M(Q)$ is defined as the (norm) closure in $W^{1,x}E_M(Q)$ of $\mathcal{D}(Q)$. We can easily show as in [22] that when Ω has the segment property, then each element u of the closure of $\mathcal{D}(Q)$ with respect of the weak * topology $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ is a limit, in $W^{1,x}L_M(Q)$, of some subsequence $(u_i) \subset \mathcal{D}(Q)$ for the modular convergence; i.e., there exists $\lambda > 0$ such that for all $|\alpha| < 1$,

(2.10)
$$
\int_{Q} M\left(\frac{\nabla_x^{\alpha} u_i - \nabla_x^{\alpha} u}{\lambda}\right) dx dt \to 0 \text{ as } i \to \infty.
$$

This implies that (u_i) converges to u in $W^{1,x}L_M(Q)$ for the weak topology $\sigma(\Pi L_M, \Pi L_{\overline{M}})$. Consequently,

(2.11)
$$
\overline{\mathcal{D}(Q)}^{\sigma(\Pi L_M, \Pi E_{\overline{M}})} = \overline{\mathcal{D}(Q)}^{\sigma(\Pi L_M, \Pi L_{\overline{M}})}
$$

This space will be denoted by $W_0^{1,x} L_M(Q)$. Furthermore, $W_0^{1,x} E_M(Q) = W_0^{1,x} L_M(Q) \cap$ ΠE_M . Poincaré's inequality also holds in $W_0^{1,x} L_M(Q)$, i.e., there is a constant $C>0$ such that for all $u \in W_0^{1,x} L_M(Q)$ one has,

.

(2.12)
$$
\sum_{|\alpha| \le 1} \|\nabla_x^{\alpha} u\|_{M,Q} \le C \sum_{|\alpha|=1} \|\nabla_x^{\alpha} u\|_{M,Q}.
$$

Thus both sides of the last inequality are equivalent norms on $W_0^{1,x} L_M(Q)$. We have then the following complementary system

(2.13)
$$
\begin{pmatrix} W_0^{1,x} L_M(Q) & F \ W_0^{1,x} E_M(Q) & F_0 \end{pmatrix}
$$

F being the dual space of $W_0^{1,x} E_M(Q)$. It is also, except for an isomorphism, the quotient of $\Pi L_{\overline{M}}$ by the polar set $W_0^{1,x} E_M(Q)^{\perp}$, and will be denoted by $F =$ EJQTDE, 2010 No. 2, p. 4 $W^{-1,x}L_{\overline{M}}(Q)$ and it is shown that,

(2.14)
$$
W^{-1,x} L_{\overline{M}}(Q) = \left\{ f = \sum_{|\alpha| \le 1} \nabla_x^{\alpha} f_{\alpha} : f_{\alpha} \in L_{\overline{M}}(Q) \right\}.
$$

This space will be equipped with the usual quotient norm

(2.15)
$$
||f|| = \inf \sum_{|\alpha| \le 1} ||f_{\alpha}||_{\overline{M},Q}
$$

where the infimum is taken on all possible decompositions

(2.16)
$$
f = \sum_{|\alpha| \le 1} \nabla_x^{\alpha} f_{\alpha}, \quad f_{\alpha} \in L_{\overline{M}}(Q).
$$

The space F_0 is then given by,

(2.17)
$$
F_0 = \left\{ f = \sum_{|\alpha| \le 1} \nabla_x^{\alpha} f_{\alpha} : f_{\alpha} \in E_{\overline{M}}(Q) \right\}
$$

and is denoted by $F_0 = W^{-1,x} E_{\overline{M}}(Q)$.

Remark 2.3*.* We can easily check, using lemma 2.1, that each uniformly lipschitzian mapping F, with $F(0) = 0$, acts in inhomogeneous Orlicz-Sobolev spaces of order 1 : $W^{1,x} L_M(Q)$ and $W_0^{1,x} L_M(Q)$.

3. Assumptions and statement of main results

Throughout this paper, we assume that the following assumptions hold true: Ω is a bounded open set on \mathbb{R}^N $(N \geq 2)$, $T > 0$ is given and we set $Q = \Omega \times (0, T)$. Let M and P be two N -function such that $P \ll M$.

(3.1)
$$
b : \Omega \times \mathbb{R} \to \mathbb{R}
$$
 is a Carathéodory function such that,

for every $x \in \Omega : b(x, s)$ is a strictly increasing C^1 -function, with $b(x, 0) = 0$. For any $K > 0$, there exists $\lambda_K > 0$, a function A_K in $L^{\infty}(\Omega)$ and a function B_K in $L_M(\Omega)$ such that

(3.2)
$$
\lambda_K \le \frac{\partial b(x, s)}{\partial s} \le A_K(x)
$$
 and $\left| \nabla_x \left(\frac{\partial b(x, s)}{\partial s} \right) \right| \le B_K(x)$,

for almost every $x \in \Omega$, for every s such that $|s| \leq K$.

Consider a second order partial differential operator $A: D(A) \subset W^{1,x}L_M(Q) \to$ $W^{-1,x}L_{\overline{M}}(Q)$ in divergence form,

$$
A(u) = -\text{div}\Big(a(x, t, u, \nabla u)\Big)
$$

where

 (3.3) $a: \Omega \times (0,T) \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function satisfying

for any $K > 0$, there exist $\beta_K^i > 0$ (for $i = 1, 2, 3, 4$) and a function $C_K \in E_{\bar{M}}(Q)$ such that:

(3.4)
$$
|a(x, t, s, \xi)| \le C_K(x, t) + \beta_K^1 \overline{M}^{-1} P(\beta_K^2 |s|) + \beta_K^3 \overline{M}^{-1} M(\beta_K^4 |\xi|)
$$
 EJQTDE, 2010 No. 2, p. 5

for almost every $(x,t) \in Q$ and for every $|s| \leq K$ and for every $\xi \in \mathbb{R}^N$.

(3.5)
$$
\[a(x,t,s,\xi)-a(x,t,s,\xi^*)\]\left[\xi-\xi^*\right]>0
$$

(3.6)
$$
a(x, t, s, \xi)\xi \ge \alpha M(|\xi|)
$$

for almost every $(x,t) \in Q$, for every $s \in \mathbb{R}$ and for every $\xi \neq \xi^* \in \mathbb{R}^N$, where $\alpha > 0$ is a given real number.

(3.7)
$$
\Phi \; : \; \mathbb{R} \to \mathbb{R}^N \text{ is a continuous function}
$$

(3.8)
$$
f
$$
 is an element of $L^1(Q)$.

(3.9)
$$
u_0
$$
 is an element of $L^1(\Omega)$ such that $b(x, u_0) \in L^1(\Omega)$.

Remark 3.1. As already mentioned in the introduction, problem (1.1) - (1.3) does not admit a weak solution under assumptions $(3.1)-(3.9)$ (even when $b(x, u) = u$) since the growths of $a(x, t, u, Du)$ and $\Phi(u)$ are not controlled with respect to u (so that these fields are not in general defined as distributions, even when u belongs to $W_0^{1,x} L_M(Q)$.

4. Definition of a renormalized solution

The definition of a renormalized solution for problem $(1.1)-(1.3)$ can be stated as follows.

Definition 4.1. A measurable function u defined on Q is a renormalized solution of Problem (1.1)-(1.3) if

(4.1)
$$
T_K(u) \in W_0^{1,x} L_M(Q) \quad \forall K \ge 0 \text{ and } b(x, u) \in L^{\infty}(0, T; L^1(\Omega)),
$$

$$
(4.2) \quad \int_{\{(t,x)\in Q\;;\;m\leq |u(x,t)|\leq m+1\}} a(x,t,u,\nabla u)\nabla u\,dx\,dt\;\longrightarrow 0 \quad \text{as }m\to+\infty\;;
$$

and if, for every function S in $W^{2,\infty}(\mathbb{R})$, which is piecewise C^1 and such that S' has a compact support, we have

(4.3)
$$
\frac{\partial B_S(x, u)}{\partial t} - div(S'(u)a(x, t, u, \nabla u)) + S''(u)a(x, t, u, \nabla u)\nabla u
$$

$$
- div(S'(u)\Phi(u)) + S''(u)\Phi(u)\nabla u = fS'(u) \text{ in } D'(Q),
$$

and

(4.4)
$$
B_S(x, u)(t = 0) = B_S(x, u_0) \text{ in } \Omega,
$$

where $B_S(x, z) = \int_0^z$ $\frac{\partial b(x,r)}{\partial r}S'(r) dr.$

The following remarks are concerned with a few comments on definition 4.1. EJQTDE, 2010 No. 2, p. 6 *Remark* 4.2*.* Equation (4.3) is formally obtained through pointwise multiplication of equation (1.1) by $S'(u)$. Note that due to (4.1) each term in (4.3) has a meaning in $L^1(Q) + W^{-1,x} L_{\overline{M}}(Q)$.

Indeed, if K is such that $suppS' \subset [-K, K]$, the following identifications are made in (4.3).

 \star $B_S(x, u) \in L^{\infty}(Q)$, because $|B_S(x, u)| \leq K ||A_K||_{L^{\infty}(\Omega)} ||S'||_{L^{\infty}(\mathbb{R})}$.

 $\star S'(u)a(x,t,u,\nabla u)$ identifies with $S'(u)a(x,t,T_K(u),\nabla T_K(u))$ a.e. in Q. Since indeed $|T_K(u)| \leq K$ a.e. in Q. Since $S'(u) \in L^{\infty}(Q)$ and with (3.4) , (4.1) we obtain that

$$
S(u)a\Big(x,t,T_K(u),\nabla T_K(u)\Big)\in (L_{\overline{M}}(Q))^N.
$$

 $\star S'(u)a(x,t,u,\nabla u)\nabla u$ identifies with $S'(u)a(x,t,T_K(u),\nabla T_K(u))\nabla T_K(u)$ and in view of (3.2) and (4.1) one has

$$
S'(u)a\Big(x,t,T_K(u),\nabla T_K(u)\Big)\nabla T_K(u)\in L^1(Q).
$$

 \star $S'(u)\Phi(u)$ and $S''(u)\Phi(u)\nabla u$ respectively identify with $S'(u)\Phi(T_K(u))$ and $S''(u)\Phi(T_K(u))\nabla T_K(u)$. Due to the properties of S and (3.7), the functions S', S'' and $\Phi \circ T_K$ are bounded on $\mathbb R$ so that (4.1) implies that $S'(u)\Phi(T_K(u)) \in (L^{\infty}(Q))^N$, and $S''(u)\Phi(T_K(u))\nabla T_K(u) \in (L_M(Q))^N$.

The above considerations show that equation (4.3) takes place in $D'(Q)$ and that

(4.5)
$$
\frac{\partial B_S(x, u)}{\partial t} \text{ belongs to } W^{-1,x} L_{\overline{M}}(Q) + L^1(Q).
$$

Due to the properties of S and (3.2) , we have

$$
(4.6) \qquad \left| \nabla B_S(x, u) \right| \leq \| A_K \|_{L^\infty(\Omega)} |\nabla T_K(u)| \| S' \|_{L^\infty(\Omega)} + K \| S' \|_{L^\infty(\Omega)} B_K(x)
$$

and

(4.7)
$$
B_S(x, u) \text{ belongs to } W_0^{1,x} L_M(Q).
$$

Moreover (4.5) and (4.7) implies that $B_S(x, u)$ belongs to $C^0([0, T]; L^1(\Omega))$ (for a proof of this trace result see [30]), so that the initial condition (4.4) makes sense.

Remark 4.3. For every $S \in W^{2,\infty}(\mathbb{R})$, nondecreasing function such that supp $S' \subset$ $[-K, K]$ and (3.2) , we have

$$
(4.8) \qquad \lambda_K|S(r) - S(r')| \le \left|B_S(x, r) - B_S(x, r')\right| \le \|A_K\|_{L^\infty(\Omega)}|S(r) - S(r')|
$$

for almost every $x \in \Omega$ and for every $r, r' \in \mathbb{R}$.

5. Existence result

This section is devoted to establish the following existence theorem.

Theorem 5.1. *Under assumption (3.1)-(3.9) there exists at at least a renormalized solution of Problem (1.1)-(1.3).*

Proof. The proof is divided into 5 steps. □

★ Step 1. For $n \in \mathbb{N}^*$, let us define the following approximations of the data:

(5.1)
$$
b_n(x,r) = b(x,T_n(r)) + \frac{1}{n}r \quad \text{a.e. in } \Omega, \ \forall s \in \mathbb{R},
$$

(5.2)
$$
a_n(x,t,r,\xi) = a(x,t,T_n(r),\xi) \quad \text{a.e. in } Q, \ \forall s \in \mathbb{R}, \ \forall \xi \in \mathbb{R}^N,
$$

(5.3) Φ_n is a Lipschitz continuous bounded function from \mathbb{R} into \mathbb{R}^N ,

such that Φ_n uniformly converges to Φ on any compact subset of $\mathbb R$ as n tends to $+\infty$.

(5.4) $f_n \in C_0^{\infty}(Q)$: $||f_n||_{L^1} \le ||f||_{L^1}$ and $f_n \longrightarrow f$ in $L^1(Q)$ as n tends to $+\infty$, (5.5)

 $u_{0n} \in C_0^{\infty}(\Omega) : ||b_n(x, u_{0n})||_{L^1} \le ||b(x, u_0)||_{L^1}$ and $b_n(x, u_{0n}) \longrightarrow b(x, u_0)$ in $L^1(\Omega)$ as *n* tends to $+\infty$.

Let us now consider the following regularized problem:

(5.6)
$$
\frac{\partial b_n(x, u_n)}{\partial t} - div \Big(a_n(x, t, u_n, \nabla u_n) + \Phi_n(u_n) \Big) = f_n \text{ in } Q,
$$

(5.7)
$$
u_n = 0 \text{ on } (0,T) \times \partial \Omega,
$$

(5.8)
$$
b_n(x, u_n)(t=0) = b_n(x, u_{0n}) \text{ in } \Omega.
$$

As a consequence, proving existence of a weak solution $u_n \in W_0^{1,x} L_M(Q)$ of (5.6)-(5.8) is an easy task (see e.g. [25], [33]).

 \star Step 2. The estimates derived in this step rely on usual techniques for problems of the type (5.6)-(5.8).

Proposition 5.2. *Assume that (3.1)-(3.9) hold true and let* uⁿ *be a solution of the approximate problem* (5.6) – (5.8)*. Then for all* K, $n > 0$ *, we have*

(5.9)
$$
||T_K(u_n)||_{W_0^{1,x}L_M(Q)} \leq K\Big(||f||_{L^1(Q)} + ||b(x,u_0)||_{L^1(\Omega)}\Big) \equiv CK,
$$

where C *is a constant independent of* n*.*

(5.10)
$$
\int_{\Omega} B_K^n(x, u_n)(\tau) dx \leq K(||f||_{L^1(Q)} + ||b(x, u_0)||_{L^1(\Omega)}) \equiv CK,
$$

for almost any τ *in* $(0, T)$ *, and where* $B_K^n(x, r) = \int_0^r T_K(s) \frac{\partial b_n(x, s)}{\partial s} ds$.

(5.11)
$$
\lim_{K \to \infty} meas\Big\{(x,t) \in Q: |u_n| > K\Big\} = 0 \text{ uniformly with respect to } n.
$$

Proof. We take $T_K(u_n)_{\chi(0,\tau)}$ as test function in (5.6), we get for every $\tau \in (0,T)$ (5.12)

$$
\langle \frac{\partial b_n(x, u_n)}{\partial t}, T_K(u_n)_{\chi(0, \tau)} \rangle + \int_{Q_\tau} a_n(x, t, T_K(u_n), \nabla T_K(u_n)) \nabla T_K(u_n) dx dt + \int_{Q_\tau} \Phi_n(u_n) \nabla T_K(u_n) dx dt = \int_{Q_\tau} f_n T_K(u_n) dx dt, \text{EJQTDE, } 2010 \text{ No. } 2, \text{ p. } 8
$$

which implies that,

(5.13)
\n
$$
\int_{\Omega} B_K^n(x, u_n)(\tau) dx + \int_{Q_\tau} a_n(x, t, T_K(u_n), \nabla T_K(u_n)) \nabla T_K(u_n) dx dt
$$
\n
$$
+ \int_{Q_\tau} \Phi_n(u_n) \nabla T_K(u_n) dx dt = \int_{Q_\tau} f_n T_K(u_n) dx dt + \int_{\Omega} B_K^n(x, u_{0n}) dx
$$

where, $B_K^n(x,r) = \int_0^r T_K(s) \frac{\partial b_n(x,s)}{\partial s} ds.$

The Lipschitz character of Φ_n , Stokes formula together with the boundary condition (5.7), make it possible to obtain

(5.14)
$$
\int_{Q_{\tau}} \Phi_n(u_n) \nabla T_K(u_n) dx dt = 0.
$$

Due to the definition of B_K^n we have,

$$
(5.15) \qquad 0 \le \int_{\Omega} B_K^n(x, u_{0n}) \, dx \le K \int_{\Omega} |b_n(x, u_{0n})| \, dx \le K \|b(x, u_0)\|_{L^1(\Omega)}.
$$

By using (5.14), (5.15) and the fact that $B_K^n(x, u_n) \geq 0$, permit to deduce from (5.13) that (5.16)

$$
\int_{Q} a_n(x, t, T_K(u_n), \nabla T_K(u_n)) \nabla T_K(u_n) \, dx \, dt \leq K(||f_n||_{L^1(Q)} + ||b_n(x, u_{0n})||_{L^1(\Omega)}) \leq CK,
$$

which implies by virtue of (3.6) , (5.4) and (5.5) that,

(5.17)
$$
\int_{Q} M(\nabla T_K(u_n)) dx dt \leq K(||f||_{L^1(Q)} + ||b(x, u_0)||_{L^1(\Omega)}) \equiv CK.
$$

We deduce from that above inequality (5.13) and (5.15) that

(5.18)
$$
\int_{\Omega} B_K^n(x, u_n)(\tau) dx \leq (||f||_{L^1(Q)} + ||b(x, u_0)||_{L^1(\Omega)}) \equiv CK.
$$

for almost any τ in $(0, T)$.

We prove (5.11). Indeed, thanks to lemma 5.7 of [21], there exist two positive constants δ , λ such that,

(5.19)
$$
\int_{Q} M(v) dx dt \leq \delta \int_{Q} M(\lambda |\nabla v|) dx dt \text{ for all } v \in W_0^{1,x} L_M(Q).
$$

Taking $v = \frac{T_K(u_n)}{V}$ $\frac{\lambda^{(m)}}{\lambda}$ in (5.19) and using (5.17), one has

(5.20)
$$
\int_{Q} M\left(\frac{T_K(u_n)}{\lambda}\right) dx dt \leq CK,
$$

where C is a constant independent of K and n . Which implies that,

(5.21)
$$
meas\{(x,t) \in Q: |u_n| > K\} \le \frac{C'K}{M(\frac{K}{\lambda})}.
$$
 EJQTDE, 2010 No. 2, p. 9

where C' is a constant independent of K and n . Finally,

$$
\lim_{K \to \infty} meas \Big\{ (x, t) \in Q: |u_n| > K \Big\} = 0 \text{ uniformly with respect to } n.
$$

 \Box

We prove de following proposition:

Proposition 5.3. Let u_n be a solution of the approximate problem $(5.6)-(5.8)$, *then*

(5.22) $u_n \to u \text{ a.e. in } Q,$

(5.23)
$$
b_n(x, u_n) \to b(x, u) \quad a.e. \text{ in } Q,
$$

(5.24) $b(x, u) \in L^{\infty}(0, T; L^{1}(\Omega)),$

(5.25)
$$
a_n(x, t, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup \varphi_k \quad in \quad (L_{\overline{M}}(Q))^N \quad \text{for} \quad \sigma(\Pi L_{\overline{M}}, \Pi E_M)
$$

for some $\varphi_k \in (L_{\overline{M}}(Q))^N$.

(5.26)
$$
\lim_{m \to +\infty} \lim_{n \to +\infty} \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt = 0.
$$

Proof. Proceeding as in [5, 9, 7], we have for any $S \in W^{2,\infty}(\mathbb{R})$ such that S' has a compact support (supp $S' \subset [-K, K]$)

(5.27)
$$
B_S^n(x, u_n) \text{ is bounded in } W_0^{1,x} L_M(Q),
$$

and

(5.28)
$$
\frac{\partial B_S^n(x, u_n)}{\partial t} \text{ is bounded in } L^1(Q) + W^{-1,x} L_{\overline{M}}(Q),
$$

independently of n.

As a consequence of (4.6) and (5.17) we then obtain (5.27) . To show that (5.28) holds true, we multiply the equation for u_n in (5.6) by $S'(u_n)$ to obtain

(5.29)
$$
\frac{\partial B_S^n(x, u_n)}{\partial t} = \text{div}\Big(S'(u_n)a_n(t, x, u_n, \nabla u_n)\Big)
$$

$$
-S''(u_n)a_n(x,t,u_n,\nabla u_n)\nabla u_n + \operatorname{div}\left(S'(u_n)\Phi_n(u_n)\right) + f_nS'(u_n) \quad \text{in } D'(Q).
$$

Where $B_S^n(x,r) = \int_0^r$ $S'(s) \frac{\partial b_n(x, s)}{\partial s} ds$. Since supp S' and supp S'' are both included in $[-K, K]$, u^{ε} may be replaced by $T_K(u_n)$ in each of these terms. As a consequence, each term in the right hand side of (5.29) is bounded either in $W^{-1,x}L_{\overline{M}}(Q)$ or in $L^1(Q)$. As a consequence of (3.2), (5.29) we then obtain (5.28). Arguing again as in $[5, 7, 6, 9]$ estimates $(5.27), (5.28)$ and (4.8) , we can show (5.22) and (5.23).

We now establish that $b(x, u)$ belongs to $L^{\infty}(0, T; L^{1}(\Omega))$. To this end, recalling (5.23) makes it possible to pass to the limit-inf in (5.18) as n tends to $+\infty$ and to obtain

$$
\frac{1}{K} \int_{\Omega} B_K(x, u)(\tau) dx \le (\|f\|_{L^1(Q)} + \|b(x, u_0)\|_{L^1(\Omega)}) \equiv C,
$$

EJQTDE, 2010 No. 2, p. 10

for almost any τ in $(0, T)$. Due to the definition of $B_K(x, s)$, and because of the pointwise convergence of $\frac{1}{K}B_K(x, u)$ to $b(x, u)$ as K tends to $+\infty$, which shows that $b(x, u)$ belongs to $L^{\infty}(0, T; L^{1}(\Omega)).$

We prove (5.25). Let $\varphi \in (E_M(Q))^N$ with $\|\varphi\|_{M,Q} = 1$. In view of the monotonicity of a one easily has, (5.30)

(5.50)
\n
$$
\int_{Q} a_n(x, t, T_k(u_n), \nabla T_k(u_n)) \varphi \, dx \, dt \le \int_{Q} a_n(x, t, T_k(u_n), \nabla T_k(u_n)) \nabla T_k(u_n) \, dx \, dt
$$
\n
$$
+ \int_{Q} a_n(x, t, T_k(u_n), \varphi) [\nabla T_k(u_n) - \varphi] \, dx \, dt.
$$
\nand

(5.31)

$$
-\int_{Q} a_{n}\Big(x,t,T_{k}(u_{n}),\nabla T_{k}(u_{n})\Big)\varphi \,dx\,dt \leq \int_{Q} a_{n}\Big(x,t,T_{k}(u_{n}),\nabla T_{k}(u_{n})\Big)\nabla T_{k}(u_{n})\,dx\,dt
$$

$$
-\int_{Q} a_{n}\Big(x,t,T_{k}(u_{n}),-\varphi\Big)[\nabla T_{k}(u_{n})+\varphi]\,dx\,dt,
$$

since $T_k(u_n)$ is bounded in $W_0^{1,x} L_M(Q)$, one easily deduce that $a_n(x, t, T_k(u_n), \nabla T_k(u_n))$ is a bounded sequence in $(L_{\overline{M}}(Q))^{N}$, and we obtain (5.25).

Now we prove (5.26). We take of $T_1(u_n - T_m(u_n))$ as test function in (5.6), we obtain

$$
(5.32) \langle \frac{\partial b_n(x, u_n)}{\partial t}, T_1(u_n - T_m(u_n)) \rangle + \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt
$$

$$
+ \int_Q \operatorname{div} \left[\int_0^{u_n} \Phi(r) T_1'(r - T_m(r)) \right] dx \, dt = \int_Q f_n T_1(u_n - T_m(u_n)) \, dx \, dt.
$$
Using the fact that
$$
\int_{u_n}^{u_n} \Phi(r) T_1'(r - T_m(r)) \, dx \, dt \in W_0^{1,x} L_M(Q) \text{ and Stokes formula}
$$

0 $\Phi(r)T_1'(r-T_m(r)) dx dt \in W_0^{1,x}L_M(Q)$ and Stokes formula, we get

(5.33)
$$
\int_{\Omega} B_n^m(x, u_n(T)) dx + \int_{\{m \le |u_n| \le m+1\}} a(x, t, u_n, \nabla u_n) \nabla u_n dx dt
$$

$$
\le \int_Q |f_n T_1(u_n - T_m(u_n))| dx dt + \int_{\Omega} B_n^m(x, u_{0n}) dx,
$$

where $B_m^m(x, x) = \int_0^T \frac{\partial b_n(x, s)}{\partial x} T_n(x, T_n(x)) dx$

where $B_n^m(x,r) = \int_0^r \frac{\partial b_n(x,s)}{\partial s} T_1(s - T_m(s)) ds.$ In order to pass to the limit as *n* tends to $+\infty$ in (5.33), we use $B_n^m(x, u_n(T)) \ge 0$ and $(5.4)-(5.5)$, we obtain that

(5.34)
$$
\lim_{n \to +\infty} \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt
$$

$$
\le \int_{\{|u| > m\}} |f| \, dx \, dt + \int_{\{|u_0| > m\}} |b(x, u_0)| \, dx.
$$
Finally, by (2.8), (2.9), and (5.34) we obtain (5.36).

Finally by $(3.8), (3.9)$ and (5.34) we obtain (5.26) .

EJQTDE, 2010 No. 2, p. 11

 \Box

★ Step 3. This step is devoted to introduce for $K \geq 0$ fixed, a time regularization $w_{\mu,j}^i$ of the function $T_K(u)$ and to establish the following proposition:

Proposition 5.4. Let u_n be a solution of the approximate problem $(5.6)-(5.8)$. *Then, for any* $k \geq 0$ *:*

(5.35)
$$
\nabla T_k(u_n) \to \nabla T_k(u) \quad a.e. \text{ in } Q,
$$

(5.36)

$$
a_n(x, t, T_k(u_n), \nabla T_k(u_n)) \rightharpoonup a(x, t, T_k(u), \nabla T_k(u)) \quad weakly \ in \ \ (L_{\overline{M}}(Q))^N,
$$

(5.37)
$$
M(|\nabla T_k(u_n)|) \to M(|\nabla T_k(u)|) \text{ strongly in } L^1(Q),
$$

as n tends to $+\infty$ *.*

Let use give the following lemma which will be needed later:

Lemma 5.5. *Under assumptions* (3.1) – (3.9)*, and let* (z_n) *be a sequence in* $W_0^{1,x} L_M(Q)$ such that,

(5.38)
$$
z_n \rightharpoonup z \text{ in } W_0^{1,x} L_M(Q) \text{ for } \sigma(\Pi L_M(Q), \Pi E_{\overline{M}}(Q)),
$$

(5.39)
$$
(a_n(x, t, z_n, \nabla z_n))_n \text{ is bounded in } (L_{\overline{M}}(Q))^N,
$$

$$
(5.40) \qquad \int_{Q} \left[a_n(x, t, z_n, \nabla z_n) - a_n(x, t, z_n, \nabla z \chi_s) \right] \left[\nabla z_n - \nabla z \chi_s \right] dx dt \longrightarrow 0,
$$

as *n* and *s tend to* $+\infty$ *, and where* χ_s *is the characteristic function of*

$$
Q_s = \Big\{ (x,t) \in Q \; ; \; |\nabla z| \le s \Big\}.
$$

Then,

(5.41)
$$
\nabla z_n \to \nabla z \quad a.e. \text{ in } Q,
$$

(5.42)
$$
\lim_{n \to \infty} \int_{Q} a_n(x, t, z_n, \nabla z_n) \nabla z_n dx dt = \int_{Q} a(x, t, z, \nabla z) \nabla z dx dt,
$$

(5.43)
$$
M(|\nabla z_n|) \to M(|\nabla z|) \text{ in } L^1(Q).
$$

Proof. See [32].

Proof. (Proposition 5.4). The proof is almost identical of the one given in, e.g. [32]. where the result is established for $b(x, u) = u$ and where the growth of $a(x, t, u, Du)$ is controlled with respect to u. This proof is devoted to introduce for $k \geq 0$ fixed, a time regularization of the function $T_k(u)$, this notion, introduced by R. Landes (see Lemma 6 and Proposition 3, p. 230 and Proposition 4, p. 231 in [24]). More recently, it has been exploited in [10] and [15] to solve a few nonlinear evolution problems with L^1 or measure data.

Let $v_j \in D(Q)$ be a sequence such that $v_j \to u$ in $W_0^{1,x} L_M(Q)$ for the modular convergence and let $\psi_i \in D(\Omega)$ be a sequence which converges strongly to u_0 in $L^1(\Omega)$.

EJQTDE, 2010 No. 2, p. 12

Let $w_{i,j}^{\mu} = T_k(v_j)_{\mu} + e^{-\mu t} T_k(\psi_i)$ where $T_k(v_j)_{\mu}$ is the mollification with respect to time of $T_k(v_j)$, note that $w_{i,j}^{\mu}$ is a smooth function having the following properties:

(5.44)
$$
\frac{\partial w_{i,j}^{\mu}}{\partial t} = \mu(T_k(v_j) - w_{i,j}^{\mu}), \ w_{i,j}^{\mu}(0) = T_k(\psi_i), \ |w_{i,j}^{\mu}| \le k,
$$

(5.45)
$$
w_{i,j}^{\mu} \to T_k(u)_{\mu} + e^{-\mu t} T_k(\psi_i) \text{ in } W_0^{1,x} L_M(Q),
$$

for the modular convergence as $j \to \infty$.

(5.46)
$$
T_k(u)_{\mu} + e^{-\mu t} T_k(\psi_i) \to T_k(u) \text{ in } W_0^{1,x} L_M(Q),
$$

for the modular convergence as $\mu \to \infty$.

Let now the function h_m defined on R with $m \geq k$ by: $h_m(r) = 1$ if $|r| \leq$ $m, h(r) = -|r| + m + 1$ if $m \leq |r| \leq m + 1$ and $h(r) = 0$ if $|r| \geq m + 1$.

Using the admissible test function $\varphi_{n,j,m}^{\mu,i} = (T_k(u_n) - w_{i,j}^{\mu})h_m(u_n)$ as test function in (5.6) leads to

$$
(5.47) \langle \frac{\partial b_n(x, u_n)}{\partial t}, \varphi_{n,j,m}^{\mu, i} \rangle + \int_Q a_n(x, t, u_n, \nabla u_n)(\nabla T_k(u_n) - \nabla w_{i,j}^{\mu})h_m(u_n) dx dt
$$

$$
+ \int_Q a_n(x, t, u_n, \nabla u_n)(T_k(u_n) - w_{i,j}^{\mu})\nabla u_n h'_m(u_n) dx dt
$$

$$
+ \int_{\{m \le |u_n| \le m+1\}} \Phi_n(u_n) \nabla u_n h'_m(u_n)(T_k(u_n) - w_{i,j}^{\mu}) dx dt
$$

$$
+ \int_Q \Phi_n(u_n)h_m(u_n)(\nabla T_k(u_n) - \nabla w_{i,j}^{\mu}) dx dt = \int_Q f_n \varphi_{n,j,m}^{\mu, i} dx dt.
$$

Denoting by $\epsilon(n, j, \mu, i)$ any quantity such that,

$$
\lim_{i \to \infty} \lim_{\mu \to \infty} \lim_{j \to \infty} \lim_{n \to \infty} \epsilon(n, j, \mu, i) = 0.
$$

The very definition of the sequence $w_{i,j}^{\mu}$ makes it possible to establish the following lemma.

Lemma 5.6. Let
$$
\varphi_{n,j,m}^{\mu,i} = (T_k(u_n) - w_{i,j}^{\mu})h_m(u_n)
$$
, we have for any $k \ge 0$:
(5.48) $\langle \frac{\partial b_n(x, u_n)}{\partial t}, \varphi_{n,j,m}^{\mu,i} \rangle \ge \epsilon(n, j, \mu, i),$

where \langle , \rangle *denotes the duality pairing between* $L^1(Q) + W^{-1,x}L_{\overline{M}}(Q)$ *and* $L^{\infty}(Q) \cap$ $W_0^{1,x} L_M(Q)$.

Proof. See [34, 32]. □

Now, we turn to complete the proof of proposition 5.4. First, it is easy to see that (see also [32]):

(5.49)
$$
\int_{Q} f_n \varphi_{n,j,m}^{\mu,i} dx dt = \epsilon(n,j,\mu),
$$

(5.50)
$$
\int_{Q} \Phi_n(u_n) h_m(u_n) (\nabla T_k(u_n) - \nabla w_{i,j}^{\mu}) dx dt = \epsilon(n, j, \mu),
$$

EJQTDE, 2010 No. 2, p. 13

 (5.51) ${m \le |u_n| \le m+1}$ $\Phi_n(u_n) \nabla u_n(T_k(u_n) - w_{i,j}^{\mu}) dx dt = \epsilon(n, j, \mu).$

Concerning the third term of the right hand side of (5.47) we obtain that

(5.52)
$$
\int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n h'_m(u_n) (T_k(u_n) - w_{i,j}^{\mu}) \, dx \, dt
$$

$$
\le 2k \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt.
$$

Then by (5.26). we deduce that, (5.53)

$$
\int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n h'_m(u_n) (T_k(u_n) - w_{i,j}^\mu) \, dx \, dt \le \epsilon(n, \mu, m).
$$

Finally, by means of (5.47) - (5.53) , we obtain,

(5.54)
$$
\int_{Q} a_n(x, t, u_n, \nabla u_n) (\nabla T_k(u_n) - \nabla w_{i,j}^{\mu}) h_m(u_n) dx dt \le \epsilon(n, j, \mu, m).
$$

Splitting the first integral on the left hand side of (5.54) where $|u_n| \leq k$ and $|u_n| > k$, we can write,

$$
\int_{Q} a_n(x, t, u_n, \nabla u_n)(\nabla T_k(u_n) - \nabla w_{i,j}^{\mu})h_m(u_n) dx dt
$$
\n
$$
= \int_{Q} a_n(x, t, T_k(u_n), \nabla T_k(u_n))(\nabla T_k(u_n) - \nabla w_{i,j}^{\mu})h_m(u_n) dx dt
$$
\n
$$
- \int_{\{|u_n| > k\}} a_n(x, t, u_n, \nabla u_n) \nabla w_{i,j}^{\mu} h_m(u_n) dx dt.
$$

Since $h_m(u_n) = 0$ if $|u_n| \geq m+1$, one has

(5.55)
$$
\int_{Q} a_{n}(x, t, u_{n}, \nabla u_{n}) (\nabla T_{k}(u_{n}) - \nabla w_{i,j}^{\mu}) h_{m}(u_{n}) dx dt
$$

$$
= \int_{Q} a_{n}(x, t, T_{k}(u_{n}), \nabla T_{k}(u_{n})) (\nabla T_{k}(u_{n}) - \nabla w_{i,j}^{\mu}) h_{m}(u_{n}) dx dt
$$

$$
- \int_{\{|u_{n}| > k\}} a_{n}(x, t, T_{m+1}(u_{n}), \nabla T_{m+1}(u_{n})) \nabla w_{i,j}^{\mu} h_{m}(u_{n}) dx dt = I_{1} + I_{2}
$$

In the following we pass to the limit in (5.55) as n tends to $+\infty$, then j then μ and then m tends to $+\infty$. We prove that

$$
I_2 = \int_Q \varphi_m \nabla T_k(u)_{\mu} h_m(u)_{\chi_{\{|u|>k\}}} dx dt + \epsilon(n, j, \mu).
$$

Using now the term I_1 of (5.55), we conclude that, it is easy to show that,

(5.56)
$$
\int_{Q} a_n(x, t, T_k(u_n), \nabla T_k(u_n)) (\nabla T_k(u_n) - \nabla w_{i,j}^{\mu}) h_m(u_n) dx dt
$$

$$
= \int_{Q} \left[a_n(x, t, T_k(u_n), \nabla T_k(u_n)) - a_n(x, t, T_k(u_n), \nabla T_k(v_j) \chi_j^s) \right]
$$
EQTDE, 2010 No. 2, p. 14

and

$$
\times \Big[\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s\Big]h_m(u_n) dx dt
$$

+
$$
\int_Q a_n\Big(x, t, T_k(u_n), \nabla T_k(v_j)\chi_j^s\Big)\Big[\nabla T_k(u_n) - \nabla T_k(v_j)\chi_j^s\Big]h_m(u_n) dx dt
$$

+
$$
\int_Q a_n\Big(x, t, T_k(u_n), \nabla T_k(u_n)\Big)\nabla T_k(v_j)\chi_j^s h_m(u_n) dx dt
$$

-
$$
\int_Q a_n\Big(x, t, T_k(u_n), \nabla T_k(u_n)\Big)\nabla w_{i,j}^\mu h_m(u_n) dx dt = J_1 + J_2 + J_3 + J_4,
$$

we χ^s denotes the characteristic function of the subset

where χ_j^s denotes the characteristic function of the subset

$$
\Omega_s^j = \left\{ (x, t) \in Q \; : \; |\nabla T_k(v_j)| \le s \right\}
$$

In the following we pass to the limit in (5.56) as n tends to $+\infty$, then j then μ then m tends and then s tends to $+\infty$ in the last three integrals of the last side. We prove that

$$
(5.57) \t\t J_2 = \epsilon(n,j),
$$

(5.58)
$$
J_3 = \int_Q \varphi_k \nabla T_k(u) \chi_s \, dx \, dt + \epsilon(n, j),
$$

and

(5.59)
$$
J_4 = -\int_Q \varphi_k \nabla T_k(u) \, dx \, dt + \epsilon(n, j, \mu, s).
$$

We conclude then that, (5.60)

$$
\int_{Q} \left[a_{n}\left(x, t, T_{k}(u_{n}), \nabla T_{k}(u_{n})\right) - a_{n}\left(x, t, T_{k}(u_{n}), \nabla T_{k}(u)\chi_{s}\right) \right] \left[\nabla T_{k}(u_{n}) - \nabla T_{k}(u)\chi_{s} \right] dx dt
$$
\n
$$
= \int_{Q} \left[a_{n}\left(x, t, T_{k}(u_{n}), \nabla T_{k}(u_{n})\right) - a_{n}\left(x, t, T_{k}(u_{n}), \nabla T_{k}(u)\chi_{s}\right) \right]
$$
\n
$$
\times \left[\nabla T_{k}(u_{n}) - \nabla T_{k}(u)\chi_{s} \right] h_{m}(u_{n}) dx dt
$$
\n
$$
+ \int_{Q} a_{n}\left(x, t, T_{k}(u_{n}), \nabla T_{k}(u_{n})\right) \left[\nabla T_{k}(u_{n}) - \nabla T_{k}(u)\chi^{s} \right] (1 - h_{m}(u_{n})) dx dt
$$
\n
$$
- \int_{Q} a_{n}\left(x, t, T_{k}(u_{n}), \nabla T_{k}(u)\chi_{s}\right) \left[\nabla T_{k}(u_{n}) - \nabla T_{k}(u)\chi_{s} \right] (1 - h_{m}(u_{n})) dx dt.
$$
\nCombining (5.48), (5.56), (5.57), (5.58), (5.59) and (5.60) we deduce,

(5.61)
\n
$$
\int_{Q} \left[a_n(x, t, T_k(u_n), \nabla T_k(u_n)) - a_n(x, t, T_k(u_n), \nabla T_k(u)\chi_s) \right] \left[\nabla T_k(u_n) - \nabla T_k(u)\chi_s \right] dx dt
$$
\n
$$
\leq \epsilon(n, j, \mu, m, s).
$$

To pass to the limit in (5.61) as n, j, m, s tends to infinity, we obtain

(5.62)
$$
\lim_{s \to \infty} \lim_{n \to \infty} \int_{Q} \left[a_n \left(x, t, T_k(u_n), \nabla T_k(u_n) \right) - a_n \left(x, t, T_k(u_n), \nabla T_k(u) \chi_s \right) \right] \times \left[\nabla T_k(u_n) - \nabla T_k(u) \chi_s \right] dx dt = 0.
$$

EJQTDE, 2010 No. 2, p. 15

This implies by the lemma 5.5, the desired statement and hence the proof of Proposition 5.4 is achieved. \Box

 \star Step 4. In this step we prove that u satisfies (4.2).

Lemma 5.7. *The limit* u *of the approximate solution* u_n *of* (5.6)-(5.8) satisfies

(5.63)
$$
\lim_{m \to +\infty} \int_{\{m \le |u| \le m+1\}} a(x, t, u, \nabla u) \nabla u \, dx \, dt = 0.
$$

Proof. Remark that for any fixed $m \geq 0$ one has

$$
\int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt
$$
\n
$$
= \int_Q a_n(x, t, u_n, \nabla u_n) \Big[\nabla T_{m+1}(u_n) - \nabla T_m(u_n) \Big] \, dx \, dt
$$
\n
$$
= \int_Q a_n\Big(x, t, T_{m+1}(u_n), \nabla T_{m+1}(u_n) \Big) \nabla T_{m+1}(u_n) \, dx \, dt
$$
\n
$$
- \int_Q a_n\Big(x, t, T_m(u_n), \nabla T_m(u_n) \Big) \nabla T_m(u_n) \, dx \, dt
$$

According to (5.42) (with $z_n = T_m(u_n)$ or $z_n = T_{m+1}(u_n)$), one is at liberty to pass to the limit as n tends to $+\infty$ for fixed $m\geq 0$ and to obtain

(5.64)
\n
$$
\lim_{n \to +\infty} \int_{\{m \le |u_n| \le m+1\}} a_n(x, t, u_n, \nabla u_n) \nabla u_n \, dx \, dt
$$
\n
$$
= \int_Q a\Big(x, t, T_{m+1}(u), \nabla T_{m+1}(u)\Big) \nabla T_{m+1}(u) \, dx \, dt
$$
\n
$$
- \int_Q a\Big(x, t, T_m(u), \nabla T_m(u)\Big) \nabla T_m(u) \, dx \, dt
$$
\n
$$
= \int_{\{m \le |u| \le m+1\}} a(x, t, u, \nabla u) \nabla u \, dx \, dt
$$

Taking the limit as m tends to $+\infty$ in (5.64) and using the estimate (5.26) it possible to conclude that (5.63) holds true and the proof of Lemma 5.7 is complete. \Box

 \star Step 5. In this step, u is shown to satisfies (4.3) and (4.4). Let S be a function in $W^{2,\infty}(\mathbb{R})$ such that S' has a compact support. Let K be a positive real number such that $supp(S') \subset [-K, K]$. Pointwise multiplication of the approximate equation (5.6) by $S'(u_n)$ leads to

$$
(5.65) \frac{\partial B_S^n(x, u_n)}{\partial t} - div(S'(u_n)a_n(x, t, u_n, \nabla u_n)) + S''(u_n)a_n(x, t, u_n, \nabla u_n)\nabla u_n
$$

$$
- div(S'(u_n)\Phi(u_n)) + S''(u_n)\Phi(u_n)\nabla u_n = fS'(u_n) \text{ in } D'(Q),
$$

where $B_S^n(x, z) = \int^z S'(r) \frac{\partial b_n(x, r)}{\partial r} dr.$

 $\mathbf{0}$ $S'(r) \frac{\partial o_n(x,r)}{\partial r} dr$. It what follows we pass to the limit as n tends to $+\infty$ in each term of (5.65).

 \star Since S' is bounded, and $B_S^n(x, u_n)$ converges to $B_S(x, u)$ a.e. in Q and in $L^\infty(Q)$ weak \star . Then $\frac{\partial B_S^n(x, u_n)}{\partial t}$ converges to $\frac{\partial B_S(x, u)}{\partial t}$ in $D'(Q)$ as n tends to $+\infty$.

 \star Since suppS ⊂ [-K, K], we have

$$
S'(u_n)a_n(x,t,u_n,\nabla u_n) = S'(u_n)a_n\Big(x,t,T_K(u_n),\nabla T_K(u_n)\Big) \text{ a.e. in } Q.
$$

The pointwise convergence of u_n to u as n tends to $+\infty$, the bounded character of S ′ , (5.22) and (5.36) of Lemma 5.4 imply that

$$
S'(u_n)a_n\Big(x,t,T_K(u_n),\nabla T_K(u_n)\Big)\rightharpoonup S'(u)a\Big(x,t,T_K(u),\nabla T_K(u)\Big) \text{ weakly in } (L_{\overline{M}}(Q))^N,
$$

for $\sigma(\Pi L_{\overline{M}}, \Pi E_M)$ as n tends to $+\infty$, because $S(u) = 0$ for $|u| \geq K$ a.e. in Q. And the term $S'(u)a(x,t,T_K(u),\nabla T_K(u)) = S'(u)a(x,t,u,\nabla u)$ a.e. in Q.

 \star Since suppS' ⊂ [-K, K], we have

$$
S''(u_n)a_n(x,t,u_n,\nabla u_n)\nabla u_n = S''(u_n)a_n\Big(x,t,T_K(u_n),\nabla T_K(u_n)\Big)\nabla T_K(u_n) \text{ a.e. in } Q.
$$

The pointwise convergence of $S''(u_n)$ to $S''(u)$ as n tends to $+\infty$, the bounded character of S'' and $(5.22)-(5.36)$ of Lemma 5.4 allow to conclude that

$$
S'(u_n)a_n(x, t, u_n, \nabla u_n)\nabla u_n \rightharpoonup S'(u)a\Big(x, t, T_K(u), \nabla T_K(u)\Big)\nabla T_K(u) \text{ weakly in } L^1(Q),
$$

as *n* tends to $+\infty$. And

$$
S''(u)a(x,t,T_K(u),\nabla T_K(u))\nabla T_K(u) = S''(u)a(x,t,u,\nabla u)\nabla u \text{ a.e. in } Q.
$$

 \star Since suppS' ⊂ [-K, K], we have $S'(u_n)\Phi_n(u_n) = S'(u_n)\Phi_n(T_K(u_n))$ a.e. in Q. As a consequence of (3.7) , (5.3) and (5.22) , it follows that:

$$
S'(u_n)\Phi_n(u_n) \to S'(u)\Phi(T_K(u))
$$
 strongly in $(E_M(Q))^N$,

as *n* tends to $+\infty$. The term $S'(u)\Phi(T_K(u))$ is denoted by $S'(u)\Phi(u)$.

 \star Since $S \in W^{1,\infty}(\mathbb{R})$ with suppS' ⊂ [-K, K], we have $S''(u_n)\Phi_n(u_n)\nabla u_n =$ $\Phi_n(T_K(u_n))\nabla S''(u_n)$ a.e. in Q, we have, $\nabla S''(u_n)$ converges to $\nabla S''(u)$ weakly in $L_M(Q)^N$ as n tends to $+\infty$, while $\Phi_n(T_K(u_n))$ is uniformly bounded with respect to n and converges a.e. in Q to $\Phi(T_K(u))$ as n tends to $+\infty$. Therefore

$$
S''(u_n)\Phi_n(u_n)\nabla u_n \rightharpoonup \Phi(T_K(u))\nabla S''(u)
$$
 weakly in $L_M(Q)$.

 \star Due to (5.4) and (5.22), we have $f_nS(u_n)$ converges to $fS(u)$ strongly in $L^1(Q)$, as *n* tends to $+\infty$.

As a consequence of the above convergence result, we are in a position to pass to the limit as n tends to $+\infty$ in equation (5.65) and to conclude that u satisfies $(4.3).$

It remains to show that $B_S(x, u)$ satisfies the initial condition (4.4). To this end, firstly remark that, S' has a compact support, we have $B_S^n(x, u_n)$ is bounded in $L^{\infty}(Q)$. Secondly, (5.65) and the above considerations on the behavior of the terms EJQTDE, 2010 No. 2, p. 17

of this equation show that $\frac{\partial B_S^n(x, u_n)}{\partial t}$ is bounded in $L^1(Q) + W^{-1,x} L_{\overline{M}}(Q)$. As a consequence, an Aubin's type Lemma (see e.g., [36], Corollary 4) (see also [16]) implies that $B_S^n(x, u^n)$ lies in a compact set of $C^0([0, T]; L^1(\Omega))$. It follows that, $B_S^n(x, u_n)(t = 0)$ converges to $B_S(x, u)(t = 0)$ strongly in $L^1(\Omega)$. Due to (4.8) and (5.5), we conclude that $B_S^n(x, u_n)(t = 0) = B_S^n(x, u_{0n})$ converges to $B_S(x, u)(t = 0)$ strongly in $L^1(\Omega)$. Then we conclude that

$$
B_S(x, u)(t = 0) = B_S(x, u_0) \text{ in } \Omega.
$$

As a conclusion of step 1 to step 5, the proof of theorem 5.1 is complete.

REFERENCES

- [1] R. ADAMS, Sobolev spaces, Press New York, (1975).
- [2] P. B´enilan, L. Boccardo, T. Gallou¨et, R. Gariepy, M. Pierre, and J.-L. Vazquez, An L^1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22, (1995), pp. 241-273.
- [3] A. Benkirane and J. Bennouna, Existence and uniqueness of solution of unilateral problems with L^1 data in Orlicz spaces, Italian Journal of Pure and Applied Mathematics, 16, (2004), pp. 87-102.
- [4] D. BLANCHARD, Truncation and monotonicity methods for parabolic equations equations, Nonlinear Anal., 21, (1993), pp. 725-743.
- [5] D. BLANCHARD and F. MURAT, Renormalized solutions of nonlinear parabolic problems with L^1 data, Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect., A127, (1997), pp. 1137-1152.
- [6] D. BLANCHARD, F. MURAT and H. REDWANE, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations, 177, (2001), pp. 331-374.
- [7] D. BLANCHARD, F. MURAT and H. REDWANE, Existence et unicité de la solution renormalisée d'un problème parabolique assez général, C. R. Acad. Sci. Paris Sér., 1329, (1999), pp. 575-580.
- [8] D. BLANCHARD and A. PORRETTA, Stefan problems with nonlinear diffusion and convection, J. Diff. Equations, 210, (2005), pp. 383-428.
- [9] D. BLANCHARD and H. REDWANE, Renormalized solutions of nonlinear parabolic evolution problems, J. Math. Pure Appl., 77, (1998), pp. 117-151.
- [10] L. BOCCARDO, A. DALL'AGLIO, T. GALLOUËT and L. ORSINA, Nonlinear parabolic equations with measure data, J. Funct. Anal., 87, (1989), pp. 49-169.
- [11] L. BOCCARDO, D. GIACHETTI, J.-I. DIAZ and F. MURAT, Existence and regularity of renormalized solutions for some elliptic problems involving derivation of nonlinear terms, J. Differential Equations, 106, (1993), pp. 215-237.
- [12] J. CARRILLO, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147(4), (1999), pp. 269-361.
- [13] J. CARRILLO and P. WITTBOLD, Uniqueness of renormalized solutions of degenerate ellipticparabolic problems, J. Differential Equations, 156, (1999), pp. 93-121.
- [14] J. CARRILLO and P. WITTBOLD, Renormalized entropy solution of a scalar conservation law with boundary condition, J. Differential Equations, $185(1)$, (2002), pp. 137-160.
- [15] A. DALL'AGLIO and L. ORSINA, Nonlinear parabolic equations with natural growth conditions and L^1 data, *Nonlinear Anal.*, **27**, (1996), pp. 59-73.
- [16] A. El-Mahi and D. Meskine, Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Analysis. Theory, Methods and Applications, 60, (2005), pp. 1-35.
- [17] A. El-Mahi and D. Meskine, Strongly nonlinear parabolic equations with natural growth terms and L^1 data in Orlicz spaces, Portugaliae Mathematica. Nova, 62, (2005), pp. 143-183. EJQTDE, 2010 No. 2, p. 18
- [18] M. FUCHS and L. GONGBAO, Variational inequalities for energy functionals with nonstandard growth condition, Abstract App. Anal., 3, (1998), pp. 41-64.
- [19] M. Fuchs and G. Seregin, Variational methods for fluids for Prandtl-Egring type and plastic materials with logarithmic hardening, Preprint N. 476. SFB 256, Universitat Bonn, Math. Methods Appl. Sci. in press.
- [20] M. Fuchs and G. Seregin, Regularity of solutions of variational problems in the deformation theory of plasticity with logarithmic hardening, Preprint N. 421. SFB 256. Universitat Bonn.
- [21] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients, Trans. Amer. Math. Soc., 190, (1974), pp. 163-205.
- [22] J.-P. Gossez, Some approximation properties in Orlicz-Sobolev, Studia Math., 74, (1982), pp. 17-24.
- [23] M. KRASNOSEL'SKII and Ya. RUTICKII, Convex functions and Orlicz spaces, Noordhoff, Groningen, (1969).
- [24] R. LANDES, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect., A89, (1981), pp. 217-237.
- [25] R. LANDES and V. MUSTONEN, A strongly nonlinear parabolic initial-boundary value problem, Ask. f. Mat, 25, (1987), pp. 29-40.
- [26] J.-L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaire, Dunod et Gauthier-Villars, Paris, (1969).
- [27] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1 : Incompressible Models, Oxford Univ. Press, (1996).
- [28] F. MURAT, Soluciones renormalizadas de EDP elipticas non lineales, Cours à l'Université de Séville, Publication R93023, Laboratoire d'Analyse Numérique, Paris VI, (1993).
- [29] P.-L. LIONS and F. MURAT, Solutions renormalisées d'équations elliptiques, in preparation.
- [30] A. PORRETTA, Existence results for nonlinear parabolic equations via strong convergence of trancations, Ann. Mat. Pura ed Applicata, 177 , (1999), pp. 143-172.
- [31] R.-J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations : Global existence and weak stability, $Ann. Math.$, 130, (1989), pp. 321-366.
- [32] A. Azroul, H. REDWANE and M. RHOUDAF, Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces, Portugal. Math.. 1, Vol. 66, (2009), 29-63.
- [33] H. REDWANE, Solution renormalisées de problèmes paraboliques et elliptiques non linéaires, Ph.D. thesis, Rouen, (1997).
- [34] H. REDWANE, Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dyn. Syst. Appl., 2, (2007), p.p. 241-264.
- [35] H. REDWANE, Uniqueness of renormalized solutions for a class of parabolic equations with unbounded nonlinearities, Rendiconti di Matematica, VII, (2008). pp. 189-200.
- [36] J. SIMON, Compact sets in $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146, (1987), pp. 65-96.

(Received June 11, 2009)

FACULTÉ DES SCIENCES JURIDIQUES, ÉCONOMIQUES ET SOCIALES. UNIVERSITÉ HASSAN 1, B.P. 764. Settat. Morocco

E-mail address: redwane hicham@yahoo.fr