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Abstract. In this paper we study the asymptotic behavior of the positive solutions of a
cyclic system of the following m difference equations:

x(i)n+1 = aix
(i+1)
n + bix

(i)
n−1e−x(i+1)

n , i = 1, 2, . . . , m− 1,

x(m)
n+1 = amx(1)n + bmx(m)

n−1e−x(1)n ,

where n = 0, 1, . . ., and ai, bi, i = 1, 2, . . . , m are positive constants and the initial values
x(i)−1, x(i)0 , i = 1, 2, . . . , m are positive numbers.
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1 Introduction

In [14] the authors obtained results concerning the global behavior of the positive solutions
for the difference equation:

xn+1 = axn + bxn−1e−xn , n = 0, 1, . . . (1.1)

where a, b are positive constants and the initial values x−1, x0 are positive numbers. This
equation can be considered as a biological model, since it arises from models studying the
amount of litter in a perennial grassland.

In addition, in [23] the authors studied analogous results for the system of difference
equations:

xn+1 = ayn + bxn−1e−yn , yn+1 = cxn + dyn−1e−xn (1.2)

where a, b, c, d are positive constants and the initial values x−1, x0, y−1, y0 are also positive
numbers. For a = c and b = d the system is symmetric, so it is a close to symmetric system.
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Studying symmetric and close to symmetric systems of difference equations is an area of a
considerable recent interest (see, for example, [5, 7, 8, 10, 11, 22–24, 31–35, 38–40]).

In this paper we obtain results concerning the behavior of the positive solutions for the
following cyclic system of difference equations:

x(i)n+1 = aix
(i+1)
n + bix

(i)
n−1e−x(i+1)

n , i = 1, 2, . . . , m− 1,

x(m)
n+1 = amx(1)n + bmx(m)

n−1e−x(1)n ,
(1.3)

n = 0, 1, . . ., and ai, bi, i = 1, 2, . . . , m are positive constants and the initial values x(i)−1, x(i)0 ,
i = 1, 2, . . . , m are positive numbers. More precisely, we study the existence of the unique
nonnegative equilibrium of (1.3). In addition, we investigate the boundedness and the per-
sistence of the positive solutions of system (1.3). Finally, we investigate the convergence
of the positive solutions of (1.3) to the unique nonnegative equilibrium. We note that if
a1 = a2 = · · · = am = a, b1 = b2 = · · · = bm = b and (x1

n, x2
n, . . . , xm

n ) is a solution of (1.3) and
x(1)−1 = x(2)−1 = · · · = x(m)

−1 , x(1)0 = x(2)0 = · · · = x(m)
0 , then it is obvious that x(1)n = x(2)n = · · · =

x(m)
n = xn, n = 0, 1, . . . , and so xn is a solution of (1.1). Moreover, if m = 2 then system (1.3)

reduces to system (1.2). Studying cyclic systems of difference equations has attracted some
attention recently (see [16, 36, 37] and the related references therein).

Difference equations and systems of difference equations containing exponential terms
have numerous potential applications in biology. A large number of papers dealing with such
or related equations have been published. See for example, [2, 14, 18, 20–23, 26, 29, 41] and the
references cited therein. We also note that since difference equations have many applications
in applied sciences, there is a quite rich bibliography concerning theory and applications of
difference equations (see, for example, [1–41] and the references cited therein).

2 Existence and uniqueness of a nonnegative equilibrium for (1.3).

In this section we study the existence and the uniqueness of the positive equilibrium of (1.3).

Proposition 2.1. The following statements are true.

I. Suppose that
ai, bi ∈ (0, 1), ai + bi > 1, i = 1, 2, . . . , m. (2.1)

Then system (1.3) has a unique positive equilibrium (x̄1, x̄2, . . . , x̄m).

II. Consider that ai, bi, i = 1, 2, . . . , m are positive constants such that:

ai, bi ∈ (0, 1), ai + bi < 1. (2.2)

Then, the zero equilibrium (0, 0, . . . , 0) is the unique nonnegative equilibrium of system (1.3).

Proof. I. We consider the functions hi : R+ → R+, R+ = (0, ∞),

hi(x) =
aix

1− bie−x , i = 1, . . . , m.

Then we define

k

∏
s=j

hj = hj ◦ hj+1 ◦ · · · ◦ hk, k ≥ j,
j

∏
s=j+1

hj = I,
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where I is the identity function. If we set xm+1 = x1 we consider the system of algebraic
equations

xi = hi(xi+1), i = 1, 2, . . . , m. (2.3)

From (2.3) for a j ∈ {1, 2, . . . , m} we get

xj = hj(xj+1) = hj ◦ hj+1(xj+2) =
m

∏
s=j

hj ◦
j−1

∏
s=1

hs(xj) = hj ◦
m

∏
s=j+1

hj ◦
j−1

∏
s=1

hs(xj)

=

aj

m

∏
s=j+1

hs ◦
j−1

∏
s=1

hs(xj)

1− bje
−∏m

k=j+1 hk◦∏
j−1
k=1 hk(xj)

=

ajhj+1 ◦
m

∏
s=j+2

hs ◦
j−1

∏
s=1

hs(xj)

1− bje
−∏m

k=j+1 hk◦∏
j−1
k=1 hk(xj)

=

ajaj+1

m

∏
s=j+2

hs ◦
j−1

∏
s=1

hs(xj)(
1− bje

−∏m
k=j+1 hk◦∏

j−1
k=1 hk(xj)

)(
1− bj+1e−∏m

k=j+2 hk◦∏
j−1
k=1 hk(xj)

)
...

=

m−1

∏
s=j

ashm ◦
j−1

∏
s=1

hs(xj)

m−1

∏
s=j

(
1− bse

−∏m
k=j+1 hk◦∏

j−1
k=1 hk(xj)

)

=

m

∏
s=j

as

j−1

∏
s=1

hs(xj)

m−1

∏
s=j

(
1− bse

−∏m
k=j+1 hk◦∏

j−1
k=1 hk(xj)

)(
1− bme−∏

j−1
k=1 hk(xj)

)

=

m

∏
s=j

ash1 ◦
j−1

∏
s=2

hs(xj)

m−1

∏
s=j

(
1− bse

−∏m
k=j+1 hk◦∏

j−1
k=1 hk(xj)

)(
1− bme−∏

j−1
k=1 hk(xj)

)

=

a1

m

∏
s=j

as

j−1

∏
s=2

hs(xj)

m−1

∏
s=j

(
1− bse

−∏m
k=j+1 hk◦∏

j−1
k=1 hk(xj)

)(
1− bme−∏

j−1
k=1 hk(xj)

)(
1− b1e−∏

j−1
k=2 hk(xj)

)

=

a1

m

∏
s=j

as

j−1

∏
s=2

hs(xj)

m

∏
s=j

(
1− bse

−∏m
k=j+1 hk◦∏

j−1
k=1 hk(xj)

)(
1− b1e−∏

j−1
k=2 hk(xj)

)
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=

a1

m

∏
s=j

ash2 ◦
j−1

∏
s=3

hs(xj)

m

∏
s=j

(
1− bse

−∏m
k=j+1 hk◦∏

j−1
k=1 hk(xj)

)(
1− b1e−∏

j−1
k=2 hk(xj)

)

=

a1a2

m

∏
s=j

as

j−1

∏
s=3

hs(xj)

m

∏
s=j

(
1− bse

−∏m
k=j+1 hk◦∏

j−1
k=1 hk(xj)

)(
1− b1e−∏

j−1
k=2 hk(xj)

)(
1− b2e−∏

j−1
k=3 hk(xj)

)
...

=

xj

m

∏
s=1

as

m

∏
s=j

(
1− bse−∏m

k=s+1 hk◦∏
j−1
k=1 hk(xj)

) j−1

∏
s=1

(
1− bse−∏

j−1
k=s+1 hk(xj)

) .

We consider the function

Fj(x) =

m

∏
s=1

as

m

∏
s=j

(
1− bse−∏m

k=s+1 hk◦∏
j−1
k=1 hk(x)

) j−1

∏
s=1

(
1− bse−∏

j−1
k=s+1 hk(x)

) − 1. (2.4)

Since hk(0) = 0 for k = 1, 2, . . . , m, from (2.4) we can prove that

Fj(0) =

m

∏
s=1

as

m

∏
s=1

(1− bs)

− 1. (2.5)

Then from (2.1) we have that Fj(0) > 0. Moreover, since limx→∞hk(x) = ∞, k = 1, 2 . . . , m,
from (2.1) and (2.4) we get

lim
x→∞

Fj(x) =
k

∏
s=1

as − 1 < 0.

Therefore there exists an x̄j, j = 1, 2, . . . , m such that Fj(x̄j) = 0, j = 1, 2, . . . , m. So,

(x̄1, x̄2, . . . , x̄m) is a positive equilibrium for (1.3). Moreover since h′k(x) = ak
1−bke−x(x+1)
(1−bke−x)2 then

from (2.1) and e−x(x+ 1) < 1 we get h′k(x) > 0, k = 1, 2, . . . , m. Therefore for all k = 1, 2, . . . , m
the functions hk are increasing. Hence for all j = 1, 2, . . . , m the functions Fj are decreasing.
This implies that (x̄1, x̄2, . . . , x̄m) is the unique positive equilibrium for (1.3). This completes
the proof of statement I.

II. From (2.2) and (2.5) we have Fj(0) < 0 for all j = 1, 2, . . . , m. Since for all j = 1, 2, . . . , m
Fj are decreasing functions it is obvious that the zero equilibrium is the only nonnegative
equilibrium. This completes the proof of the proposition.
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3 Asymptotic behavior of the positive solutions of (1.3)

In this section we study the boundedness and persistence of the positive solutions of (1.3) and
the convergence of the positive solutions of (1.3) to the unique nonnegative equilibrium.

Proposition 3.1.

I. Suppose that
ai, bi ∈ (0, 1), i = 1, 2, . . . , m. (3.1)

Then every positive solution of (1.3) is bounded.

II. Consider that ai, bi, i = 1, 2, . . . , m are positive constants such that (2.1) holds. Then, every
positive solution of (1.3) persists.

Proof. I. Let
(

x(1)n , x(2)n , . . . , x(m)
n
)

be an arbitrary solution of (1.3) and

M = max
{

x(i)j , ln
(

1
1− ai

)
, i = 1, 2, . . . , m, j = −1, 0

}
.

Then arguing as in Lemma 1 of [14] and Theorem 3.1 of [22] we can prove that

x(i)n ≤ M, i = 1, 2, . . . , m, n = 1, 2, . . .

and so the solution
(

x(1)n , x(2)n , . . . , x(m)
n
)

is bounded.
II. Let

r = min
{

x(i)j , zi i = 1, 2, . . . , m, j = −1, 0
}

where zi = ln( bi
1−ai

). Arguing as in the proof of Proposition 3.1 of [23] we have the following:
If for i = 2, 3, . . . , m

x(i)0 ≤ zi−1,

then
x(i−1)

1 ≥ min
{

x(i)0 , x(i−1)
−1

}
.

In addition, if
x(i)0 > zi−1, x(i−1)

−1 ≤ zi−1,

we take
x(i−1)

1 > x(i−1)
−1 .

Finally, if
x(i)0 > zi−1, x(i−1)

−1 > zi−1,

we get
x(i−1)

1 > zi−1.

So, we have that
x(i−1)

1 ≥ r.

We consider now the case
x(1)0 ≤ zm,

then
x(m)

1 ≥ min
{

x(1)0 , x(m)
−1

}
.
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Furthermore, if
x(1)0 > zm, x(m)

−1 ≤ zm,

we take
x(m)

1 > x(m)
−1 .

Finally, if
x(1)0 > zm, x(m)

−1 > zm,

we get
x(m)

1 > zm.

So, we have that
x(m)

1 ≥ r.

Arguing as above and using the method of induction we can prove that:

x(i)n ≥ r, n = 1, 2, . . . , i = 1, 2 . . . , m.

This completes the proof of the proposition.

In the following proposition we study the convergence of the positive equilibrium of (1.3)
to the unique positive equilibrium.

Proposition 3.2. Consider system (1.3) such that relations (2.1) hold. Suppose also that there exists a
v ∈ {1, 2, . . . , m} such that

aj ≤ av, bj ≤
m

∏
s=1,s 6=v

as, j = 1, 2, . . . , m. (3.2)

Then every positive solution of (1.3) tends to unique positive equilibrium.

Proof. Let
(
x(1)n , x(2)n , . . . , x(m)

n
)

be an arbitrary solution of (1.3). From Proposition 3.1 there
exists numbers li, Li, i = 1, 2, . . . , m, 0 < li < Li < ∞ such that

lim inf
n→∞

x(i)n = li, lim sup
n→∞

x(i)n = Li, i = 1, 2, . . . , m. (3.3)

Moreover, since relations (2.1) hold, from Proposition 2.1 System (1.3) has a unique positive
equilibrium (x̄1, x̄2, . . . , x̄m).

First of all we prove that

li ≤ Li ≤ x̄i, i = 1, 2, . . . , m. (3.4)

From (3.3) for every ε there exists a n0 such that for every n ≥ n0

li − ε ≤ x(i)n ≤ Li + ε, i = 1, 2, . . . , m. (3.5)

So, relations (1.3) and (3.5) imply that for i = 1, 2, . . . , m− 1 and n = 0, 1, . . . ,

x(i)n+1 = aix
(i+1)
n + bix

(i)
n−1e−x(i+1)

n ≤ aix
(i+1)
n + bi(Li + ε)e−x(i+1)

n . (3.6)

We set gLi+ε(x) = aix + bi(Li + ε)e−x. Since g′′Li+ε(x) = bi(Li + ε)e−x > 0 we have

gLi+ε(x) ≤ max {gLi+ε(li+1 − ε), gLi+ε(Li+1 + ε)} , x ∈ [li+1 − ε, Li+1 + ε]. (3.7)
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Moreover, from (3.5), (3.6) and (3.7) it follows that

x(i)n+1 ≤ gLi+ε(x(i+1)
n ) ≤ max

{
gLi+ε(li+1 − ε), gLi+ε(Li+1 + ε)

}
,

which implies that
Li ≤ max

{
gLi+ε(li+1 − ε), gLi+ε(Li+1 + ε)

}
.

Then for ε→ 0 it holds

Li ≤ max {gLi(li+1), gLi(Li+1)} , i = 1, 2, . . . , m− 1. (3.8)

We claim that
Li ≤ gLi(Li+1). (3.9)

Since g′Li
(x) = ai− biLie−x, for x ≥ ln( bi Li

ai
) we have g′Li

(x) > 0. So, from (3.8) for li+1 ≥ ln( bi Li
ai
)

we have that (3.9) is true. For li+1 < ln( bi Li
ai
) we take

gLi(li+1) ≤ gLi(0) = biLi < Li. (3.10)

Then using (3.8) and (3.10), for li+1 < ln( bi Li
ai
) relation (3.9) is satisfied. Hence, our claim (3.9)

is true. Then using (3.9) we take

Li ≤ aiLi+1 + biLie−Li+1 , i = 1, 2. . . . , m− 1

and so we get

Li ≤
aiLi+1

1− bie−Li+1
, i = 1, 2. . . . , m− 1. (3.11)

Similarly we can prove that

Lm ≤
amL1

1− bme−L1
. (3.12)

Therefore since the functions hi, i = 1, 2, . . . , m defined in the proof of Proposition 2.1 are
increasing, then from relations (3.11), (3.12) and arguing as in Proposition 2.1 we can prove
that

Fi(Li) ≥ 0, i = 1, 2, . . . , m. (3.13)

Then from (3.13) and since the functions Fi, i = 1, 2, . . . , m are decreasing and from Proposition
2.1 F(x̄i) = 0, i = 1, 2, . . . , m we take relations (3.4).

We prove now that
x̄j ≤ lj ≤ Lj, j = 1, 2, . . . , m. (3.14)

Since (x̄1, x̄2, . . . , x̄m) is the unique positive equilibrium of (1.3) we have that x̄i, i = 1, 2, . . . , m
satisfy system (2.3). Then by setting x̄m+1 = x̄1 we have

x̄j+1 = ln
(

bj x̄j

x̄j − aj x̄j+1

)
, j = 1, 2, . . . , m.

Then since bj < 1 we have,

x̄j+1 ≤
bj x̄j

x̄j − aj x̄j+1
− 1 ≤

aj x̄j+1

x̄j − aj x̄j+1
, j = 1, 2, . . . , m,

and so
x̄j − aj x̄j+1 ≤ aj, j = 1, 2, . . . , m− 1, x̄m − am x̄1 ≤ am. (3.15)
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From (3.15) for a j ∈ {1, 2, . . . , m} it holds

x̄j − aj x̄j+1 ≤ aj, x̄j+1 − aj+1 x̄j+2 ≤ aj+1, . . . , x̄m − am x̄1 ≤ am,

x̄1 − a1 x̄2 ≤ a1, x̄2 − a2 x̄3 ≤ a2, . . . , x̄j−1 − aj−1 x̄j ≤ aj−1.
(3.16)

From the first two relations of (3.16) we get

x̄j − ajaj+1 x̄j+2 ≤ aj + ajaj+1

and working similarly to (3.16) we can prove that

x̄j ≤

m

∑
s=j

( s

∏
i=j

ai

)
+

m

∏
s=j

as

(
j−1

∑
r=1

( r

∏
w=1

aw

))

1−
m

∏
i=1

ai

. (3.17)

Then from (3.2) and (3.17) we get

x̄j ≤
av

1− av
, j = 1, 2, . . . , m. (3.18)

From (1.3) and (3.5) for an ε > 0 there exists a n0 such that for n ≥ n0 we get

x(j)
n+1 ≥ ajx

(j+1)
n + bj(lj − ε)e−x(j+1)

n (3.19)

where j ∈ {1, 2, . . . , m− 1}. We consider the function

klj−ε(y) = ajy + bj(lj − ε)e−y.

Then since k′lj−ε(y) = aj− bj(lj− ε)e−y we have that klj−ε is increasing for y ≥ ln(bj(lj − ε)/aj).
We claim that

lj+1 − ε
m

∏
s=1,s 6=j

as > ln
(

bj(lj − ε)

aj

)
. (3.20)

From (3.4) and (3.18) we get

lj ≤ x̄j ≤
av

1− av

and so lj
av
− 1 ≤ lj. Therefore since av < 1 for an ε > 0 we get

lj − ε

av
− 1 <

lj − εav

av
− 1 ≤ lj − ε. (3.21)

Moreover, from (1.3) we take

lj−1 ≥ aj−1lj, lj−2 ≥ aj−2lj−1, . . . , l1 ≥ a1l2, lm ≥ aml1,

lm−1 ≥ am−1lm, lm−2 ≥ am−2lm−1, . . . , lj+1 ≥ aj+1lj+2.

Then we have

lj ≤
lj−1

aj−1
≤

lj−2

aj−1aj−2
≤ · · · ≤ l1

j−1

∏
s=1

as

≤ lm

am

j−1

∏
s=1

as

≤ lm−1

am−1am

j−1

∏
s=1

as

≤ · · · ≤
lj+1
m

∏
s=1,s 6=j

as

. (3.22)
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Then, from (3.21) and (3.22) we have,

lj − ε

av
− 1 ≤

lj+1
m

∏
s=1,s 6=j

as

− ε

and so
lj − ε

av

m

∏
s=1,s 6=j

as −
m

∏
s=1,s 6=j

as ≤ lj+1 − ε
m

∏
s=1,s 6=j

as.

Then from (2.1) and (3.2) it follows that

bj

aj
(lj − ε)− 1 < lj+1 − ε

m

∏
s=1,s 6=j

as. (3.23)

Therefore, from (3.23) and since ln x ≤ x− 1 our claim (3.20) is true. Moreover, there exists a
n1 such that for n ≥ n1

x(j+1)
n ≥ lj+1 − ε

m

∏
s=1,s 6=j

as. (3.24)

Since klj−ε is an increasing function for y ≥ ln(bj(lj − ε)/aj), then from (3.20) and (3.24) we
take

klj−ε(x(j+1)
n ) ≥ klj−ε

(
lj+1 − ε

m

∏
s=1,s 6=j

as

)
.

Then from (3.19) it follows that

x(j)
n+1 ≥ aj

(
lj+1 − ε

m

∏
s=1,s 6=j

as

)
+ bj(lj − ε)e−(lj+1−ε ∏m

s=1,s 6=j as)

and so

lj ≥ aj

(
lj+1 − ε

m

∏
s=1,s 6=j

as

)
+ bj(lj − ε)e−(lj+1−ε ∏m

s=1,s 6=j as). (3.25)

For ε→ 0 to (3.25) we have

lj ≥ ajlj+1 + bjlje−lj+1 , j = 1, 2, . . . , m− 1. (3.26)

Similarly we can prove that
lm ≥ aml1 + bmlme−l1 . (3.27)

From (3.26) and (3.27) we can prove that

Fj(lj) ≤ 0, j = 1, 2, . . . , m. (3.28)

But since from Proposition 2.1 Fj(x̄j) = 0, j = 1, 2, . . . , m we get

Fj(lj) ≤ Fj(x̄j), j = 1, 2, . . . , m.

Since Fj, j = 1, 2, . . . , m are decreasing functions we take (3.14). Then from (3.4) and (3.14) we
have x̄j = lj = Lj, j = 1, 2, . . . , m. This completes the proof of the proposition.

In the last proposition we study the convergence of the positive solutions of (1.3) to the
zero equilibrium.
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Proposition 3.3. Consider system (1.3) such that the constants ai, bi, i = 1, 2, . . . , m satisfy (2.2).
Then every positive solution of (1.3) tends to the zero equilibrium (0, 0, . . . , 0).

Proof. Since (2.2) holds, from Proposition 2.1 the only nonnegative equilibrium is the zero
equilibrium. Let

(
x(1)n , x(2)n , . . . , x(m)

n
)

be an arbitrary solution of (1.3). From (1.3) we take

x(i)n+1 ≤ aix
(i+1)
n + bix

(i)
n−1, i = 1, 2, . . . , m− 1,

x(m)
n+1 ≤ amx(1)n + bmx(m)

n−1.
(3.29)

We consider the system of difference equations

y(i)n+1 = aiy
(i+1)
n + biy

(i)
n−1, i = 1, 2, . . . , m− 1,

y(m)
n+1 = amy(1)n + bmy(m)

n−1.
(3.30)

Let
(
y(1)n , y(2)n , . . . , y(m)

n
)

be a solution of (3.29) with initial values y(−i)
−1 = x(i)−1, y(i)0 = x(i)0 ,

i = 1, 2, . . . , m. Then from (3.29) and (3.30), by induction we can easily prove that

x(i)n ≤ y(i)n , i = 1, 2, . . . , m, n = 0, 1, . . . (3.31)

We prove that every positive solution of (3.30) tends to the zero equilibrium (0, 0, . . . , 0). Sys-
tem (3.30) is equivalent to the system

ȳn+1 = Aȳn, (3.32)

where ȳn = col
(
y(1)n , y(2)n , . . . , y(m)

n , y(1)n−1, y(2)n−1, . . . , y(m)
n−1

)
and A is a matrix where in the (i)th

line 1 ≤ i ≤ m − 1 the only non zero elements are ai which is the (i + 1)th element and bi
which is the (i + m)th element, in the (m)th line the only non zero elements are am which is
the first element and bm which is the last element, and finally in the (m + j)th line, 1 ≤ j ≤ m
the unique nonzero element is the (j)th element which is 1.

Let
T = diag

(
1, ε−1, ε−2, . . . , ε−2m+1)

where ε is a positive number such that

ai + bi < εm, i = 1, 2, . . . , m. (3.33)

We take the change of variables ȳn = Tz̄n and we get the system

z̄n+1 = T−1ATz̄n, (3.34)

T−1 AT is matrix where in the (i)th line 1 ≤ i ≤ m− 1 the only non zero elements are ε−1ai
which is the (i + 1)th element and ε−mbi which is the (i + m)th element, in the (m)th line
the only non zero elements are εm−1am which is the first element and ε−mbm which is the last
element, and finally in the (m + j)th line, 1 ≤ j ≤ m the unique nonzero element is the (j)th
element which is εm.

If for a 2m× 2m matrix C = (cij) we take the norm |C| = sup0≤i≤2m
{

∑2m
j=1|cij|

}
then we

take

|T−1AT| = max
{

ε−1a1 + ε−mb1, ε−1a2 + ε−mb2, . . . , ε−1am−1 + ε−mbm−1,

εm−1am + ε−mbm, εm
}

≤ max{ε−m(ai + bi), 1 ≤ i ≤ m}.

(3.35)
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So, from (3.33) and (3.35) we take |T−1AT| < 1. Then since from a known result it holds |λi| ≤
|T−1 AT| < 1 where λi are the eigenvalues of T−1AT we have that λi < 1, i = 1, 2, . . . , 2m. So,
every solution of system (3.34) tends to (0, 0, . . . , 0) as n→ ∞. This implies that every solution
of (3.32) tends to (0, 0, . . . , 0) as n → ∞. Therefore, from (3.31) the proof of the proposition is
completed.
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