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Abstract. In this paper we study the asymptotic behavior of the positive solutions of a
cyclic system of the following m difference equations:

; ; ; (i+1)
£ 1= al-x,(fH) + bixflllle*x" , i=12,...,m—1,

n+
1 (D
x,(:?l = amx; ) 4 bmxfl’f)le o,

wheren =0,1,...,and a;, b;,i = 1,2,...,m are positive constants and the initial values
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1 Introduction

In [14] the authors obtained results concerning the global behavior of the positive solutions
for the difference equation:

Xpi1 = aXy + bx,_1e” ", n=20,1,... (1.1)

where a, b are positive constants and the initial values x_;, xo are positive numbers. This
equation can be considered as a biological model, since it arises from models studying the
amount of litter in a perennial grassland.
In addition, in [23] the authors studied analogous results for the system of difference
equations:
Xp41 = aYn +bxy_1e7V",  yuy1 = cxy +dyy_1e” (1.2)

where a, b, ¢, d are positive constants and the initial values x_1, xo, ¥_1, Yo are also positive
numbers. For a = ¢ and b = d the system is symmetric, so it is a close to symmetric system.
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Studying symmetric and close to symmetric systems of difference equations is an area of a
considerable recent interest (see, for example, [5,7,8,10,11,22-24,31-35, 38—40]).
In this paper we obtain results concerning the behavior of the positive solutions for the
following cyclic system of difference equations:
' ' ' (+1)
= a4 b e, =12, m -,

(1.3)

(1)
x,(i"i)l — gyl + bmx,(q"i)le_"” ,

n=20,1,...,and a;, b, i = 1,2,...,m are positive constants and the initial values x(:)l, x(()l),
i = 1,2,...,m are positive numbers. More precisely, we study the existence of the unique
nonnegative equilibrium of (1.3). In addition, we investigate the boundedness and the per-
sistence of the positive solutions of system (1.3). Finally, we investigate the convergence

of the positive solutions of (1.3) to the unique nonnegative equilibrium. We note that if

ap=ay=-=ay=ab; =by=---=by =band (x},x2,...,x") is a solution of (1.3) and
x(j% = x(fi =...= x(ﬁ), x(()l) = x(()z) =...= xém), then it is obvious that x\") = x? — ... =
x,(qm) =x,,n=0,1,..., and so x, is a solution of (1.1). Moreover, if m = 2 then system (1.3)

reduces to system (1.2). Studying cyclic systems of difference equations has attracted some
attention recently (see [16,36,37] and the related references therein).

Difference equations and systems of difference equations containing exponential terms
have numerous potential applications in biology. A large number of papers dealing with such
or related equations have been published. See for example, [2,14,18,20-23,26,29,41] and the
references cited therein. We also note that since difference equations have many applications
in applied sciences, there is a quite rich bibliography concerning theory and applications of
difference equations (see, for example, [1-41] and the references cited therein).

2 Existence and uniqueness of a nonnegative equilibrium for (1.3).

In this section we study the existence and the uniqueness of the positive equilibrium of (1.3).
Proposition 2.1. The following statements are true.

L. Suppose that
a;,b; € (0,1), a;+b; >1, i=1,2,...,m. (2.1)

Then system (1.3) has a unique positive equilibrium (%1, %2, ..., Xm).
II. Consider that a;, b;, i =1,2,...,m are positive constants such that:
a;, b; € (0,1), a; +b; < 1. (2.2)
Then, the zero equilibrium (0,0,...,0) is the unique nonnegative equilibrium of system (1.3).
Proof. 1. We consider the functions i;: RT — R*, RT = (0, 00),

a;x

hi*) = e

i=1,...,m.

Then we define

k j
th:hjohjﬂo---ohk, k2], Hh]'ZI,

s=j s=j+1
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where I is the identity function. If we set x,,11 = x; we consider the system of algebraic
equations

x; = hi(xi41), i=1,2,...,m. (2.3)
From (2.3) foraj € {1,2,...,m} we get

j—1

m
x]- = l’l]'(x]'_H) = h] oh]-+1(x]-+2) = Hh] H x] = h e} H h; OHh x]
s=j

s=j+1 s=1

a]Hh lo X;) ajhj 10 Hh lo X;)
s=j+1 5= s=j+2 s=1

_ ._Hk:j+1hkon:1 k(xj) _h. Hk:;+1hkonk:1 (/)
1—bje 1—bje

ajajq H hs lo )

s=j+2 s=1
(1 _ b],e— H}:l:]url kOszl hk(xj)> (1 _ b]‘+1€_ Hk:j+2 hkOHf;]l hk(xj)>

m—1 j—1
Hashm (6] I_I hs(.x])
s=j s=1

m—1

T (1 - e T el

s=j
m  j—1
HQSH hS(x])
_ s=j s=1
nﬁ (1 e Ml helliy ) (1= e T )
5=
m j—1
[Tashio [ Ths(x))
_ s=j s=2
T om—1

I (1 — e Hijn Sy hk(xf)) (1 _ by 1o hk(Xj))
5=

m j—1
ﬂlHﬂsH hs(x]-)
s=j s=2
m—1

m j—1 j—1 j—1
H 1—be™ T 1 kol Ty i (x)) 1—be o he(xi) ) (1 — be~ i e (x;)
il I I |
m j—1
a] Jas] Ths(x))
s=j s=2

- STy ol T I i
TT(1 - boe T Tl ) (1 — e Thoalu())
s=j
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m j—1
a11—[ash2 o H hs(x;)
s=j s=3
m

H(l _ bye TH e Tl hk(x/‘>> (1 — pye Tl hk(xj))
=

m j—1
LIMZH%H hs(x;)
s=j s=3
m

H(l ~ be T heeTliy hk<xj>> (1 — ppe i hkm)) (1 — e T hk<xj>)
=i

-1

m
X Jas
s=1
- .

H (1 — bee Tl ol T hk(xj)>

s=j s

~

(1 — bee™ Ty hk(?ﬁ')) |

Il
—_

We consider the function

[ Ia
Fi(x) = =1 ~1. (2.4)
m -1 ]_1 j—1
H (1 _ bse* H}r(":er] hkOHk:1 hk(x)> (1 _ bse* Hk=5+1 hk(x)>
s=j s=1

Since I (0) =0 fork =1,2,...,m, from (2.4) we can prove that

[T
F(0) = - — 1. (2.5)
(1—10s)
=1

S

Then from (2.1) we have that F;(0) > 0. Moreover, since lim, ,cofty(x) = 00, k = 1,2...,m,
from (2.1) and (2.4) we get

k
lim Fj(x) = [ Jas — 1 <0.

X—00
s=1

Therefore there exists an %;, j = 1,2,...,m such that F(%;)) = 0, j = 1,2,...,m. So,
(%1,%2,...,%y) is a positive equilibrium for (1.3). Moreover since /1 (x) = ak% then
from (2.1)and e *(x +1) < 1we geth;(x) >0, k=1,2,...,m. Therefore forallk =1,2,...,m
the functions /i are increasing. Hence for all j = 1,2,...,m the functions F; are decreasing.
This implies that (%1, %2,...,%,) is the unique positive equilibrium for (1.3). This completes
the proof of statement I.

II. From (2.2) and (2.5) we have F;j(0) <0 forallj =1,2,...,m. Since forall j =1,2,...,m
F; are decreasing functions it is obvious that the zero equilibrium is the only nonnegative
equilibrium. This completes the proof of the proposition. O
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3 Asymptotic behavior of the positive solutions of (1.3)

In this section we study the boundedness and persistence of the positive solutions of (1.3) and
the convergence of the positive solutions of (1.3) to the unique nonnegative equilibrium.

Proposition 3.1.

I. Suppose that
aj, b € (0,1), i=12,...,m (3.1)

Then every positive solution of (1.3) is bounded.
II. Consider that a;,b;, i = 1,2,...,m are positive constants such that (2.1) holds. Then, every

positive solution of (1.3) persists.

Proof. 1. Let (xﬁll), x,(f), o, x;’")) be an arbitrary solution of (1.3) and

B (i) 1 . .
M—max{xj, ln<l—ai>' i=12,...,m j= 1,0}.

Then arguing as in Lemma 1 of [14] and Theorem 3.1 of [22] we can prove that

DM i=12,...,m n=12,...
1 ()

and so the solution (x; ', %", ... ,x,S’”)) is bounded.

II. Let '
r:min{x]@, zi=1,2,...,m, j= _1,0}

where z; = In( 1Eiai ). Arguing as in the proof of Proposition 3.1 of [23] we have the following:

If fori =2,3,...,m

i
x(()) <z,

then ‘ ' ‘
x&lil) > min {xé’),ngl)} )

In addition, if

(i)

Xy > Zi-1, xgl—n <z,
we take
x%i_n > ngl).
Finally, if
x(()i) > zi 1, xgl—m > zi 1,
we get

So, we have that

We consider now the case

then
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Furthermore, if

>z, ™ <z,
we take
MR
Finally, if
xol) > Zm, x(_"{) > Zm,
we get
xgm) > Zm
So, we have that
x%m) >7.

This completes the proof of the proposition. O

In the following proposition we study the convergence of the positive equilibrium of (1.3)
to the unique positive equilibrium.

Proposition 3.2. Consider system (1.3) such that relations (2.1) hold. Suppose also that there exists a
ve{1,2,...,m} such that

m
aj<a, bi< [[ e j=12...,m (3.2)
s=1,s#v

Then every positive solution of (1.3) tends to unique positive equilibrium.

Proof. Let (x,Sl),x,SZ),...,x,Sm)) be an arbitrary solution of (1.3). From Proposition 3.1 there
exists numbers [;, L;, i =1,2,...,m,0 < [; < L; < oo such that

liminfx\) =1,  limsupx() =L, i=1,2,...,m. (3.3)
n—roo n—co

Moreover, since relations (2.1) hold, from Proposition 2.1 System (1.3) has a unique positive
equilibrium (%1, X2,. .., Xp).
First of all we prove that

I; <L; <x, i=1,2,...,m. (3.4)
From (3.3) for every € there exists a 1y such that for every n > ng
li—egxg)gLi—i—e, 1=1,2,...,m. (3.5)

So, relations (1.3) and (3.5) imply that fori =1,2,...,m —1and n =0,1,...,

i i i (i+1) i (i+1)
xfﬁrl = a T+ bix,(ﬁle_x”ﬂ < ™) 4 bi(Li+e)e (3.6)
We set g1,+e(x) = a;x + b;(L; + €)e™*. Since g (x) = bi(L; + €)e”* > 0 we have

Qr+e(x) < max{gr+e(liy1 —€), re(Livi+€)},  x€[liz1—€ Liy1+el. (3.7)
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Moreover, from (3.5), (3.6) and (3.7) it follows that

(i) (i+1)

X < 8rve(xn ) < max{gre(liv1 —€), gLre(Liv1+€)},

which implies that
Li < max {gr,+e(lit1 —€), gr+e(Lit1+€)}.
Then for € — 0 it holds

Li <max{gr,(li+1), §.(Li+1)}, i=12,...,m—1. (3.8)

We claim that
L;i < gr,(Liy1)- 3.9)
Since g7 (x) = a; — b;L;e™*, for x > ln(b;l—lL’) we have g7 (x) > 0. So, from (3.8) for /1 > ln(b;—f‘)
we have that (3.9) is true. For [;;1 < ln(bla—lL‘) we take
g1, (liy1) < g1,(0) = b;L; < L. (3.10)
Then using (3.8) and (3.10), for /11 < ln(b;TL’) relation (3.9) is satisfied. Hence, our claim (3.9)
is true. Then using (3.9) we take

L; < a;Li;1 + b;Lie L1, i=12....,m—1

and so we get

, aiLit . _
Ll S m, 1—1,2....,71’1 1. (3.11)
Similarly we can prove that
am Ly
Ly < —F=—r. 3.12

Therefore since the functions h;, i = 1,2,...,m defined in the proof of Proposition 2.1 are
increasing, then from relations (3.11), (3.12) and arguing as in Proposition 2.1 we can prove
that

F(L;) >0, i=12,...,m (3.13)

Then from (3.13) and since the functions F;, i = 1,2,..., m are decreasing and from Proposition
21F(x;)=0,i=1,2,...,m we take relations (3.4).
We prove now that
Jf]' Sl] < L]', j:1,2,...,m. (3.14)

Since (%1, %2, ..., Xy) is the unique positive equilibrium of (1.3) we have that X;, i =1,2,...,m
satisfy system (2.3). Then by setting %,,+1 = ¥; we have

_ bx; .

x]'+1:11’1 m ’ ]:1,2,...,m.
] Jri+1

Then since b; < 1 we have,

b]f] 1< ajXjt1

Yi1 < o — < - —
Xj—aj%j Xj—aj%j

and so
Jf]' — El]'f]'_H < aj, ] =12,...,m—1, X — am¥1 < apy. (3.15)
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From (3.15) fora j € {1,2,...,m} it holds

Xj—aj%j1 < aj, Xjip1 — Aj41%42 < Aj1,- -, Xm — amX1 < apy,

(3.16)
X —mx < aq, Xp —mx3 <a,..., Xj—1—aj-1% < aj-q.
From the first two relations of (3.16) we get
Xj = a1 ¥jra < 4j + 8j0j4
and working similarly to (3.16) we can prove that
=1
Z(Hﬂz) +Hﬂs Y (ITax)
. s=j i=j s=j r=1 "w=1
% < . : (3.17)
1-— H&li
i=1
Then from (3.2) and (3.17) we get
_ ay .
< =12,...,m. Nt
Y<q o J=L2em (3.18)
From (1.3) and (3.5) for an € > 0 there exists a 1y such that for n > ng we get
1 LG+
() L > axd KUt +bj(l; — €)™ (3.19)

where j € {1,2,...,m —1}. We consider the function

ki—e(y) = ajy + bj(l; —e)e™.

Then since k;] (y) = a; = bj(lj — €)e”V we have that k;_ is increasing for y > In(b;(l; — €)/a;).
We claim that

L bi(li —€
liyi—€ J] as>1n <(f‘)>. (3.20)
s=1,5#] aj
From (3.4) and (3.18) we get
_ a
lj Nk 1 —vav

I .
and so é — 1 < I;. Therefore since a, < 1 for an € > 0 we get

lj—e_1< li — eay

~1<li—e. (3.21)

ay ay
Moreover, from (1.3) we take
liin>ajal,  Lia>ajoliq,..., l > aily, lm > amly,
ln-1 2 am-lm, lm—2 2> am-2ln-1,..., liy1 > aj1ljo.

Then we have

< i b <. < ll < e USRI

j= = = 1 = 1 ==,

a1~ a;1aj_
j—1 j—1aj-2 Hﬂs an] [t amoran] Jas I as
s=1 s=1 =
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Then, from (3.21) and (3.22) we have,

and so

b‘ m
ai_(zj—e) —1<lpi—e ] as (3.23)
]

Therefore, from (3.23) and since Inx < x — 1 our claim (3.20) is true. Moreover, there exists a
n1 such that for n > ny

m
x>l —e I as (3.24)
s=1,5#]

Since k. is an increasing function for y > In(b;(l; — €)/a;), then from (3.20) and (3.24) we
take

Then from (3.19) it follows that
. m -
¥ > a (L —e T as | +bj(1; — e)e el
s=1,5#]

and so

m
> a (m e [1 as> + b1 — e)e” eIl ), (3.25)
s=1,5#]

For € — 0 to (3.25) we have
> alipq +ble’lm,  j=12,...,m—1. (3.26)

Similarly we can prove that

From (3.26) and (3.27) we can prove that
F()<0, j=12...,m (3.28)
But since from Proposition 2.1 F]-(JE]-) =0,j=1,2,...,mwe get

Since F;, j = 1,2,...,m are decreasing functions we take (3.14). Then from (3.4) and (3.14) we
have x; =I; = Lj, j =1,2,...,m. This completes the proof of the proposition. ]

In the last proposition we study the convergence of the positive solutions of (1.3) to the
zero equilibrium.
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Proposition 3.3. Consider system (1.3) such that the constants a;, b;, i = 1,2,...,m satisfy (2.2).
Then every positive solution of (1.3) tends to the zero equilibrium (0,0, ...,0).

Proof. Since (2.2) holds, from Proposition 2.1 the only nonnegative equilibrium is the zero

(1) ()

equilibrium. Let (xn S Xy e, xﬁlm)) be an arbitrary solution of (1.3). From (1.3) we take

< gD gy i=1,2,...,m—1,

nl = n—1’ (3.29)

xyi)l < amx,(,ll) + bmxflni)l.

We consider the system of difference equations

@ _ . G+1) (i) i
Y1 = ai¥n T biy,"q, i=12,...,m-1, (3.30)

m 1 m
vt = anyh) + by,

Let (y,gl),y,(f),..., y,(qm)) be a solution of (3.29) with initial values y(:li) = x@l, y(()i) = x(()i),

i=1,2,...,m. Then from (3.29) and (3.30), by induction we can easily prove that
D <y® i=1,2...,m, n=01,... (3.31)

We prove that every positive solution of (3.30) tends to the zero equilibrium (0,0,...,0). Sys-
tem (3.30) is equivalent to the system

Jnt1 = Ain, (3.32)

where 7, = col (y,(f),y,gz), .. .,y,gm),yil_)l,yf_)l, .. ,yfﬁ)l) and A is a matrix where in the (i)th

line 1 < i < m —1 the only non zero elements are a; which is the (i + 1)th element and b;
which is the (i + m)th element, in the (m)th line the only non zero elements are a,, which is
the first element and b,, which is the last element, and finally in the (m + j)th line, 1 <j <m
the unique nonzero element is the (j)th element which is 1.
Let
T = diag (1,6‘_1,(—,‘_2, ... /€—2m+1)

where € is a positive number such that
a; + b; < €™, i=1,2,...,m. (3.33)
We take the change of variables 77, = Tz, and we get the system
Zp1 = T 1ATZ,, (3.34)

T~1AT is matrix where in the (i)th line 1 < i < m — 1 the only non zero elements are ¢ 'a;

which is the (i + 1)th element and € "b; which is the (i + m)th element, in the (m)th line
the only non zero elements are €™ 1g,, which is the first element and €~ "b,, which is the last
element, and finally in the (m + j)th line, 1 < j < m the unique nonzero element is the (j)th
element which is €.

If for a 2m x 2m matrix C = (c;;) we take the norm |C| = supogiszm{Z?;”l\ciH} then we
take

|IT1AT| = max{e‘lal +e by, e tay+e€ by, .., e Yay 1+ € by,
€m_1th +e b, em} (3.35)

< max{e "(a; +b;),1 <i<m}.
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So, from (3.33) and (3.35) we take |[T~!AT| < 1. Then since from a known result it holds |A;| <
\T_lAT| < 1 where A; are the eigenvalues of T~ 'AT we have that A\; < 1,i=1,2,...,2m. So,
every solution of system (3.34) tends to (0,0, ...,0) as n — oco. This implies that every solution
of (3.32) tends to (0,0,...,0) as n — oo. Therefore, from (3.31) the proof of the proposition is
completed. O
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