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1 Introduction and main results

In this paper, we shall assume that the reader is familiar with the fundamental results and the standard

notations of the Nevanlinna value distribution theory of meromorphic functions (see [11, 22]). The

term “meromorphic function” will mean meromorphic in the whole complex plane C.

For the second order linear differential equation

f ′′ + e−zf ′ + B(z)f = 0, (1.1)

where B(z) is an entire function of finite order. It is well known that each solution f of (1.1) is an

entire function, and that if f1 and f2 are any two linearly independent solutions of (1.1), then at least

one of f1, f2 must have infinitely order([12]). Hence, “most” solutions of (1.1) will have infinite order.

However, the equation (1.1) with B(z) = −(1 + e−z) possesses a solution f = ez of finite order.

Thus a natural question is: what condition on B(z) will guarantee that every solution f 6≡ 0

of (1.1) will have infinite order? Frei, Ozawa, Amemiya and Langley, and Gunderson studied the

question. For the case that B(z) is a transcendental entire function, Gundersen [8] proved that if

ρ(B) 6= 1, then for every solution f 6≡ 0 of (1.1) has infinite order.

For the above question, there are many results for second order linear differential equations (see,

for example [1, 4, 6, 7, 10, 15]). In 2002, Z. X. Chen considered the problem and obtained the following

result in [4].
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Theorem 1.1. Let a, b be nonzero complex numbers and a 6= b, Q(z) 6≡ 0 be a nonconstant polynomial

or Q(z) = h(z)ebz, where h(z) is a nonzero polynomial. Then every solution f 6≡ 0 of the equation

f ′′ + ebzf ′ + Q(z)f = 0

has infinite order and σ2(f) = 1.

In 2006, Liu and Yuan generalized Theorem 1.1 and obtained the following result.

Theorem 1.2 (see. [17, Theorem 1]). Suppose that a, b are nonzero complex numbers, hj(j =

0, 1, · · · , k − 1)(h0 6≡ 0) be meromorphic functions that have finite poles and σ = max{σ(hj) : j =

0, 1, · · · , k − 1} < 1. If arg a 6= arg b or a = cb(0 < c < 1), then every transcendental meromorphic

solution f of the equation

f (k) + hk−1f
(k−1) + · · · + eazf (s) + · · · + h1f

′ + h0e
bzf = 0. (1.2)

have infinite order and σ2(f) = 1.

It is natural to ask the following question: What can we say if we remove the condition hj(j =

0, 1, · · · , k − 1) have finite poles in Theorem 1.2. In this paper, we first investigate the problem and

obtain the following result.

Theorem 1.3. Let P (z) and Q(z) be a nonconstant polynomials such that

P (z) = anzn + an−1z
n−1 + · · · + a1z + a0,

Q(z) = bnzn + bn−1z
n−1 + · · · + b1z + b0

for some complex numbers ai, bi(i = 0, 1, 2, · · · , n) with an 6= 0, bn 6= 0 and let hj(j = 0, 1, · · · , k −

1)(h0 6≡ 0) be meromorphic functions and σ = max{σ(hj) : j = 0, 1, · · · , k−1} < n. If arg an 6= arg bn

or an = cbn(0 < c < 1), suppose that all poles of f are of uniformly bounded multiplicity. Then every

transcendental meromorphic solution f of the equation

f (k) + hk−1f
(k−1) + · · · + hse

P (z)f (s) + · · · + h1f
′ + h0e

Q(z)f = 0 (1.3)

have infinite order and σ2(f) = n.

Next, we continue to investigate the problem and extend Theorem 1.2.

Theorem 1.4. Let P (z) and Q(z) be a nonconstant polynomials as the above, for some complex

numbers ai, bi(i = 0, 1, 2, · · · , n) with an 6= 0, bn 6= 0 and let hj(j = 0, 1, · · · , k − 1)(h0 6≡ 0) be

meromorphic functions and σ = max{σ(hj) : j = 1, · · · , k − 1} < n. Suppose all poles of f are of

uniformly bounded multiplicity. Then the following three statements hold:

1. If an = bn, and deg(P − Q) = m ≥ 1, σ < m, then every transcendental meromorphic solution

f of the equation (1.3) have infinite order and m ≤ σ2(f) ≤ n.

2. If an = cbn with c > 1, and deg(P − Q) = m ≥ 1, σ < m, then every solution f 6≡ 0 of the

equation (1.3) is of infinite order, and σ2(f) = n.
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3. If σ < σ(h0) < 1/2, an = cbn with c ≥ 1 and P (z) − cQ(z) is a constant, then every solution

f 6≡ 0 of equation (1.3) is of infinite order, and σ(h0) ≤ σ2(f) ≤ n.

Remark 1.1 Setting hj(j = 1, 2, . . . , k − 1) be entire functions in Theorem 1.3 and Theorem 1.4,

we get Theorem 1 in [17].”

Considering nonhomogeneous linear differential equations

f (k) + hk−1f
(k−1) + · · · + hse

P (z)f (s) + · · · + h1f
′ + h0e

Q(z)f = F. (1.4)

Corresponding to (1.3), we obtain the following result:

Theorem 1.5. Let k ≥ 2, s ∈ {1, · · · , k− 1}, h0 6≡ 0, h1, · · · , hk−1; P (z),Q(z) satisfy the hypothesis

of Theorem 1.4; F 6≡ 0 be an meromorphic function of finite order. Suppose all poles of f are of

uniformly bounded multiplicity and if at least one of the three statements of Theorem 1.4 hold, then

all solutions f of non-homogeneous linear differential equation (1.4) with at most one exceptional

solution f0 of finite order, satisfy

λ(f) = λ(f) = σ(f) = ∞, λ2(f) = λ2(f) = σ2(f).

Futhermore, if such an exceptional solution f0 of finite order of (1.4) exists, then we have

σ(f0) ≤ max{n, σ(F ), λ(f0)}.

Remark 1.2. Setting hj(j = 1, 2, . . . , k− 1) and F (z) be entire functions in Theorem 1.5, we get

Theorem 2 in [17].

2 Lemmas

The linear measure of a set E ⊂ [0, +∞) is defined as m(E) =
∫ +∞

0 χE(t) dt. The logarithmic measure

of a set E ⊂ [1, +∞) is defined by lm(E) =
∫ +∞

1
χE(t)/t dt, where χE(t) is the characteristic function

of E. The upper and lower densities of E are

densE = lim sup
r→+∞

m(E ∩ [0, r])

r
, densE = lim inf

r→+∞

m(E ∩ [0, r])

r
.

Lemma 2.1 (see. [4]). Let f(z) be a entire function with σ(f) = ∞, and σ2(f) = α < ∞, let

a set E ⊂ [1,∞) that has finite logarithmic measure. Then there exists {zk = rkeiθk} such that

|f(zk)| = M(rk, f), θk ∈ [0, 2π), limk→∞ θk = θ0 ∈ [0, 2π),rk 6∈ E, rk → ∞, and for any given ε > 0,

for a sufficiently large rk, we have

lim sup
r→∞

log νf (rk)

log rk
= +∞, (2.1)

exp{rα−ε
k } < νf (rk) < exp{rα+ε

k } (2.2)

Lemma 2.2 (see.[2, 14]). Let F (r) and G(r) be monotone nondecreasing functions on (0,∞) such

that (i) F (r) ≤ G(r)n.e. or (ii) for r 6= H ∪ [0, 1] having finite logarithmic measure, then for any

constant α > 1, there exists r0 > 0 such that F (r) ≤ G(αr) for all r > r0.
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Lemma 2.3 (see. [9]). Let f be a transcendental meromorphic function. Let α > 1 be a constant,

and k and j be integers satisfying k > j ≥ 0. Then the following two statements hold:

(a) There exists a set E1 ⊂ (1,∞) which has finite logarithmic measure, and a constant C > 0,

such that for all z satisfying |z| 6∈ E1

⋃

[0, 1], we have (with r = |z|)

∣

∣

f (k)(z)

f (j)(z)

∣

∣ ≤ C
[T (αr, f)

r
(log r)α log T (αr, f)

]k−j
. (2.3)

(b) There exists a set E2 ⊂ [0, 2π) which has linear measure zero, such that if θ ∈ [0, 2π) − E2,

then there is a constant R = R(θ) > 0 such that (2.3) holds for all z satisfying arg z = θ and

R ≤ |z|.

Lemma 2.4 ([18], pp. 253-255). Let n be a positive integer, and let P (z) = anzn + an−1z
n−1 +

· · · + a1z + a0 with an = αneiθn , αn > 0. For given ε, 0 < ε < π/4n, we introduce 2n closed angles

Dj : −
θn

n
+ (2j − 1)

π

2n
+ ε ≤ θ ≤ −

θn

n
+ (2j + 1)

π

2n
− ε(j = 0, 1, · · · , 2n− 1).

Then, there exists a positive number R = R(ε) such that

Re P (z) > αnrn(1 − ε) sinnε

if |z| = r > R and z ∈ Dj, where j is even, while

Re P (z) < −αnrn(1 − ε) sin nε

if |z| = r > R and z ∈ Dj, where j is odd.

Lemma 2.5 ([4], Lemma 1). Let g(z) be a meormorphic function with σ(g) = β < ∞. Then

for any ε > 0, there exists a set E ⊂ (1,∞) with lmE < ∞, such that for all z with |z| = r 6∈

([0, 1] ∪ E), r → ∞, then

|g(z)| ≤ exp{rβ+ε}.

Applying Lemma 2.5 to 1/g(z), we can obtain that for any given ε > 0, there exists a set

E ⊂ (1,∞) with lmE < ∞, such that for all z with |z| = r 6∈ ([0, 1] ∪ E), r → ∞, then

exp{−rβ+ε} ≤ |g(z)| ≤ exp{rβ+ε}. (2.4)

It is well known that the Wiman-Valiron theory (see, [14]) is an indispensable device while consid-

ering the growth of entire solution of a complex differential equation. In order to consider the growth

of meromorphic function solutions of a complex differential equation, Wang and Yi [19] extended the

Wiman-Valiron theory from entire functions to meromorphic functions. Here we give the special form

where meromorphic function has infinite order:

Lemma 2.6 ([19, 20]). Let f(z) = g(z)/d(z) be the infinite order meromorphic function and σ2(f) =

σ, where g(z) and d(z) are entire function, σ(d) < ∞, there exists a sequence rj(rj → ∞) satisfying

zj = rje
iθj , θj ∈ [0, 2π), lim

j→∞

θj = θ0 ∈ [0, 2π), |g(zj)| = M(rj , g) and j is sufficient large, we have

f (n)(zj)

f(zj)
=

(νg(rj)

zj

)n(

1 + o(1))(n ∈ N),

lim sup
r→∞

log log νg(r)

log r
= σ2(g).
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Lemma 2.7. Let k ≥ 2 and A0, A1, · · · , Ak−1 are meromorphic function. Let σ = max{σ(Aj),

j = 0, 1, · · · , k−1} and all poles of f are of uniformly bounded multiplicity. Then every transcendental

meromorphic solution of the differential equation

f (k) + Ak−1f
(k−1) + · · · + A0f = 0, (2.5)

satisfies σ2(f) ≤ σ.

Proof. Since f 6≡ 0 is a transcendental meromorphic solution of the equation (2.5). If σ(f) < ∞,

then σ2 = 0 ≤ σ. If σ(f) = ∞. We can rewrite (2.5) to

−
f (k)

f
= Ak−1

f (k−1)

f
+ · · · + A1

f ′

f
+ A0. (2.6)

Obviously, the poles of f must be the poles of Aj(j = 0, 1, · · · , k − 1), note that all poles of f are of

uniformly bounded multiplicity, then λ(1/f) ≤ σ. By Hadmard factorization theorem, we know f can

be written to f(z) = g(z)
d(z) , where g(z) and d(z) are entire function, and λ(d) = σ(d) = λ(1/f) ≤ σ,

σ2(f) = σ2(g). By Lemma 2.5 and Lemma 2.6, for any small ε > 0, there exists a sequence rj(rj → ∞)

satisfying zj = rje
iθj , θj ∈ [0, 2π), lim

j→∞

θj = θ0 ∈ [0, 2π), |g(zj)| = M(rj , g) and j is sufficient large,

we have
f (n)(zj)

f(zj)
=

(νg(rj)

zj

)n(

1 + o(1)), (n ∈ N), (2.7)

lim sup
r→∞

log log νg(r)

log r
= σ2(g), (2.8)

|Aj(z)| ≤ erσ+ε
j , (j = 1, 2, · · · , k − 1), (2.9)

Substituting (2.7),(2.9) into (2.6), we obtain

vg(rj)(1 + o(1)) ≤ 2rj exp{r
σ+εj

j }. (2.10)

Then by (2.8), (2.10) and for the arbitrary ε, we can obtain σ2(f) ≤ σ. We complete the proof of the

lemma.

Remark 3. Here we point out that the condition all poles of f are of uniformly bounded

multiplicity in Theorem 1 of [3] and Theorem 1.3 of [20] was missing. Since the growth of the

coefficients Aj gives only an estimate for the counting function of the distinct poles of f , but not for

N(r, f).

Lemma 2.8. (see. [5]) Let A0, A1, . . . , Ak−1,F 6≡ 0 are finite order meromorphic function. If f(z)

is an infinite order meromorphic solution of the equation

f (k) + Ak−1f
(k−1) + · · · + A1f

′ + A0f = F,

then f satisfies λ(f) = λ(f) = σ(f) = ∞.
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3 Proofs of main results

3.1 Proof of Theorem 1.3

Proof. Let f 6≡ 0 be a transcendental solution of the equation (1.1). We consider two case:

Case 1 : When arg an 6= arg bn, by Lemma 2.4, there exist constants c > 0, R1 > 0 and θ1 < θ2

such that for all r ≥ R1 and θ ∈ (θ1, θ2), we have

Re P (reiθ) < 0,

Re Q(reiθ) > brn.
(3.1)

Note that σ = max{σ(hj), j = 0, 1, · · · , k−1} < n. Then by Lemma 2.5, for any ε(0 < ε < (n−σ)/2),

there exists a set E1 ⊂ (1,∞) that has finite linear measure such that when |z| = r 6∈ ([0, 1]∪E), r →

∞, we have
∣

∣

∣

∣

hj

h0

∣

∣

∣

∣

≤ exp{r
σ+n

2 }, (j = 0, 1, · · · , k − 1). (3.2)

Since f is a transcendental meromorphic function, by Lemma 2.3, there exists a set E2 ⊂ (1,∞) that

has finite logarithmic measure such that when |z| = r 6∈ ([0, 1] ∪ E), r → ∞, we have

|
f (j)(z)

f(z)
| ≤ Br[T (2r, f)]j+1, (j = 0, 1, · · · , k − 1). (3.3)

From the equation (1.1), we obtain

|eQ| ≤

∣

∣

∣

∣

1

h0

∣

∣

∣

∣

∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

+

∣

∣

∣

∣

hk−1

h0

∣

∣

∣

∣

∣

∣

∣

∣

f (k−1)

f

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

hs

h0

∣

∣

∣

∣

|eP |

∣

∣

∣

∣

f (s)

f

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

h1

h0

∣

∣

∣

∣

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

. (3.4)

Therefore, from (3.1)-(3.4), for z = reiθ , θ ∈ (θ1, θ2), r 6∈ [0, 1] ∪ E1 ∪ E2, we have

exp{brn} ≤ kAr exp{r
σ+n

2 }[T (2r, f)]k+1.

Hence by Lemma 2.2, we obtain σ(f) = ∞ and σ2(f) ≥ n.

On the other hand, by Lemma 2.7, we have σ2(f) ≤ n, hence σ2(f) = n.

Case 2 : When an = cbn with 0 < c < 1. Since deg Q = n > n − 1 = deg(P − cQ), By Lemma

2.4, there exist constant c > 0, R2 > 0 and θ1 < θ2 such that for all r ≥ R2 and θ ∈ (θ1, θ2), we have

Re Q(reiθ) > brn > 0,

Re {P (reiθ) − cQ(reiθ)} ≤ M.
(3.5)

From the equation (1.1), we obtain

|e(1−c)Q|

≤

∣

∣

∣

∣

1

h0

∣

∣

∣

∣

|e−cQ|

∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

+

∣

∣

∣

∣

hk−1

h0

∣

∣

∣

∣

|e−cQ|

∣

∣

∣

∣

f (k−1)

f

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

hs

h0

∣

∣

∣

∣

|eP−cQ|

∣

∣

∣

∣

f (s)

f

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

h1

h0

∣

∣

∣

∣

|e−cQ|

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

.

Therefore, from this and (3.2),(3.3) and (3.5), for z = reiθ, θ ∈ (θ1, θ2), r 6∈ [0, 1] ∪ E1 ∪ E2, we have

exp{b(1 − c)rn} ≤ (k + 1)Br exp{r
σ+n

2 }[T (2r, f)]k+1.
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Hence by Lemma 2.2 again, we can obtain σ(f) = ∞ and σ2(f) ≥ n.

On the other hand, by Lemma 2.7, we have σ2(f) ≤ n, hence σ2(f) = n, and the proof of Theorem

1.3 is completed.

3.2 Proof of Theorem 1.4

Proof. We distinguish three cases:

(1) Suppose that an = cbn with c ≥ 1, and deg(P − cQ) = m ≥ 1, σ < m. We claim that

σ(f) = ∞ and m ≤ σ2(f) ≤ n.

Since deg P (z) = n > m = deg(Q − P/c), by Lemma 2.4, there exist a real number b > 0 and a

continuous curve Γ tending ∞ such that for all z ∈ Γ with |z| = r, we have

Re P (z) = 0,

Re [Q(z) −
1

c
P (z)] ≥ brm.

(3.6)

From the equation (1.3), we obtain

|eQ−P/c|

≤

∣

∣

∣

∣

1

h0

∣

∣

∣

∣

|e−P/c|

∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

+

∣

∣

∣

∣

hk−1

h0

∣

∣

∣

∣

|e−P/c|

∣

∣

∣

∣

f (k−1)

f

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

hs

h0

∣

∣

∣

∣

|e(1−1/c)P |

∣

∣

∣

∣

f (s)

f

∣

∣

∣

∣

+ · · · +

∣

∣

∣

∣

h1

h0

∣

∣

∣

∣

|e−P/c|

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

.

Similar, we can get (3.2) and (3.3). Therefore, from this and (3.2),(3.3) and (3.6), for z = reiθ, θ ∈

(θ1, θ2), r 6∈ [0, 1] ∪ E1 ∪ E2, we have

exp{brm} ≤ (k + 1)Br exp{r
σ+n

2 }[T (2r, f)]k+1.

Hence by Lemma 2.2, from this we obtain σ(f) = ∞ and σ2(f) ≥ m. On the other hand, by Lemma

2.7, we have σ2(f) ≤ n, hence m ≤ σ2(f) ≤ n.

(2) We shall verify that σ2(f) = n. If it is not true, then it follows from the proof of Part (1) that

σ2(f) = α(m ≤ α < n), we shall arrive at a contradiction in the sequel.

Since σ = max{σ(hj) : j = 0, 1, · · · , k − 1} < m, then by Lemma 2.5, for any given ε(0 < ε <

min{m−σ
3 , n−σ

3 , π
4n}), there is a set E3 ⊂ [1,∞) having finite logarithmic measure such that for all z

satisfying |z| = r 6∈ E3 ∪ [0, 1], we have

exp{−rσ+ε} ≤ |hj(z)| ≤ exp{rσ+ε}, (j = 0, 1, · · · , k − 1). (3.7)

exp{−rm+ε} ≤ | exp{(P (z) − cQ(z))}| ≤ exp{rm+ε}. (3.8)

Let f(z) = g(z)/d(z) be the infinite order meromorphic function and σ2(f) = σ, where g(z) and

d(z) are entire function, σ(d) < ∞, there exists a sequence rk(rk → ∞) satisfying zk = rkeiθk , θk ∈

[0, 2π), lim
k→∞

θk = θ0 ∈ [0, 2π), |g(zk)| = M(rk, g) and k is sufficient large, we have

f (j)(zk)

f(zk)
=

(νg(rk)

zk

)j(
1 + o(1)), (j = 0, 1, · · · , k − 1) (3.9)
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and

exp{rσ−ε
k } ≤ νg(rk) ≤ exp{rσ+ε

k }. (3.10)

Let Q(z) = bnzn + bn−1z
n−1 + · · ·+ b1z + b0, where bn = |bn|e

iθ, |bn| > 0, θn ∈ [0, 2π). By Lemma

2.4, for the above ε, there are 2n opened angles

Gj : −
θ

n
+ (2j − 1)

π

2n
+ ε < θ < −

θn

n
+ (2j + 1)

π

2n
− ε(j = 0, 1, · · · , 2n− 1). (3.11)

and a positive number R = R(ε) such that

Re Q(z) > |bn|r
n(1 − ε) sin nε

if |z| = r > R and z ∈ Dj , where j is even, while

Re Q(z) < −|bn|r
n(1 − ε) sinnε

if |z| = r > R and z ∈ Dj , where j is odd.

For the above θ, if θ0 6= − θ
n + (2j − 1) π

2n (j = 0, 1, · · · , 2n − 1), then we may take ε sufficiently

small, and there is some Gj , j ∈ {0, 1, · · · , 2n − 1} such that θ0 ∈ Gj . Hence there are three cases:

(i) θ0 ∈ Gj for some odd number j; (ii) θ0 ∈ Gj for some even number j; (iii) θ0 = − θn

n + (2j − 1) π
2n

for some j ∈ {0, 1, · · · , 2n − 1}.

Now we split this into three cases to prove:

Case (i): θ0 ∈ Gj for some odd number j. Since Gj is an open set and limk→∞ θk = θ0, there is

a K > 0 such that θk ∈ Gj for k > K. By Lemma 2.4, we have

Re {Q(rkeiθk)} < −σrn
k (σ > 0), i.e.,Re {−Q(rkeiθk)} > σrn

k (σ > 0). (3.12)

Since deg(P − cQ) = m ≥ 1, from (3.12), we obtain that for a sufficiently large k,

Re {P (zk) − Q(zk)} = Re {(c − 1)Q + (P − cQ} < −(c − 1)σrn
k + drn

k < 0, (3.13)

where Re{P (zk) − Q(zk)} < drn
k for a sufficiently large k. Substituting (3.10) into (1.3), we get for

{zk = rkeiθk},

− e−Q(zk)[νk
g (rk)(1 + o(1)) + zkhk−1ν

k−1
g (rk)(1 + o(1)) + · · ·+

zk−s−1
k hs+1(zk)νs+1

g (rk)(1 + o(1)) + zk−s+1
k hs−1(zk)νs−1

g (rk)(1 + o(1))

+ · · · + zk−1
k h1(zk)νg(rk)(1 + o(1))]

= zk−s
k hs(zk)eP (zk)−Q(zk)νs

g(rk)(1 + o(1)) + zk
kh0(zk).

(3.14)

Thus from (3.10) and (3.12), we obtain, for a sufficiently large k,

∣

∣ − e−Q(zk)[νk
g (rk)(1 + o(1)) + zkhk−1ν

k−1
g (rk)(1 + o(1)) + · · ·+

zk−s−1
k hs+1(zk)νs+1

g (rk)(1 + o(1)) + zk−s+1
k hs−1(zk)νs−1

g (rk)(1 + o(1))

+ · · · + zk1
k h1(zk)νg(rk)(1 + o(1))]

∣

∣

> eσrn
k ekrσ−ε

k

[1

2
− 2rk|hk(zk)|/νg(rk) − · · · − 2rk−1

k |h1(zk)|/νk−1
g (rk)

]

>
1

4
eσrn

k .

(3.15)
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And from (3.7), (3.10) and (3.13), we have

|zk−s
k hs(zk)eP (zk)−Q(zk)νs+1

g (rk)(1 + o(1))zk
kh0(zk)|

≤ 2rk−s
k erσ+ε

k esrβ+ε

k + rk
kerσ+ε

k ≤ erσ+2ε
k .

(3.16)

From (3.14) we see that (3.16) is in contradiction to (3.15).

Case (ii): θ0 ∈ Gj where j is even. Since Gj is an open set and limk→∞ θk = θ0, there is K > 0

such that θk ∈ Gj for k > K. By Lemma 2.4, we have

Re {Q(rkeiθk)} > σrn
k , Re {−cQ(rkeiθk)} < −cσrn

k ,

Re {(1 − c)Q(rkeiθk)} < (1 − c)σrn
k .

(3.17)

We may rewrite (3.14) to

− zk−s
k hs(zk)eP (zk)−cQ(zk)νs

g(rk)(1 + o(1)) = e−cQ(zk)[νk
g (rk)(1 + o(1))

+ zkhk−1ν
k−1
g (rk)(1 + o(1)) + · · · + zk−s−1

k hs+1(zk)νs+1
g (rk)(1 + o(1))

+ zk−s+1
k hs−1(zk)νs−1

g (rk)(1 + o(1)) + · · · + zk−1
k h1(zk)νg(rk)(1 + o(1))]

+ zk
kh0(zk)e(1−c)Q(zk).

(3.18)

Thus from (3.7),(3.8),(3.10),(3.17) and (3.18), we have

e−rm+ε
k <

1

2
rk−s
k e−rσ+ε

k e−rm+ε
k esrσ−ε

k

∣

∣ − zk−s
k hs(zk)eP (zk)−cQ(zk)νs

g(rk)(1 + o(1))
∣

∣ < e
1−c
2

σrn
k

(3.19)

This is in contradiction to n > m + ε and c > 1.

Case (iii). θ0 = − θn

n + (2j − 1) π
2n for some j ∈ {0, 1, · · · , 2n− 1}. Since Re {Q(rkeiθk)} = 0 when

rk is sufficiently large and a ray arg z = θ0 is an asymptotic line of {rkeθk}, where is a K > 0 such

that when k > K, we have

−1 < Re {Q(rkeiθk)} < 1. (3.20)

Since an = cbn, so the head terms of P (z) and Q(z) have the same argument, therefore by Lemma 2.4,

Re {P (z)/c} and Re {Q(z)} possesses the same property in the above Gj(j = 0, 1, · · · , 2n − 1), i.e.,

when k > K, we have

−1 < Re {P (rkeiθk)/c} < 1. (3.21)

Hence when k > K, we have

−2c < Re {P (rkeiθk) − cQ(rkeiθk)} < 2c. (3.22)

We may rewrite (3.14) to

− e−cQ(zk)[νk
g (rk)(1 + o(1)) + zkhk−1ν

k−1
g (rk)(1 + o(1)) + · · ·+

zk−s−1
k hs+1(zk)νs+1

g (rk)(1 + o(1)) + zk−s+1
k hs−1(zk)νs−1

g (rk)(1 + o(1))

+ · · · + zk−1
k h1(zk)νg(rk)(1 + o(1))]

= zk−s
k hs(zk)eP (zk)−cQ(zk)νs

g(rk)(1 + o(1)) + zk
kh0(zk)e(1−c)Q(zk).

(3.23)

EJQTDE, 2009 No. 1, p. 9



Thus from (3.7), (3.10) and (3.21)-(3.23), we obtain, for a sufficiently large k,

1

4
e−cνk

g (rk) <
∣

∣ − e−cQ(zk)[νk
g (rk)(1 + o(1)) + zkhk−1ν

k−1
g (rk)(1 + o(1)) + · · ·+

zk−s−1
k hs+1(zk)νs+1

g (rk)(1 + o(1)) + zk−s+1
k hs−1(zk)νs−1

g (rk)(1 + o(1))

+ · · · + zk−1
k h1(zk)νg(rk)(1 + o(1))]

∣

∣

=
∣

∣zk−s
k hs(zk)eP (zk)−cQ(zk)νs

g(rk)(1 + o(1)) + zk
kh0(zk)e(1−c)Q(zk)

∣

∣

≤ 2rk−s
k erσ+ε

k νk
g (rk) + rk

kerσ+ε
k erσ+ε

k ec−1 ≤ νk
g (rk)erσ+2ε

k .

(3.24)

This is in contradiction to νg(rk) ≥ exp{rσ−ε
k }. Thus we complete the proof of Part (2) of Theorem

1.4.

(3). By using the same argument as in Theorem 2 (iv) of [13], we can prove part (3). Here we

omit the detail.

3.3 Proof of Theorem 1.5

Proof. Assume f0 is a solution of finite order of (1.4). If there exists another solution f1(6≡ f0) of

finite order of (1.4), then σ(f1−f0) < ∞, and f1−f0 is a solution of the corresponding homogeneous

differential equation (1.3). However, by Theorem 1, we get that σ(f1 − f0) = ∞, which is in con-

tradiction to σ(f1 − f0) < ∞. Hence all solutions f of non-homogeneous linear differential equation

(1.4), with at most one exceptional solution f0 of finite order, satisfy σ(f) = ∞.

Now suppose that f is a solution of infinite order of (1.4), then by Lemma 2.8, we obtain

λ(f) = λ(f) = σ(f) = ∞.

In the following, we shall verify that every solution f of infinite order of (1.4) satisfy λ2(f) = σ2(f).

In fact, by (1.4), it is easy to see that the zeros of f occurs at the poles of hj(z)(j = 1, . . . , k − 1) or

the zeros of F (z). If f has a zero at z0 of order n, n > k, then F (z) must have a zero at z0 of order

n − k. Therefore we get by F 6≡ 0 that

N(r,
1

f
) ≤ kN(r,

1

f
) + N(r,

1

F
) +

k−1
∑

j=0

N(r, hj).

On the other hand, (1.4) may be rewritten as follows

1

f
=

1

F

[

f (k)

f
+ hk−1

f (k−1)

f
+ · · · + hse

P f (s)

f
· · · + h1

f ′

f
+ h0e

Q

]

.

So

m(r,
1

f
) ≤ m(r,

1

F
) +

k−1
∑

j=0

m(r, hj) + m(r, eP ) + m(r, eQ) +

k−1
∑

j=0

m(r,
f (j)

f
) + O(1).

Hence by the logarithmic derivative lemma, there exists a set E having finite linear measure such
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that for all r 6∈ E, we have

T (r, f) = T (r,
1

f
) + O(1)

≤T (r,
1

F
) + kN(r,

1

f
) +

k−1
∑

j=0

T (r, hj) + m(r, eP ) + m(r, eQ) +

k−1
∑

j=0

m(r,
f (j)

f
) + O(1)

≤T (r, F ) +
k−1
∑

j=0

T (r, hj) + C log(rT (r, f)) + T (r, eP ) + T (r, eQ) + kN(r,
1

f
) + O(log r),

where C is a positive constant. Since for any ε > 0 and sufficiently large r, we have

C log(rT (r, f)) ≤
1

2
T (r, f), T (r, F ) ≤ rσ(F )+ε, T (r, eP ) ≤ rn+ε;

T (r, eQ) ≤ rn+ε, T (r, hj) ≤ rσ+ε, j = 0, 1, · · · , k;

so that for r 6∈ E and sufficiently large r, we have

T (r, f) ≤ 2kN(r,
1

f
) + (4k + 5)rσ+ε + 4rn+ε + 2rσ(F )+ε.

Hence by Lemma 2.2, we get that σ2(f) ≤ λ2(f). It is obvious that λ2(f) ≥ λ2(f) ≥ σ2(f), hence

λ2(f) = λ2(f) = σ2(f).

Finally, let f0 be a solution of finite order of (1.4), then f0 6≡ 0. Substitute it into (1.4), and

rewrite it as follows

1

f0
=

1

F

[

f
(k)
0

f0
+ hk−1

f
(k−1)
0

f0
+ · · · + hse

P f
(s)
0

f0
+ · · · + h1

f ′

0

f0
+ h0e

Q

]

.

Thus

m(r,
1

f0
) ≤ m(r,

1

F
) +

k−1
∑

j=0

m(r, hj) + m(r, eP ) + m(r, eQ) +

k−1
∑

j=0

m(r,
f

(j)
0

f0
) + O(1).

It is easy to see that f0 occurs at the poles of hj(z)(j = 1, . . . , k − 1) or the zeros of F (z). If f0 has

a zero at z0 of order n, n > k, then F (z) must have a zero at z0 of order n − k. Therefore we get by

F 6≡ 0 that

N(r,
1

f
) ≤ kN(r,

1

f
) + N(r,

1

F
) + N(r, h).

So by the logarithmic derivative lemma, and noting that σ(f0) < +∞, we can obtain that

T (r, f) = T (r,
1

f
) + O(1)

≤T (r, F ) +

k−1
∑

j=0

T (r, hj) + T (r, eP ) + T (r, eQ) + kN(r,
1

f
) + O(log r).

Hence σ(f0) ≤ max{n, σ(F ), λ(f0)}, and this completes the proof of the theorem.

Example 1. Consider the non-homogeneous linear differential equation

f (k) + hk−1f
(k−1) + · · · + h2f

′′ +
1

z
eizf ′ −

1

z2
e−izf =

1

z
2i sin z,
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where h2, · · · , hk−1 are meromorphic functions. It has a solution f0(z) = z of finite order.

Example 2.(see. [16]) Consider the non-homogeneous linear differential

f ′′′ + ez2

f ′′ − f ′ + zez2
−zf = zez2

+ ez2+z.

It has a solution f0(z) = ez of finite order. σ(f0) = 1 < 2 = max{2, σ(F ), λ(f0)}.
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