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Abstract. In this paper, we first obtain three inequalities and two of them, in some
sense, generalize Sobolev’s inequality and Wirtinger’s inequality from periodic case to
quasi-periodic case, respectively. Then by using the least action principle and the saddle
point theorem, under subquadratic case, we obtain two existence results of weak quasi-
periodic solutions for the second order Hamiltonian system:

d[P(t)u̇(t)]
dt

= ∇F(t, u(t)) + e(t),

which generalize and improve the corresponding results in recent literature [J. Kuang,
Abstr. Appl. Anal. 2012, Art. ID 271616]. Moreover, when the assumptions F(t, x) =
F(t,−x) and e(t) ≡ 0 are also made, we obtain two results on existence of infinitely
many weak quasi-periodic solutions for the second order Hamiltonian system under
the subquadratic case.

Keywords: second order Hamiltonian system, weak quasi-periodic solution, variational
method, subquadratic case.
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1 Introduction and main results

In this paper, we are concerned with the existence and multiplicity of weak-quasi periodic
solutions for the second order Hamiltonian system:

d[P(t)u̇(t)]
dt

= ∇F(t, u(t)) + e(t), t ∈ R (1.1)

where u(t) = (u1(t), . . . , uN(t))τ, N > 1 is an integer, F ∈ C1(R × RN , R), ∇F(t, x) =

(∂F/∂x1, . . . , ∂F/∂xN)
τ, P(t) = (pij(t))N×N is a symmetric and continuous N × N matrix-

value functions on R, e : R→ RN , (·)τ stands for the transpose of a vector or a matrix.
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It is well known that the variational method is a very effective tool which investigate
the existence and multiplicity of periodic solutions, subharmonic solutions and homoclinic
solutions for Hamiltonian systems and in these directions, lots of contributions have been
obtained (for example, see [6, 7, 11, 12, 15–28, 30–34] and references therein). However, the
results on existence and multiplicity of almost periodic solutions for Hamiltonian systems are
not often seen by using variational approach. We refer readers to [1–5, 13, 29]. Especially,
when P(t) ≡ IN×N and e(t) ≡ 0, where IN×N is the unit matrix, recently, in [13], by using the
least action principle and the saddle point theorem, Kuang obtained two existence results of
quasi-periodic solutions for system (1.1). Next, we recall two definitions and Kuang’s results
in [13].

Definition 1.1 ([8]). A function f (t) is said to be Bohr almost periodic, if for any ε > 0, there
is a constant lε > 0, such that in any interval of length lε, there exists τ such that the inequality
| f (t + τ)− f (t)| < ε is satisfied for all t ∈ R.

Definition 1.2 ([9]). A function f ∈ C0(R×Rm, RN) is called almost periodic in t uniformly
for x ∈ Rm when, for each compact subset K in Rm, for each ε > 0, there exists l > 0, and for
each α ∈ R, there exists τ ∈ [α, α + l] such that

sup
t∈R

sup
x∈K
‖ f (t + τ, x)− f (t, x)‖RN < ε.

Let p > 1 be a positive integer and {Tj}
p
j=1 be rationally independent positive real con-

stants. Define

Λ = ∪p
j=1Λj = ∪

p
j=1

{
2mπ

Tj

∣∣∣∣ m ∈ Z

}
, (1.2)

where Λj =
{ 2mπ

Tj

∣∣ m ∈ Z
}

.
To be precise, in [13], Kuang obtained the following results.

Theorem 1.3 ([13, Theorem 2.3]). Suppose F satisfies the following conditions:

( f1) F(t, ·) ∈ C1(R×RN , R) and F(t, ·) is almost periodic in t uniformly for x ∈ RN ;

( f2) ∇F(t, ·) is almost periodic in t uniformly for x ∈ RN ;

( f3) for any λ ∈ R/Λ, x ∈ V,

lim
T→∞

1
2T

∫ T

−T
∇F(t, x)e−iλt dt = 0;

( f4) there exists g ∈ L1
loc(R), for a.e. t ∈ R and all x ∈ RN , such that

|∇F(t, x)| ≤ g(t);

( f5) lim
T→∞

1
2T

∫ T

−T
F(t, x) dt→ +∞ as |x| → ∞.

Then (1.1) with P(t) ≡ IN×N and e(t) ≡ 0 has at least a quasi periodic solution, where the
definition of V can be seen in Section 2 below.

Theorem 1.4 ([13, Theorem 2.4]). Suppose that F satisfies ( f1)–( f4) and
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( f6) lim
T→∞

1
2T

∫ T

−T
F(t, x) dt→ −∞ as |x| → ∞.

Then (1.1) with P(t) ≡ IN×N and e(t) ≡ 0 has at least one quasi-periodic solution by saddle point
theorem.

Obviously, ( f4) implies that |∇F| is bounded, which makes lots of functions eliminated.
For example, a simple function

F(t, x) ≡ ±|x| 32 , ∀ t ∈ R (1.3)

which does not satisfy ( f4). However, in this paper, we obtain that system (1.1) still has
quasi-periodic solution for such potential F like (1.3). To be precise, in this paper, inspired by
[10, 13, 15, 24, 28, 32], we obtain the following results.

(I) Existence of weak quasi-periodic solution
By using the least action principle and the saddle point theorem, we obtain that system

(1.1) has at least one weak quasi-periodic solution.

Theorem 1.5. Suppose that ( f1)–( f3) hold. If

(P) pij(t), i, j = 1, 2, . . . , N are Bohr almost periodic and there exists m > 1
2 such that

(P(t)x, x) > m|x|2, for all (t, x) ∈ R× {RN \ {0}};

(E) e is Bohr almost periodic and

lim
T→∞

∫ T

−T
e(t) dt = 0;

(W) there exist constants c0 > 0, k1 > 0, k2 > 0, α ∈ [0, 1) and a nonnegative function w ∈
C([0,+∞), [0,+∞)) with the properties:

(i) w(s) ≤ w(t), ∀s ≤ t, s, t ∈ [0,+∞),

(ii) w(s + t) ≤ c0(w(s) + w(t)), ∀s, t ∈ [0,+∞),

(iii) 0 ≤ w(t) ≤ k1tα + k2, ∀ t ∈ [0,+∞),

(iv) w(t)→ +∞, as t→ ∞;

( f4)
′ there exist g, h ∈ L1

loc(R, R+) such that

|∇F(t, x)| ≤ g(t)w(|x|) + h(t), for a.e. t ∈ R;

( f5)′
1

w2(|x|) lim
T→∞

1
2T

∫ T

−T
F(t, x) dt >

c2
0

p
∑

j=1

T2
j

12

2m

(
lim

T→∞

1
2T

∫ T

−T
g(t) dt

)2

, as |x| → ∞,

then system (1.1) has at least one weak quasi-periodic solution.

Theorem 1.6. Suppose that (P), (E), (W), ( f1)–( f3) and ( f4)
′ hold. If

( f5)′′

1
w2(|x|) lim

T→∞

1
2T

∫ T

−T
F(t, x) dt

< −
c2

0(‖P‖+ 2m)
p
∑

j=1

T2
j

12

2(2m− 1)

(
lim

T→∞

1
2T

∫ T

−T
g(t)dt

)2

as |x| → ∞,
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where

‖P‖ = sup
t∈[0,T]

max
|x|=1,x∈RN

|P(t)x|

= sup
t∈[0,T]

max
{√

λ(t) : λ(t) is the eigenvalue of Pτ(t)P(t)
}

,

then system (1.1) has at least one weak quasi-periodic solution.

Remark 1.7. Obviously, Theorem 1.5 and Theorem 1.6 generalize and improve Theorem 1.3
and Theorem 1.4, respectively. It is easy to verify that F(t, x) ≡ |x|3/2 and F(t, x) ≡ −|x|3/2

satisfy Theorem 1.5 and Theorem 1.6, respectively, but do not satisfy Theorem 1.3 and Theo-
rem 1.4. Moreover, similar to the argument of Remark 2.5 in [13], when P(t) ≡ IN×N , e(t) ≡ 0,
V only contains a frequency 2π/T and F(t, x) is periodic in t with period T, in some sense,
Theorem 1.5 and Theorem 1.6 improve the corresponding results in [15] because of the pres-
ence of (W) and ( f4)′. (W) and ( f4)′ were given by Wang and Zhang in [28], which present
some advantages compared to the well known condition: there exist g, h ∈ L1([0, T]; R+) and
α ∈ [0, 1) such that

|∇F(t, x)| ≤ g(t)|x|α + h(t). (1.4)

Finally, one can also compare Theorem 1.5 and Theorem 1.6 with the corresponding results in
[32], in which, Zhang and Tang investigated the existence of T-periodic solution under (W)
and the following condition: there exist g ∈ L2([0, T]; R+), h ∈ L1([0, T]; R+) and α ∈ [0, 1)
such that

|∇F(t, x)| ≤ g(t)w(|x|) + h(t), (1.5)

where g ∈ L2([0, T]; R+) is demanded from proofs of their theorems. In our Theorem 1.5 and
Theorem 1.6, when P(t) ≡ IN×N , e(t) ≡ 0, V only contains a frequency 2π/T and F(t, x) is
periodic in t with period T, we only demand that g ∈ L1([0, T]; R+). Hence, our results are
different from those in [32].

(II) Multiplicity of weak quasi-periodic solutions
Moreover, by using a critical point theorem due to Ding in [6], we obtain the following

multiplicity results.

Theorem 1.8. Suppose that (P), (W), ( f1)–( f3), ( f4)
′ and ( f5)′ hold. If

(E)′ e(t) ≡ 0, ∀ t ∈ R;

( f8) F(t, 0) ≡ 0 and F(t, x) = F(t,−x) for all (t, x) ∈ R×RN ;

( f9) lim
|x|→0

F(t, x)
|x|2 = −∞ uniformly for all t ∈ R,

then system (1.1) has infinitely many weak quasi-periodic solutions.

Theorem 1.9. Suppose that (P), (E)′, (W), ( f1)–( f3), ( f4)
′, ( f5)′′, ( f8) and ( f9) hold. Then system

(1.1) has infinitely many weak quasi-periodic solutions.
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2 Preliminaries

In this section, we need to make some preliminaries. Some knowledge and statements
below come from [3, 4, 8, 9, 13] .

Define
AP0(RN) = {u : R→ RN | u is Bohr almost periodic},

endowed with the norm ‖u‖∞ = supt∈R |u(t)|. Then (AP0(RN), ‖ · ‖∞) is a Banach space.
Define

AP1(RN) =
{

u ∈ AP0(RN) ∩ C1(R, RN)
∣∣∣ u′(t) ∈ AP0(RN)

}
,

endowed with the norm
‖u‖ = ‖u‖∞ + ‖u′‖∞.

Then (AP1(RN), ‖ · ‖) is also a Banach space.
Let f ∈ L1

loc(R, RN), that is f is locally Lebesgue integrable from R to RN . Then the mean
value of f is the limit (when it exists)

lim
T→∞

1
2T

∫ T

−T
f (t) dt.

A fundamental property of almost periodic functions is that such functions have conver-
gent means, that is, the limit

lim
T→∞

1
2T

∫ T

−T
u(t) dt

exists.
Let p ∈ Z+. Bp(RN) is the completion of AP0(RN) into L1

loc(R, RN) with respect to the
norm

‖u‖p =

{
lim

T→∞

1
2T

∫ T

−T
|u(t)|p dt

}1/p

.

The elements of these spaces Bp(RN) are called Besicovitch almost periodic functions.
For u ∈ Bp(RN), if

lim
r→0

u(t + r)− u(t)
r

exists, then define

∇u = lim
r→0

u(t + r)− u(t)
r

.

For u, v ∈ Bp(RN), if ‖u− v‖p = 0, then we say that u, v belong to a class of equivalence.
We will identify the equivalence class u with its continuous representant

u(t) =
∫ t

0
∇u(t) dt + c.

When p = 2, B2(RN) is a Hilbert space with its norm ‖ · ‖2 and the inner product

〈u, v〉2 = lim
T→∞

1
2T

∫ T

−T
(u(t), v(t)) dt.

When u ∈ B2(RN), define

a(u, λ) := lim
T→∞

1
2T

∫ T

−T
e−iλtu(t) dt
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which are complex vector and are called Fourier–Bohr coefficients of u. Let Λ(u) = {λ ∈ R |
a(u, λ) 6= 0}.

Define
B1,2(RN) =

{
u ∈ B2(RN)

∣∣∣ ∇u exists and ∇u ∈ B2(RN)
}

,

endowed with the inner product

〈u, v〉 = 〈u, v〉2 + 〈∇u,∇v〉2

= lim
T→∞

1
2T

∫ T

−T
(u(t), v(t)) dt + lim

T→∞

1
2T

∫ T

−T
(∇u(t),∇v(t)) dt,

(2.1)

and the corresponding norm

‖u‖ =
{

lim
T→∞

1
2T

∫ T

−T
|u(t)|2 dt + lim

T→∞

1
2T

∫ T

−T
|∇u(t)|2 dt

}1/2

Define
V =

{
u ∈ B1,2(RN)

∣∣∣ Λ(u) ⊂ Λ
}

.

Then V is a linear subspace of B1,2(RN) and (V, 〈·, ·〉) is a Hilbert space.

Inspired by [13] and [16], we present the following two lemmas:

Lemma 2.1. If u ∈ V, then

u(t) =
p

∑
j=1

uj(t) ∈ AP0(RN),

where

uj(t) =
+∞

∑
m=−∞

a(u, λ
(j)
m )eiλ(j)

m t, λ
(j)
m :=

2mπ

Tj
∈ Λj,

and

‖u‖∞ ≤

√√√√p2 +
p

∑
j=1

T2
j

12
‖u‖ (2.2)

Proof. Since V ⊆ B1,2(RN) ⊆ B2(RN), then

u(t) ∼
+∞

∑
m=−∞

a(u, λm)eiλmt, λm ∈ Λ

and

∇u(t) ∼
+∞

∑
m=−∞

iλma(u, λm)eiλmt, λm ∈ Λ.

Combining (1.2), we obtain that

u(t) ∼
p

∑
j=1

uj(t), ∇u(t) ∼
p

∑
j=1
∇uj(t). (2.3)

By Parseval’s equality, we have

‖u‖2
2 = lim

T→∞

1
2T

∫ T

−T
|u(t)|2dt =

+∞

∑
m=−∞

|a(u, λm)|2, (2.4)

‖∇u‖2
2 = lim

T→∞

1
2T

∫ T

−T
|∇u(t)|2dt =

+∞

∑
m=−∞

λ2
m|a(u, λm)|2. (2.5)
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Hence
+∞

∑
m=−∞

|a(u, λm)|2 =
p

∑
j=1

+∞

∑
m=−∞

|a(u, λ
(j)
m )|2 < +∞.

Then by [14, Theorem 3.5-2], we have

u(t) =
+∞

∑
m=−∞

a(u, λm)eiλmt, λm ∈ Λ (2.6)

and

∇u(t) =
+∞

∑
m=−∞

iλma(u, λm)eiλmt, λm ∈ Λ. (2.7)

Since
+∞

∑
m=−∞

m 6=0

1
m2 =

π2

3
,

then

|u(t)| ≤
p

∑
j=1
|uj(t)|

≤
p

∑
j=1

+∞

∑
m=−∞

|a(u, λ
(j)
m )||eiλ(j)

m t|

=
p

∑
j=1

+∞

∑
m=−∞

|a(u, λ
(j)
m )|

=
p

∑
j=1
|a(u, λ

(j)
0 )|+

p

∑
j=1

+∞

∑
m=−∞

m 6=0

|a(u, λ
(j)
m )|

=
p

∑
j=1
|a(u, 0)|+

p

∑
j=1

+∞

∑
m=−∞

m 6=0

1

|λ(j)
m |
|λ(j)

m a(u, λ
(j)
m )|

=
p

∑
j=1
|a(u, 0)|+

p

∑
j=1

+∞

∑
m=−∞

m 6=0

Tj

2π|m| |λ
(j)
m a(u, λ

(j)
m )|

≤ p lim
T→∞

1
2T

∫ T

−T
|u(t)|dt +

p

∑
j=1

 +∞

∑
m=−∞

m 6=0

T2
j

4π2m2


1/2 +∞

∑
m=−∞

m 6=0

|λ(j)
m a(u, λ

(j)
m )|2


1/2

≤ p lim
T→∞

1√
2T

(∫ T

−T
|u(t)|2dt

)1/2

+
p

∑
j=1

√
T2

j

12

 +∞

∑
m=−∞

m 6=0

|λ(j)
m a(u, λ

(j)
m )|2


1/2

≤ p‖u‖2 +

(
p

∑
j=1

T2
j

12

)1/2
 p

∑
j=1

+∞

∑
m=−∞

m 6=0

|λ(j)
m a(u, λ

(j)
m )|2


1/2

≤
(

p2 +
p

∑
j=1

T2
j

12

)1/2 (
‖u‖2

2 + ‖∇u‖2
2
)1/2

. (2.8)
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Hence (2.2) holds. (2.2) implies that the embedding from V into AP0(RN) is continuous. So
u ∈ AP0(RN). Thus we complete the proof.

Lemma 2.2. If u ∈ V and

lim
T→∞

1
2T

∫ T

−T
u(t) dt = 0, (2.9)

then

‖u‖∞ ≤

√√√√ p

∑
j=1

T2
j

12
‖∇u‖2 (2.10)

and

‖u‖2 ≤ max
{

Tj

2π

∣∣∣∣ j = 1, . . . , p
}
‖∇u‖2. (2.11)

Proof. By (2.8) and (2.9), it is obvious that (2.10) holds. Moreover, by (2.5) and (2.9), we have

‖∇u‖2
2 =

+∞

∑
m=−∞

λ2
m|a(u, λm)|2

=
p

∑
j=1

+∞

∑
m=−∞

m 6=0

|λ(j)
m a(u, λ

(j)
m )|2

=
p

∑
j=1

+∞

∑
m=−∞

m 6=0

4m2π2

T2
j

∣∣∣a(u, λ
(j)
m )
∣∣∣2

≥
p

∑
j=1

4π2

T2
j

+∞

∑
m=−∞

m 6=0

∣∣∣a(u, λ
(j)
m )
∣∣∣2

≥ min

{
4π2

T2
j

∣∣∣∣∣ j = 1, . . . , p

}
‖u‖2

2.

Hence, (2.11) holds.

Remark 2.3. A version of Lemma 2.1 and (2.10) has been given in [13] (see [13, Lemma 3.1
and Lemma 3.3]), where the author obtained that there exists a constant C > 0 such that

‖u‖∞ ≤ (C + 1)‖u‖, ∀ u ∈ V,

and when (2.9) holds,
‖u‖∞ ≤ C‖∇u‖2.

However, the value of C are not given. Our Lemma 2.1 and Lemma 2.2 present the value of
C, which will play an important role in our main results and their proofs. Moreover, we also
present the inequality (2.11). One can compare (2.10) and (2.11) with Sobolev’s inequality and
Wirtinger’s inequality in [16] which investigate periodic functions u ∈ W1,2

T . It is easy to see
that when V only contains a frequency 2π/T, (2.11) reduces to Wirtinger’s inequality.

Lemma 2.4 ([13, Lemma 3.2]). For any {un} ⊂ V, if the sequence {un} converges weakly to u, then
{un} converges uniformly to u on any compact subset of R.



Weak quasi-periodic solutions for Hamiltonian system 9

Lemma 2.5. Suppose F satisfies ( f1)–( f3), then the functional ϕ : V → R, defined by

ϕ(u) = lim
T→∞

1
2T

∫ T

−T

[
1
2
(P(t)∇u(t),∇u(t)) + F(t, u(t)) + (e(t), u(t))

]
dt (2.12)

is continuously differentiable on V, and ϕ′(u) is defined by

〈ϕ′(u), v〉 = lim
T→∞

1
2T

∫ T

−T

[
(P(t)∇u(t),∇v(t)) + (∇F(t, u(t)), v(t)) + (e(t), v(t))

]
dt (2.13)

for v ∈ V. Moreover, if u is a critical point of ϕ in V, then

∇(P(t)∇u(t)) = ∇F(t, u(t)) + e(t). (2.14)

Proof. The proof with P(t) ≡ IN×N and e(t) ≡ 0 can be seen in [13, Theorem 2.1]. With the aid
of the conditions (P) and (E ), it is easy to see that the proof is the essentially same as Theorem
2.1 of [13]. So we omit the details. we refer readers to Theorem 2.1 and its proof in [13].

Definition 2.6. When u satisfies (2.14), we say that u is a weak solution of system (1.1).

3 Existence

In this section, we will use the least action principle (see [16, Theorem 1.1]) to prove Theo-
rem 1.5 and use the saddle point theorem (see [19]) to prove Theorem 1.6.

Define

Ṽ =

{
u ∈ V

∣∣∣∣ lim
T→∞

1
2T

∫ T

−T
u(t) dt = 0

}
and

V̄ = {u | u ∈ V ∩RN}.

Then V = Ṽ ⊕ V̄. For u ∈ V, u can be written as u = ū + ũ, where

ū = lim
T→∞

1
2T

∫ T

−T
u(t) dt ∈ V̄.

It is easy to obtain that

lim
T→∞

1
2T

∫ T

−T
ũ(t) dt = 0.

Then ũ ∈ Ṽ. For the sake of convenience, we denote

M1 = lim
T→∞

1
2T

∫ T

−T
g(t) dt, M2 = lim

T→∞

1
2T

∫ T

−T
h(t) dt,

M3 = lim
T→∞

1
2T

∫ T

−T
|e(t)| dt, C∗ = max

{
Tj

2π

∣∣∣∣ j = 1, . . . , p
}

.

Proof of Theorem 1.5. Since V is a Hilbert space, then V is reflexive. Note that P is positive
definite. Then 1

2 (P(t)∇u(t),∇u(t)) and (e(t), u(t)) are convex and continuous. Then by the
proof of [13, Theorem 2.3], we know that ϕ is weakly lower semi-continuous. Condition ( f5)′

implies that there exists a1 > 1
m ∑

p
j=1(T

2
j /12) such that

lim
|x|→∞

[
1

w2(|x|) lim
T→∞

1
2T

∫ T

−T
F(t, x) dt

]
>

a1c2
0M2

1
2

. (3.1)
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It follows from (W), ( f4)′ and Lemma 2.2 that∣∣∣∣ lim
T→∞

1
2T

∫ T

−T
[F(t, u(t))− F(t, ū)] dt

∣∣∣∣
= lim

T→∞

∣∣∣∣ 1
2T

∫ T

−T
[F(t, u(t))− F(t, ū)] dt

∣∣∣∣
= lim

T→∞

∣∣∣∣ 1
2T

∫ T

−T

∫ 1

0
(∇F(t, ū + sũ(t)), ũ(t)) ds dt

∣∣∣∣
≤ lim

T→∞

1
2T

∫ T

−T

∫ 1

0
|∇F(t, ū + sũ(t))||ũ(t)| ds dt

≤ ‖ũ‖∞ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
|∇F(t, ū + sũ(t)| ds dt

≤ ‖ũ‖∞ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
[g(t)w(|ū + sũ(t)|) + h(t)] ds dt

≤ ‖ũ‖∞ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
[c0g(t)w(|ū|) + c0g(t)w(|sũ(t)|) + h(t)] ds dt

≤ c0‖ũ‖∞w(|ū|) lim
T→∞

1
2T

∫ T

−T
g(t) dt

+ c0‖ũ‖∞ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
g(t)[k1|sũ(t)|α + k2] ds dt + ‖ũ‖∞ lim

T→∞

1
2T

∫ T

−T
h(t) dt

≤ ‖ũ‖
2
∞

2a1
+

a1c2
0M2

1w2(|ū|)
2

+
c0M1k1

α + 1
‖ũ‖α+1

∞ + c0k2M1‖ũ‖∞ + M2‖ũ‖∞

≤ 1
2a1

(
p

∑
j=1

T2
j

12

)
‖∇u‖2

2 +
a1c2

0M2
1w2(|ū|)
2

+
c0M1k1

α + 1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇u‖α+1
2

+ (c0k2M1 + M2)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇u‖2.

(3.2)

It follows from (3.2) and Lemma 2.2 that

ϕ(u) = lim
T→∞

1
2T

∫ T

−T

[
1
2
(P(t)∇u(t),∇u(t)) + F(t, u(t))− F(t, ū) + F(t, ū) + (e(t), u(t))

]
dt

≥ m
2

lim
T→∞

1
2T

∫ T

−T
|∇u(t)|2 dt− 1

2a1

(
p

∑
j=1

T2
j

12

)
‖∇u‖2

2 −
a1c2

0M2
1w2(|ū|)
2

− c0M1k1

α + 1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇u‖α+1
2 − (c0k2M1 + M2)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇u‖2

+ lim
T→∞

1
2T

∫ T

−T
F(t, ū) dt + lim

T→∞

1
2T

∫ T

−T
(e(t), ũ(t)) dt

≥
(

m
2
− 1

2a1

p

∑
j=1

T2
j

12

)
‖∇u‖2

2 −
c0M1k1

α + 1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇u‖α+1
2

− (c0k2M1 + M2 + M3)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇u‖2 (3.3)

+ w2(|ū|)
(

w−2(|ū|) lim
T→∞

1
2T

∫ T

−T
F(t, ū) dt− a1c2

0M2
1

2

)
.
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Note that a1 > 1
m ∑

p
j=1(T

2
j /12). Since ‖u‖ → ∞ if and only if

(
|ū|2 + lim

T→∞

1
2T

∫ T

−T
|∇u(t)|2 dt

)1/2

→ ∞,

(3.3), (3.1) and (W)(iv) imply that

ϕ(u)→ +∞, as ‖u‖ → ∞.

Then by the least action principle (see [16, Theorem 1.1]), we know that ϕ has at least one
critical point u∗ which minimizes ϕ. Thus we complete the proof.

Proof of Theorem 1.6. It follows from ( f5)′′ that there exists a2 > ∑
p
j=1(T

2
j /12) such that

lim
|x|→∞

1
w2(|x|) lim

T→∞

1
2T

∫ T

−T
F(t, x) dt < −

 a2‖P‖
4m− 2

+
m
√

a2

2m− 1

√√√√ p

∑
j=1

T2
j

12

 c2
0M2

1. (3.4)

At first, we prove that ϕ satisfies (PS) condition. Assume that {un} ⊂ V such that ϕ(un) is
bounded and ϕ′(un)→ 0 as n→ ∞. Then there exists a constant D0 such that

|ϕ(un)| ≤ D0, ‖ϕ′(un)‖ ≤ D0. (3.5)

Similar to the argument of (3.2), we have∣∣∣∣ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
(∇F(t, un(t)), ũn(t)) ds dt

∣∣∣∣
≤ lim

T→∞

1
2T

∫ T

−T

∫ 1

0
|∇F(t, un(t))| |ũn(t)| ds dt

≤ ‖ũn‖∞ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
|∇F(t, un(t))| ds dt

≤ ‖ũn‖∞ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
[g(t)w(|ūn + ũn(t)|) + h(t)] ds dt

≤ ‖ũn‖∞ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
[c0g(t)w(|ūn|) + c0g(t)w(|ũn(t)|) + h(t)] ds dt

≤ c0‖ũn‖∞w(|ūn|) lim
T→∞

1
2T

∫ T

−T
g(t) dt + c0‖ũn‖∞ lim

T→∞

1
2T

∫ T

−T
g(t)[k1|ũn(t)|α + k2] dt

+ ‖ũn‖∞ lim
T→∞

1
2T

∫ T

−T
h(t) dt

≤ ‖ũn‖2
∞

2a2
+

a2c2
0M2

1w2(|ūn|)
2

+ c0M1k1‖ũn‖α+1
∞ + c0k2M1‖ũn‖∞ + M2‖ũn‖∞

≤ 1
2a2

p

∑
j=1

T2
j

12
‖∇un‖2

2 +
a2c2

0M2
1w2(|ūn|)
2

+ c0M1k1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇un‖α+1
2

+ (c0k2M1 + M2)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇un‖2. (3.6)
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Hence, by (3.5), (3.6), (P) and Lemma 2.2, we have

D0‖ũn‖
≥ 〈ϕ′(un), ũn〉

= lim
T→∞

1
2T

∫ T

−T

[
(P(t)∇un(t),∇un(t)) + (∇F(t, un(t)), ũn(t)) + (e(t), ũn(t))

]
dt

≥
(

m− 1
2a2

p

∑
j=1

T2
j

12

)
‖∇un‖2

2 −
a2c2

0M2
1w2(|ūn|)
2

− c0M1k1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇un‖α+1
2 − (c0k2M1 + M2 + M3)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇un‖2.

(3.7)

Moreover, by Lemma 2.2,

D0‖ũn‖ = D0

{
lim

T→∞

1
2T

∫ T

−T
|ũn(t)|2 dt + lim

T→∞

1
2T

∫ T

−T
|∇un(t)|2 dt

}1/2

≤ D0
(
(C∗)2 + 1

)1/2 ‖∇un‖2.

(3.8)

Note that m > 1
2 . So (3.7) and (3.8) imply that

1
2m− 1

a2c2
0M2

1w2(|ūn|) ≥ ‖∇un‖2
2 + D1, (3.9)

where

D1 = min
s∈[0,+∞)


(

1
2
− 1

2a2

p

∑
j=1

T2
j

12

)
s2 − c0M1k1

(
p

∑
j=1

T2
j

12

) α+1
2

sα+1

−

(c0k2M1 + M2 + M3)

(
p

∑
j=1

T2
j

12

) 1
2

− D0
(
(C∗)2 + 1

)1/2

 s

 .

Since a2 > ∑
p
j=1(T

2
j /12), then 0 > D1 > −∞. Hence, there exists a positive constant D2 such

that

‖∇un‖2 ≤
√

a2

2m− 1
c0M1w(|ūn|) + D2. (3.10)

Similar to (3.2), we have∣∣∣∣ lim
T→∞

1
2T

∫ T

−T
[F(t, un(t))− F(t, ūn)] dt

∣∣∣∣
≤ c0‖ũn‖∞w(|ūn|) lim

T→∞

1
2T

∫ T

−T
g(t)dt + c0‖ũn‖∞ lim

T→∞

1
2T

∫ T

−T

∫ 1

0
g(t)[k1|sũn(t)|α + k2] ds dt

+ ‖ũn‖∞ lim
T→∞

1
2T

∫ T

−T
h(t) dt

≤ ‖ũn‖2
∞

2
√

a2

√
p
∑

j=1

T2
j

12

+

√
a2

√
p
∑

j=1

T2
j

12 c2
0M2

1w2(|ūn|)

2
(3.11)
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+
c0M1k1

α + 1
‖ũn‖α+1

∞ + c0k2M1‖ũn‖∞ + M2‖ũn‖∞

≤ 1
2
√

a2

√√√√ p

∑
j=1

T2
j

12
‖∇un‖2

2 +

√
a2

√
p
∑

j=1

T2
j

12 c2
0M2

1w2(|ūn|)

2
+

c0M1k1

α + 1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇un‖α+1
2

+ (c0k2M1 + M2)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇un‖2.

It follows from (3.5), (3.9), (3.10) and (3.11) that

−D0 ≤ ϕ(un)

= lim
T→∞

1
2T

∫ T

−T

[
1
2
(P(t)∇un(t),∇un(t)) + F(t, un(t))− F(t, ūn) + F(t, ūn) + (e(t), un(t))

]
dt

≤ ‖P‖
2

lim
T→∞

1
2T

∫ T

−T
|∇un(t)|2dt +

1
2
√

a2

√√√√ p

∑
j=1

T2
j

12
‖∇un‖2

2 +

√
a2

√
p
∑

j=1

T2
j

12 c2
0M2

1w2(|ūn|)

2

+
c0M1k1

α + 1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇un‖α+1
2 + (c0k2M1 + M2)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇un‖2

+ lim
T→∞

1
2T

∫ T

−T
F(t, ūn)dt + lim

T→∞

1
2T

∫ T

−T
(e(t), ũn(t)) dt

≤

‖P‖
2

+
1

2
√

a2

√√√√ p

∑
j=1

T2
j

12

[ 1
2m− 1

a2c2
0M2

1w2(|ūn|)− D1

]

+
c0M1k1

α + 1

(
p

∑
j=1

T2
j

12

) α+1
2 [√ a2

2m− 1
c0M1w(|ūn|) + D2

]α+1

+ (c0k2M1 + M2 + M3)

(
p

∑
j=1

T2
j

12

) 1
2 [√ a2

2m− 1
c0M1w(|ūn|) + D2

]

+

√
a2

√
p
∑

j=1

T2
j

12 c2
0M2

1

2
w2(|ūn|) + lim

T→∞

1
2T

∫ T

−T
F(t, ūn)dt

≤ w2(|ūn|)

w−2(|ūn|) lim
T→∞

1
2T

∫ T

−T
F(t, ūn)dt +

 a2‖P‖
4m− 2

+
m
√

a2

2m− 1

√√√√ p

∑
j=1

T2
j

12

 c2
0M2

1


+ D3wα+1(|ūn|) + D4w(|ūn|) + D5, (3.12)

where D3, D4 and D5 are positive constants. Then (3.12), (3.4) and (W)(iv) imply that
{w(|ūn|)} and {ūn} are bounded. Furthermore, by (3.10), we obtain that {‖∇un‖2} is bounded.
Hence {un} is bounded in V, that is, there is a constant D6 > 0 such that ‖un‖ ≤ D6. Then
there is a subsequence, still denoted by {un}, such that {un} weakly converges to u∗ ∈ V.
Next we prove that un → u∗ in V, as n → ∞. The proof is similar to [13]. By Lemma 2.4, we
know that {un} converges uniformly to u∗ on any compact subset of R. Then for any T > 0,
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we have
max

t∈[−T,T]
|un(t)− u∗(t)| → 0, as n→ ∞. (3.13)

Since ∇F(t, x) is almost periodic in t uniformly for x ∈ RN and continuously differen-
tiable in x, then {∇F(t, un(t))} is bounded in R× [−

√
p2 + T2/12 D6,

√
p2 + T2/12 D6] and

{∇F(t, u∗(t))} is bounded in R× [−‖u∗‖∞, ‖u∗‖∞]. Hence, by (3.13), there exists D7 > 0 such
that ∣∣∣∣ lim

T→∞

1
2T

∫ T

−T
(∇F(t, un(t))−∇F(t, u∗(t)), un(t)− u∗(t))dt

∣∣∣∣
≤ lim

T→∞

maxt∈[−T,T] |un(t)− u∗(t)|
2T

∫ T

−T
|∇F(t, un(t))−∇F(t, u∗(t))|dt

≤ D7 lim
T→∞

max
t∈[−T,T]

|un(t)− u∗(t)|

→ 0, as n→ ∞

(3.14)

and ∣∣∣∣ lim
T→∞

1
2T

∫ T

−T
(e(t), un(t)− u∗(t))dt

∣∣∣∣
≤ lim

T→∞

1
2T

∫ T

−T
|e(t)| |un(t)− u∗(t)| dt

≤ lim
T→∞

maxt∈[−T,T] |un(t)− u∗(t)|
2T

∫ T

−T
|e(t)| dt

= M3 lim
T→∞

maxt∈[−T,T] |un(t)− u∗(t)|
2T

→ 0, as n→ ∞.

(3.15)

Since un weakly converges to u∗ and ϕ′(un) → 0 as n → ∞, the boundedness of {un} implies
that

〈ϕ′(un)− ϕ′(u∗), un − u∗〉 → 0, as n→ ∞. (3.16)

Note that

〈ϕ′(un)− ϕ′(u∗), un − u∗〉

= lim
T→∞

1
2T

∫ T

−T

[(
P(t)∇un(t)− P(t)∇u∗(t),∇un(t)−∇u∗(t)

)
+ (∇F(t, un(t))−∇F(t, u∗(t)), un(t)− u∗(t))

+ (e(t), un(t)− u∗(t))
]
dt.

(3.17)

Then (3.14), (3.15), (3.16) and (3.17) imply that

lim
T→∞

1
2T

∫ T

−T

(
P(t)∇un(t)− P(t)∇u∗(t),∇un(t)−∇u∗(t)

)
dt→ 0, as n→ ∞, (3.18)

which, combining with (P), implies that

lim
T→∞

1
2T

∫ T

−T
|∇un(t)−∇u∗(t)|2 dt→ 0, as n→ ∞. (3.19)
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By (3.13), it is easy to obtain that

lim
T→∞

1
2T

∫ T

−T
|un(t)− u∗(t)|2 dt→ 0, as n→ ∞. (3.20)

Hence, (3.19) and (3.20) imply that ‖un − u∗‖ → 0 in V. Thus we prove that ϕ satisfies the
(PS) condition.

Next, we prove that

ϕ(u)→ +∞, as u ∈ Ṽ and ‖u‖ → ∞, (3.21)

ϕ(u)→ −∞, as u ∈ V̄ and |u| → ∞. (3.22)

In fact, when u ∈ Ṽ, it follows from ( f4)
′ and Lemma 2.2 that∣∣∣∣ lim

T→∞

1
2T

∫ T

−T
[F(t, u(t))− F(t, 0)] dt

∣∣∣∣
= lim

T→∞

1
2T

∣∣∣∣∫ T

−T
[F(t, u(t))− F(t, 0)] dt

∣∣∣∣
= lim

T→∞

1
2T

∣∣∣∣∫ T

−T

∫ 1

0
(∇F(t, su(t)), u(t)) ds dt

∣∣∣∣
≤ lim

T→∞

1
2T

∫ T

−T

∫ 1

0
|∇F(t, su(t))||u(t)| ds dt

≤ ‖u‖∞ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
[g(t)w(|su(t)|) + h(t)] ds dt

≤ ‖u‖∞ lim
T→∞

1
2T

∫ T

−T

∫ 1

0
[g(t)k1sα|u(t)|α + k2g(t) + h(t)] ds dt

≤ M1k1

α + 1
‖u‖α+1

∞ + (k2M1 + M2)‖u‖∞ (3.23)

≤ M1k1

α + 1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇u‖α+1
2 + (k2M1 + M2)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇u‖2. (3.24)

Then

ϕ(u) = lim
T→∞

1
2T

∫ T

−T

[
1
2
(P(t)∇u(t),∇u(t)) + F(t, u(t))− F(t, 0) + F(t, 0) + (e(t), u(t))

]
dt

≥ m lim
T→∞

1
2T

∫ T

−T
|∇u(t)|2dt− M1k1

α + 1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇u‖α+1
2 (3.25)

− (k2M1 + M2 + M3)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇u‖2, for all u ∈ Ṽ.

By Lemma 2.2, it is easy to see that ‖∇u‖2 is equivalent to ‖u‖ in Ṽ. So (3.25) implies that
(3.21) holds.

Moreover, by ( f5)′′ and (W)(iv), it is easy to see that

lim
T→∞

1
2T

∫ T

−T
F(t, x) dt→ −∞, as |x| → ∞.
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Then when u ∈ V̄, by (E ), we have

ϕ(u) = lim
T→∞

1
2T

∫ T

−T
F(t, u) dt→ −∞, as |u| → ∞.

(3.22) holds. Thus, by using the saddle point theorem, we complete the proof of Theorem 1.6.

4 Multiplicity

In this section, we will use the following critical point theorem due to Ding [6] to prove
Theorem 1.8.

Lemma 4.1 ([6, Lemma 2.4]). Let E be an infinite dimensional Banach space and let f ∈ C1(E, R)

be even, satisfy (PS), and f (0) = 0. If E = E1 ⊕ E2, where E1 is finite dimensional, and f satisfies

(i) f is bounded from above on E2,

(ii) for each finite dimensional subspace Ẽ ⊂ E, there are positive constants ρ = ρ(Ẽ) and σ = σ(Ẽ)
such that f ≥ 0 on Bρ ∩ Ẽ and f |∂Bρ∩Ẽ ≥ σ where Bρ = {x ∈ E; ‖x‖ ≤ ρ},

then f possesses infinitely many nontrivial critical points.

Proof of Theorem 1.8. Let −ϕ = f . Obviously, the critical points of −ϕ are still the solutions
of system (1.1). Then ( f8) implies that −ϕ is even and −ϕ(0) = 0. Let E = V, E1 = V̄ and
E2 = Ṽ. By ( f4)

′ and Lemma 2.2, we know that (3.25) holds. Then

−ϕ(u) ≤ −m lim
T→∞

1
2T

∫ T

−T
|∇u(t)|2 dt +

M1k1

α + 1

(
p

∑
j=1

T2
j

12

) α+1
2

‖∇u‖α+1
2

+ (k2M1 + M2 + M3)

(
p

∑
j=1

T2
j

12

) 1
2

‖∇u‖2, for all u ∈ Ṽ,

which implies that
−ϕ(u)→ −∞, as u ∈ Ṽ and ‖u‖ → ∞.

So −ϕ is bounded from above on E2. Condition (i) of Lemma 4.1 holds. Next we prove that
−ϕ also satisfies (ii) of Lemma 4.1. For each finite dimensional subspace Ẽ ⊂ V, all norms
are equivalent on Ẽ. Then there exist positive constants d1 := d1(Ẽ) and d2 := d2(Ẽ) such that

d1‖u‖ ≤ ‖u‖2 ≤ d2‖u‖.

If follows from ( f9) that there exist M > ‖P‖
2d2

1
and r > 0 such that

F(t, x) ≤ −M|x|2, ∀ |x| ≤ r.

Note that e(t) ≡ 0. Let

ρ =
r√

p2 + ∑
p
j=1

T2
j

12

.
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Then for all u ∈ Bρ ∩ Ṽ, we have

−ϕ(u) = − lim
T→∞

1
2T

∫ T

−T

[
1
2
(P(t)∇u(t),∇u(t)) + F(t, u(t))

]
dt

≥ − ‖P‖
2
‖∇u‖2

2 + M lim
T→∞

1
2T

∫ T

−T
|u(t)|2 dt

≥ − ‖P‖
2
‖u‖2 + Md2

1‖u‖2

≥ 0.

Let σ =
(

Md2
1 −

‖P‖
2

)
ρ. Then (ii) of Lemma 4.1 holds.

By (3.3), we know that

− ϕ(u)→ −∞, as u ∈ V and ‖u‖ → ∞. (4.1)

Then for any sequence {un} ⊂ V such that −ϕ(un) is bounded and −ϕ′(un) → 0 as n → ∞,
(4.1) implies that {un} is bounded. Similar to the argument of Theorem 1.6, {un} has a
convergent subsequence in V. Hence, −ϕ satisfies (PS) condition. Thus by Lemma 4.1, we
obtain that −ϕ has infinitely many nontrivial critical points. The proof is complete.

Proof of Theorem 1.9. By the proof of Theorem 1.6, it is easy to see that −ϕ also satisfies (PS)
condition. Moreover, by the proof of Theorem 1.8, we know that ( f4)′ and Lemma 2.2 imply
that (i) of Lemma 4.1 and ( f9) implies that (ii) of Lemma 4.1 holds. Thus by Lemma 4.1, we
obtain that −ϕ has infinitely many nontrivial critical points. The proof is complete.
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