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ABSTRACT. In this paper, we obtain sufficient conditions so that every solution
of

() =D piy(G:®) + D a:(®y(ei(t) = f(t)
=1 =1

oscillates or tends to zero as t — oo. Here the coefficients p;(t), q;(t) and
the forcing term f(t) are allowed to oscillate; such oscillation condition in all
coefficients is very rare in the literature. Furthermore, this paper provides an
answer to the open problem 2.8.3 in [[1, p. 57]. Suitable examples are included
to illustrate our results.

1. INTRODUCTION

During the previous two decades, oscillation of solutions to neutral delay differ-
ential equations has been studied extensively. In this article, we extend some results
from equation with fixed-sign coefficients to equations with oscillating coefficients.
In particular, we obtain sufficient conditions for every solution of the first-order
non-homogeneous nonlinear neutral delay differential equation

n m
(v =Y Py E:(1)) + > a: g (wle(1) = f(1), (1.1)
=1 =1
to oscillate or to tend to zero as t tends to infinity. Here f, g, p;, q;, 9;,0; are con-
tinuous, p;,d; are differentiable, and f, g, p;,q; can assume positive and negative
values.

The main motivation of this work is the open problem [7, Problem 2.8.3, p.57]:

Extend the following result to equations with oscillating coefficients.
Theorem 2.3.1 in [7]: Under the assumptions that ¢(¢) > 0 and

t
litminf/ q(s)ds > et (1.2)
- t—7
every solution of
Yt +ayt—7)=0, t=to (1.3)

oscillates.
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In most of the references it is assumed that the coeflicients p;,q; are positive
| R, @, 00, [T, 2. However, in [II, [6], p; oscillates, but the sign of ¢; remains
constant. In [, Theorem 6(ii)], p oscillates, but the proof is wrong because the
conditions needed to apply [7, Lemma 2.2] are not met. In [9, Theorem 2.4], p is
periodic, oscillates and is restricted by inequalities similar to (H2).

It seems, that ([II)) is least studied when the functions g; oscillate. This is so
because the techniques used in the other cases fail. Ladde [B, Theorem 2.2.2] shows
that (IL3) has only oscillatory solutions when ¢(t) > 0 on a sequence of intervals of
length 27, whose end points approach +oo, and ft s)ds > 1/e on the right half
of those intervals.

Our approach here is to separate the positive part and the negative part of the
function ¢;. Our assumptions are stated as follows:

(H1) 6;(t) < t, limyo0 6;(t) = 00, 0y (t) < ¢, limy_,00 04(t) = 0o for all i.

(H2) There exist constants to > 0, r; < 0and R; > Osuch that Y ;- | (R;—r;) <1

and r; < p;(t) < R; for t > tg.

(H3) The functions g; are bounded.

(H4) ygi(y )>0fory7é0andi: 1,...m.
H5) [° Z 1 4;" () ds = oo, where g™ (t) ,
(H6) fo " q; (s)ds < oo, where ¢~ (t) = max{—q(t),0}.
HT) [T 1f(s)]ds < <.

A prototype of a function satisfying (H3)-(H4) is g(u) = ue~" which decreases for
some values of u; therefore the results in [T, 4 8, [, [T, [T, 2] can not be applied
here.

From the definitions of the functions ¢*(¢) and ¢~ (¢), it follows that ¢*(¢) > 0,
q (t) > 0, and q(t) = ¢"(t) — ¢ (t). Then using this decomposition, ([[CI]) can be
rewritten as

= 2 m®y ) + D0 09 (w(ea0) = D4 e (y(oa(t)) = F1).

(1.4)

By a solution y of (J]), we mean a real-valued function which is continuous
and differentiable on some interval [t,,c0), such that () is satisfied. As far as
existence and uniqueness of solutions we refer the reader to []. In this work we
assume the existence of solutions and study only their qualitative behaviour.

A solution of ([l), is said to be oscillatory if it has arbitrarily large zeros.
Otherwise it is said to be non oscillatory. In the sequel, unless otherwise specified,
when we write a functional inequality, it will be assumed to hold for all sufficiently
large values of .

2. MAIN RESULTS

Theorem 2.1. Under assumptions (H1)—-(HT), every solution of ([l oscillates
or tends to zero ast — oo.

Proof. We shall show that for every solutions which does not oscillate, approaches
zero as t — oo.
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Case 1: There exits to such that y(¢) > 0 for ¢t > to. If necessary, increment the ¢o
here to exceed the one in (H2), and by (H1), to have

y(0;(t)) >0, y(oi(t)) >0, fort>tg. (2.1)

For simplicity of notation, define

Using that fooo g; < oo and that g; is bounded, we define

[T d @t s [ re)ds

I RACICIONE (22)

Since y > 0, by (H4), w'(t) < 0; so that w(t) is non—increasing. Then

w(tO) > w sz ’L f( )

Then using (),

By (HT7) the function fo s) ds is bounded, and by II),

t>to J g

w(to) + sup f( )ds > y(t sz 5i(0) 2 y(t) = D Riy(8i(t)) . (23)

Using a contradiction argument, we prove that y(t) is bounded above (y is con-
tinuous on [0, %] and is bounded below by zero on [tg,c0)). Assuming that y is
unbounded, we define a sequence {t;}32 , such that ¢t — co and y(tx) = max{y(¢) :
to <t <tg}. Then y(tx) — oo and by (H1), for each 4, y(d;(tx)) — oo as k — oo.
Since 6;(t) < t, from 3, it follows that for each ¢y,

> —
w(to)+f’§£ t() s)ds > (1 ZR
By (H2), (1-3_7"_, R;) > 0; so that the right-hand side approaches +o0, as k — cc.
This is a contradiction that proves y being bounded.
Since y and p; are bounded functions, so is z. Then by (H6), (H7), it follows
that w is bounded. Since w is bounded and non-increasing, it must converge as
t — o0o. Also by the definition of w(t), the function z(t) converges. Let

n
L= Jim () = Jim (y(t) - ;pxt)y(éi(t))). (2.4)
Now, using a contradiction argument, we show that lim inf; . y(¢) = 0. Suppose
liminf; o y(t) > 0. Then by (H1), liminf; o y(o;(t)) > 0. From the definition
of liminf, there exist constants y1 and ¢; such that y(o;(¢t)) > y1 > 0 for all
t > t1, and all 1 < i < m. Let y» be an upper bound for y. Because g;’s are
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continuous, by (H4), there exists a positive lower bound m; for all g;’s on [y1, y2];
ie, 0<my <gi(y(oi(s))) for all s > ¢;, i =1,...,m. Then integrating ZZ),

w(t /Zqz s>m1/2q;r(s)ds
tj=1 t1 =1
Since the left-hand side is a bounded function while, by (H5), the right-hand side
approaches 400, we have a contradiction. Therefore, liminf; o, y(¢t) = 0.

Now we prove that limsup,_, . y(t) = 0. Since y > 0, from assumption (H2),
it follows that y(t) — >, pi(t)y(;(t)) > y(t) — >, Riy(d:(t)). Recall that for
bounded functions, limsup{f(t)+g(t)} > limsup{f(¢)} +liminf{g(¢)}. Taking the
limsup in ), we have

t—o0

n
I > limsup{y(t) + Z —Riy
i=1

n

> 11msup{y )+ thmf{ Riy(t)}

=1

(2.5)
= lim sup{y(t) Z Ry limsup{y (1)}
(1= 3 R limsupy(0)

i=1

In the equality above, we use that —R; < 0.
Since y > 0, from assumption (H2), it follows that y(t) — > """, p;()y(d:(t))
y(t) — >oi, riy(6:(t)). Recall that for bounded functions, liminf{f(t) + g(t)}

K2

liminf{f(¢)} + limsup{g(¢)}. Taking liminf in Z), we have

<
<

n
1< hmlnf{y + Z —riy
i=1

n

<11m1nf{y }+thsup{ riy(t)}

=1

=0- Zn limsup{y(#)} .

=1

In the the equality above, we use that —r; > 0. From () and the above inequality,

n

(1- Z(RZ —1;)) limsup{y(t)} <0.
i=1 t=eo
Since y > 0, by (H2), it follows that limsup,_,..{y(t)} = 0. The proof of case 1 is
complete.
Case 2: There exists to such that y(¢t) < 0 for all t > to. If necessary increment

the ¢o here to exceed the one in (H2), and by (H1) to have

y(0:(t)) <0, y(os(t)) <0, fort>tp. (2.6)
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We define z(t) and w(t) as in case 1. Then w’(t) > 0 and w(t) is non-decreasing;
so that

By (H2),

wito) + fuf [ F(&)ds <y(t) = > pOY0) <u(t) = Y Ry(Gi(t) . (2.7)

t>to to

We claim that y(t) is bounded (y is continuous on [0, ty] and is bounded above
by zero on [tg,00)). On the contrary suppose that y is unbounded, we define a
sequence {t;}72, such that t; — oo and y(tx) = min{y(t) : to <t < tx}. Then
y(tx) — —oo and by (H1), for each i, y(d;(tg)) — —oo as k — oo. From ), it
follows that for each ty,

n

w(to) + sup F(t) < (1 - Z Ri)y(tr) -

t>to i=1

By (H2), (1 — >, R;) > 0, so that the right-hand side approaches —oo. This
contradiction implies y being bounded.

Since y and p; are bounded functions, so is z. Then by (H6), (H7), it follows
that w is bounded. Since w is bounded and non-decreasing, it must converge as
t — o0o. Also by the definition of w(t), it follows that z(¢) converges. Let

n
l:= lim z(t) = lim (y(t) - Z—pi(t)y(éi(t))>. (2.8)
t—o0

t—oo ‘
i=1

Now, using a contradiction argument, we prove limsup,_, . y(t) = 0. Suppose
limsup,_, . y(t) < 0. Then by (H1), limsup,_, y(o:(t)) < 0. From the definition
of lim sup, there exist constants yo and t; such that y(o;(¢)) < y2 < 0 for all ¢ > ¢4,
and all 1 < i < n. Let y; be a lower bound for y. Then there exists a negative
upper bound ms for all g;’s on [ys, y1]; i-e., g:(y(0i(s))) < ma < 0 for all s > 4,
it =1,...m. Then integrating on (2,

wt) — w(tr) = — / S 6 (9)9:(4(01(5))) ds > —my / S g (s) ds.

t1 ;=1 t1 =1

The left-hand side is a bounded function and, by (H5), the right-hand side ap-
proaches +o00 as ¢ — oco. This contradiction implies limsup,_, . y(¢t) = 0.

Now we prove that liminf; o y(t) = 0. Since y < 0, from assumption (H2),
it follows that y(t) — >0, pi(H)y(:(t)) > y(t) — >i, riy(d:(t)). Recall that for
bounded functions, limsup{f(t)+g(t)} > limsup{f(¢)} +liminf{g(¢)}. Taking the
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limsup in (ZX), we have

n
I > limsup{y(t)+ » —
t—o0 i—1
n

> H?is;}p{y(t)} + Zligiogf{—my(t)} (2.9)

i=1

riy(0:(t))}

=0->m lim inf{y (1)}
i=1

In the equality above, we use that —r; > 0.

Since y < 0, from assumption (H2), it follows that y(¢) — >, ps (¢)y(d:(t))
y(t) — Yoiy Riy(0;()). Recall that for bounded functions, liminf{f(t) + g(t)}
liminf{f(¢)} + limsup{g(¢)}. Taking liminf in ), we have

INIA

< liminf{y(t) + Z —Riy(8:(t))}

< liminf{y()} + > lim sup{~Riy (1)}

t—o0 .
i=1

n
= liminf{y (1)} + Z; —R;liminf{y(t)}
n
=(1- 2; Ri) lim inf{y(t)} .
For the equality above, we use that —R; < 0. From the [ZH) and the above

inequality,
n

0<(1- Z;(Ri — 7)) lim inf{y(¢).
1=
Since y < 0, by (H2), it follows that liminf; ,o.{y(¢)} = 0. The proof of case 2 is
complete.
In summary, every solution does not oscillate approaches zero. O

Note that in the above theorem, (H3) requires g; being bounded. However, the
open problem in [7] does not satisfy this condition. To address this shortcoming,
we introduce the following hypotheses, and state another theorem.

(H8) There exists a positive constant 7 such that §;(t) <t —7 and 0;(t) <t — 71

for all t > 0 and all 4’s.
(H9) There exist non-negative constants a, b such that

lg:(w)] < alu|+b forallu, 1<i<m.

Theorem 2.2. Assume (H1)-(H2), (H4)-(H9) hold. Then every solution of (L))
oscillates or tends to zero as t — 00.

Proof. As in Theorem Xl we prove that every solution which does not oscillate,

approaches zero as t — co.
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Case 1 There exists a to such that y(t) > 0 for t > to. If necessary increment ¢y
so that (ZTJ) is satisfied, and, by (H6),

a+b/ qu ds<1—ZR (2.10)

Using that 6;(¢) and o;(t) are continuous and both tend to co as t — 0o, we define
the values 69 = inf{d;(t) : t > t9, 1 <i < n} and o¢g = inf{o;(t) : t > tp, 1 <i <
m}. Select a constant M large enough such that
1< M,
ly(t)] < M for min{dp,o0} <t <tp,
M
o+ R; <
Z CT M y(to)| + | 00 pilto)y(dilto))] + L 1S
Such M exists that
0<y(t) < M+1ylto)] +1 3 piCtaly(Gita))| + [ 1=t fort <t (2.12)

i=1 to

(2.11)

by (H2), @I0) and 0 < aw+ )i~ ; R; < 1. Then Now for tyg <t < tg + 7, we
integrate (), to obtain

sz ) +y(to) — Zpi(to)y(5i(to))

- / 37 ($)oiulos(s))) ds + | X atenas+ [ is)ds

to =1 to =1
(2.13)
Because of 6;(t) <t—7 and 0;(t) <t — 7, we can use [ZIZ) to estimate each term
in the above expression. Using p;(t) < R;, we obtain

| sz(t)y(5z(t))| < Z R; M, .

Since yg;(y) > 0, the fourth term on the right-hand side of ([ZI3) can be estimated
by zero. Using that y(o;(s)) < My and My > 1, by (H9), we have |g(y(os(s)))| <
aly(ci(s))] +b < aMy + b < (a+ b)Ms. Then by @I0),

> 47 (5)gi(y(oi(s))) ds| < M.

to j=1

From the two inequalities above, [ZI3), and (ZII) we obtain

n n 0o
0 9(t) < (ot 30 R)Ma +lytto)| + | S mltaly(Gitto)] + [ 171 < Mo
i=1 i=1 0
for tp < t < to + 7. Recursively, we show that 0 < y(t) < Ms on the intervals
[t0+T,t0+2T], [to+27‘,t0+37‘],
Next we define z(t) and w(t) as in Theorem Il Then prove that lim;_, o y(t) = 0
by the same methods as in the proof of Theorem Tl
EJQTDE, 2008 No. 19, p. 7



Case2 There exists to such that y(¢) < 0 for ¢ > ¢3. The proof is similar to the
proof of case 1; so we just sketch it. If necessary increment to so that ([Z8) and
[EI0) are satisfied. Let M be defined as in ([ZITl). Then

0<—y(t) < 1V[+|y(?f0)|+|Z:pz‘(?ft))l/(f5z'(?f0))|+/(><> |f|:= My fort<ty. (2.14)

i=1 to
Now for tg <t < tg+ 7, from (), we have

—y(t) = Zpi(t)(*y(&(t))) —y(to) + Zpi(to)y(éi(to))

+ / S (5)gi(y(oi(s)) ds — / S a7 (5)gi(y(oi(s))) ds — / f(s)ds.

to j=1 to j=1
Because yg;(y) > 0, the fourth term on the right-hand side can be estimated by
zero. Because 0;(t) <t — 7 and 0;(t) <t — 7, we can use ([ZI4) to obtain

0 —y(0) < (a+ 3 ROMa +lylto)| +1 3 pto)uitto)) + [ 151 < M

i=1 i=1 to
for tg <t < tgp+ 7. Recursively, we show that 0 < —y(t) < M on the intervals
[to + T, to + 27], [to + 27,t0 + 37], .... For the rest of the proof, we proceed as in
Theorem 21 O

The results in Theorems BTl and hold for bounded solutions, as follows.

Theorem 2.3. Under assumptions (H1)-(H2), (H4)-(H7), every bounded solution
of [l) oscillates or tends to zero as t — oo.

Regarding the open problem in [7], we have the following result.

Corollary 2.4. Assume that

o0 (o)
/ q"(s)ds =00, and / g (s)ds < o0.
0 0

Then every solution of ([[3) oscillates or tends to zero ast — oo.

Proof. The delay equation ([3)) is a particular case of ([[LI) where n = m = 1,
p1(t) =0, ¢1(t) = q(t), g1(u) = u, 01(t) =t — 7, and f(¢t) = 0. Condition (H3) is
not satisfied, but (H9) is satisfied with a« = 1, b = 0. Since (H1)-(H2), (H4)-(H9)
are satisfied, we apply Theorem and obtain the desired result. (I

Remark 2.5. Condition (CZ) implies (H5). In fact, from the definition of liminf,
there exists tg such that for t > tg,

v ¢ 1
ds > ds > —.
| otz [ s> o
Partitioning the interval of integration [tg, c0) in intervals of length 7, we have
[e'e] N to+T1 N to+21 N 0 1
ds = d ds+---> — =
| atas= [ i@t [T w2 Y0 =0
=1

which implies (H5). Also note that ([(C2) does not imply (H6).
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Example. To present an equation where Theorem Z2 applies, we define
. + .
q(t) = (sin(t)) " — o (sin(t))

Then ¢*(t) = (sin(t))+ and [ ¢ = oo; so (H5) is satisfied. Also 0 < ¢ (t) =
= (sin(t)) " < 5 and [T ¢~ < 7/2; so (H6) is satisfied. Consider the delay
equation

y'(t) +a(t)y(t — 1) = e (q(t)e — 1).
Since ¢ is bounded, the right-hand side is integrable, in absolute value, and (HT) is
satisfied. In fact, (H1)-(H2), (H4)-(H9) are satisfied and the solution to the above
equation is y(t) = e~* which approaches zero as t — oc.

Example. To emphasize the need for (H3), or for (H6), we present the delay
equation

y'(t) — cos(t)y(t —2m) =0,
where ¢(t) = — cos(t) which does not satisfy (H6), and g(y) = y which does not
satisfy (H3). Note that (H1), (H2), (H4), (H5), (H7)-(H9) hold, but we can not
apply Theorem B2l or Theorem 22 Also note that the solution is y(t) = expsin(t)
which does not oscillate and does not tend to zero as ¢t — oo.
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