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1 Introduction

Let Ω be a bounded open set of R
n(n ≥ 1) with smooth boundary Γ. We

consider {Γ0,Γ1} a partition of Γ, that is, Γ = Γ0 ∪ Γ1, with Γ0 and Γ1 having

positive Lebesgue measure and with Γ0 ∩ Γ1 = ∅.
Let ν be the outward normal to Γ and T > 0 is a real number. We denote

by Q = Ω × (0, T ) the cylinder of the R
n+1.

The goal of this work is to solve following strongly nonlinear boundary

problem:

(∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Au = 0 in Q = Ω × (0, T )

u = 0 on Σ0 = Γ0 × (0, T )

∂u

∂t
+

n∑

i=1

∣∣ ∂u
∂xi

∣∣p−2 ∂u

∂xi

νi + |u|ρu = f on Σ1 = Γ1 × (0, T )

u(x, 0) = u0(x) on Γ,

where A is the pseudo Laplacian operator defined by

A : W
1,p
0 (Ω) → W−1,p′(Ω), 1

p
+ 1

p′
= 1

w 7→ Aw

with Aw = −
n∑

i=1

∂

∂xi

(
| ∂w
∂xi

|p−2 ∂w

∂xi

)
, 2 < p <∞; ρ is a positive real constant

satisfying the conditions (1) and f is a known real value function.

As the solution of system depend of x and t and the equation (∗)1 does

not have temporal derivative of the function u, this system is not Cauchy-

Kovalevsky type.

This problem associated with evolution equation on lateral boundary, with

p = 2, was study in Araruna-Antunes-Medeiros [1] and Domingos-Cavalcante

[4], both motivated by the idea applied in Lions ([6], pp. 134), which consists

to reduce the problem in a model of mathematical physics on the manifolds

Σ1. Also, Araruna-Araujo in [2] studied the system (∗) in your form more

simple, that is, p = 2. Recently, O.A.Lima, at al has been researching in
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Partial Differential Equations involving the pseudo Laplacian operator [10].

In this work we use a technique due to Lions [6], which transforms the system

(∗) in a Cauchy-Kovalevsky type one by means of a suitable perturbations in

the equation (∗)1. The solution of (∗) is obtained as limit of solutions of the

perturbed problem.

For p > 2, the operator A brings great difficulties, because it is non-linear,

mainly to establish concepts of solutions, in passage to the limit, to work with

the trace application and immersion in spaces W s,p(Ω), s ∈ R (for this we

consult Nĕcas [5]) and to obtain a estimative for derived of the approximate

function(here we use strongly the proprieties of the trace application). Finally

all the difficulties will be overcome through careful handling of the proprieties

of the operator A.

This paper is organized as follows: In Section 1, we will give some notations,

hypothesis and results. In Section 2, we will introduce the perturbed problem.

In Section 3, we will prove the existence of the solutions for the perturbed

problem. In Section 4, we will treat of the uniqueness for the solution of the

perturbed problem. Finally in Section 5, we will prove the main result of this

work.

2 Hypotheses and Notations

We denote byW
1

p′
,p
(Γ) the vectorial space of functions v|Γ when v ∈W 1,p(Ω),

for
1

p
+

1

p′
= 1. By W

−
1

p′
,p′

(Γ) denotes the dual of the space W
1

p′
,p
(Γ).

Let p > 2 be and V0 the Banach space given by V0 =
{
v ∈W 1,p(Ω); v|Γ0

= 0
}

equipped with the norm ‖v‖V0
=

( n∑

i=1

∫

Ω

∣∣ ∂v
∂xi

∣∣p dx
) 1

p

. Note that the appli-

cation γ : V0 −→W
1

p′
,p
(Γ1) is linear, continuous and surjective.

In (∗) assume that ρ is a real number such that

ρ > 0, if n = 1 or 0 < ρ ≤ (n + 2)p− 2(n+ 1)

n− p+ 1
se n ≥ 2. (1)
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With the choice we have W
1

p′
,p
(Γ1) ⊂ Lρ+2(Γ1) with continuous and dense

immersion, for
1

p′
+

1

p
= 1. Therefore L

ρ+2

ρ+1 (Γ1) =
(
Lρ+2(Γ1)

)
′ ⊂ W

−
1

p′
,p′

(Γ1)

with immersions are dense and continuous.

Let a : V0 × V0 → R defined by

a(u, v) =
n∑

i=1

∫

Ω

∣∣ ∂u
∂xi

∣∣p−2 ∂u

∂xi

∂v

∂xi

dx. (2)

which is linear with respect the second variable. Note that, the application

v → a(u, v) is continuous on V0 for u ∈ V0 fix.

Let V = Lp(0, T ;V0) and the operator B from V in V ′ defined by

(B(u), v)V ′×V =

∫ T

0

a(u(t), v(t)) dt, ∀ u, v ∈ V. (3)

Thus B is a hemicontinuous, monotonic operator and ‖Bu‖V ′ ≤ C‖u‖p−1
V , ∀ u ∈

V.

To facilitate the understand of this work, introduce the followings nota-

tions:

(f, g)Ω =

∫

Ω

fg dx, (ϕ, ψ)Γ =

∫

Γ

ϕψ dΓ.

3 Perturbed Problem

The Problem (∗) is not of the Cauchy-Kowaleska’s type. Thus, consider the

following perturbed problem:

For all ε > 0, the family of functions uε(x, t) is defined by:

(∗∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε
∂uε

∂t
+ Auε = 0 in Q = Ω × (0, T ),

uε = 0 on Σ0 = Γ0 × (0, T ),

∂uε

∂t
+

n∑

i=1

∣∣∂uε

∂xi

∣∣p−2∂uε

∂xi

νi + |uε|ρuε = f on Σ1 = Γ1 × (0, T ),

uε(x, 0) = w0(x) x ∈ Ω,

where w0 = γ−1u0 ∈ V0.

The solution concept for (∗∗) is established by Gauss’s Theorem as follows:
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For v ∈ V0 ∩ C2(Ω) we have
∫

Ω

∂

∂xi

{(∣∣∂uε

∂xi

∣∣p−2∂uε

∂xi

)
.v

}
dx =

∫

Γ1

∣∣∂uε

∂xi

∣∣p−2∂uε

∂xi

.νi.v dΓ,

hence
∫

Ω

∂

∂xi

(∣∣∂uε

∂xi

∣∣p−2∂uε

∂xi

)
.v dx+

∫

Ω

∣∣∂uε

∂xi

∣∣p−2∂uε

∂xi

.
∂v

∂xi

dx =

∫

Γ1

∣∣∂uε

∂xi

∣∣p−2∂uε

∂xi

.νi.v dΓ.

Summing up from i = 1 to n on both sides of the above equation yields:

(A(uε), v)Ω = a(uε, v) −
n∑

i=1

∫

Γ1

∣∣∂uε

∂xi

∣∣p−2∂uε

∂xi

.νi.v dΓ.

From this and observing that (see (∗∗)3)

−
n∑

i=1

∫

Γ1

∣∣∂uε

∂xi

∣∣p−2∂uε

∂xi

.νi.v dΓ =

∫

Γ1

∂uε

∂t
vdΓ1 +

∫

Γ1

|uε|ρuεvdΓ1 −
∫

Γ1

fvdΓ1,

we obtain (A(uε), v)Ω = a(uε, v)+(γu′ε, γv)Γ1
+(|γuε|ργuε, γv)Γ1

−(f, γv)Γ1
.

Substituting this identity in (∗∗)1 we get:

ε(u′ε, v)Ω + (γu′ε, γv)Γ1
+ a(uε, v) + (|γuε|ργuε, γv)Γ1

= (f, γv)Γ1
,

where u′ε means
∂uε

∂t
. Therefore, a solution of the problem (∗∗) is understood

in the following sense.

Definition 3.1. A real value function uε(x, t) is a solution of the problem (∗∗)
if, only if,

uε ∈ Lp(0, T ;V0) ∩ L∞(0, T ;L2(Ω)), (4)

γuε ∈ Lρ+2(0, T ;Lρ+2(Γ1)) ∩ L∞(0, T ;L2(Γ1)), (5)

u′ε ∈ Lp′(0, T ;W−1,p′(Ω)), (6)

γu′ε ∈ Lp′(0, T ;W
−1

p′
,p′

(Γ1)), (7)

ε(u′ε, v)Ω+(γu′ε, γv)Γ1
+a(uε, v)+(|γuε|ργuε, γv)Γ1

= (f, γv)Γ1
, ∀ v ∈ V0. (8)

and satisfying the initial conditions

uε(0) = w0 in Ω, (9)

γuε(0) = u0 in Γ1 (10)

with u0 belongs to W
1

p′
,p
(Γ1).
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4 Existence Theorem

In this section we will establish a theorem of existence of solutions.

Theorem 1. Suppose f ∈ Lp′(0, T,W
−

1

p′
,p′

(Γ1)) and w0 ∈ V0. Then, for each

ε > 0 the problem (∗∗) has a unique solution uε in the sense of Definition

(3.1).

Remark 1. Note that, the date w0 is taken such that γw0 = u0, since, given

u0 ∈W
1

p′
,p
(Γ1) there exists w0 ∈ V0 such that γw0 = u0 because the application

γ : V0 → W
1

p′
,p
(Γ1) is surjective.

Proof: We will employ the Faedo-Galerkin’s method. In fact, for V0 we

construct a special Hilbertian basis (wµ)µ∈N of V0. By V0m =
[
w1, ....., wm

]

we will denote the subspace spanned by the m first vectors of V0. The ap-

proximated problem consist to find a function uεm(t) ∈ V0m of the type

uεm(x, t) =
m∑

j=1

gjεm(t)wj(x) solution of the initial value problem for the system

of ordinary differential equations:
∣∣∣∣∣∣∣∣∣

ε(u′εm(t), v)Ω + (γu′εm(t), γv)Γ1
+ a(uεm(t), v) +

+ (|γuεm(t)|ργuεm(t), γv)Γ1
= (f(t), γv)Γ1

∀ v ∈ V0

uεm(0) = uε0m −→ w0 in V0.

(11)

The system (11) has a local solution on the interval [0, tm[, with tm < T.

This solution can be extended to the whole interval [0, T ] as consequence of

the a priori estimates that shall be proved in the next step.

Estimates

Taking v = uεm(t) in (11) and integrating from 0 to t < tm we obtain

ε

2
|uεm(t)|2L2(Ω) +

1

2
‖γuεm(t)‖2

L2(Γ1) +

∫ t

0

‖uεm(s)‖p
V0
ds+

∫ t

0

‖γuεm(s)‖ρ+2
Lρ+2(Γ1)ds ≤

∫ t

0

‖f(s)‖
W

−
1

p′
,p′

(Γ1)
‖γuεm(s)‖

W
1

p′
,p

(Γ1)
ds ≤ C

∫ t

0

‖f(s)‖
W

−
1

p′
,p′

(Γ1)
‖uεm(s)‖V0

ds +

ε

2
|uε0m|2L2(Ω) +

1

2
‖γuε0m‖2

L2(Γ1) ≤
C

p′

∫ T

0

‖f(s)‖p′

W
−

1

p′
,p′

(Γ1)
+

1

p

∫ t

0

‖uεm(s)‖p
V0
ds +

ε

2
|uε0m|2L2(Ω) +

1

2
‖γuε0m‖2

L2(Γ1).
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From hypotheses about the initial conditions and the continuity of the appli-

cation γ, we obtain:

ε

2
|uεm(t)|2L2(Ω) +

1

2
‖γuεm(t)‖2

L2(Γ1) +
1

p′

∫ t

0

‖uεm(s)‖p

V0
ds+

∫ t

0

‖γuεm(s)‖ρ+2
Lρ+2(Γ1)ds ≤ C

(12)

where C is constant which is independent of t and m. This estimate implies

that we can prolong the approximate solution uεm(t) to interval [0, T ] and too

we obtain:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(uεm) is bounded in L∞(0, T ;L2(Ω));

(γuεm) is bounded in L∞(0, T ;L2(Γ1));

(uεm) is bounded in Lp(0, T ;V0);

(γuεm) is bounded in Lp(0, T ;W
1

p′
,p
(Γ1));

(γuεm) is bounded in Lρ+2(0, T ;Lρ+2(Γ1));

(uεm(T )) is bounded in L2(Ω);

(γuεm(T )) is bounded in L2(Γ1).

(13)

Note that

∫ T

0

∫

Γ1

∣∣|γuεm|ργuεm

∣∣ ρ+2

ρ+1dt =

∫ T

0

∫

Γ1

|γuεm|ρ+2dt ≤ C. Thus

(
|γuεm|ργuεm

)
is bounded in L

ρ+2

ρ+1 (0, T ;L
ρ+2

ρ+1 (Γ1)). (14)

From (11)1 we get

〈{
εu′εm, γu

′

εm

}
,
{
v, γv

}〉
= (f(t) − |γuεm(t)|ργuεm(t), γv)Γ1

− a(uεm(t), v),

where < ., . > represent the duality paring between V ′

0 ×W
−

1

p′
,p′

(Γ1) and
{
V0 ×W

1

p′
,p
(Γ1)

}
.
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Hence
∣∣∣∣

〈{
εu′εm, γu

′

εm

}
,
{
v, γv

}〉∣∣∣∣ ≤ |a(uεm(t), v)|+
(
‖f(t)‖

W
−

1

p′
,p′

(Γ1)
+ ‖γuεm|ργuεm‖

W
−

1

p′
,p′

(Γ1)

)
‖γv‖

W
1

p′
,p

(Γ1)
≤

(
‖f(t)‖

W
−

1

p′
,p′

(Γ1)
+ C‖γuεm|ργuεm‖

L
ρ+2
ρ+1 (Γ1)

)
‖γv‖

W
1

p′
,p

(Γ1)
+

‖uεm(t)‖p−1
V0

‖v‖V0
≤

(
‖γv‖

W
1

p′
,p

(Γ1)
+ ‖v‖V0

)
×

[
‖f(t)‖

W
−

1

p′
,p′

(Γ1)
+ C‖γuεm|ργuεm‖

L
ρ+2
ρ+1 (Γ1)

+ ‖uεm(t)‖p−1
V0

]
.

From estimates above we have
∣∣∣∣

〈{
εu′εm, γu

′

εm

}
,
{
v, γv

}〉∣∣∣∣ ≤
[
‖f(t)‖

W
−

1

p′
,p′

(Γ1)
+ C‖γuεm|ργuεm‖

L
ρ+2
ρ+1 (Γ1)

+ ‖uεm(t)‖p−1
V0

]
×

∥∥{
v, γv

}∥∥
V0×W

1

p′
,p

(Γ1)
.

Therefore, from bounded (14) and (13)3, we get
({

εu′εm, γu
′

εm

})
is bounded in Lp′(0, T ;V ′

0 ×W
−

1

p′
,p′

(Γ1)). (15)

Passage to the Limit

From estimates (13), (14) and (15) we obtain
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uεm
∗

⇀ uε weak-star in L∞(0, T ;L2(Ω));

γuεm
∗

⇀ γuε weak-star in L∞(0, T ;L2(Γ1));

uεm ⇀ uε weak in Lp(0, T ;V0);

γuεm ⇀ γuε weak in Lp(0, T ;W
1

p′
,p
(Γ1));

γuεm ⇀ γuε weak in Lρ+2(0, T ;Lρ+2(Γ1)) ≡ Lρ+2(Σ1);

uεm(T ) ⇀ χ weak in L2(Ω);

γuεm(T ) ⇀ ς weak in L2(Γ1)

|γuεm|ργuεm ⇀ η weak in L
ρ+2

ρ+1 (0, T ;L
ρ+2

ρ+1 (Γ1)) ≡ L
ρ+2

ρ+1 (Σ1)

u′εm ⇀ u′ε weak in Lp′(0, T ;V ′

0);

γu′εm ⇀ γu′ε weak in Lp′(0, T ;W
−

1

p′
,p′

(Γ1))

(16)
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Remark 2. Note that by the convergence (16)1, (16)9 and (16)2, (16)10 it

makes sense to calculate uε(0) , uε(T ) and γuε(0) , γuε(T ) respectively.

Let V = Lp(0, T ;V0) and B the operator from V given by

(B(u), v)V ′×V =

∫ T

0

a(u(t), v(t)) dt, ∀ u, v ∈ V, (17)

hence, B is hemicontinuous, monotonic operator and ‖Bu‖V ′ ≤ C‖u‖p−1
V , ∀ u ∈

V. Thus, from estimative (16)3 we have (Buεm)m is bounded in V ′, hence

Buεm ⇀ ζ is V ′. (18)

From convergence (16)9 we obtain< u′εm, ϕ >→< u′ε, ϕ >, ∀ ϕ ∈ Lp(0, T ;V0),

that is,
∫ T

0

(u′εm, v)Ωθdt→
∫ T

0

(u′ε, v)Ωθdt, v ∈ V0m ⊂ V0, ∀ θ ∈ D(0, T ) ⊂ Lp(0, T ),

or

(u′εm, v)Ω → (u′ε, v)Ω v ∈ V0m, in D′(0, T ). (19)

From convergence (16)10 we have < γu′εm, γϕ >→< γu′ε, γϕ >, ∀ ϕ ∈
Lp(0, T ;V0), that is,

(γu′εm, γv)Γ1
→ (γu′ε, γv)Γ1

v ∈ V0m, in D′(0, T ). (20)

Analogously, we have

(Buεm, v) → (ζ, v) v ∈ V0m, in D′(0, T ), (21)

and

(|γuεm|ργuεm, γv)Γ1
→ (η, γv)Γ1

v ∈ V0m, in D′(0, T ). (22)

Thus, taking the limit as m → ∞ in the approximated equation (11)1, using

the convergence (19) − (22) and the density of V0m in V0, we obtain:

ε(u′ε, v)Ω + (γu′ε, γv)Γ1
+ (ζ, v)Ω + (η, γv)Γ1

= (f(t), γv)Γ1

∀ v ∈ V0 in D′(0, T ).
(23)

To follow we will proof that: |γuε|ργuε = η and Buε = ζ.
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Proof. In fact, from the estimate above we have

(γuεm) is bounded in Lp(0, T ;W
1

p′
,p
(Γ1));

(γu′εm) is bounded in Lp′(0, T ;W
−

1

p′
,p′

(Γ1)).

As W
1

p′
,p
(Γ1)

c
↪→ Lp(Γ1) ↪→ L2(Γ1) ↪→ Lp′(Γ1) ↪→ W

−
1

p′
,p′

(Γ1), we have

W
1

p′
,p
(Γ1)

c
↪→ Lp(Γ1) ↪→ W

−
1

p′
,p′

(Γ1). Thus, of the Aubin-Lions’s Theorem we

obtain a subsequence, still denoted by (γuεm), such that γuεm → γuε in Lp(Σ1),

where still we can extract other subsequence which we insist in denote by

(γuεm), such that: γuεm → γuε a.e Σ1, thus,

|γuεm|ργuεm → |γuε|ργuε a.e Σ1. (24)

From estimative (14) we obtain:

‖|γuεm|ργuεm‖
L

ρ+2
ρ+1 (Σ1)

≤ C (25)

Hence, from (24), (25) and the Lions’s Lema, we obtain

|γuεm|ργuεm ⇀ |γuε|ργuε weak in L
ρ+2

ρ+1 (Σ1).

Thus |γuε|ργuε = η.

Now we will prove that Buε = ζ.

Proof. In fact for this purpose we needed prove that: (i) uε(0) = w0, (ii)

χ = uε(T ), (iii) γuε(0) = u0 and (iv) γuε(T ) = ς.

In fact, to prove (i) we use the convergence (16)1 and (16)9 which yield

∫ T

0

(uεm, v)ϕ
′ dt→

∫ T

0

(uε, v)ϕ
′ dt ∀ v ∈ L2(Ω),

ϕ ∈ C1([0, T ]), ϕ(0) = 1, ϕ(T ) = 0

and ∫ T

0

d

dt
(uεm, v)ϕ dt→

∫ T

0

d

dt
(uε, v)ϕ dt ∀ v ∈ L2(Ω) ⊂ V ′

0 ,
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ϕ ∈ C1([0, T ]), ϕ(0) = 1, ϕ(T ) = 0,

where

∫ T

0

d

dt

{
(uεm, v)ϕ

}
dt→

∫ T

0

d

dt

{
(uε, v)ϕ

}
dt ∀ v ∈ L2(Ω),

ϕ ∈ C1([0, T ]), ϕ(0) = 1, ϕ(T ) = 0,

hence,

(uεm(0), v) → (uε(0), v), ∀ v ∈ L2(Ω),

that is,

uεm(0) ⇀ uε(0) in L2(Ω).

As uεm(0) → w0 in V0 ↪→ L2(Ω), we have uεm(0) → w0 in L2(Ω), where

uεm(0) ⇀ w0 in L2(Ω). Hence

uε(0) = w0.

Analogously, working as ϕ(0) = 0 and ϕ(T ) = 1 we obtain

uε(T ) = χ.

In fact, to prove (iii) we use the convergence (16)2 and (16)10 which yield

(γuεm(0), v) → (γuε(0), v), ∀ v ∈ L2(Γ1),

where

γuεm(0) ⇀ γuε(0) em L2(Γ1).

As uεm(0) → w0 in V0 and γ continuous from V0 in W
1

p′
,p
(Γ1), we have that

γuεm(0) → γw0 in W
1

p′
,p
(Γ1). Being W

1

p′
,p
(Γ1) ↪→ L2(Γ1), for p > 2 >

2n

2n+ 1
,

by Fractionary Sobolev’s Theorem, we have γuεm(0) → γw0 in L2(Γ1).

Therefore γuε(0) = γw0 = u0, by remark 1. Analogously, we have γuε(T ) =

ς

EJQTDE, 2008 No. 13, p. 11



We will show that: Buε = ζ. In fact, being the operator B : V → V ′

mononotonic, we obtain:

(Buεm, uεm) − (Buεm, v) − (Bv, uεm − v) ≥ 0. (26)

Taking v = uεm and integrating of 0 the T in the approximated equation (11)1

we obtain:

(Buεm, uεm) =

∫ T

0

a(uεm, uεm)dt =

∫ T

0

(f, uεm)Γ1
dt− ε

∫ T

0

(u′εm, uεm)Ωdt −
∫ T

0

(γu′εm, γuεm)Γ1
dt−

∫ T

0

(|γuεm|ργuεm, γuεm)Γ1
dt.

Thus, substituting in (26), we have

0 ≤
∫ T

0

(f, uεm)Γ1
dt− ε

2
|uεm(T )|2L2(Ω) +

ε

2
|uεm(0)|2L2(Ω) −

1

2
|γuεm(T )|2L2(Γ1) +

1

2
|γuεm(0)|2L2(Γ1) −

∫ T

0

‖γuεm‖ρ+2
Lρ+2(Γ1)dt− (Buεm, v) − (Bv, uεm − v).

Using the convergence obtained and applying the lim inf
m→∞

in both sides of the

inequality above we have:

0 ≤
∫ T

0

(f, uε)Γ1
dt− ε

2
|uε(T )|2L2(Ω) +

ε

2
|w0|2L2(Ω) −

1

2
|γuε(T )|2L2(Γ1) +

1

2
|u0|2L2(Γ1) −

∫ T

0

‖γuε‖ρ+2
Lρ+2(Γ1)dt− (ζ, v)− (Bv, uε − v).

(27)

Taking v = uε and integrating of 0 the T in the equation (23) we obtain:

∫ T

0

(f, uε)Γ1
dt = (ζ, uε) +

ε

2
|uε(T )|2L2(Ω) −

ε

2
|w0|2L2(Ω) +

1

2
|γuε(T )|2L2(Γ1) − 1

2
|u0|2L2(Γ1) +

∫ T

0

‖γuε‖ρ+2
Lρ+2(Γ1)dt.

If we substitute this expression in (27), we obtain

0 ≤ (ζ − Bv, uε − v), ∀ v ∈ V.

Consider uε − v = λw, λ > 0. Thus, using the hemicontinuity of the operator

B, we obtain 0 ≤ (ζ − Buε, w), ∀ w ∈ V. Working with λ < 0 we have:
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(ζ − Buε, w) ≤ 0, ∀ w ∈ V.

Therefore (ζ − Buε, w) = 0, ∀ w ∈ V, thus Buε = ζ.

Note that (Buεm, w) → (Buε, w), ∀ w ∈ V = Lp(0, T ;V0), hence,
∫ T

0

a(uεm, v)θdt→
∫ T

0

a(uε, v)θdt, ∀ v ∈ V0, ∀ θ ∈ D(0, T ) ⊂ Lp(0, T ).

Thus a(uεm, v) → a(uε, v) ∀ v ∈ V0 in D′(0, T ). Therefore,
∣∣∣∣∣∣∣

ε(u′ε, v)Ω + (γu′ε, γv)Γ1
+ a(uε, v) +

(|γuε|ργuε, γv)Γ1
= (f(t), γv)Γ1

∀ v ∈ V0 in D′(0, T ),

(28)

Uniqueness of the Solution

To obtain the uniqueness of the solution, we suppose that there exists two

solutions such that uε, ûε in the conditions of the Theorem 1. It following

that wε = uε − ûε satisfy:

wε ∈ Lp(0, T ;V0) ∩ L∞(0, T ;L2(Ω)), (29)

γwε ∈ Lρ+2(0, T ;Lρ+2(Γ1)) ∩ L∞(0, T ;L2(Γ1)), (30)

w′

ε ∈ Lp′(0, T ;W−1,p′(Ω)), (31)

γw′

ε ∈ Lp′(0, T ;W
−

1

p′
,p′

(Γ1)), (32)

ε(w′

ε, v)Ω + (γw′

ε, γv)Γ1
+ a(uε, v) − a(ûε, v) +

(|γuε|ργuε − |γûε|ργûε, γv)Γ1
= 0, ∀ v ∈ V0.

(33)

Taking v = wε in (33) and integrating from 0 the t ≤ T we obtain:

ε

2
|wε(t)|2L2(Ω) +

1

2
|γwε(t)|2L2(Γ1) +

∫ t

0

(a(uε, w) − a(ûε, w))dt+
∫ t

0

(|γuε|ργuε − |γûε|ργûε, γuε − γûε)dt = 0.

Using the monotoneity of the function h(s) = |s|ρs and a(uε, w)−a(ûε, w) ≥ 0,

we have
ε

2
|wε(t)|2L2(Ω) +

1

2
|γwε(t)|2L2(Γ1) ≤ 0.

Therefore, we have that wε(t) = 0 ∀ t ∈ [0, T ]. Thus the Theorem is proved.
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5 Main Result

In this Section we will prove the following result

Theorem 2. When ε→ 0 we have

uε ⇀ u in Lp(0, T ;V0), (34)

being u the solution of the problem (∗).

Proof: Making v = uε(t) in (8) and proceeding as in the previous Theorem

we obtain ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
√
εuε) is bounded in L∞(0, T ;L2(Ω));

(γuε) is bounded in L∞(0, T ;L2(Γ1));

(uε) is bounded in Lp(0, T ;V0);

(γuε) is bounded in Lp(0, T ;W
1

p′
,p
(Γ1));

(γuε) is bounded in Lρ+2(0, T ;Lρ+2(Γ1));

(uε(T )) is bounded in L2(Ω);

(γuε(T )) is bounded in L2(Γ1).

(35)

and ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(εu′ε) is bounded in Lp′(0, T ;V ′

0);
(
|γuε|ργuε

)
is bounded in L

ρ+2

ρ+1 (0, T ;L
ρ+2

ρ+1 (Γ1))

(γuε) is bounded in Lp(0, T ;W
1

p′
,p
(Γ1));

(γu′ε) is bounded in Lp′(0, T ;W
−

1

p′
,p′

(Γ1))

(Buε) is bounded in V ′ = Lp′(0, T ;V ′

0).

(36)
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Hence there exists an subsequence, still represented by (uε), such that, when

ε→ 0
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√
εuε

∗

⇀ 0 weak-star in L∞(0, T ;L2(Ω));

γuε
∗

⇀ γu weak-star in L∞(0, T ;L2(Γ1));

uε ⇀ u weak in V = Lp(0, T ;V0);

γuε ⇀ γu weak in Lp(0, T ;W
1

p′
,p
(Γ1));

γuε ⇀ γu weak in Lρ+2(0, T ;Lρ+2(Γ1)) ≡ Lρ+2(Σ1);

γuε(T ) ⇀ χ weak in L2(Γ1)

εu′ε ⇀ 0 weak in V ′ = Lp′(0, T ;V ′

0);

|γuε|ργuε ⇀ η weak in L
ρ+2

ρ+1 (0, T ;L
ρ+2

ρ+1 (Γ1))

γu′ε ⇀ γu′ weak in Lp′(0, T ;W
−

1

p′
,p′

(Γ1));

Buε ⇀ ζ weak in V ′ = Lp′(0, T ;V ′

0).

(37)

Analogously to the Theorem 1 we can to show that |γu|ργu = η and Bu = ζ.

Using the convergence (37) in (28) we obtain the variational formulation of the

problem (∗), when ε→ 0

(γu′, γv)Γ1
+a(u, v) + (|γu|ργu, γv)Γ1

= (f(t), γv)Γ1
∀ v ∈ V0 in D′(0, T ).

On the other hand, with a analogously analysis as in the Remark 2, we have

as in the Theorem 1: γuε(0) ⇀ γu(0) in L2(Γ1). Therefore

γu(0) = u0 on Γ1.

In this sense, we have the solution of the problem (∗) as limit of the per-

turbed problem (∗∗).

6 Boundary Stabilization

The aim of section is study the algebric decay for the energy E(t) associated to

weak solution of the problem (∗). To asymptotic behavior, we use the Nakao’s
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method [9]. This energy is given by

E(t) =
1

2
|γu(t)|2L2(Γ1) (38)

Remark 3. Note that, the solution of the problem (∗) we can be extend to

[0,∞), when f = 0.

Theorem 3. Let E(t) a energy associated the weak solution of problem (∗).
Then, there exists a constant δ > 0 such that the energy satisfies

E(t) ≤ C
1

(1 + t)
1

δ

, ∀t ≥ 0.

Considering (28) with f = 0 and v = uε we get:

1

2

d

dt
|
√
εuε(t)|2 +

1

2

d

dt
|γuε(t)|2 = −‖uε(t)‖p

V0
− ‖γuε(t)‖ρ+2

Lρ+2(Ω)

Let Eε(t) = 1
2
|√εuε(t)|2 + 1

2
|γuε(t)|2, then

d

dt
Eε(t) ≤ 0, ∀t ≥ 0 (39)

and

Eε(t) ≤ Eε(0) =
1

2
|
√
εuε(0)|2 +

1

2
|γuε(0)|2 ≤ C(γu0)

because, 1
2

√
εuε(0) → 0 in L2(Ω) and γuε(0) → γu(0) in L2(Γ1) when ε → 0.

Therefore, Eε(t) is increasing and bounded.

We have that

d

dt
Eε(t) = −‖uε(t)‖p

V0
− ‖γuε(t)‖ρ+2

Lρ+2(Ω) (40)

then

Eε(t+ 1) − Eε(t) = −
∫ t+1

t

‖uε(t)‖p
V0

−
∫ t+1

t

‖γuε(t)‖ρ+2
Lρ+2(Ω).

Therefore

∫ t+1

t

‖uε(t)‖p
V0

+

∫ t+1

t

‖γuε(t)‖ρ+2
Lρ+2(Ω) = Eε(t) − Eε(t+ 1) (41)
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Since V0 ↪→ L2(Ω) and Lρ+2(Γ1) ↪→ L2(Γ1), we have

∫ t+1

t

|uε(t)|pL2(Ω) +

∫ t+1

t

|γuε(t)|pL2(Γ1) ≤ C1(Eε(t) −Eε(t+ 1)) (42)

Therefore exist t∗ ∈ [t, t+ 1], such that

|uε(t
∗)|p

L2(Ω) + |γuε(t
∗)|p

L2(Γ1) ≤ C1[Eε(t) − Eε(t+ 1)],

where,
1

2
|uε(t

∗)|2 ≤ C2[Eε(t) −Eε(t+ 1)]
2

p

1

2
|γuε(t

∗)|2 ≤ C2[Eε(t) −Eε(t+ 1)]
2

p .

Thus
ε

2
|uε(t

∗)|2 ≤ εC2[Eε(t) − Eε(t+ 1)]
2

p

1

2
|γuε(t

∗)|2 ≤ C2[Eε(t) − Eε(t+ 1)]
2

p

we obtain

1

2
|√εuε(t

∗)|2 +
1

2
|γuε(t

∗)|2 ≤ (1 + ε)C2[Eε(t) − Eε(t+ 1)]
2

p

Therefore,

Eε(t
∗) ≤ (1 + ε)C2[Eε(t) −Eε(t+ 1)]

2

p . (43)

Integrating from (40) of t to t∗, we obtain

Eε(t) = Eε(t
∗) +

∫ t∗

t

‖uε(t)‖p
V0

+

∫ t∗

t

‖γuε(t)‖p

Lp(Γ1) ≤

((1 + ε)C2)(Eε(t) − Eε(t+ 1))
2

p + (Eε(t) − Eε(t+ 1))

Therefore,

Eε(t)
p
2 ≤ max{1, (1 + ε)C2}

p
2 (Eε(t) − Eε(t+ 1)) + (Eε(t) − Eε(t+ 1))

p
2 ≤

max{1, (1 + ε)C2}
p
2

[
Eε(t) − Eε(t+ 1)][1 + (Eε(t) −Eε(t+ 1))

p−2

2

]
.

Being, Eε(t) limited for all ε > 0, follows that

Eε(t)
p
2 ≤ C3 max{1, (1 + ε)C2}

p
2 (Eε(t) − Eε(t+ 1))
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or

Eε(t)
p
2 ≤ C1ε(Eε(t) − Eε(t+ 1)),

where C1ε = C3 max{1, (1 + ε)C2}
p
2 .

Thus, by Nakao’s Lemma, there exists δ > 0 such that

E1ε(t) ≤ C1ε

1

(1 + t)
1

δ

Note that C1ε → max{1, C2}
p
2 , γuε(t) ⇀ γu(t) weak in L2(Γ1) and

√
εuε(t) ⇀

0 weak in L2(Ω).

From

lim inf
ε→0

E1ε(t) ≤ lim inf
ε→0

C1ε

1

(1 + t)
1

δ

, ∀t ≥ 0

implies that

lim inf
ε→0

{
1

2
|
√
εuε(t)|2L2(Ω) +

1

2
|γuε(t)|2L2(Γ1)

}
≤ max{1, C2}

p
2

1

(1 + t)
1

δ

, ∀t ≥ 0

Thus,
1

2
|γu(t)|2L2(Γ1) ≤ C1

1

(1 + t)
1

δ

, ∀t ≥ 0,

where C1 = max{1, C2}
p
2 .
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