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Abstract

In this paper, we investigate the existence of positivetgmia for singulanth-order bound-
ary value problem

um (@) +at) f(t,ut) =0, O0<t<1,
u®0)=u"™A(1) =0, 0<i<n-2
wheren > 2, a € C((0, 1), [0, +0)) may be singular at = 0 and (or)t = 1 and the nonlinear

term f is continuous and is allowed to change sign. Our proofs asedan the method of lower
solution and topology degree theorem.
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1. Introduction

Boundary value problems for higher ordeftdrential equations play a very impor
tant role in both theories and applications. Existence sftpy@ solutions for nonlinear
higher order has been studied in the literature by using tteshosel’skii and Guo
fixed point theorem, Leggett-Williams fixed point theorenower- and upper- solu-
tions method and so on. We refer the reader to [2-9] for sommenteesults. However,
to the best of our knowledge, few papers can be found in teeatiire fomth-order
boundary value problem with sign changing nonlinearitystpgapers are dealing with
the existence of positive solutions when the nonlinear térisinonnegative. For ex-
ample, in [3], by using the Krasnosel'skii and Guo fixed pdirgorem, Eloe and Hen-
derson studied the existence of positive solutions for tilewing boundary value

problem
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U () + a® f(u®) = 0, te (0,1),
{ ud(0)=u"?1)=0, 0<i<n-2,

(1.1)
where

(Aq) f :[0,0] — [0, ) is continuous;

(A2) a : (0,1) — [0, ) is continuous and does not vanish identically on any
subinterval;

(Ag) f is either superlinear or sublinear.

Motivated by the above works, in this paper, we study thetemise of positive so-
lutions for singulanth-order boundary value problem with sign changing nomliitg

as follows

{ u™(t) + a(t) f(t,u(t)) =0, te(0,1), (1.2)

u(©0)=u™?d(1)=0, 0<i<n-2
Throughout this paper, we assume the following conditiarid.h
(Cy) f :[0,1] X [0, 20) — (—00, +00) iS cOntinuous;
(Cy)a: (0,1) - [0, =) is continuous, and & fol a(t)dt < o0, if n=2;
0< [(1-tatdt < co,if n > 3.

The purpose of this paper is to establish the existence dfy®solutions for BVP
(1.2) by constructing available operator and combiningrtiethod of lower solution
with the method of topology degree.

The rest of this paper is organized as follows: in sectionepresent some prelim-
inaries and lemmas. Section 3 is devoted to prove the existehpositive solutions

for BVP (1.2). An example is considered in section 4 to iltat# our main results.
2. Preliminary Lemmas

Lemma 2.1. Suppose that(t) € C[0, 1], then boundary value problem

{ UM +y(t) =0, 0<t<1,

W) = uA(1)=0, 0<i<n-2 (2.1)

has a unique solution

1
u(t) = fo G(t. 9y(9ds

where
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G(t, 9 =

1 @A-9t" (-9 O0<s<t<i,
(n-1)!

(1-9t™l, O<t<s<1l
Proof. The proof follows by direct calculations.
Lemma 2.2. G(t, ) has the following properties.

(1) 0< G(t, 9) < k(9), t,s€ [0, 1], where

1-s

k(s) = CEEE

i
(2) %G(t, s)>00n(0,1)x(0,1),0<i<n-2;

(3)Gi(t. 9 == ZG(t,9 < (n—1)(n—2)k(9), n=3.
Proof. It is easy to check that (1) and (3) hold. The proof of (2), péesee [1].
Remark 2.1. By (C,) and Lemma 2.2, we have
1 1 1
0< f G(t, 9a(s)ds< o,n>2, and 0O< f f GZ (1, 9)a(s)drds < co,n > 3.
0 0 0

By the definition of completely continuous operator, we chaak that the follow-

ing lemma holds.

Lemma 2.3. LetP is a cone ofX = C[0,1]. Supposd : P — X is completely
continuous. Definéd : TX — P by

(Ay)(t) = maxiy(t),0}, yeTX
Then,Ao T : P — Pis also a completely continuous operator.
3. Main results
LetX=C[0,1],P={ue X: u(t) >0, tel0,1]} with|ull = trel’ﬂoffll)]qu(t)l. Set

fi(t,u) = maxo, f(t,u)}, fo(t,u) = maxo, —f(t, u)},
and
5= [ K9a9ds W) = [, Gt 9a(s)ds

For convenience, we introduce the following notations
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= . fLw -+ f(t,u

f = lim sup max ( ), fo = lim sup max ( ),
u—oo 0st<l U u—0+0st<l U

- . fi(t,u — . fi(t,u

1o = lim sup maxg, f10=lim sup maxg,
U—oco 0st<l U u—0+ 0st<l U

— . fo(t,u — . fo(t,u

foe = lim sup maxM, foo = lim sup maxM.
U—oo 0st<l U u—o+ 0st<l U

Theorem 3.1. Suppose tha(Cy) and(Cy) hold, in addition assumé,, = A < +oo,
fae = B< +00 (0rf1g= A< +oo, T5 = B < +00) with A+ B < % and there exist, 1

withr > A > 0 such that

A< min f(t,awt), n=2,
te[0,1] (3 1)
A > max f(t, Aw(t)), n> 3. '
te[0,1]
Then BVP(1.2) has a positive solutioa(t) satisfying
O<Aw(t) <u*(t), O<t<1l and |ui<r.
Proof. Let
_ [ ftu@®), () > aw),
g(t, u(®) ‘{ Ft, Aw(D),  ut) < (). (32)
Define the operator : P — X by
(Tu)(®) = fol G(t, 9a(s)g(s u(s))ds, 0<t<1. (3.3)

Similar to the proof of Lemma.2 in [7], we can easily check that is a completely
continuous operator.

Define the operatoh : X —» P by
(Au)(t) = maxu(t), 0}. (3.4)
By Lemma 2.3, we geho T : P — Pis also completely continuous.

If f1 = A < +o0, T, = B < +oo, then by hypothesia + B < %, we may take
Ao > A, By > Bsuch thaths + By < 1, T, < Agandf,,, < Bo. Thus, we choose
L > 0 such that

fa(t,u) < Agu, fo(t,u) <Bou, if u>L, te]0,1], (3.5)
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and there exists > L such that
fi(t,u) < Agr,  fo(t,u) < Bor, if Aw(t) <u(t) <L, te]0,1]. (3.6)

LetQ ={ueP: |ul<r}. Then,forue dQ, we have by (3.5) and (3.6) that

max fa(t,u) = max{ max fa(t, u), rtgﬁrfl(t, u)} < Agr. (3.7)
ue[Aw(t).r] ue[Aw(t),L] ue[L,r]
Similarly,
max fa(t, u) < Bor. (3.8)
uet[%l[wit)],r]

Thus, for eachu € 9Q, from (3.7) and (3.8), we have
(Ao T)u(t) = max{ F6(t, 9a(9g(s u(s)ds o}
< [y Gt 9a(9ig(s u(9)ids

< maxg(t, )l f k(9a(9ds

ue[0,r]

=6 max |f(t, u)

uefAw(t).r]

=0 max (fo(t, u) + fo(t, u))

ue[Aw(t).r]

< 6(Ao+ Bo)r <r = |lul, (3.9)
which implies

I(Ao T)ull < lull, YuedQ.
Thus, we have

degfl —AoT, Q, 0} =1,

where deg means the degree on coRe Hence Ao T has a fixed point* in Q, i.e.,
(Ao T)(U*) = U, u* € Q.

If 10 = A < +o0, fyg = B < +oo, then we takeAy > A, By > B such that
Ao+ Bo < 1, T19 < Agand T, < Bo. Taker > 0 such that
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fi(t,u) < Agu, fo(t,u) < Bou, if O<u(t)<r, te[0,1].

Then, foru € 9Q, similar to the proof of (3.9), we have thato T has a fixed point*
in Q. Hence, in any case we always have thatT has a fixed pointr* in Q.

In the following, we shall show the following relation holds
(Tu)(t) > aw(t), te[0,1]. (3.10)
Assume the contrary, then there exists [0, 1] such that
(Tu*)(tg) — AW(tp) = t2[10i’r11]{(Tu*)(t) —Aw(t)} = M < 0. (3.12)
Obviously,tp # 0, sotp € (0, 1] and
(Tu*) (to) — AW (to) = O. (3.12)
There are two cases to consider.

Casel. tg = 1. Itis obvious thaf u*(t) — Aw(t) on [0, 1] is continuous. From (3.11), we
have that there exists € [0, 1) such thatTu*)(t1) —Aw(t;) = 0 and [T u*)(t)—Aw(t) < 0
fort e (t1,1].

If n=2, then by (3.1), (3.3) and (3.12), one has

(Tur)' () — aw'(t) = (Tu)' (1) — aw' (1) - ftl[(TU*)’(S) — AW (9)]'ds
= [a(9lg(s u'(9) - Alds
= [fa(9)[f(s w(9) - Ads
> [min (¢, Aw(t) - 1] Ja(s)ds = o.

Then, we have thafl{u*)’(t) — Aw'(t) > 0.
If n> 3, from (3.1), (3.3) and (3.12), we get

(Tuy (@) — AW (t) = (Tu*)Y' (1) — AW (1) - ftl[(Tu*)'(T) - AW ()]’ dr
= [} fre(n 991 - g(s u*(9)]dsdr

= ftl fol G/.(r, 9)a()[ 1 - (s Aw(s))]dsdr
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1rl~,
>[1- max ft, aw(®)] [~ J; G (r. 9a(s)dsdr > 0.

Then, we haveTu*)’(t) — Aw'(t) = 0. Therefore, in any case we always have that

(Tu*)' (t) — Aw'(t) > 0, which implies
(Tu)(to) — AW(to) = (Tu")(1) — AW(1) = (Tur)(ts) — AW(ty) = 0.

It contradicts (3.11), so (3.10) holds.
Case 2. tp € (0,1). Obviously,Tu*(t) — Aw(t) on [0, 1] is continuous. By (3.11) and
to € (0, 1), we have that there exigtse [0, tp) U (tp, 1] such that Tu*)(t2) — Aw(tz) = 0
and Tu*)(t) — aw(t) < 0 fort € (to,to] or t € [to, t2). Without loss of generality, we
assume thate (ty, to].

If n=2, we have by (3.1), (3.3) and (3.12) that

(Tu)' () — aw'(t) = (Tu)' (to) — AW (to) — ftt‘)[(Tu*)’(S) —Aw/(s)]'ds
= [* a(9lg(s u'(9) - Alds
= [ a(9)[f(s aw(9) - Ads
> [min £t Aw() - 4] f°a(s)ds> 0.

Thus, Tu*)'(t) — AW/ (t) = 0.
If n> 3, from (3.1), (3.3), (3.12) and Lemma 2.2 (2), we obtain

(TUY (1) — AW (®) = (TU (to) — AW (to) — °[(TuY (x) — AW (1)) e
= [° | Gl 9a(9[ - o(s u*(9)]dsdr
= [ [ Gl(r. 9a(9)A - f(s Aw(s)]dsdr

to 1~
>[1- max f(t, aw®)] [ [ G (r. S)a(s)dsdr > 0.

Thus, Tu*)’(t)—Aw'(t) > 0. Hence, in any case we always have tiat{’ (t)—aw'(t) >

0, which implies
(Tu)(to) — AW(to) > (Tu")(t2) — AW(tz) = 0.

It contradicts (3.11), so (3.10) holds. Thus,{ T)u* = Tu* = u*, U* € Q, i.e., BVP
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(1.2) has a positive solutiaut(t) satisfying O< Aw(t) < u*(t), 0 <t < 1, and|u*|| < r.

Corollary 3.1 Suppose th4tC1) and(C,) hold, in addition assume,, = 0, f,,, = 0(
orf;p=0, f,o=0), if there exists a constant> 0 such that

A< min f(t,Aawt), n=2,
te[0,1]

A > max f(t, Aw(t)), n> 3.
te[0,1]

Then BVP(1.2) has a positive solution.

Theorem 3.2. Suppose thaC,) holds, in addition assumit, 0) > 0, a(t)f(t,0) = 0
andf,, = A< +00, foy = B < 400 (0rfig=A < +00, T,g = B < +00 ) with

A+B< % Then BVP(1.2) has a positive solution.

Proof: Similar to the proof of Theorem 3.1, we can complete the pojdafheorem

3.2, so we omit it here.

Corollary 3.4. Suppose thdC,) holds, in addition assumit, 0) > 0, a(t) f(t,0) O,
f,, = 0andf,, =0 (orf,,=0andf, = 0). Then BVP(1.2) has a positive

solution.

Corollary 3.3. Suppose th4LC,) holds, in addition assurmie: [0, 1]1x[0, c0) — [0, c0),
a(t)f(t,0) £ 0andf,, = A< +oo (0rfy = A< +co ) with A < 1. Then BVP(1.2) has

a positive solution.

Remark 3.1. Suppose thaiX,) holds, in addition assumg: [0, 1] x [0, o0) — [0, o),
a(t)f(t,0) z 0 andf, = 0 (orf,=0). Then BVP (1.2) has a positive solution.

4. An example

(n-1)!

Example4.1. Leta(t) = 20-1)

n> 3, and

[1+In(1+(e-D)(u+ uz + 1), (t,u) € [0,1] x [0, 1],
f,uy=1{ [L+InL+(e-1)][B - (2e2+6)u-1)], (tu)e[0,1]x[L, 2],
—[1+In(1+ (e-1)t))(eV + 3 + sinru)u, (t,u) € [0,1] X [2, o).

By simple calculation, we have

1 1 1 —1)!
0<6= [y ka(s)ds= [ 7= - Srgds =3 < oo,
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Itis easy to see thdt e C([0, 1] x [0, ), R)andf(t, 0) > 0, a(t) f(t,0) £ 0, Vt € [0, 1].
Owing to f(t,u) > O, (t,u) € [0,1] x [0, 1], and f(t,u) < O, (t,u) € [0, 1] X [2, c0), We

have

fit,u) = f(t,u), f2(t,uy=0, (tu)e]0,1]x]0,1],
and
fit,u) =0, fo(t,u)=—"f(t,u), (t,u)e]0,1]x[2,).

By calculating, we obtain that

>
Il
-
-
8
I
I\;:H—\
w
I
-
N
8
I
I\;:H—\

andso)A+B =1< 2= % Therefore, by Theorem 3.2, BVP (1.2) has a positive

solution.
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