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POSITIVE SOLUTIONS OF A BOUNDARY VALUE PROBLEM

FOR A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION

ERIC R. KAUFMANN AND EBENE MBOUMI

Abstract. In this paper we give sufficient conditions for the existence of
at least one and at least three positive solutions to the nonlinear fractional
boundary value problem

Dαu + a(t)f(u) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, u′(1) = 0,

where Dα is the Riemann-Liouville differential operator of order α, f : [0,∞) →
[0,∞) is a given continuous function and a is a positive and continuous function
on [0, 1].

1. Introduction

We are interested in positive solutions of the nonlinear fractional boundary value
problem

Dαu + a(t)f(u) = 0, 0 < t < 1, 1 < α ≤ 2, (1)

u(0) = 0, u′(1) = 0, (2)

where Dα is the Riemann-Liouville differential operator of order α, f : [0,∞) →
[0,∞) is a given continuous function and a is a positive and continuous function on
[0, 1]. We show that under certain growth conditions on the nonlinear term f , the
fractional boundary value problem (1), (2) has at least one or at least three positive
solutions. The main tools employed are two well known fixed point theorems for
operators acting on cones in a Banach space.

The use of cone theoretic techniques in the study of solutions to boundary value
problems has a rich and diverse history. Some authors have used fixed point the-
orems to show the existence of positive solutions to boundary value problems for
ordinary differential equations, difference equations, and dynamic equations on time
scales, see for example [1, 2, 5, 6, 11, 15, 18, 20, 21, 26, 27, 36] and references therein.
In other papers, [21, 22, 35], authors have use fixed point theory to show the exis-
tence of solutions to singular boundary value problems. Still other papers have used
cone theoretic techniques to compare the smallest eigenvalues of two operators, see
[10, 12, 14, 19, 23, 33]. The texts by Agarwal, O’Regan and Wong [2] and by Guo
and Lakshmikantham [13] are excellent resources for the use of fixed point theory
in the study of existence of solutions to boundary value problems.

While much attention has focused on the Cauchy problem for fractional differ-
ential equations for both the Reimann-Liouville and Caputo differential operators,
see [8, 17, 24, 28, 29, 30, 31, 32, 34] and references therein, there are few papers
devoted to the study of fractional order boundary value problems, see for example
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[3, 4, 7, 9, 16, 25, 37, 38]. The motivation for this paper are the manuscripts [7],
[9], [37] and [38]. The history, definitions, theory, and applications of fractional
calculus are well laid out in the books by Miller and Ross [28], Oldham and Spanier
[30], Podlubny [31], and Samko, Kilbas, and Marichev [32]. In particular, the book
by Oldham and Spanier [30] has a chronological listing on major works in the
study of fractional calculus starting with the correspondence between Leibnitz and
L’Hospital in the late seventeenth century and continuing to 1974. In addition, the
web site http://people.tuke.sk/igor.podlubny/fc.html, authored by I. Podlubny, is
a very useful resource for those studying fractional calculus and its application.

In [37] Zhang used cone theory and the theory of upper and lower solutions to
show the existence of at least one positive solution of the fractional order differential
equation

Dαu = f(t, u), 0 < t < 1, 0 < α < 1.

Daftardar-Gejji [9] extended the results in [37] to show the existence of at least one
positive solution of the system of fractional differential equations

Dαiui = fi(t, u1, u2, . . . , un), ui(0) = 0, 0 < αi < 1, 1 ≤ i ≤ n.

Recently, Bai and Lü [7] showed the existence of positive solutions of the frac-
tional boundary value problem,

Dαu(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = u(1) = 0.

In [38], Zhang used the Leggett-Williams theorem to show the existence of triple
positive solutions to the fractional boundary value problem

Dα
0+u(t) = f(t, u(t)), 0 < t < 1

u(0) + u′(0) = 0, u(1) + u′(1) = 0.

Throughout this paper, we assume that f and a satisfies the following conditions:

(A1) f : [0, 1] × [0,∞) → [0,∞) is continuous;
(A2) a ∈ L∞[0, 1];
(A3) there exists m > 0 such that a(t) ≥ m a.e. t ∈ [0, 1].

In Section 2 we present some basic definitions from fractional calculus. We also
develop sign properties of the kernel G(t, s). We conclude Section 2 with two well-
known fixed point theorems. Using the framework developed in Section 2, we state
and prove our main results in Section 3. In particular, we give sufficient conditions
for the existence of at least one positive solution and at least three positive solutions
of (1), (2).

2. Background and Preliminary Results

We begin with some definitions from the theory of fractional calculus. The
fractional integral operator of order α for a function u : (0,∞) → R is defined to
be

Iαu(t) =

∫ t

0

1

Γ(α)
(t − s)α−1u(s) ds,
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provided the integral converges. For a given function u : (0,∞) → R
+, the

Riemann-Louiville differential operator Dα of order α is defined to be

Dαu(t) =
1

Γ(n − α)

dn

dtn

∫ t

0

u(s)

(t − s)α−n+1
ds

where n = bαc + 1.
Remark: If u ∈ C(0, 1) ∩ L(0, 1), then DαIαu(t) = u(t).

In order to rewrite (1), (2) as an integral equation, we need to know the action
of the fractional integral operator Iα on Dαu for a given function u. To this end,
we first note that if λ > −1, then

Dαtλ =
Γ(λ + 1)

Γ(λ − α + 1)
tλ−α

Dαtα−k = 0, k = 1, 2, . . . , n,

where n = bαc.
The following two lemmas, found in [7], are crucial in finding an integral repre-

sentation of the boundary value problem (1), (2).

Lemma 2.1. Let α > 0 and u ∈ C(0, 1)∩L(0, 1). Then the solution of Dαu(t) = 0
is given by

u(t) = C1t
α−1 + C2t

α−2 + · · · + Cntα−n

for some Ci ∈ R, i = 1, 2, . . . , n.

Lemma 2.2. Suppose u ∈ C(0, 1) ∩ L(0, 1) is such that Dαu ∈ C(0, 1) ∩ L(0, 1).
Then

IαDαu(t) = u(t) + C1t
α−1 + C2t

α−2 + · · · + Cntα−n (3)

for some Ci ∈ R, i = 1, 2, . . . , n.

The next step in inverting the boundary value problem is to find an integral
representation of the solution of the linearized problem.

Lemma 2.3. If u ∈ C(0, 1) ∩ L(0, 1) is a solution of

Dαu(t) + g(t) = 0, 0 < t < 1, (4)

u(0) = u′(1) = 0, (5)

then

u(t) =

∫ 1

0

G(t, s)g(s) ds,

where

G(t, s) =
1

Γ(α)

{

tα−1(1 − s)α−2 − (t − s)α−1, 0 ≤ s ≤ t

tα−1(1 − s)α−2, t < s < 1
.

Proof. Let g be continuous and 1 < α ≤ 2 and let u ∈ C(0, 1)∩L(0, 1) be a solution
of (4), (5). By (3),

u(t) =

∫ t

0

−1

Γ(α)
(t − s)α−1g(s) ds + C1t

α−1 + C2t
α−2.
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The boundary condition u(0) = 0 implies C2 = 0. Thus,

u(t) =

∫ t

0

−1

Γ(α)
(t − s)α−1g(s) ds + C1t

α−1. (6)

Differentiate (6).

u′(t) =
−(α − 1)

Γ(α)

∫ t

0

(t − s)α−2g(s) ds + C1(α − 1)tα−2.

The boundary condition u′(1) = 0 implies that

C1 =
1

Γ(α)

∫ 1

0

(1 − s)α−2g(s) ds,

and the proof is complete.
�

Lemma 2.4. Let β ∈ (0, 1) be fixed. The kernel, G(t, s), satisfies the following
properties.

G(t, s) ≥ 0, (t, s) ∈ [0, 1] × [0, 1). (7)

max
0≤t≤1

∫ 1

0

G(t, s) ds =
1

α(α − 1)Γ(α)
. (8)

min
β≤t≤1

G(t, s) ≥ βsG(s, s) for all 0 ≤ s < 1. (9)

G(t, s) ≤ G(s, s), (t, s) ∈ [0, 1]× [0, 1). (10)
∫ 1

0

s G(s, s) ds > 0. (11)

Proof. Inequality (7) holds trivially.
To show (8), define g1(t, s) = tα−1(1 − s)α−2 − (t − s)α−1, 0 ≤ s ≤ t, and

g2(t, s) = tα−1(1 − s)α−2, t ≤ s < 1. Note,

∫ t

0

g1(t, s) ds =
αtα−1 − (α − 1)tα

α(α − 1)
−

tα−1(1 − t)α−1

α − 1
,

and
∫ 1

t

g2(t, s) ds =
tα(1 − t)α−1

α − 1
.

Hence,
∫ 1

0

G(t, s) ds =
αtα−1 − (α − 1)tα

α(α − 1)Γ(α)
,

from which (8) follows.
Now,

∂g1(t, s)

∂t
= (α − 1)tα−2

[

(1 − s)α−2 −
(

1 −
s

t

)α−2
]

≤ 0.

EJQTDE, 2008 No. 3, p. 4



Hence, g1(t, s) is decreasing as a function of t. We have,

g1(t, s) ≥ g1(1, s) =
1

Γ(α)

(

(1 − s)α−2 − (1 − s)α−1
)

=
1

Γ(α)
(1 − s)α−2s

≥ βs
1

Γ(α)
(1 − s)α−2

≥ βs
1

Γ(α)
(1 − s)α−2sα−1 = βsG(s, s).

Clearly g2(t, s) is increasing as a function of t. Hence, for β ≤ t ≤ s < 1 we have,

g2(t, s) ≥ g2(β, s)

≥
1

Γ(α)
βα−1(1 − s)α−2

≥
1

Γ(α)
β(1 − s)α−2

≥ βs
1

Γ(α)
sα−1(1 − s)α−2 = βsG(s, s).

And so, (9) holds.
From the monotonicity of g1 and g2, (10) follows.
Finally,

∫ 1

0

sG(s, s) ds =
1

Γ(α)

∫ 1

0

sα(1 − s)α−2 ds > 0

Thus (11) is valid and the proof is complete.
�

Remark: By restricting the values of s to be in the interval [β, 1) in inequality
(9), we can prove the following inequality

min
β≤t≤1

G(t, s) ≥ βG(s, s), for all β ≤ s < 1. (12)

We will use inequality (12) in the proof of Theorem 3.2 and inequality (9) in the
proof of Theorem 3.3.

We will use the following well-known cone expansion and compression theorem,
see [26], to show the existence of at least one fixed point for T .

Theorem 2.5 (Krasnosel’skĭı). Let B be a Banach space and let K ⊂ B be a cone in
B. Assume that Ω1, Ω2 are open with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let T : K∩(Ω2\Ω1) → K
be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2 , or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

To show the existence of multiple solutions we will use the Leggett-Williams
fixed point theorem [27]. To this end we need to define the following subsets of a
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cone K.

Kc = {u ∈ K : ‖u‖ < c}.

K(α, b, d) = {u ∈ K : b ≤ α(u), ‖u‖ ≤ d}.

We say that the map α is a nonnegative continuous concave functional on a cone
K of a real Banach space B provided that α : K → [0,∞) is continuous and

α(tu + (1 − t)v) ≤ tα(u) + (1 − t)α(v)

for all u, v ∈ K and 0 ≤ t ≤ 1.

Theorem 2.6 (Leggett-Williams). Suppose T : Kc → Kc is completely continuous
and suppose there exists a concave positive functional α on K such that α(u) ≤ ‖u‖
for u ∈ Kc. Suppose there exist constants 0 < a < b < d ≤ c such that

(B1)
{

u ∈ K(α, b, d) : α(u) > b} 6= ∅ and α(Tu) > b if u ∈ K(α, b, d);
(B2) ‖Tu‖ < u if u ∈ Ka, and
(B3) α(Tu) > b for u ∈ K(α, b, c) with ‖Tu‖ > d.

Then T has at least three fixed points u1, u2, and u3 such that ‖u1‖ < a, b < α(u2)
and ‖u3‖ > a with α(u3) < b.

3. Main Results

Define B =
(

C[0, 1], ‖.‖
)

where ‖u‖ = max0≤t≤1 |u(t)|. Then B is a Banach space.
Define the cone K ⊂ B by

K = {u ∈ B : u(t) ≥ 0, t ∈ [0, 1]},

and the operator T : B → B by

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s)) ds.

Note that fixed points of T are solutions of (1), (2). In order to use Theorems 2.5
and 2.6, we must show that T : K → K is completely continuous.

Lemma 3.1. Let (A1)-(A3) hold. The operator T : K → K is completely continu-
ous.

Proof. Since G(t, s) ≥ 0, then Tu(t) ≥ 0 for all u ∈ K. Hence if u ∈ K then Tu ∈ K.
Fix R > 0 and let M = {u ∈ B : ‖u‖ < R}. Let L = max0≤s≤R f(s). Then for

u ∈ M,

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≤ ‖a‖∞L

∫ 1

0

G(t, s) ds

≤
L‖a‖∞

α(α − 1)Γ(α)
.

Hence,

‖Tu‖ ≤
L‖a‖∞

α(α − 1)Γ(α)
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and so T (M) is uniformly bounded.

Define δ =
(

(α−1)Γ(α)
‖a‖∞L

)1/(α−1)

and let t1, t2 ∈ [0, 1] be such that t1 < t2 and

t2 − t1 < δ. Then, for all u ∈ M,

|Tu(t2) − Tu(t1)| ≤

∫ 1

0

∣

∣G(t2, s) − G(t1, s)|a(s)f(u(s)) ds

≤
‖a‖∞L

(α − 1)Γ(α)

(

tα−1
2 − tα−1

1

)

≤
‖a‖∞L

(α − 1)Γ(α)
(t2 − t1)

α−1

≤ ε.

Thus T is equicontinuous on M. An application of the Arzela-Ascoli Theorem
shows that T is completely continuous and the proof is complete. �

In our first result, we show the existence of at least one positive solution of (1),
(2).

Theorem 3.2. Suppose that (A1)-(A3) is satisfied. Let β ∈ (0, 1), M = ‖a‖∞,

0 < A ≤ α(α−1)Γ(α)
M , and B ≥ (βm

∫ 1

β
G(s, s)ds)−1. Assume there exist positive

constant r, R, where r < R and Br < AR, such that f satisfies

(H1) f(x) ≤ AR for all x ∈ [0, R],
(H2) f(x) ≥ Br for all x ∈ [0, r].

Then the boundary value problem (1), (2) has at least one positive solution.

Proof. We show that condition (ii) of Theorem 2.5 is satisfied. By Lemma 3.1, the
operator T : K → K is completely continuous.

Define Ω2 = {u ∈ B : ‖u‖ < R}. Let u ∈ K ∩ ∂Ω2. From (H1) and (8), we have

‖Tu‖ = max
0≤t≤1

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≤ AM max
0≤t≤1

∫ 1

0

G(t, s) ds R

≤ A
M

α(α − 1)Γ(α)
R

≤ ‖u‖.

That is,

‖Tu‖ ≤ ‖u‖ u ∈ ∂K ∩ Ω2. (13)
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Define Ω1 = {u ∈ B : ‖u‖ < r}. Let u ∈ K ∩ ∂Ω1. From (H2) and (12) we have,

Tu(t) ≥

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≥ Bmr

∫ 1

β

G(t, s) ds

≥ Bmrβ

∫ 1

β

G(s, s) ds

≥ ‖u‖.

That is,

‖Tu‖ ≥ ‖u‖ u ∈ K ∩ ∂Ω1. (14)

Since 0 ∈ Ω1 ⊂ Ω2 and inequalities (13) and (14) hold, then by part (ii) of
Theorem 2.5, there exists at least one fixed point of T in K∩ (Ω2 \Ω1). This fixed
point is a solution of (1), (2) and the proof is complete. �

In the next result, we show the existence of at least three positive solutions of
(1), (2).

Theorem 3.3. Let β ∈ (0, 1), M = ‖a‖∞, 0 < A ≤ α(α−1)Γ(α)
M and B ≥

(βm
∫ 1

β sG(s, s)ds)−1. Let a, b and c be such that 0 < a < b < c. Assume that the

following hypotheses are satisfied

(H3) f(u) < Aa for all (t, u) ∈ [0, 1] × [0, a],
(H4) f(u) > Bb for all (t, u) ∈ [β, 1] × [b, c],
(H5) f(u) ≤ Ac for all (t, u) ∈ [0, 1] × [0, c].

Then the boundary value problem (1), (2) has at least three positive solutions
u1, u2, u3 ∈ K satisfying

‖u1‖ < a,

b < α(u2),

a < ‖u3‖ with α(u3) < b.

Proof. Define a nonnegative functional on B by α(u) = minβ≤t≤1 |u(t)|. We show
that the conditions of Theorem 2.6 are satisfied.

Let u ∈ Kc. Then ‖u‖ ≤ c and by (H5) and (8),

‖Tu‖ = max
0≤t≤1

∫ 1

0

G(t, s)a(s)f(u(s)) ds

<
MA

α(α − 1)Γ(α)
ds c

≤ c.

Hence T : Kc → Kc and by Lemma 3.1, T is completely continuous.
Using an analogous argument, it follows from condition (H3) that if u ∈ Ka then

‖Tu‖ < a. Condition (B2) of Theorem 2.6 holds.
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Let d be a fixed constant such that b < d ≤ c. Then α(d) = d > b and ‖d‖ = d.
As such, K(α, b, d) 6= ∅. Let u ∈ K(α, b, d) then ‖u‖ ≤ d ≤ c and minβ≤t≤1 u(s) ≥ b.
By assumption (H4), and (9),

α(Tu) = min
β≤t≤1

∫ 1

0

G(t, s)a(s)f(u(s)) ds

> m

∫ 1

0

s G(s, s) ds Bb

> b.

That is for all u ∈ K(α, b, d), α(Tu) > b. Condition (B1) of Theorem 2.6 holds.
Finally, if u ∈ K(α, b, c) with ‖Tu‖ > d then ‖u‖ ≤ c and minβ≤t≤1 u(s) ≥ b

and from assumption (H4) we can show α(Tu) > b. Condition (B3) of Theorem
2.6 holds.

As a consequence of Theorem 2.6, T has at least three fixed point u1, u2, u3 such
that ‖u1‖ < a, b < α(u2), a < ‖u3‖ with α(u3) < b. These fixed points are solutions
of (1), (2) and the proof is complete. �
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