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Abstract. In this paper, a novel class of neutral delay differential equations (NDDEs)
is presented. By using the Razumikhin method and Kirchhoff’s matrix tree theorem
in graph theory, the global exponential stability for such NDDEs is investigated. By
constructing an appropriate Lyapunov function, two different kinds of sufficient criteria
which ensure the global exponential stability of NDDEs are derived in the form of
Lyapunov functions and coefficients of NDDEs, respectively. A numerical example is
provided to demonstrate the effectiveness of the theoretical results.
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1 Introduction

It is well known that neutral differential equations (NDEs) are extensively used to model many
of the phenomena arising in areas such as mechanics, physics, biology, medicine, economics,
ecological systems, and engineering systems [1, 2, 4, 8, 9, 16, 17, 25, 28, 31, 32]. In recent
years, the properties of NDEs have been a very active area of research, and a lot of interesting
results have been obtained [10, 30]. Stability is one of the most important concepts concerning
the properties of NDEs. Hence, it is taken for granted that the stability analysis of NDEs has
attracted considerable attention of an increasing number of scientists [11, 24, 27, 29]. In reality,
time delays exist in many physical systems and population ecology, because the future states
depend not only on the present state but also on the past states. It is widely known that time
delays often lead to the failure of stability for a stable system. Therefore, the study of neutral
delay differential equations (NDDEs) has become the subject of many investigations.

As is known to all, the Lyapunov functional method and the Lyapunov function method
are two basic methods in studying the stability of delay differential equations. It is from the
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authors’ point of view that the Razumikhin–Lyapunov function method allows us to use sim-
ple functions rather than functionals. And compared with the Lyapunov functional method,
the imposed conditions of Razumikhin–Lyapunov function method are less restricted. More
recently, the Razumikhin-type stability theorems for different kinds of dynamical systems
were established in [3, 18, 19, 21, 26]. By the previous literatures, it is not difficult to see that
the Razumikhin method provides a powerful tool to study the stability of delay differential
equations.

In the study of coupled systems, the direct Lyapunov method is one of the most powerful
and effective techniques, and is an indispensable tool in the theory of stability. It plays an
important role in the establishment and development of the theory of stability for coupled
systems. However, an unpleasant fact in this approach is that it is very difficult to straightly
construct an appropriate Lyapunov function for specific coupled systems, because the dy-
namics of coupled systems depend not only on the individual vertex dynamics but also on
the coupling topology. Obviously, it is the key point to construct an appropriate Lyapunov
function for specific coupled systems in the study of stability. Over the past few years, based
on graph theory, Li et al. advanced a new approach to construct Lyapunov functions for dif-
ferential equations in [5, 12]. In [6, 13, 14, 15, 20, 22, 23], the global stability for several classes
of coupled systems was effectively investigated by the method.

Motivated by the above discussion, it is feasible to investigate the global exponential sta-
bility theory for coupled systems of NDDEs by this effective approach. In this paper, a novel
class of NDDEs are presented. Based on Razumikhin technique and Kirchhoff’s matrix tree
theorem in graph theory, the global exponential stability for these coupled systems of NDDEs
was investigated. By constructing the appropriate Lyapunov function, two different kinds of
sufficient criteria which ensure the global exponential stability for coupled systems of NDDEs
are derived in the form of Lyapunov functions and coefficients of NDDEs, respectively. And it
is worth mentioning that we get the sufficient stability conditions that could be verified more
easily than by using the usual methods of Lyapunov functions.

The organization of this paper is as follows. The problem formulation and some basic
preliminaries are given in Section 2. In Section 3, the main results, which guarantee that the
coupled system of NDDEs is globally exponentially stable, are provided. In Section 4, we
discuss a numerical example to illustrate the advantages of our results.

2 Preliminaries

The following basic concepts on the graph theory can be found in [13]. A digraph G = (V, E)
contains a set V = {1, 2, . . . , n} of vertices and a set E of arcs (j, i) leading from initial vertex
i to terminal vertex j. A subgraph H of a graph G is a graph whose set of vertices and set
of edges are all subsets of G. A subgraph H of G is said to be spanning if H and G have the
same vertex set. A digraph G is weighted if each arc (j, i) is assigned a positive weight aij.
Here aij > 0 if and only if there exists an arc from vertex j to vertex i in G. The weight W(G)
of G is the product of the weights on all its arcs. A directed path P in G is a subgraph with
distinct vertices {i1, i2, . . . , im} such that its set of arcs is {(ik, ik+1) : k = 1, 2, . . . , m − 1}. If
im = i1, we call P a directed cycle. A connected subgraph T is a tree if it contains no cycles.
A tree T is rooted at vertices i, called the root, if i is not a terminal vertex of any arcs, and
each of the remaining vertices is a terminal vertex of exactly one arc. A digraph G is strongly
connected if, for any pair of distinct vertices, there exists a directed path from one to the
other. Given a weighted digraph G with n vertices, define the weighted matrix A = (aij)n×n
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whose entry aij equals the weight of arc (j, i) if it exists, and 0 otherwise. Denote the directed
graph with weight matrix A as (G, A). A weighted digraph (G, A) is said to be balanced if
W(C) = W(−C) for all directed cycles C. Here, −C denotes the reverse of C and is constructed
by reversing the direction of all arcs in C. A subgraph Q is unicyclic if it is a disjoint union
of rooted trees whose roots form a directed cycle. A spanning unicyclic subgraph of G is a
spanning directed subgraph consisting of a collection of disjoint rooted directed trees whose
roots are connected by a directed cycle. For a unicyclic graph G with cycle CQ, let Q̃ be the
unicyclic graph obtained by replacing CQ with −CQ. Suppose that (G, A) is balanced, then
W(Q) = W(Q̃). The Laplacian matrix of (G, A) is defined as

L =


∑k ̸=1 a1k −a12 · · · −a1n

−a21 ∑k ̸=2 a2k · · · −a2n
...

...
. . .

...
−an1 −an2 · · · ∑k ̸=n ank

 .

To prove our results, the following lemma is necessary, which can be found in [12].

Lemma 2.1. Assume l ≥ 2. Let ci denote the cofactor of the i-th diagonal element of L. Then the
following identity holds:

l

∑
i,j=1

ciaijFij(xi, xj) = ∑
Q∈Q

W(Q) ∑
(s,r)∈E(CQ)

Frs(xr, xs).

Here Fij(xi, xj), 1 ≤ i, j ≤ l, are arbitrary functions, Q is the set of all spanning unicyclic graph of
(G, A), W(Q) is the weight of Q, and CQ denotes the directed cycle of Q. In particular, if (G, A) is
strongly connected, then ci > 0 for i ∈ L.

Throughout this paper, the following notations will be used.

Rn: n-dimensional Euclidean space
R1

+: [0,+∞)

Z+: {1, 2, . . . }
L: {1, 2, . . . , l}, l ∈ Z+

m = ∑l
i=1 mi for mi ∈ Z+

τ = max{τ1, . . . , τl} for τi ∈ R1
+

|x|: the Euclidean norm for vectors x
IA: indicator function of a set A
C([−τ, 0]; Rn): space of continuous functions

x : [−τ, 0] → Rn with norm ∥x∥ = sup−τ≤u≤0 |x(u)|
C1(Rn; R1

+): the family of all nonnegative functions
V(x) on Rn that are continuously differentiable in x

Considering the coupled systems of NDDEs as follows:

d [xk(t)− γkxk(t − τk)]

dt

= fk(xk(t), xk(t − τk), t) +
l

∑
h=1

Hkh(xh(t)− γhxh(t − τh)), t ≥ 0, k ∈ L,
(2.1)

where τk ≥ 0, γk ≥ 0 are constants, functions fk : Rmk × Rmk × R1
+ → Rmk , Hkh : Rmh → Rmk

are continuous. Throughout this section we assume that functions fk and Hkh, k, h ∈ L satisfy
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Lipschitz condition, by Theorems 12.2.1–12.2.3 in [7], system (2.1) has unique solution for
each initial state x0 = Ψ ∈ C([−τ, 0]; Rm). We denote by x(t, Ψ) = (xT

1 (t, Ψ), . . . , xT
l (t, Ψ))T

the unique solution of the system (2.1). Before proceeding with the main result of this work,
the following assumption is made.

Assumption 2.2. Functions fk and Hkh satisfy fk(0, 0, t) = 0, Hkh(0) = 0.

We note that Assumption 2.2 implies that system (2.1) has a trivial solution x(t, 0) = 0.
The definition on the exponential stability of the trivial solution is given as follows.

Definition 2.3. The trivial solution to system (2.1) is said to be exponentially stable if there
exist positive constants C and γ such that

l

∑
k=1

|xk(t, Ψ)|p ≤ Ce−γt, t ≥ 0,

for some p > 0 and all Ψ ∈ C([−τ, 0]; Rm).

3 Main results

In this section, we investigate the global exponential stability for system (2.1). In order to fa-
cilitate the following proof, the definition of vertex Lyapunov functions set is given as follows.

Definition 3.1. The set {Vk(xk) ∈ C1(Rmk ; R1
+), k ∈ L} is called a vertex Lyapunov functions

set for (2.1) if the following conditions hold:

V1. There exist positive constants p, αk, βk, such that

αk|xk|p ≤ Vk(xk) ≤ βk|xk|p. (3.1)

V2. There exist constants akh ≥ 0, k, h ∈ L, positive constants q > 1, σk and functions
Fkh : Rmk × Rmh → R1, such that

V ′
k(xk) , (Vk)

′
xk

[
fk(xk(t), xk(t − τk), t) +

l

∑
h=1

Hkh(xh(t)− γhxh(t − τh))

]
≤ − σkVk(xk(t)− γkxk(t − τk))

+
l

∑
h=1

akhFkh(xk(t)− γkxk(t − τk), xh(t)− γhxh(t − τh)),

(3.2)

for all t ≥ 0 and those xk(t) ∈ Rmk , k ∈ L, satisfying

Vk(xk(t − θ)− γkxk(t − θ − τk)) < qVk(xk(t)− γkxk(t − τk)), − τ ≤ θ ≤ 0.

V3. Along each directed cycle CQ of weighted digraph (G, A), in which A = (akh)l×l , there
is

∑
(h,k)∈E(CQ)

Fkh(xk, xh) ≤ 0, for all xk ∈ Rmk , xh ∈ Rmh . (3.3)
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For simplicity, fix any Ψ ∈ C([−τ, 0]; Rm) and write xk(t) = xk(t, Ψ). For Vk(xk) ∈
C1(Rmk ; R1

+) and positive constant γ, define

Φk(t) = max
−τ≤θ≤0

{eγ(t+θ)Vk(xk(t + θ)− γkxk(t + θ − τk))}, t ≥ τ,

and

D+

(
l

∑
k=1

ckΦk(t)

)
=

l

∑
k=1

ck

(
lim sup

∆0→0+

Φk(t + ∆0)− Φk(t)
∆0

)
. (3.4)

In order to obtain our results, we establish the following lemma.

Lemma 3.2. Suppose that system (2.1) admits a vertex Lyapunov functions set {Vk(xk), k ∈ L}, and
that the digraph (G, A) is strongly connected. Then

D+

(
l

∑
k=1

ckΦk(t)

)
≤ 0, (3.5)

where ck is the cofactor of the i-th diagonal element of the Laplacian matrix of (G, A) and γ <

min{σ1, . . . , σl , ln(q)/τ}.

Proof. We fix t ≥ τ, define

θ̄k = max{θ ∈ [−τ, 0] : eγ(t+θ)Vk(xk(t + θ)− γkxk(t + θ − τk)) = Φk(t)}. (3.6)

It follows easily that θ̄k ∈ [−τ, 0] and

Φk(t) = eγ(t+θ̄k)Vk(xk(t + θ̄k)− γkxk(t + θ̄k − τk)).

Set Ω1(k) = {k ∈ L : −τ < θ̄k < 0}, Ω2(k) = {k ∈ L : θ̄k = −τ}, Ω3(k) = {k ∈ L : θ̄k = 0}.
Then, we discuss inequality (3.5) as follows:

Case 1. If k ∈ L and −τ < θ̄k < 0, then IΩ1(k) = 1. We observe from (3.6) that

eγtVk(xk(t)− γkxk(t − τk)) < eγ(t+θ̄k)Vk(xk(t + θ̄k)− γkxk(t + θ̄k − τk)).

This implies immediately that by the continuity of Vk(xk(t)− γkxk(t − τk)),

lim
∆→0+

eγ(t+∆)Vk(xk(t + ∆)− γkxk(t + ∆ − τk))

< eγ(t+θ̄k)Vk(xk(t + θ̄k)− γkxk(t + θ̄k − τk))

+ lim
∆→0+

[∫ t+∆

t

(
eγr

l

∑
h=1

akhFkh(xk(r)− γkxk(r − τk), xh(r)− γhxh(r − τh))

)
dr

]
.

Consequently, there exists sufficiently small ∆1 > 0, such that

eγ(t+∆1)Vk(xk(t + ∆1)− γkxk(t + ∆1 − τk))

< eγ(t+θ̄k)Vk(xk(t + θ̄k)− γkxk(t + θ̄k − τk))

+
∫ t+∆1

t

[
eγr

l

∑
h=1

akhFkh(xk(r)− γkxk(r − τk), xh(r)− γhxh(r − τh))

]
dr.

(3.7)
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Case 2. If k ∈ L and θ̄k = −τ, then IΩ2(k) = 1 and

eγtVk(xk(t)− γkxk(t − τk)) < eγ(t−τ)Vk(xk(t − τ)− γkxk(t − τ − τk)).

So,

lim
∆→0+

eγ(t+∆)Vk(xk(t + ∆)− γkxk(t + ∆ − τk))

< eγ(t−τ)Vk(xk(t − τ)− γkxk(t − τ − τk))

+ lim
∆→0+

[∫ t+∆

t

(
eγr

l

∑
h=1

akhFkh(xk(r)− γkxk(r − τk), xh(r)− γhxh(r − τh))

)
dr

]
.

For sufficiently small ∆2 > 0, we then have

eγ(t+∆2)Vk(xk(t + ∆2)− γkxk(t + ∆2 − τk))

< eγ(t−τ)Vk(xk(t − τ)− γkxk(t − τ − τk))

+
∫ t+∆2

t

[
eγr

l

∑
h=1

akhFkh(xk(r)− γkxk(r − τk), xh(r)− γhxh(r − τh))

]
dr.

(3.8)

Case3. If k ∈ L and θ̄k = 0, then IΩ3(k) = 1 and

eγ(t+θ)Vk(xk(t + θ)− γkxk(t + θ − τk)) ≤ eγtVk(xk(t)− γkxk(t − τk)), −τ ≤ θ ≤ 0.

But this means that

Vk(xk(t + θ)− γkxk(t + θ − τk))

≤ eγτVk(xk(t)− γkxk(t − τk))

< qVk(xk(t)− γkxk(t − τk)), −τ ≤ θ ≤ 0.

Using condition V2, we obtain that

V ′
k(xk(t)− γkxk(t − τk))

≤ −σkVk(xk(t)− γkxk(t − τk))

+
l

∑
h=1

akhFkh(xk(t)− γkxk(t − τk), xh(t)− γhxh(t − τh)).

Integrate
d
dr

eγr[Vk(xk(r)− γkxk(r − τk))]

with respect to r on [t, t + ∆3] and use (3.2) to show that for ∆3 > 0,

eγ(t+∆3)
[
Vk(xk(t + ∆3)− γkxk(t + ∆3 − τk))

]
= eγtVk(xk(t)− γkxk(t − τk))

+
∫ t+∆3

t
eγr[V ′

k(xk(r)− γkxk(r − τk)) + γVk(xk(r)− γkxk(r − τk))
]
dr

≤ eγtVk(xk(t)− γkxk(t − τk)) +
∫ t+∆3

t
eγr
[
− (σk − γ)Vk(xk(r)− γkxk(r − τk))
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+
l

∑
h=1

akhFkh
(
xk(r)− γkxk(r − τk), xh(r)− γhxh(r − τh)

)]
dr

≤ eγtVk(xk(t)− γkxk(t − τk))

+
∫ t+∆3

t
eγr

l

∑
h=1

akhFkh
(
xk(r)− γkxk(r − τk), xh(r)− γhxh(r − τh)

)
dr.

By condition V3, (3.7) and (3.8), this yields that for sufficiently small 0 < ∆4 < min{∆1, ∆2, ∆3},

l

∑
k=1

ckeγ(t+∆4)
[
Vk(xk(t + ∆4)− γkxk(t + ∆4 − τk))

]
=

l

∑
k=1

ckeγ(t+∆4)
[
Vk(xk(t + ∆4)− γkxk(t + ∆4 − τk))

]
(IΩ1(k) + IΩ2(k) + IΩ3(k))

≤
l

∑
k=1

ck

[
eγ(t+θ̄k)Vk(xk(t + θ̄k)− γkxk(t + θ̄k − τk))IΩ1(k)

+ eγ(t−τ)Vk(xk(t − τ)− γkxk(t − τ − τk))IΩ2(k) + eγtVk(xk(t)− γkxk(t − τk))IΩ3(k)

]
+

l

∑
k=1

ck

∫ t+∆4

t
eγr

l

∑
h=1

akhFkh
(

xk(r)− γkxk(r − τk), xh(r)− γhxh(r − τh)
)
dr

=
l

∑
k=1

ck

[
eγ(t+θ̄k)Vk

(
xk(t + θ̄k)− γkxk(t + θ̄k − τk)

)
IΩ1(k)

+ eγ(t−τ)Vk
(

xk(t − τ)− γkxk(t − τ − τk)
)

IΩ2(k) + eγtVk(xk(t)− γkxk(t − τk))IΩ3(k)

]
+
∫ t+∆4

t
eγr ∑

Q∈Q

W(Q) ∑
(h,k)∈E(CQ)

Fkh
(
xk(r)− γkxk(r − τk), xh(r)− γhxh(r − τh)

)
dr

≤
l

∑
k=1

ck

[
eγ(t+θ̄k)Vk(xk(t + θ̄k)− γkxk(t + θ̄k − τk))IΩ1(k)

+ eγ(t−τ)Vk(xk(t − τ)− γkxk(t − τ − τk))IΩ2(k) + eγtVk(xk(t)− γkxk(t − τk))IΩ3(k)

]
≤

l

∑
k=1

ckΨk(t),

where Q is the set of all spanning unicyclic graphs of (G, A), CQ denotes the directed cycle of
Q. We therefore must have

l

∑
k=1

ckΦk(t + ∆) ≤
l

∑
k=1

ckΦk(t)

for △ > 0 sufficiently small. We then have (3.5) holds.

Theorem 3.3. Let conditions of Lemma 3.2 hold. If

γ
p
k < 21−p, k ∈ L, (3.9)

then the trivial solution of system (2.1) is globally exponentially stable.
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Proof. By using Lemma 3.2, we can obtain

l

∑
k=1

ck

(
lim sup

∆0→0+

Φk(t + ∆0)− Φk(t)
∆0

)
≤ 0.

This, together with condition V1, implies

l

∑
k=1

ckαkeγt|xk(t)− γkxk(t − τk)|p

≤
l

∑
k=1

ckeγtVk(xk(t)− γkxk(t − τk))

≤
l

∑
k=1

ck max
−τ≤θ≤0

{
eγ(t+θ)Vk(xk(t + θ)− γkxk(t + θ − τk))

}
=

l

∑
k=1

ckΦk(t)

≤
l

∑
k=1

ckΦk(τ)

=
l

∑
k=1

ck max
−τ≤θ≤0

{
eγ(θ+τ)Vk(xk(θ + τ)− γkxk(θ + τ − τk))

}
≤

l

∑
k=1

ckβkeγτ max
−τ≤θ≤0

|xk(θ + τ)− γkxk(θ + τ − τk)|p.

By using the inequality

|a + b|p ≤ 2p−1(|a|p + |b|p),

we compute that

ckαkeγt|xk(t)|p ≤ 2p−1ckαkeγt|xk(t)− γkxk(t − τk)|p + 2p−1ckαkeγt|γkxk(t − τk)|p. (3.10)

By (3.10), we can easily show that

l

∑
k=1

ckαkeγt|xk(t)|p

≤ 2p−1
l

∑
k=1

ckαkeγt|xk(t)− γkxk(t − τk)|p + 2p−1
l

∑
k=1

ckαkeγt|γkxk(t − τk)|p

≤ 2p−1
l

∑
k=1

(
ckβkeγτ sup

−τ≤s≤0
|xk(s + τ)− γkxk(s + τ − τk)|p + ckαkγpeγt sup

−τ≤s≤t
|xk(s)|p

)
,

where γ = max{γ1, γ2, . . . , γl}. It follows from the fact that the function

m(t) = 2p−1
l

∑
k=1

(
ckβkeγτ sup

−τ≤s≤0
|xk(s + τ)− γkxk(s + τ − τk)|p + ckαkγpeγt sup

−τ≤s≤t
|xk(s)|p

)
,
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is increasing that

l

∑
k=1

ckαkeγt sup
−τ≤s≤t

|xk(s)|p

≤ 2p−1
l

∑
k=1

ckβkeγτ sup
−τ≤s≤0

|xk(s + τ)− γkxk(s + τ − τk)|p

+ 2p−1γp
l

∑
k=1

ckαkeγt sup
−τ≤s≤t

|xk(s)|p.

Consequently, by (3.9), we obtain that

l

∑
k=1

ckαkeγt sup
−τ≤s≤t

|xk(s)|p ≤ 2p−1 ∑l
k=1 ckβkeγτ

1 − 2p−1ρp sup
−τ≤s≤0

|xk(s + τ)− γkxk(s + τ − τk)|p.

We therefore must have

l

∑
k=1

ckαk|xk(t)|p ≤ 2p−1 ∑l
k=1 ckβkeγτ

1 − 2p−1ρp sup
−τ≤s≤0

|xk(s + τ)− γkxk(s + τ − τk)|pe−γt.

As the digraph (G, A) is strongly connected, we obtain that ck > 0. Therefore,

ckαk > 0.

Consequently,
l

∑
k=1

ckαk|xk(t)|p ≥ min
1≤k≤l

{ckαk}
l

∑
k=1

|xk(t)|p.

Therefore, we must have

l

∑
k=1

|xk(t)|p ≤ 2p−1 ∑l
k=1 ckβkeγτ

min1≤k≤l {ckαk}(1 − 2p−1ρp)
sup

−τ≤s≤0
|xk(s + τ)− γkxk(s + τ − τk)|pe−γt.

The proof is complete.

Remark 3.4. Theorem 3.3 proves that the Lyapunov function V(x) for system (3.3) is obtained
by weighted sum of Vk(xk), and hence finding the vertex Lyapunov functions set for system
(3.3) is a key point in the study of stability for system (3.3). In practice, coupled systems are
very complex. To make progress, different fields have suppressed certain complications. For
example, in nonlinear dynamics the simple and nearly identical dynamical systems are cou-
pled together in simple, regular ways. These simplifications make that any issue of structural
complexity is avoided and the system’s potentially formidable dynamics could be studied in-
tensively. In many application fields, the Lyapunov functions for specific system have been
obtained by other researchers. Hence, in this paper the Lyapunov functions for specific system
can be chosen as the Vk(xk).

In fact, we can obtain some better results, if anther condition on topology property of the
coupled systems is added. Note that if (G, A) is balanced, then

l

∑
k,h=1

ckakhFkh(xk, xh) =
1
2 ∑

Q∈Q

W(Q) ∑
(h,k)∈E(CQ)

[Fkh(xk, xh) + Fhk(xh, xk)].
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In this case, condition V3 is replaced by the following:

∑
(h,k)∈E(CQ)

[Fkh(xk, xh) + Fhk(xh, xk)] ≤ 0. (3.11)

Consequently, we obtain the following corollary:

Corollary 3.5. Suppose that (G, A) is balanced. Then the conclusion of Theorem 3.3 holds if (3.3) is
replaced by (3.11).

Since the previous results are based on vertex Lyapunov functions set for system (2.1), the
stability criteria are not very convenient to be verified for a given system. We then establish
some sufficient conditions for stability of system (2.1) by using coefficients of system (2.1).

Theorem 3.6. Suppose that the following conditions hold.

A1. The digraph (G, A) is strongly connected, and there are positive constants ξk, k ∈ L, such that

(xk(t)− γk(xk(t − τk)))
T fk(xk(t), xk(t − τk), t) ≤ −ξk|xk(t)− γkxk(t − τk)|2. (3.12)

A2. There are constants Akh(k, h ∈ L), such that

|Hkh(x)| ≤ Akh|x|. (3.13)

A3. It holds that

ξk −
l

∑
h=1

Akh > 0, γ
p
k < 21−p, k ∈ L. (3.14)

Then the trivial solution of (2.1) is globally exponentially stable.

Proof. Define functions Vk(xk) = |xk|2, write fk = fk(xk(t), xk(t − τk), t), Hkh = Hkh(xh(t) −
γhxh(t − τh)). By conditions A1 and A2, we calculate V̇k as follows:

V̇k(xk) = 2[xk(t)− γkxk(t − τk)]
T

(
fk +

l

∑
h=1

Hkh

)

≤ 2[xk(t)− γkxk(t − τk)]
T fk + 2[xk(t)− γkxk(t − τk)]

T
l

∑
h=1

|Hkh|

≤ −2ξk|xk(t)− γkxk(t − τk)|2 + 2 |xk(t)− γkxk(t − τk)|
l

∑
h=1

|Hkh|.

We have

2|xk(t)− γkxk(t − τk)|
l

∑
h=1

|Hkh|

≤ 2|xk(t)− γkxk(t − τk)|
l

∑
h=1

Akh|xh(t)− γhxh(t − τh)|

= 2
l

∑
h=1

Akh|xk(t)− γkxk(t − τk)||xh(t)− γhxh(t − τh)|

≤
l

∑
h=1

Akh|xk(t)− γkxk(t − τk)|2 +
l

∑
h=1

Akh|xh(t)− γhxh(t − τh)|2.

(3.15)
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By (3.15), it implies that

V̇k(xk) ≤
(
−2ξk +

l

∑
h=1

Akh

)
|xk(t)− γkxk(t − τk)|2 +

l

∑
h=1

Akh|xh(t)− γhxh(t − τh)|2

≤ − 2

(
ξk −

l

∑
h=1

Akh

)
|xk(t)− γkxk(t − τk)|2

+
l

∑
h=1

Akh
(
|xh(t)− γhxh(t − τh)|2 − |xk(t)− γkxk(t − τk)|2

)
= − σk|xk(t)− γkxk(t − τk)|2

+
l

∑
h=1

akhFkh (xk(t)− γkxk(t − τk), xh(t)− γhxh(t − τh)) ,

(3.16)

where σk = 2ξk − 2 ∑l
h=1 Akh, akh = Akh, Fkh(xk, xh) = |xh|2 − |xk|2.

Hence, V1, V2 and V3 in Definition 3.1 hold and {Vk(xk), k ∈ L} is a vertex Lyapunov
functions set for system (2.1). Clearly, (3.16) holds and all conditions of Corollary 3.5 are
satisfied. The proof is complete.

4 Numerical test

In this section, we provide a numerical example to illustrate the effectiveness of the proposed
criteria in this paper.

Give a digraph G with 16 vertices. Consider the following coupled retarded dynamical
system:

d [xk(t)− γkxk(t − τk)]

dt
= fk(xk(t), xk(t − τk), t) +

16

∑
h=1

Hkh(xh(t)− γhxh(t − τh)),

t > 0, k = 1, 2, . . . , 16,

where τk ≥ 0, xk(t) ∈ R, γk ≥ 0, Hkh(y) = µkhy.
Now, let

fk(xk(t), xk(t − τk), t) = F(y) =

{
−(y − y3

pk
), y ≤ 1

−qky3, y > 1,

where y = xk(t)− γkxk(t − τk), and pk > 0, qk > 0, then we consider the following coupled
differential delay system (see Fig. 4.1):

d [xk(t)− γkxk(t − τk)]

dt
=

[
F(y) +

16

∑
h=1

Hkh(xh(t)− γhxh(t − τh))

]
,

k = 1, 2, . . . , 16.

(4.1)

For simulation, we assume that the parameters in (4.1) are given as follows:

p1 = p2 = · · · = p6 = 2 q1 = q2 = · · · = q6 = 1
2

p7 = p8 = · · · = p11 = 3 q7 = q8 = · · · = q11 = 2
3

p12 = p13 = · · · = p16 = 6 q12 = q13 = · · · = q16 = 5
6

,
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Figure 4.1: A complex network.

Ξ = (µkh)16×16 =


0 0 0 · · · 0 0.1 0.1

0.1 0 0 · · · 0 0 0.1
0.1 0.1 0 · · · 0 0 0

...
. . .

...
0 0 0 · · · 0.1 0.1 0

 .

With the above parameters, we can choose ξ1 = ξ2 = · · · = ξ6 = 0.5, ξ7 = ξ8 = · · · = ξ11 =

0.45, ξ12 = ξ13 = · · · = ξ16 = 0.3. Hence, we have the condition that ξk − ∑16
h=1 Akh > 0 holds.

Based on the theorem above, we could check that all conditions in Theorem 3.6 are satisfied,
which can guarantee the exponential stability for system (4.1). In the end, the simulation
results of stable solutions to (4.1) corresponding to weighted digraphs (G, Ξ) are shown in
Fig. 4.2.

−5 0 5 10 15 20 25 30 35 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4.2: Numeric simulation of global exponential stability of (4.1) with Ξ.
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