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Abstract. Using the techniques connected with the measure of noncompactness we
investigate the neutral difference equation of the following form

∆
(
rn (∆ (xn + pnxn−k))

γ)+ qnxα
n + an f (xn+1) = 0,

where x : Nk → R, a, p, q : N0 → R, r : N0 → R \ {0}, f : R → R is continuous and k
is a given positive integer, α ≥ 1 is a ratio of positive integers with odd denominator,
and γ ≤ 1 is ratio of odd positive integers; Nk := {k, k + 1, . . . }. Sufficient conditions
for the existence of a bounded solution are obtained. Also a special type of stability is
studied.
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1 Introduction

As it is well known, difference equations serve as mathematical models in diverse areas, such
as economy, biology, physics, mechanics, computer science, finance, see for example [1, 7].
One of such models is the Emden–Fowler equation which originated in the gaseous dynamics
in astrophysics and further was used in the study of fluid mechanics, relativistic mechanics,
nuclear physics and in the study of chemically reacting systems, see [28]. For the reader’s
convenience, we note that the background for difference equations theory can be found in
numerous well-known monographs: Agarwal [1], Agarwal, Bohner, Grace and O’Regan [2],
Agarwal and Wong [3], Elaydi [7], Kelley and Peterson [12], and Kocić and Ladas [13].

In the present paper we study using techniques connected with the measure of noncom-
pactness the existence of a bounded solution and some type of its asymptotic behavior to a
nonlinear second order difference equation, which can be viewed as a generalization of a dis-
crete Emden–Fowler equation or else it can be viewed as a second order difference equation
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with memory. This makes a problem which we consider different from those already inves-
tigated via techniques of measure of noncompactness, see for example [25] since we do not
expect a direct connection between a fixed point of a suitably defined operator investigated
on a non-reflexive space l∞ a solution to the problem under consideration. Indeed, this is
the case. What we obtain is that starting from some index which we define the solution is
taken from the fixed point while the previous terms have to be iterated. This also makes the
definition of the operator different from this which would be used for the problem without
dependence on previous terms. It seems that the method which we sketch here would prove
applicable for several other problems. We also note that due to the type of space which we
use, namely l∞ we cannot apply standard fixed point techniques such as Banach theorem or
Schauder theorem and related results. We expect that our method would apply for systems of
difference equations. However, what we cannot obtain here is the asymptotic stability of the
solution. We will use axiomatically defined measures of noncompactness as presented in the
paper [5] by Banaś and Rzepka.

The problem we consider is as follows

∆
(
rn (∆ (xn + pnxn−k))

γ)+ qnxα
n + an f (xn+1) = 0, (1.1)

where α ≥ 1 is a ratio of positive integers with odd denominator, γ ≤ 1 is ratio of odd positive
integers, x : Nk → R a, p, q : N0 → R, r : N0 → R \ {0}, and f : R → R is a locally Lipschitz
function with no further growth assumptions. Here N0 := {0, 1, 2, . . . }, Nk := {k, k + 1, . . . }
where k is a given positive integer, and R is a set of all real numbers. By a solution of
equation (1.1) we mean a sequence x : Nk → R which satisfies (1.1) for every n ∈Nk.

There has been an interest of many authors to study properties of solutions of the second-
order neutral difference equations; see the papers [6, 8–10, 15–18, 21–23, 26, 27] and the refer-
ences therein. The interesting oscillatory results for first order and even order neutral differ-
ence equations can be found in [14], [19] and [20].

2 Preliminaries

Let (E, ‖·‖) be an infinite dimensional Banach space. If X is a subset of E, then X̄, Conv X
denote the closure and the convex closure of X, respectively. Moreover, we denote byME the
family of all nonempty and bounded subsets of E and by NE the subfamily consisting of all
relatively compact sets.

Definition 2.1. A mapping µ : ME → [0, ∞) is called a measure of noncompactness in E if it
satisfies the following conditions:

10 ker µ = {X ∈ ME : µ (X) = 0} 6= ∅ and ker µ ⊂ NE,

20 X ⊂ Y ⇒ µ(X) ≤ µ(Y),

30 µ(X̄) = µ(X) = µ(Conv X),

40 µ(cX + (1− c)Y) ≤ cµ(X) + (1− c)µ(Y) for 0 ≤ c ≤ 1,

50 If Xn ∈ ME, Xn+1 ⊂ Xn, Xn = X̄n for n = 1, 2, 3, . . .
and limn→∞ µ(Xn) = 0 then ∩∞

n=1 Xn 6= ∅.
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The following Darbo’s fixed point theorem given in [5] is used in the proof of the main
result.

Theorem 2.2. Let M be a nonempty, bounded, convex and closed subset of the space E and let T : M→
M be a continuous operator such that µ(T(X)) ≤ kµ(X) for all nonempty subset X of M, where
k ∈ [0, 1) is a constant. Then T has a fixed point in the subset M.

We consider the Banach space l∞ of all real bounded sequences x : Nk → R equipped with
the standard supremum norm, i.e.

‖x‖ = sup
n∈Nk

|xn| for x ∈ l∞.

Let X be a nonempty, bounded subset of l∞, Xn = {xn : x ∈ X} (it means Xn is a set of n-th
terms of any sequence belonging to X), and

diam Xn = sup {|xn − yn| : x, y ∈ X} .

We use a following measure of noncompactness in the space l∞ (see [4])

µ (X) = lim sup
n→∞

diam Xn.

3 Main result

In this section, sufficient conditions for the existence of a bounded solution of equation (1.1)
are derived.

Theorem 3.1. Assume that a, p, q : N0 → R, r : N0 → R \ {0}, and f : R→ R. Let

α ≥ 1 be a ratio of positive integers with odd denominator, (3.1)

γ ∈ (0, 1] be a ratio of odd positive integers, (3.2)

and let k be a fixed positive integer. Assume that

f : R→ R is a locally Lipschitz function, (3.3)

and that the sequences r : N0 → R \ {0}, a, q : N0 → R satisfy

∞

∑
n=0

∣∣∣∣ 1
rn

∣∣∣∣ 1
γ ∞

∑
i=n
|ai| < +∞ and

∞

∑
n=0

∣∣∣∣ 1
rn

∣∣∣∣ 1
γ ∞

∑
i=n
|qi| < +∞. (3.4)

Let the sequence p : N0 → R satisfy the following condition

− 1 < lim inf
n→∞

pn ≤ lim sup
n→∞

pn < 1. (3.5)

Then there exists a bounded solution x : Nk → R of equation (1.1).

Proof. Condition (3.5) implies that there exist n0 ∈N0 and a constant P ∈ [0, 1) such that

|pn| ≤ P < 1 for n ≥ n0. (3.6)
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Condition (3.4) implies that

∞

∑
i=0
|ai| < +∞,

∞

∑
i=0
|qi| < +∞.

(3.7)

Then there exists n1 ∈N0 such that
∞
∑

i=n1

|ai| < 1. Hence, by (3.2),

∞

∑
n=n1

(∣∣∣∣ 1
rn

∣∣∣∣ ∞

∑
i=n
|ai|
) 1

γ

≤
∞

∑
n=n1

∣∣∣∣ 1
rn

∣∣∣∣ 1
γ ∞

∑
i=n
|ai| .

The above and condition (3.4) imply that

∞

∑
n=0

(∣∣∣∣ 1
rn

∣∣∣∣ ∞

∑
i=n
|ai|
) 1

γ

< +∞. (3.8)

Analogously, we get
∞

∑
n=n1

(∣∣∣∣ 1
rn

∣∣∣∣ ∞

∑
i=n
|qi|
) 1

γ

≤
∞

∑
n=n1

∣∣∣∣ 1
rn

∣∣∣∣ 1
γ ∞

∑
i=n
|qi| . (3.9)

Recalling that remainder of a series is the difference between the n-th partial sum and the sum
of a series, we denote by αn and by βn the following remainders

αn =
∞

∑
j=n

(∣∣∣∣ 1
rj

∣∣∣∣ ∞

∑
i=j
|ai|
) 1

γ

and βn =
∞

∑
j=n

(∣∣∣∣ 1
rj

∣∣∣∣ ∞

∑
i=j
|qi|
) 1

γ

(3.10)

We see, by (3.8) and (3.9) that

lim
n→∞

αn = 0 and lim
n→∞

βn = 0. (3.11)

Fix any number d > 0. From (3.3), there exists a constant Md > 0 such that

| f (x)| ≤ Md for all x ∈ [−d, d] . (3.12)

Choose a constant C such that

0 < C ≤ d− Pd(
2

1
γ−1 (Md)

1
γ + 2

1
γ−1 (dα)

1
γ

) . (3.13)

By condition (3.9) there exists a positive integer n2 such that

αn ≤ C and βn ≤ C for n ∈Nn2 . (3.14)

Define set B as follows

B := {(xn)
∞
n=0 : |xn| ≤ d, for n ∈N0} .
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Define a mapping T : B→ l∞ as follows

(Tx)n =

−pnxn−k −
∞
∑

j=n

(
1
rj

∞
∑
i=j

(
ai f (xi+1) + qixα

i
)) 1

γ

, for any n ≥ n3,

xn, for any 0 ≤ n < n3,

(3.15)

where n3 = max {n1, n2} + k. Observe that B is a nonempty, bounded, convex and closed
subset of l∞.

We will prove that the mapping T has a fixed point in B. This proof will follow in several
subsequent steps.
Step 1. Firstly, we show that T(B) ⊂ B.

We will use classical inequality

(a + b)s ≤ 2s−1 (as + bs) , a, b > 0, s ≥ 1 (3.16)

and the fact t → t1/γ is nondecreasing. If x ∈ B, then for n < n3 |(Tx)n| = |xn| ≤ d and
by (3.15), we get for any n ≥ n3

|(Tx)n| ≤ |pn| |xn−k|+

∣∣∣∣∣∣
∞

∑
j=n

(
1
rj

∞

∑
i=j

(ai f (xi+1) + qixα
i )

) 1
γ

∣∣∣∣∣∣
≤ |pn| |xn−k|+

∞

∑
j=n

(∣∣∣∣∣ 1
rj

∞

∑
i=j

(ai f (xi+1) + qixα
i )

∣∣∣∣∣
) 1

γ

≤ |pn| |xn−k|+
∞

∑
j=n

(∣∣∣∣ 1
rj

∣∣∣∣ ∞

∑
i=j

(
|ai| | f (xi+1)|+ |qi| |xi|α

)) 1
γ

.

From (3.12), taking into account that xn−k ∈ B, and because of xi ∈ B we have |xi|α ≤ dα. Thus

|(Tx)n| ≤ |pn| d +
∞

∑
j=n

(∣∣∣∣ 1
rj

∣∣∣∣ ∞

∑
i=j

(|ai|Md + |qi| dα)

) 1
γ

≤ |pn| d +
∞

∑
j=n

(∣∣∣∣ 1
rj

∣∣∣∣
(

∞

∑
i=j
|ai|Md +

∞

∑
i=j
|qi| dα

)) 1
γ

.

By inequality (3.16), we have

|(Tx)n| ≤ |pn| d + 2
1
γ−1

∞

∑
j=n

(∣∣∣∣ 1
rj

∣∣∣∣ ∞

∑
i=j
|ai|Md

) 1
γ

+

(∣∣∣∣ 1
rj

∣∣∣∣ ∞

∑
i=j
|qi| dα

) 1
γ


≤ |pn| d + 2

1
γ−1 (Md)

1
γ

∞

∑
j=n

(∣∣∣∣ 1
rj

∣∣∣∣ ∞

∑
i=j
|ai|
) 1

γ

+ 2
1
γ−1 (dα)

1
γ

∞

∑
j=n

(∣∣∣∣ 1
rj

∣∣∣∣ ∞

∑
i=j
|qi|
) 1

γ

.

By using (3.6), (3.14) and (3.13), we estimate

|(Tx)n| ≤ Pd + 2
1
γ−1 (Md)

1
γ C + 2

1
γ−1 (dα)

1
γ C

≤ Pd +
(

2
1
γ−1 (Md)

1
γ + 2

1
γ−1 (dα)

1
γ

) d− Pd(
2

1
γ−1 (Md

) 1
γ + 2

1
γ−1 (dα)

1
γ

) = d. (3.17)



6 M. Galewski, R. Jankowski, M. Nockowska–Rosiak and E. Schmeidel

From the above, we have estimation

|(Tx)n| ≤ d, for n ∈Nn3 . (3.18)

Step 2. T is continuous
By assumption (3.3), (3.7), and by definition of B, there exists a constant c∗ > 0 such that

∞

∑
i=j
|ai f (xi+1) + qixα

i | ≤ c∗

for all x ∈ B. From (3.2), t → t1/γ is locally Lipschitz then it is Lipschitz on closed and
bounded intervals. Hence, there exists a constant Lγ such that∣∣∣t1/γ − s1/γ

∣∣∣ ≤ Lγ |t− s| for all t, s ∈ [−c∗, c∗] . (3.19)

From (3.3), function f is Lipschitz on [−d, d]. So, there is a constant Ld > 0 such that

| f (x)− f (y)| ≤ Ld |x− y| (3.20)

for all x, y ∈ [−d, d]. From (3.1), x → xα is also Lipschitz on [−d, d]. Then there is a constant
Lα such that

|xα − yα| ≤ Lα |x− y| for all x, y ∈ [−d, d] . (3.21)

Let (y(p)) be a sequence in B such that
∥∥y(p) − x

∥∥→ 0 as p→ ∞. Since B is closed, x ∈ B.
By (3.15) and (3.17), we get for all n ≥ n3∣∣∣(Tx)n − (Ty(p))n

∣∣∣ ≤ |pn|
∣∣∣xn−k − y(p)

n−k

∣∣∣
+

∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ

∣∣∣∣∣∣
(

∞

∑
i=j

(
ai f (xi+1) + qi (xi)

α)) 1
γ

−
(

∞

∑
i=j

(
ai f (y(p)

i+1) + qi

(
y(p)

i

)α)) 1
γ

∣∣∣∣∣∣ .

From (3.19), we have for all n ≥ n3∣∣∣(Tx)n − (Ty(p))n

∣∣∣ ≤ |pn|
∣∣∣xn−k − y(p)

n−k

∣∣∣
+

∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ

Lγ

∣∣∣∣∣ ∞

∑
i=j

ai f (xi+1) +
∞

∑
i=j

qi (xi)
α −

∞

∑
i=j

ai f (y(p)
i+1)−

∞

∑
i=j

qi

(
y(p)

i

)α
∣∣∣∣∣

≤ |pn|
∣∣∣xn−k − y(p)

n−k

∣∣∣+ Lγ

∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ ∞

∑
i=j
|ai|
∣∣∣ f (xi+1)− f (y(p)

i+1)
∣∣∣

+ Lγ

∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ ∞

∑
i=j
|qi|
∣∣∣(xi)

α −
(

y(p)
i

)α∣∣∣ .

Hence, by (3.20) and (3.21), we obtain for all n ≥ n3∣∣∣(Tx)n − (Ty(p))n

∣∣∣ ≤ |pn|
∣∣∣xn−k − y(p)

n−k

∣∣∣
+ LγLd

∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ ∞

∑
i=j
|ai|
∣∣∣xi+1 − y(p)

i+1

∣∣∣+ LγLα

∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ ∞

∑
i=j
|qi|
∣∣∣xi − y(p)

i

∣∣∣
≤ sup

i∈N0

∣∣∣y(p)
i − xi

∣∣∣ (|pn|+ LγLd

∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ ∞

∑
i=j
|ai|+ LγLα

∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ ∞

∑
i=j
|qi|
)

.
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Moreover,
∀ 0 ≤ n < n3

∣∣∣(Tx)n − (Ty(p))n

∣∣∣ ≤ ∥∥∥y(p) − x
∥∥∥

Thus, by (3.4) and (3.5), we have

lim
p→∞

∥∥∥Ty(p) − Tx
∥∥∥ = 0 as lim

p→∞

∥∥∥y(p) − x
∥∥∥ = 0.

This means that T is continuous.
Step 3. Comparison of the measure of noncompactness

Now, we need to compare a measure of noncompactness of any subset X of B and T(X).
Let us fix any nonempty set X ⊂ B. Take any sequences x, y ∈ X. Following the same
calculations which led to the continuity of the operator T we see that

∀ n ≥ n3 |(Tx)n − (Ty)n| ≤ |pn| |xn−k − yn−k|+ LγLαβn |xn − yn|+ LγLdαn |xn+1 − yn+1| .

Taking sufficiently large n, by (3.10) and (3.11), we get

LγLdαn ≤ c1 <
1− P

4
and LγLαβn ≤ c2 <

1− P
4

Here c1, c2 are some real constants. From (3.6), we have

P + c1 + c2 <
1 + P

2
.

We see that exists n5 such that

∀ n ≥ n5 diam(T(X))n ≤ P diam Xn−k + c1 diam Xn + c2 diam Xn+1.

This yields by the properties of the upper limit that

lim sup
n→∞

diam(T(X))n ≤ P lim sup
n→∞

diam Xn−k + c1 lim sup
n→∞

diam Xn + c2 lim sup
n→∞

diam Xn+1.

From the above, for any X ⊂ B, we have µ (T (X)) ≤ (c1 + c2 + P) µ(X).
Step 4. Relation between fixed points and solutions

By Theorem 2.2 we conclude that T has a fixed point in the set B. It means that there exists
x ∈ B such that

xn = (Tx)n.

Thus

xn = −pnxn−k −
∞

∑
j=n

(
1
rj

∞

∑
i=j

(ai f (xi+1) + qixα
i )

) 1
γ

, for n ∈Nn3 (3.22)

To show that there exists a correspondence between fixed points of T and solutions to (1.1)
we apply operator ∆ to both sides of the following equation

xn + pnxn−k = −
∞

∑
j=n

(
1
rj

∞

∑
i=j

(ai f (xi+1) + qixα
i )

) 1
γ

,

which is obtained from (3.22). We find that

∆(xn + pnxn−k) =

(
1
rn

∞

∑
i=n

(ai f (xi+1) + qixα
i )

) 1
γ

, n ∈Nn3 .
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and next

(∆ (xn + pnxn−k))
γ =

1
rn

∞

∑
i=n

(ai f (xi+1) + qixα
i ) , n ∈Nn3 .

Taking operator ∆ again to both sides of the above equation we obtain

∆
(
rn (∆ (xn + pnxn−k))

γ) = −an f (xn+1)− qnxα
n, n ∈Nn3 .

So, we get equation (1.1) for n ∈ Nn3 . Sequence x, which is a fixed point of mapping T, is a
bounded sequence which fulfills equation (1.1) for n ≥ n3. If n3 ≥ k the proof is ended. We
find previous n3 − k + 1 terms of sequence x by formula

xn−k+l =
1

pn+l

−xn+l +
∞

∑
j=n+l

(
1
rj

∞

∑
i=j

(ai f (xi+1) + qixα
i )

) 1
γ

 ,

where l ∈ {0, 1, 2, . . . , k− 1}, which results leads directly from (1.1). It means that equa-
tion (1.1) has at least one bounded solution x : Nk → R.

This completes the proof.

Now, we give an example of equation which can be considered by our method.

Example 3.2. Take k = 3, an arbitrary C1 function f : R→ R and consider the following
problem

∆

(
(−1)n ∆

(
xn +

1
2

xn−3

)1/3
)
+

1
2n

(
(xn)

5 + f (xn+1)
)
= 0. (3.23)

Taking γ = 1
3 , α = 5, rn = (−1)n, pn = 1

2 , an = qn = 1
2n with f (x) = x

5
3 we see that xn = (−1)n

is a bounded solution to (3.23).

Remark 3.3. We note that the previous terms of the solution sequence are not obtained
through a fixed point method, but through backward iteration. It is common that one has
a 1–1 correspondence between fixed points to a suitably chosen operator and solutions to the
problem under consideration. Here we get as a fixed point solution some sequence which,
starting from some index, is a solution to the given problem and in which the first terms must
be iterated. This procedure must be applied since we see that in equation (1.1) we have to
know also earlier terms in order to start iteration; this is the so called iteration with memory.
We recall that in recent works concerning application of the measure of noncompactness to
discrete equations, only problems without memory have been considered. That is why we
had to alter to established procedure to overcome the difficulty arising in this problem. We
believe our method would be applicable for several other problems.

4 A special type stability

The type of stability investigated in this paper is contained in the following theorem.

Theorem 4.1. Assume that
qn ≡ 0, (4.1)

and conditions (3.2), (3.4) and (3.5) hold. Assume further that there exists a positive constant D such
that

| f (u)− f (v)| ≤ D |u− v|
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for any u, v ∈ R. Then equation (1.1) has at least one solution x : Nk → R with the following stability
property: given any other solution y : Nk → R and ε > 0 there exists n4 > n3 such that for every
n ≥ n4 the following inequality holds

|xn − yn| ≤ ε.

Proof. From Theorem 3.1, equation (1.1) has at least one bounded solution x : N0 → R which
can be rewritten in the form

xn = (Tx)n,

where mapping T is defined by (3.15) for n ≥ n3. From the above and condition (4.1), we see
that

|xn − yn| = |(Tx)n − (Ty)n|

≤ |pn| |xn−k − yn−k|+ LγD
∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ ∞

∑
i=j
|ai| |xi+1 − yi+1| .

Note that for n large enough, say n ≥ n4 ≥ n3, we have

ϑ := |pn|+ LγD
∞

∑
j=n

∣∣∣∣ 1
rj

∣∣∣∣ 1
γ ∞

∑
i=j
|ai| < 1.

Let us denote
lim sup

n→∞
|xn − yn| = l,

and observe that

lim sup
n→∞

|xn − yn| = lim sup
n→∞

|xn−k − yn−k| = lim sup
n→∞

|xn+1 − yn+1| .

Thus, from the above, we have
l ≤ ϑ · l.

This means that lim supn→∞ |xn − yn| = 0. This completes the proof since for ε > 0 there exists
n4 ∈N0 such that for every n ≥ n4 ≥ n3 the following inequality holds

|xn − yn| ≤ ε.

Now, we give another example.

Example 4.2. Take k = 3, an arbitrary C1 function f : R→ R and consider the following
problem

∆

(
(−1)n ∆

(
xn +

1
2

xn−3

)1/3
)
+

1
2n f (xn+1) = 0. (4.2)

Taking γ = 1
3 , rn = (−1)n, pn = 1

2 , an = 1
2n , qn = 0 with f (x) = −x + sin(π

2 x) we see that
xn = (−1)n is a bounded solution to (4.2). By Theorem 4.1, this solution has the stability
property.
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5 Comments

In [25], the authors consider a special type of problem (1.1), namely they investigate the
existence of a solution and Lyapunov type stability to the following equation

∆ (rn∆xn) = an f (xn+1). (5.1)

Their main assumption is the linear growth assumption on nonlinear term f . More precisely,
they assume that there exists a positive constant M such that | f (xn)| ≤ M |xn| for all x ∈ N0.
Using ideas developed in this paper we get the following result.

Corollary 5.1. Assume that f : R → R satisfies the condition (3.3) and the sequences r : N0 →
R \ {0}, a : N0 → R are such that

∞

∑
n=0

∣∣∣∣ 1
rj

∣∣∣∣ ∞

∑
i=n
|ai| < +∞.

Then, there exists a bounded solution x : N0 → R of equation (5.1).
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