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Abstract. In this paper, limit periodic and almost periodic homogeneous linear dif-
ference systems are studied. The coefficient matrices of the considered systems belong
to a given commutative group. We find a condition on the group under which the sys-
tems, whose fundamental matrices are not almost periodic, form an everywhere dense
subset in the space of all considered systems. The treated problem is discussed for
the elements of the coefficient matrices from an arbitrary infinite field with an abso-
lute value. Nevertheless, the presented results are new even for the field of complex
numbers.
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1 Introduction

For a given commutative group X , we intend to analyse the homogeneous linear difference
systems

xk+1 = Ak · xk, k ∈ Z, where {Ak} ⊆ X . (1.1)

We will consider limit periodic and almost periodic systems (1.1), which means that the se-
quence of Ak will be limit periodic or almost periodic. The basic motivation of this paper
comes from [29, 35].

In [29] (see also [26]), there are studied systems (1.1) for X being the unitary group and
there is proved that, in any neighbourhood of an almost periodic system (1.1), there exist
almost periodic systems (1.1) whose fundamental matrices are not almost periodic. The cor-
responding result about orthogonal difference, skew-Hermitian and skew-symmetric differ-
ential systems can be found in [30], [32], and in [34] (see also [27]), respectively. For results
concerning almost periodic solutions, we refer to [16, 17, 28, 30], where unitary, orthogonal,
skew-Hermitian, and skew-symmetric systems are analysed. In our previous works [13, 33],
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the above mentioned result of [29] is improved for a general (weakly) transformable group X .
We remark that the process from [29] cannot be applied for commutative groups of coefficient
matrices which are treated in this paper.

In [35], the study of non-almost periodic solutions of limit periodic systems (1.1) has been
initiated and the so-called property P has been introduced. The concept of groups with
property P leads to results of the same type as the main results of [13, 33]. It should be
noted that only bounded groups of matrices are treated in [35]. The goal of this paper is to
prove for other groups of matrices that, in any neighbourhood of a system (1.1), there exist
systems (1.1) which have at least one non-almost periodic solution. Moreover, we deal with the
corresponding Cauchy problems. For this purpose, we generalize the notion of property P (we
introduce property P with respect to a given non-trivial vector) and we use the generalization
to obtain the announced results for groups which can be unbounded. Especially, for the used
modification of property P, it holds that any group which contains a group with the innovated
property has this property as well.

The fundamental properties of limit periodic and almost periodic sequences and functions
can be found in a lot of monographs (see, e.g., [4, 10, 18, 24]). Almost periodic solutions of
almost periodic linear difference equations are studied in articles [6, 7, 8, 12, 14, 37]. Properties
of complex almost periodic systems (1.1) are discussed, e.g., in [3, 15, 23]. In the situation
when index k attains only positive values, linear almost periodic equations are treated, e.g., in
[1, 25]. To the best of our knowledge, the first result about non-almost periodic solutions of
homogeneous linear difference equations was obtained in [11].

We prove the announced results using constructions of limit periodic sequences. This
approach is motivated by the continuous case (special constructions of homogeneous linear
differential systems with almost periodic coefficients are used, e.g., in [19, 20, 21, 22, 32, 34]).
Note that the process applied in this paper is substantially different from the ones in all
above mentioned papers. Hence, we obtain new results even for almost periodic systems and
bounded groups of coefficient matrices.

This paper is organized as follows. In the next section, we mention the notation which
is used throughout the whole paper. Then, in Section 3, we define limit periodic, almost
periodic, and asymptotically almost periodic sequences and we state their properties which we
will need later. In Section 4, we treat the considered homogeneous linear difference systems,
where we recall the definitions and results which motivate our recent research and which
give the necessary background of the studied problems. In the final section, we formulate and
prove our results which are commented by several remarks.

2 Preliminaries

At first, we mention the used notation which is similar to the one from [35]. For arbitrary
p ∈ N, we put pN := {pj : j ∈ N}. Let (F,⊕,�) be an infinite field. Let | · | : F → R be an
absolute value on F; i.e., let

(i) | f | ≥ 0 and | f | = 0 if and only if f is the zero element,

(ii) | f � g | = | f | · | g |,

(iii) | f ⊕ g | ≤ | f |+ | g |

for all f , g ∈ F.
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Let m ∈N be arbitrarily given (as the dimension of later considered systems). The symbol
Mat(F, m) will denote the set of all m × m matrices with elements from F and Fm the set
of all m × 1 vectors with elements from F. As usual, the symbols ·, + will stand for the
multiplication and addition on spaces Mat(F, m) and Fm. In Mat(F, m), the identity matrix
will be denoted as I and the zero matrix as O.

The absolute value on F gives the norm ‖ · ‖ on Fm and Mat(F, m) as the sum of m and
m2 non-negative numbers which are the absolute values of elements, respectively. Especially
(consider (ii), (iii)), we have

(I) ‖M + N ‖ ≤ ‖M ‖+ ‖N ‖,

(II) ‖ u + v ‖ ≤ ‖ u ‖+ ‖ v ‖,

(III) ‖M · N ‖ ≤ ‖M ‖ · ‖N ‖,

(IV) ‖M · u ‖ ≤ ‖M ‖ · ‖ u ‖

for all M, N ∈ Mat(F, m) and u, v ∈ Fm.
The absolute value on F and the norms on Fm, Mat(F, m) induce the metrics. For sim-

plicity, we will denote each one of these metrics by $. The ε-neighbourhoods will be denoted
by O$

ε in all above given spaces (with metric $). We remark that the metric space (F, $) does
not need to be complete or separable (in contrast to [35]).

3 Generalizations of pure periodicity

In this section, we recall the concept of limit periodicity, almost periodicity, and asymptotic
almost periodicity for a general metric space (S, τ).

Definition 3.1. We say that a sequence {ϕk}k∈Z ⊆ S is limit periodic if there exists a sequence
of periodic sequences {ϕn

k}k∈Z ⊆ S, n ∈N, such that limn→∞ ϕn
k = ϕk, where the convergence

is uniform with respect to k ∈ Z.

Remark 3.2. Note that limit periodic sequences can be equivalently introduced in a different
way. We refer to [5] (see also [2]).

Definition 3.3. We say that a sequence {ϕk}k∈Z ⊆ S is almost periodic if, for any ε > 0, there
exists r(ε) ∈ N such that any set consisting of r(ε) consecutive integers contains at least one
number l satisfying

τ (ϕk+l , ϕk) < ε, k ∈ Z.

The above number l is called an ε-translation number of {ϕk}.

Remark 3.4. It is seen directly from Definition 3.3 that any almost periodic sequence is
bounded.

Theorem 3.5. The uniform limit of almost periodic sequences is almost periodic.

Proof. The theorem can be proved by a simple modification of the proof of [9, Theorem 6.4].
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Theorem 3.6. Let {ϕk}k∈Z ⊆ S be given. The sequence {ϕk} is almost periodic if and only if any
sequence {ln}n∈N ⊆ Z has a subsequence {l̄n}n∈N ⊆ {ln} such that, for any ε > 0, there exists
K(ε) ∈N satisfying

τ
(

ϕk+l̄i , ϕk+l̄j

)
< ε, i, j > K(ε), k ∈ Z.

Proof. See, e.g., [31, Theorem 2.3].

Corollary 3.7. Let p ∈ N be arbitrarily given and let {ϕk}k∈Z ⊆ S be almost periodic. For any
ε > 0, the set of all ε-translation numbers l ∈ pN of {ϕk} is infinite.

Proof. It suffices to apply Theorem 3.6 for ln := pn, n ∈N. Indeed, it holds

sup
k∈Z

τ
(

ϕk+li , ϕk+lj

)
= sup

k∈Z

τ
(

ϕk+li−lj , ϕk

)
, i, j ∈N.

Using Theorem 3.6 n-times, we also obtain the following result.

Corollary 3.8. Let (S1, τ1), . . . , (Sn, τn) be metric spaces and {ϕ1
k}k∈Z, . . . , {ϕn

k}k∈Z be arbitrary
sequences with values in S1, . . . , Sn, respectively. The sequence {ψk}k∈Z, with values in S1× · · · × Sn

given by
ψk =

(
ϕ1

k , . . . , ϕn
k

)
, k ∈ Z,

is almost periodic if and only if all sequences {ϕ1
k}, . . . , {ϕn

k} are almost periodic.

Definition 3.9. We say that a sequence {ϕk}k∈Z ⊆ S is asymptotically almost periodic if, for
every ε > 0, there exist r(ε), R(ε) ∈N such that any set consisting of r(ε) consecutive integers
contains at least one number l satisfying

τ (ϕk+l , ϕk) < ε, k, k + l ≥ R(ε).

Remark 3.10. Considering Theorem 3.5, we know that any limit periodic sequence is almost
periodic. In addition, any almost periodic sequence is evidently asymptotically almost pe-
riodic. Note that, in Banach spaces, a sequence is asymptotically almost periodic if and only
if it can be expressed as the sum of an almost periodic sequence and a sequence vanishing at
infinity (see, e.g., [36, Chapter 5]).

4 Homogeneous linear difference systems over a field

In this section, we describe the studied systems in more details. Let X ⊂ Mat(F, m) be
an arbitrarily given group. We recall that we will analyse homogeneous linear difference
systems (1.1). Let LP (X ) denotes the set of all systems (1.1) for which the sequence of
matrices Ak is limit periodic. Analogously, the set of all almost periodic systems (1.1) will be
denoted by AP (X ). Especially, we can identify the sequence {Ak} with the system in the
form (1.1) which is determined by {Ak}. In AP (X ), we introduce the metric

σ ({Ak}, {Bk}) := sup
k∈Z

$ (Ak, Bk) , {Ak}, {Bk} ∈ AP (X ).

Henceforth, the symbol Oσ
ε ({Ak}) will denote the ε-neighbourhood of {Ak} in AP (X ).

Now we recall a definition from [35] which is used in the formulations of the below given
Theorems 4.2 and 4.3 (for their proofs, see [35]). We point out that Theorems 4.2 and 4.3 are
the basic motivation for our current research.
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Definition 4.1. We say that X has property P if there exists ζ > 0 and if, for all δ > 0, there
exists l ∈ N such that, for any vector u ∈ Fm satisfying ‖ u ‖ ≥ 1, one can find matrices
N1, N2, . . . , Nl ∈ X with the property that

N1 ∈ O
$
δ (I), Ni ∈ O

$
δ (Ni+1), i ∈ {1, . . . , l − 1}, ‖Nl · u− u ‖ > ζ.

Theorem 4.2. Let X be bounded and have property P. For any {Ak} ∈ LP(X ) and ε > 0, there
exists a system {Bk} ∈ Oσ

ε ({Ak})∩LP(X ) which does not have any non-zero asymptotically almost
periodic solution.

Theorem 4.3. Let X be bounded and have property P. For any {Ak} ∈ AP(X ) and ε > 0, there
exists a system {Bk} ∈ Oσ

ε ({Ak}) which does not have any non-zero asymptotically almost periodic
solution.

In this paper, we intend to improve the above theorems. To show how the presented
results improve Theorems 4.2 and 4.3, we need to reformulate Definition 4.1 for bounded
groups applying the next two lemmas (which we will need later as well).

Lemma 4.4. Let p ∈N be given. The multiplication of p matrices is continuous in the Lipschitz sense
on any bounded subset of Mat(F, m).

Proof. Let K > 0 be given. Since the addition and the multiplication have the Lipschitz prop-
erty on the set of f ∈ F satisfying | f | < K, the statement of the lemma is true.

Lemma 4.5. Let a bounded group X ⊆ Mat(F, m) be given. There exists L > 1 such that

M · N−1, N−1 ·M ∈ O$
aL(I) if M, N ∈ X, M ∈ O$

a (N). (4.1)

Proof. We know that the inequality

‖M ‖ < K, M ∈ X, i.e.,
∥∥∥M−1

∥∥∥ < K, M ∈ X, (4.2)

holds for some K > 0. The map f 7→ − f , the multiplication, and the addition have the
Lipschitz property on the set of all f ∈ F satisfying | f | < K. In addition, for any M ∈ X, we
have (see (4.2))

det M < m!Km, det M =
1

det M−1 >
1

m!Km .

Hence, the map

M 7→ 1
det M

, M ∈ X,

has the Lipschitz property as well. Let a matrix M ∈ X be given. If we use the expression

m−1
i,j =

Mj,i

det M
, i, j ∈ {1, . . . , m},

where m−1
i,j are elements of M−1 ∈ X and Mj,i are the algebraic complements of the elements

mj,i of M, then it is seen that the map M 7→ M−1 is continuous in the Lipschitz sense on X.
Evidently, Lemma 4.4 and the Lipschitz continuity of M 7→ M−1 on X imply the existence

of L > 1 for which (4.1) is valid.
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Using Lemmas 4.4 and 4.5 for bounded X and for

N1 = M1, N2 = M2 ·M1, . . . , Nl = Ml · · ·M2 ·M1,

we can rewrite Definition 4.1 as follows.

Definition 4.6. A bounded group X ⊂ Mat(F, m) has property P if there exists ζ > 0 and if,
for all δ > 0, there exists l ∈ N such that, for any vector u ∈ Fm satisfying ‖ u ‖ ≥ 1, one can
find matrices M1, M2, . . . , Ml ∈ X with the property that

Mi ∈ O
$
δ (I), i ∈ {1, 2, . . . , l}, ‖Ml · · ·M2 ·M1 · u− u ‖ > ζ.

To formulate the obtained results in a simple and consistent form, we introduce the fol-
lowing direct generalization of Definition 4.6.

Definition 4.7. Let a non-zero vector u ∈ Fm be given. We say that X has property P with respect
to u if there exists ζ > 0 such that, for all δ > 0, one can find matrices M1, M2, . . . , Ml ∈ X
satisfying

Mi ∈ O
$
δ (I), i ∈ {1, 2, . . . , l}, ‖Ml · · ·M2 ·M1 · u− u ‖ > ζ.

Remark 4.8. Since a group with property P has property P with respect to any non-zero vector
u (consider ‖ f � u ‖ = | f | · ‖ u ‖, f ∈ F, u ∈ Fm), we can refer to a lot of examples of matrix
groups with property P mentioned in our previous paper [35]. In [35], there is also proved
the following implication. If a complex transformable matrix group contains a matrix M
satisfying Mu 6= u for a vector u ∈ Cm, then the group has property P with respect to u. Thus,
concerning examples of groups having property P with respect to a given vector, we can also
refer to our articles [13, 33], where (weakly) transformable groups are studied. Furthermore,
we point out that any group, which contains a subgroup having property P with respect to a
vector u, has property P with respect to u as well.

5 Results

Henceforth, we will assume that X is commutative. To prove the announced result (the below
given Theorem 5.3), we use Lemmas 5.1 and 5.2.

Lemma 5.1. Let {Ak} ∈ LP(X ) and ε > 0 be arbitrarily given. Let {δn}n∈N ⊂ R be a decreasing
sequence satisfying

lim
n→∞

δn = 0 (5.1)

and let {Bn
k }k∈Z ⊂ X be periodic sequences for n ∈N such that

Bn
k ∈ O

$
δn
(I), k ∈ Z, n ∈N, (5.2)

Bj
k = I or Bi

k = I, k ∈ Z, i 6= j, i, j ∈N. (5.3)

If one puts
Bk := Ak · B1

k · B2
k · · · Bn

k · · · , k ∈ Z,

then {Bk} ∈ LP(X ). In addition, if
δ1 <

ε

sup
l∈Z

‖ Al ‖
, (5.4)

then {Bk} ∈ Oσ
ε ({Ak}).
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Proof. Condition (5.3) means that, for any k ∈ Z, there exists i ∈N such that

Bk = Ak · Bi
k. (5.5)

Especially, the definition of {Bk}k∈Z is correct and Bk ∈ X , k ∈ Z.
We show that {Bk} is limit periodic. Since {Ak} is limit periodic and Ak ∈ X , k ∈ Z, there

exist periodic sequences {Cn
k }k∈Z ⊂ X for n ∈N with the property that

‖ Ak − Cn
k ‖ <

1
n

, k ∈ Z, n ∈N. (5.6)

Let {Bn
k } and {Cn

k } have period pn ∈ N and qn ∈ N for n ∈ N, respectively. The sequence
{Cn

k · B1
k · B2

k · · · Bn
k }k∈Z ⊂ X has period qn · p1 · p2 · · · pn; i.e., it is periodic for all n ∈ N. It is

valid that∥∥∥ Bk − Cn
k · B1

k · B2
k · · · Bn

k

∥∥∥
≤
∥∥∥ Bk − Cn

k · B1
k · B2

k · · · Bn
k · · ·

∥∥∥+ ∥∥∥Cn
k · B1

k · B2
k · · · Bn

k · · · − Cn
k · B1

k · B2
k · · · Bn

k

∥∥∥
≤ ‖ Ak − Cn

k ‖ ·
∥∥∥ B1

k · B2
k · · · Bn

k · · ·
∥∥∥+ ∥∥∥Cn

k · B1
k · B2

k · · · Bn
k

∥∥∥ · ∥∥∥ Bn+1
k · · · Bn+j

k · · · − I
∥∥∥

and that ∥∥∥Cn
k · B1

k · B2
k · · · Bn

k

∥∥∥ ≤ ‖Cn
k ‖ ·

∥∥∥ B1
k · B2

k · · · Bn
k

∥∥∥
≤ (‖ Ak ‖+ ‖Cn

k − Ak ‖) ·
∥∥∥ B1

k · B2
k · · · Bn

k

∥∥∥ .

Hence (see (5.2), (5.3), (5.6)), we have

∥∥∥ Bk − Cn
k · B1

k · B2
k · · · Bn

k

∥∥∥ <
1
n
(m + δ1) +

(
sup
l∈Z

‖ Al ‖+
1
n

)
(m + δ1) δn+1

for all k ∈ Z, n ∈ N. Considering (5.1), we get that {Bk} is the uniform limit of the sequence
of periodic sequences {Cn

k · B1
k · B2

k · · · Bn
k }. Especially, {Bk} ∈ LP(X ).

Let (5.4) be true. We have to prove that {Bk} ∈ Oσ
ε ({Ak}), i.e.,

sup
k∈Z

‖ Ak − Bk ‖ < ε. (5.7)

Since
Bn

k ∈ O
$
δ1
(I), k ∈ Z, n ∈N,

considering (5.5), we have

‖ Ak − Bk ‖ ≤ ‖ Ak ‖ ·
∥∥∥ I − Bi

k

∥∥∥ ≤ δ1 sup
l∈Z

‖ Al ‖

for some i ∈N and for all k ∈ Z. Thus (see (5.4)), we obtain (5.7).

Lemma 5.2. If for any δ > 0 and K > 0, there exist matrices M1, M2, . . . , Ml ∈ X such that

Mi ∈ O
$
δ (I), i ∈ {1, 2, . . . , l}, ‖Ml · · ·M2 ·M1 ‖ > K,

then, for any {Ak} ∈ LP(X ) and ε > 0, there exists a system {Bk} ∈ Oσ
ε ({Ak}) ∩ LP(X ) whose

fundamental matrix is not almost periodic.
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Proof. We can assume that all solutions of {Ak} are almost periodic. Especially (consider
Corollary 3.8), for any ϑ > 0, there exist infinitely many positive integers p with the property
that ∥∥ Ap−1 · · · A1 · A0 − I

∥∥ < ϑ. (5.8)

Let {δn}n∈N ⊂ R be a decreasing sequence satisfying (5.1) and (5.4). For δn and Kn := n,
n ∈N, we consider matrices

M1
1, M1

2, . . . , M1
l1 ∈ X ,

M2
1, M2

2, . . . , M2
l2 ∈ X ,

...

Mj
1, Mj

2, . . . , Mj
lj
∈ X ,

...

such that
Mj

i ∈ O
$
δj
(I) , i ∈ {1, 2, . . . , lj}, j ∈N, (5.9)

and ∥∥∥Mj
lj
· · ·Mj

2 ·M
j
1

∥∥∥ > Kj = j, j ∈N. (5.10)

Let a sequence of positive numbers ϑn for n ∈N be given.
Let us consider p1

1, p1
2 ∈N such that p1

2 − p1
1 > 2l1 and that (see (5.8))∥∥∥ Ap1

2−1 · · · A1 · A0 − I
∥∥∥ < ϑ1. (5.11)

In addition, let p1
1 and p1

2 be even (consider Corollary 3.7). We define the periodic sequence
{B1

k}k∈Z with period p1
2 by values

B1
0 := I, B1

1 := I, . . . , B1
p1

1−2 := I,

B1
p1

1−1 := I, B1
p1

1
:= I, B1

p1
1+1 := M1

1, B1
p1

1+2 := I, B1
p1

1+3 := M1
2, B1

p1
1+4 := I,

...

B1
p1

1+2l1−3 := M1
l1−1, B1

p1
1+2l1−2 := I, B1

p1
1+2l1−1 := M1

l1 ,

B1
p1

1+2l1
:= I, B1

p1
1+2l1+1 := I, B1

p1
1+2l1+2 := I,

...

B1
p1

2−1 := I.

We put
B̃1

k := Ak · B1
k , k ∈ Z.

We have ∥∥∥ B̃1
p1

2−1 · · · B̃
1
1 · B̃1

0

∥∥∥ =
∥∥∥M1

l1 · · ·M
1
2 ·M1

1 · Ap1
2−1 · · · A1 · A0

∥∥∥ .
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Again, we can assume that, for any ϑ > 0, there exist infinitely many positive integers p with
the property that ∥∥∥ B̃1

p−1 · · · B̃1
1 · B̃1

0 − I
∥∥∥ < ϑ. (5.12)

Otherwise, we obtain the system {Bk} ≡ {B̃1
k} with a non-almost periodic solution. Indeed, it

suffices to consider Lemma 5.1 for Bn+1
k = I, k ∈ Z, n ∈N.

Analogously, let us consider p2
1, p2

2 ∈N satisfying p2
2 − 4l2 > p2

1 > p1
2 and (see (5.12))∥∥∥ B̃1

p2
2−1 · · · B̃

1
1 · B̃1

0 − I
∥∥∥ < ϑ2. (5.13)

Let p2
1, p2

2 ∈ 4N (see Corollary 3.7). We define the periodic sequence {B2
k}k∈Z with period p2

2
by values

B2
0 := I, B2

1 := I, . . . , B2
p2

1−1 := I,

B2
p2

1
:= I, B2

p2
1+1 := I, B2

p2
1+2 := M2

1, B2
p2

1+3 := I,

B2
p2

1+4 := I, B2
p2

1+5 := I, B2
p2

1+6 := M2
2, B2

p2
1+7 := I,

...

B2
p2

1+4l2−4 := I, B2
p2

1+4l2−3 := I, B2
p2

1+4l2−2 := M2
l2 , B2

p2
1+4l2−1 := I,

B2
p2

1+4l2
:= I, B2

p2
1+4l2+1 := I, B2

p2
1+4l2+2 := I, B2

p2
1+4l2+3 := I,

...

B2
p2

2−1 := I.

For
B̃2

k := Ak · B1
k · B2

k , k ∈ Z,

it holds ∥∥∥ B̃2
p2

2−1 · · · B̃
2
1 · B̃2

0

∥∥∥ =
∥∥∥M2

l2 · · ·M
2
2 ·M2

1 · B̃1
p2

2−1 · · · B̃
1
1 · B̃1

0

∥∥∥ .

Especially, for all k ∈ Z, there exists i ∈ {1, 2} such that B̃2
k := Ak · Bi

k.

We continue in the same manner. Let us assume that all obtained systems {B̃j
k}k∈Z have

only almost periodic solutions. Thus, for every ϑ > 0 and j ∈N, one can find infinitely many
p ∈N such that ∥∥∥ B̃j

p−1 · · · B̃
j
1 · B̃

j
0 − I

∥∥∥ < ϑ.

In the n-th step, we consider pn
1 , pn

2 ∈ 2nN such that pn
2 − 2nln > pn

1 > pn−1
2 and∥∥∥ B̃n−1

pn
2−1 · · · B̃

n−1
1 · B̃n−1

0 − I
∥∥∥ < ϑn. (5.14)

We define the periodic sequence {Bn
k }k∈Z with period pn

2 by values

Bn
0 := I, Bn

1 := I, . . . , Bn
pn

1−1 := I,
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Bn
pn

1
:= I, Bn

pn
1+1 := I, . . . , Bn

pn
1+2n−1−1 := I,

Bn
pn

1+2n−1 := Mn
1 , Bn

pn
1+2n−1+1 := I, . . . , Bn

pn
1+2n−1 := I,

Bn
pn

1+2n := I, Bn
pn

1+2n+1 := I, . . . , Bn
pn

1+2n+2n−1−1 := I,

Bn
pn

1+2n+2n−1 := Mn
2 , Bn

pn
1+2n+2n−1+1 := I, . . . , Bn

pn
1+2·2n−1 := I,

...

Bn
pn

1+(ln−1)2n := I, Bn
pn

1+(ln−1)2n+1 := I, . . . , Bn
pn

1+(ln−1)2n+2n−1−1 := I,

Bn
pn

1+(ln−1)2n+2n−1 := Mn
ln , Bn

pn
1+(ln−1)2n+2n−1+1 := I, . . . , Bn

pn
1+ln2n−1 := I,

Bn
pn

1+ln2n := I, Bn
pn

1+ln2n+1 := I, . . . , Bn
pn

1+ln2n+2n−1−1 := I,

Bn
pn

1+ln2n+2n−1 := I, Bn
pn

1+ln2n+2n−1+1 := I, . . . , Bn
pn

1+(ln+1)2n−1 := I,

...

Bn
pn

2−1 := I.

If we put
B̃n

k := Ak · B1
k · B2

k · · · Bn
k , k ∈ Z,

then ∥∥∥ B̃n
pn

2−1 · · · B̃n
1 · B̃n

0

∥∥∥ =
∥∥∥Mn

ln · · ·M
n
2 ·Mn

1 · B̃n−1
pn

2−1 · · · B̃
n−1
1 · B̃n−1

0

∥∥∥ . (5.15)

Finally, we put
Bk := Ak · B1

k · B2
k · · · Bn

k · · · , k ∈ Z.

From the construction, we obtain that, for any k ∈ Z, there exists i ∈N such that Bk = Ak · Bi
k.

It means that (5.3) is satisfied. Since (5.2) follows from the construction and from (5.9), we
can use Lemma 5.1 which guarantees that {Bk} ∈ Oσ

ε ({Ak}) ∩ LP(X ). It remains to prove
that the fundamental matrix of {Bk} is not almost periodic. On contrary, let us assume its
almost periodicity. Then, the fundamental matrix is bounded (see Remark 3.4); i.e., there
exists K0 > 0 with the property that

‖ Bk · · · B1 · B0 ‖ < K0, k ∈N. (5.16)

Let us choose n ∈ N for which n ≥ K0 + 1. We repeat that the multiplication of matrices is
continuous (see also Lemma 4.4). Hence, for given matrix

Mn
1 ·Mn

2 · · ·Mn
ln = Mn

ln · · ·M
n
2 ·Mn

1 ∈ X ,

there exists θn > 0 such that∥∥Mn
ln · · ·M

n
2 ·Mn

1
∥∥− 1 <

∥∥Mn
ln · · ·M

n
2 ·Mn

1 · C
∥∥ , C ∈ O$

θn
(I). (5.17)

We can assume that ϑn = θn in (5.14) (see also (5.11), (5.13)). We construct sequences {Bj
k}

in such a way that
Bj

0 = I, Bj
1 = I, . . . , Bj

pn
2−1 = I, j > n, j, n ∈N.
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Indeed, pj+1
1 > pj

2 > pj
1, j ∈N. Thus, (5.10), (5.14), (5.15), and (5.17) imply∥∥∥ Bpn

2−1 · · · B1 · B0

∥∥∥ =
∥∥∥ B̃n

pn
2−1 · · · B̃n

1 · B̃n
0

∥∥∥
=
∥∥∥Mn

ln · · ·M
n
2 ·Mn

1 · B̃n−1
pn

2−1 · · · B̃
n−1
1 · B̃n−1

0

∥∥∥
>
∥∥Mn

ln · · ·M
n
2 ·Mn

1
∥∥− 1 > n− 1 ≥ K0.

(5.18)

This contradiction (cf. (5.16) and (5.18)) completes the proof.

Theorem 5.3. Let X have property P with respect to a vector u. For any {Ak} ∈ LP(X ) and ε > 0,
there exists a system {Bk} ∈ Oσ

ε ({Ak}) ∩ LP(X ) whose fundamental matrix is not almost periodic.

Proof. Let us consider the solution {x0
k}k∈Z of the Cauchy problem

xk+1 = Ak · xk, k ∈ Z, x0 = u.

If {x0
k} is not almost periodic, then the statement of the theorem is true for Bk := Ak, k ∈ Z.

Hence, we assume that {x0
k} is almost periodic.

We put

δn :=
1

n + 1
· ε

sup
l∈Z

‖ Al ‖
, n ∈N. (5.19)

We know that there exist ζ > 0 and matrices

M1
1, M1

2, . . . , M1
l1 ∈ X ,

M2
1, M2

2, . . . , M2
l2 ∈ X ,

...

Mj
1, Mj

2, . . . , Mj
lj
∈ X ,

...

such that
Mj

i ∈ O
$
δj
(I) , i ∈ {1, . . . , lj}, (5.20)∥∥∥Mj

lj
· · ·Mj

2 ·M
j
1 · u− u

∥∥∥ > ζ (5.21)

for all j ∈N. Of course, we can consider lj such that

lj ≥ · · · ≥ l2 ≥ l1 ≥ 2. (5.22)

Denote
Kj :=

∥∥∥Mj
lj
· · ·Mj

2 ·M
j
1

∥∥∥ , j ∈N. (5.23)

For
ϑj :=

ζ

2
(
Kj + 2

) , j ∈N, (5.24)

we have

‖M · v− w ‖ > ζ

2
if ‖M · u− u ‖ > ζ, M ∈ O$

Kj+1 (O) ∩ X , v, w ∈ O$
ϑj
(u) . (5.25)
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Indeed, for considered u, v, w ∈ Fm and M ∈ X , it holds (see (5.24))

‖M · u− u ‖ ≤ ‖M · u−M · v ‖+ ‖M · v− w ‖+ ‖w− u ‖

<
(
Kj + 1

)
‖ u− v ‖+ ‖w− u ‖+ ‖M · v− w ‖ < ζ

2
+ ‖M · v− w ‖ .

The almost periodicity of {x0
k} (see Corollary 3.7) implies that there exists an even positive

integer j(1,0) such that ∥∥∥ x0
0 − x0

j(1,0)

∥∥∥ =
∥∥∥ u− x0

j(1,0)

∥∥∥ <
ϑ1

2
. (5.26)

Let us define a periodic sequence {B1
k} with period j(1, 0) + r1, where r1 := 2l1. If∥∥∥ x0

j(1,0)
− x0

j(1,0)+r1

∥∥∥ ≥ ϑ1

2
, (5.27)

then we put B1
k := I, k ∈ Z; and if ∥∥∥ x0

j(1,0)
− x0

j(1,0)+r1

∥∥∥ <
ϑ1

2
, (5.28)

then
B1

0 := I, B1
1 := I, . . . , B1

j(1,0)−1 := I,

B1
j(1,0)

:= I, B1
j(1,0)+1 := M1

1, B1
j(1,0)+2 := I, B1

j(1,0)+3 := M1
2,

...

B1
j(1,0)+2l1−4 := I, B1

j(1,0)+2l1−3 := M1
l1−1, B1

j(1,0)+2l1−2 := I, B1
j(1,0)+2l1−1 := M1

l1 .

For B̃1
k := Ak · B1

k , k ∈ Z, we consider the solution {x1
k}k∈Z of the initial problem

xk+1 = B̃1
k · xk, k ∈ Z, x0 = u.

Lemma 5.1 gives that {B̃1
k} ∈ Oσ

ε ({Ak}) ∩ LP(X ). In the case when {x1
k} is not almost pe-

riodic, we can put Bk := B̃1
k , k ∈ Z. Thus, we have to consider the almost periodicity of {x1

k}.
Especially (see Corollary 3.7), there exist infinitely many numbers j ∈ 4N with the property
that ∥∥∥ x1

0 − x1
j

∥∥∥ =
∥∥∥ u− x1

j

∥∥∥ <
ϑ2

2
. (5.29)

Let us consider an integer j(1,1) ∈ 4N satisfying (5.29) and the inequality

j(1,1) ≥ j(1,0) + r1. (5.30)

For r2 := 8l1l2, we define a sequence {B(1,2)
k }k∈Z with period j(1,1) + r2. We put B(1,2)

k := I for
all k ∈ Z if ∥∥∥ x1

j(1,1)
− x1

j(1,1)+r2

∥∥∥ ≥ ϑ2

2
. (5.31)

In the second case, when (5.31) is not valid, we define

B(1,2)
0 := I, B(1,2)

1 := I, . . . , B(1,2)
j(1,1)−1 := I,

B(1,2)
j(1,1)

:= I, B(1,2)
j(1,1)+1 := I, B(1,2)

j(1,1)+2 := M2
1, B(1,2)

j(1,1)+3 := I,
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B(1,2)
j(1,1)+4 := I, B(1,2)

j(1,1)+5 := I, B(1,2)
j(1,1)+6 := M2

2, B(1,2)
j(1,1)+7 := I,

...

B(1,2)
j(1,1)+4l2−4 := I, B(1,2)

j(1,1)+4l2−3 := I, B(1,2)
j(1,1)+4l2−2 := M2

l2 , B(1,2)
j(1,1)+4l2−1 := I,

B(1,2)
j(1,1)+4l2

:= I, B(1,2)
j(1,1)+4l2+1 := I, B(1,2)

j(1,1)+4l2+2 := I, B(1,2)
j(1,1)+4l2+3 := I,

...

B(1,2)
j(1,1)+r2−1 := I.

For B̃(1,2)
k := Ak · B1

k · B
(1,2)
k , k ∈ Z, we consider the solution {x(1,2)

k }k∈Z of the initial problem

xk+1 = B̃(1,2)
k · xk, k ∈ Z, x0 = u.

Again, we can assume that {x(1,2)
k }k∈Z is almost periodic. Let an integer j(2,1) ∈ 8N have the

properties that ∥∥∥ x(1,2)
0 − x(1,2)

j(2,1)

∥∥∥ =
∥∥∥ u− x(1,2)

j(2,1)

∥∥∥ <
ϑ2

2
(5.32)

and that
j(2,1) ≥ j(1,1) + r2. (5.33)

We define a periodic sequence {B(2,2)
k }k∈Z with period j(2,1)(r2 − r1). If∥∥∥ x(1,2)

j(2,1)
− x(1,2)

j(2,1)+r2−r1

∥∥∥ ≥ ϑ2

2
, (5.34)

we put B(2,2)
k := I for all k ∈ Z; and, in the other case, we define

B(2,2)
0 := I, B(2,2)

1 := I, . . . , B(2,2)
j(2,1)−1 := I,

B(2,2)
j(2,1)

:= I, B(2,2)
j(2,1)+1 := I, B(2,2)

j(2,1)+2 := I, B(2,2)
j(2,1)+3 := I,

B(2,2)
j(2,1)+4 := M2

1, B(2,2)
j(2,1)+5 := I, B(2,2)

j(2,1)+6 := I, B(2,2)
j(2,1)+7 := I,

B(2,2)
j(2,1)+8 := I, B(2,2)

j(2,1)+9 := I, B(2,2)
j(2,1)+10 := I, B(2,2)

j(2,1)+11 := I,

B(2,2)
j(2,1)+12 := M2

2, B(2,2)
j(2,1)+13 := I, B(2,2)

j(2,1)+14 := I, B(2,2)
j(2,1)+15 := I,

...

B(2,2)
j(2,1)+8l2−8 := I, B(2,2)

j(2,1)+8l2−7 := I, B(2,2)
j(2,1)+8l2−6 := I, B(2,2)

j(2,1)+8l2−5 := I,

B(2,2)
j(2,1)+8l2−4 := M2

l2 , B(2,2)
j(2,1)+8l2−3 := I, B(2,2)

j(2,1)+8l2−2 := M2
l2 , B(2,2)

j(2,1)+8l2−1 := I,

B(2,2)
j(2,1)+8l2

:= I, B(2,2)
j(2,1)+8l2+1 := I, B(2,2)

j(2,1)+8l2+2 := I, B(2,2)
j(2,1)+8l2+3 := I,

B(2,2)
j(2,1)+8l2+4 := I, B(2,2)

j(2,1)+8l2+5 := I, B(2,2)
j(2,1)+8l2+6 := I, B(2,2)

j(2,1)+8l2+7 := I,

...
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B(2,2)
j(2,1)+r2−r1−1 := I, . . . , B(2,2)

j(2,1)(r2−r1)−1 := I.

Finally, in the second step, we consider the periodic sequence of

B2
k := B(1,2)

k · B(2,2)
k , k ∈ Z. (5.35)

Note that its period is [j(1,1) + r2][j(2,1)(r2 − r1)]. Consequently, we consider

B̃2
k := Ak · B1

k · B2
k , k ∈ Z, (5.36)

and the solution {x2
k}k∈Z of

xk+1 = B̃2
k · xk, k ∈ Z, x0 = u.

In the case when {x2
k} is not almost periodic, we can put Bk := B̃2

k for k ∈ Z and use Lemma 5.1
for Bj+2

k = I, k ∈ Z, j ∈ N (see also (5.36)). Thus, we have to assume that {x2
k} is almost

periodic.
We continue in the same manner. Before the n-th step, we define

B̃n−1
k := Ak · B1

k · B2
k · · · Bn−1

k , k ∈ Z.

Let {B̃n−1
k }k∈Z have period qn−1, e.g., let

qn−1 :=[j(1,0) + r1][j(1,1) + r2][j(2,1)(r2 − r1)]× · · ·
· · · × [j(1,n−2) + rn−1][j(2,n−2)(rn−1 − r1)] · · · [j(n−1,n−2)(rn−1 − rn−2)].

Consider the solution {xn−1
k } of

xk+1 = B̃n−1
k · xk, k ∈ Z, x0 = u.

Again, we consider that the sequence {xn−1
k } is almost periodic. Otherwise, we can put

Bk := B̃n−1
k , k ∈ Z. Especially, for all p ∈ N, there exist infinitely many numbers j ∈ pN with

the property that ∥∥∥ xn−1
0 − xn−1

j

∥∥∥ =
∥∥∥ u− xn−1

j

∥∥∥ <
ϑn

2
. (5.37)

Denote

pn := 2
1+

n−1
∑

i=1
i
, n ≥ 2, n ∈N, (5.38)

rn := 2pnl1l2 · · · ln, n ≥ 2, n ∈N. (5.39)

Let us consider an integer j(1,n−1) ∈ pnN satisfying (5.37) and

j(1,n−1) ≥ qn−1. (5.40)

We define {B(1,n)
k }k∈Z with period j(1,n−1) + rn. If∥∥∥ xn−1

j(1,n−1)
− xn−1

j(1,n−1)+rn

∥∥∥ ≥ ϑn

2
, (5.41)

we put B(1,n)
k := I, k ∈ Z. In the other case, we put

B(1,n)
0 := I, B(1,n)

1 := I, . . . , B(1,n)
j(1,n−1)−1 := I,
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B(1,n)
j(1,n−1)

:= I, B(1,n)
j(1,n−1)+1 := I, . . . , B(1,n)

j(1,n−1)+
pn
2 −1

:= I,

B(1,n)
j(1,n−1)+

pn
2

:= Mn
1 , B(1,n)

j(1,n−1)+
pn
2 +1

:= I, . . . , B(1,n)
j(1,n−1)+pn−1 := I,

B(1,n)
j(1,n−1)+pn

:= I, B(1,n)
j(1,n−1)+pn+1 := I, . . . , B(1,n)

j(1,n−1)+pn+
pn
2 −1

:= I,

B(1,n)
j(1,n−1)+pn+

pn
2

:= Mn
2 , B(1,n)

j(1,n−1)+pn+
pn
2 +1

:= I, . . . , B(1,n)
j(1,n−1)+2pn−1 I,

...

B(1,n)
j(1,n−1)+(ln−1)pn

:= I, B(1,n)
j(1,n−1)+(ln−1)pn+1 := I, . . . , B(1,n)

j(1,n−1)+(ln−1)pn+
pn
2 −1

:= I,

B(1,n)
j(1,n−1)+(ln−1)pn+

pn
2

:= Mn
ln , B(1,n)

j(1,n−1)+(ln−1)pn+
pn
2 +1

:= I, . . . , B(1,n)
j(1,n−1)+ln pn−1 := I,

B(1,n)
j(1,n−1)+ln pn

:= I, B(1,n)
j(1,n−1)+ln pn+1 := I, . . . , B(1,n)

j(1,n−1)+ln pn+
pn
2 −1

:= I,

B(1,n)
j(1,n−1)+ln pn+

pn
2

:= I, B(1,n)
j(1,n−1)+ln pn+

pn
2 +1

:= I, . . . , B(1,n)
j(1,n−1)+(ln+1)pn−1 := I,

...

B(1,n)
j(1,n−1)+rn−1 := I.

For
B̃(1,n)

k := B̃n−1
k · B(1,n)

k = Ak · B1
k · B2

k · · · Bn−1
k · B(1,n)

k , k ∈ Z,

we consider the solution {x(1,n)
k } of

xk+1 = B̃(1,n)
k · xk, k ∈ Z, x0 = u.

Again, we assume that {x(1,n)
k } is almost periodic. Let a number j(2,n−1) ∈ 2pnN have the

properties that ∥∥∥ x(1,n)
0 − x(1,n)

j(2,n−1)

∥∥∥ =
∥∥∥ u− x(1,n)

j(2,n−1)

∥∥∥ <
ϑn

2
(5.42)

and
j(2,n−1) ≥ j(1,n−1) + rn. (5.43)

We define the following periodic sequence {B(2,n)
k }k∈Z with period j(2,n−1)(rn − r1). If∥∥∥ x(1,n)

j(2,n−1)
− x(1,n)

j(2,n−1)+rn−r1

∥∥∥ ≥ ϑn

2
, (5.44)

then B(2,n)
k := I, k ∈ Z. In the other case, we put

B(2,n)
0 := I, B(2,n)

1 := I, . . . , B(2,n)
j(2,n−1)−1 := I,

B(2,n)
j(2,n−1)

:= I, B(2,n)
j(2,n−1)+1 := I, . . . , B(2,n)

j(2,n−1)+pn−1 := I,

B(2,n)
j(2,n−1)+pn

:= Mn
1 , B(2,n)

j(2,n−1)+pn+1 := I, . . . , B(2,n)
j(2,n−1)+2pn−1 := I,

B(2,n)
j(2,n−1)+2pn

:= I, B(2,n)
j(2,n−1)+2pn+1 := I, . . . , B(2,n)

j(2,n−1)+2pn+pn−1 := I,
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B(2,n)
j(2,n−1)+2pn+pn

:= Mn
2 , B(2,n)

j(2,n−1)+2pn+pn+1 := I, . . . , B(2,n)
j(2,n−1)+4pn−1 := I,

...

B(2,n)
j(2,n−1)+(ln−1)2pn

:= I, B(2,n)
j(2,n−1)+(ln−1)2pn+1 := I, . . . , B(2,n)

j(2,n−1)+(ln−1)2pn+pn−1 := I,

B(2,n)
j(2,n−1)+(ln−1)2pn+pn

:= Mn
ln , B(2,n)

j(2,n−1)+(ln−1)2pn+pn+1 := I, . . . , B(2,n)
j(2,n−1)+2ln pn−1 := I,

B(2,n)
j(2,n−1)+2ln pn

:= I, B(2,n)
j(2,n−1)+2ln pn+1 := I, . . . , B(2,n)

j(2,n−1)+2ln pn+pn−1 := I,

B(2,n)
j(2,n−1)+2ln pn+pn

:= I, B(2,n)
j(2,n−1)+2ln pn+pn+1 := I, . . . , B(2,n)

j(2,n−1)+2(ln+1)pn−1 := I,

...

B(2,n)
j(2,n−1)+rn−r1−1 := I, . . . , B(2,n)

j(2,n−1)(rn−r1)−1 := I.

We continue in the n-th step. We define

B̃(n−1,n)
k := B̃n−1

k · B(1,n)
k · B(2,n)

k · · · B(n−1,n)
k , k ∈ Z.

We consider the solution {x(n−1,n)
k }k∈Z of

xk+1 = B̃(n−1,n)
k · xk, k ∈ Z, x0 = u.

Again, we have to assume that {x(n−1,n)
k } is almost periodic. Let j(n,n−1) ∈ 2n−1 pnN satisfy∥∥∥ x(n−1,n)

0 − x(n−1,n)
j(n,n−1)

∥∥∥ =
∥∥∥ u− x(n−1,n)

j(n,n−1)

∥∥∥ <
ϑn

2
(5.45)

and
j(n,n−1) ≥ j(n−1,n−1)(rn − rn−2). (5.46)

We define a periodic sequence {B(n,n)
k }k∈Z with period j(n,n−1)(rn − rn−1). If∥∥∥ x(n−1,n)

j(n,n−1)
− x(n−1,n)

j(n,n−1)+rn−rn−1

∥∥∥ ≥ ϑn

2
, (5.47)

we put B(n,n)
k := I, k ∈ Z. If inequality (5.47) is not valid, we put

B(n,n)
0 := I, B(n,n)

1 := I, . . . , B(n,n)
j(n,n−1)−1 := I,

B(n,n)
j(n,n−1)

:= I, B(n,n)
j(n,n−1)+1 := I, . . . , B(n,n)

j(n,n−1)+2n−2 pn−1 := I,

B(n,n)
j(n,n−1)+2n−2 pn

:= Mn
1 , B(n,n)

j(n,n−1)+2n−2 pn+1 := I, . . . , B(n,n)
j(n,n−1)+2n−1 pn−1 := I,

B(n,n)
j(n,n−1)+2n−1 pn

:= I, B(n,n)
j(n,n−1)+2n−1 pn+1 := I, . . . , B(n,n)

j(n,n−1)+2n−1 pn+2n−2 pn−1 := I,

B(n,n)
j(n,n−1)+2n−1 pn+2n−2 pn

:= Mn
2 , B(n,n)

j(n,n−1)+2n−1 pn+2n−2 pn+1 := I, . . . , B(n,n)
j(n,n−1)+2n pn−1 := I,

...
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B(n,n)
j(n,n−1)+(ln−1)2n−1 pn

:= I, B(n,n)
j(n,n−1)+(ln−1)2n−1 pn+1 := I,

. . . , B(n,n)
j(n,n−1)+(ln−1)2n−1 pn+2n−2 pn−1 := I,

B(n,n)
j(n,n−1)+(ln−1)2n−1 pn+2n−2 pn

:= Mn
ln , B(n,n)

j(n,n−1)+(ln−1)2n−1 pn+2n−2 pn+1 := I,

. . . , B(n,n)
j(n,n−1)+ln2n−1 pn−1 := I,

B(n,n)
j(n,n−1)+ln2n−1 pn

:= I, B(n,n)
j(n,n−1)+ln2n−1 pn+1 := I,

. . . , B(n,n)
j(n,n−1)+ln2n−1 pn+2n−2 pn−1 := I,

B(n,n)
j(n,n−1)+ln2n−1 pn+2n−2 pn

:= I, B(n,n)
j(n,n−1)+ln2n−1 pn+2n−2 pn+1 := I,

. . . , B(n,n)
j(n,n−1)+(ln+1)2n−1 pn−1 := I,

...

B(n,n)
j(n,n−1)+rn−rn−1−1 := I, . . . , B(n,n)

j(n,n−1)(rn−rn−1)−1 := I,

where (see (5.22))

rn − rn−1 = rn−1

[
2n−1ln − 1

]
≥ pn−12n

[
2n−1ln − 1

]
= 2pn

[
2n−1ln − 1

]
> ln2n−1 pn.

Finally, in the n-th step, we define

Bn
k := B(1,n)

k · B(2,n)
k · · · B(n,n)

k , k ∈ Z, (5.48)

and
B̃n

k := Ak · B1
k · B2

k · · · Bn
k , k ∈ Z.

Then, we consider the solution {xn
k }k∈Z of

xk+1 = B̃n
k · xk, k ∈ Z, x0 = u.

Applying Lemma 5.1 for Bn+j
k = I, k ∈ Z, j ∈N, it suffices to consider the case, when {xn

k } is
almost periodic, and to continue in the construction.

All sequence {Bn
k }k∈Z is periodic as the product of n periodic sequences. Let qn be a period

of {Bn
k }, n ∈N. In the construction, we can obtain matrices different from I only for

B1
2l+1, B(1,2)

4l+2, B(2,2)
8l+4, . . . , B(1,n)

lpn+
pn
2

, B(2,n)
2lpn+pn

, . . . , B(n,n)
2n−1lpn+2n−2 pn

, . . . , (5.49)

where l ∈ Z. Considering (5.38) and (5.48) (see also (5.35)), the structure of the indices
of matrices in (5.49) gives (5.3). It is seen that (5.1) and (5.4) follow from (5.19) and from
the construction. Analogously, (5.2) follows from (5.20). Thus, applying Lemma 5.1 for the
sequence of

Bk := Ak · B1
k · B2

k · · · Bn
k · · · , k ∈ Z,

we have that {Bk} ∈ Oσ
ε ({Ak}) ∩ LP(X ).
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To complete the proof, it suffices to show that the solution {xk}k∈Z of the problem

xk+1 = Bk · xk, k ∈ Z, x0 = u

is not almost periodic. On contrary, let us assume that {xk} is almost periodic. We use
Theorem 3.6 for l1 = 0, ln+1 = rn, n ∈ N (see (5.39)). We know that, for any ξ > 0, there exist
infinitely many i, j ∈N satisfying∥∥∥ xk+li − xk+lj

∥∥∥ < ξ, k ∈ Z. (5.50)

From the construction (consider (5.30), (5.33), . . . , (5.40), (5.43), . . . , (5.46)), we obtain

Bn+j
k = I, k ∈ {0, 1, . . . , qn − 1}, n, j ∈N. (5.51)

Hence, we get∥∥∥ xj(1,0) − xj(1,0)+r1

∥∥∥ =
∥∥∥ Bj(1,0)−1 · · · B1 · B0 · u− Bj(1,0)+r1−1 · · · B1 · B0 · u

∥∥∥
=
∥∥ B1

j(1,0)−1 · · · B
1
1 · B1

0 · Aj(1,0)−1 · · · A1 · A0 · u

− B1
j(1,0)+r1−1 · · · B

1
1 · B1

0 · Aj(1,0)+r1−1 · · · A1 · A0 · u
∥∥

=
∥∥∥ B1

j(1,0)−1 · · · B
1
1 · B1

0 · x0
j(1,0) − B1

j(1,0)+r1−1 · · · B
1
1 · B1

0 · x0
j(1,0)+r1

∥∥∥ ,

i.e., ∥∥∥ xj(1,0) − xj(1,0)+r1

∥∥∥
=
∥∥∥ B1

j(1,0)−1 · · · B
1
1 · B1

0 · x0
j(1,0) − B1

j(1,0)+r1−1 · · · B
1
1 · B1

0 · x0
j(1,0)+r1

∥∥∥ .
(5.52)

If (5.27) is valid, then we can rewrite (5.52) into∥∥∥ xj(1,0) − xj(1,0)+r1

∥∥∥ =
∥∥∥ I · · · I · I · x0

j(1,0) − I · · · I · I · x0
j(1,0)+r1

∥∥∥ ≥ ϑ1

2
.

If (5.28) is true, then we have∥∥∥ xj(1,0) − xj(1,0)+r1

∥∥∥ =
∥∥∥ I · · · I · I · x0

j(1,0) −M1
l1 · · ·M

1
2 ·M1

1 · x0
j(1,0)+r1

∥∥∥ >
ζ

2
≥ ϑ1

2
,

which follows from (5.21), (5.24), (5.25), and from the inequality (see (5.26), (5.28))∥∥∥ u− x0
j(1,0)+r1

∥∥∥ ≤ ∥∥∥ u− x0
j(1,0)

∥∥∥+ ∥∥∥ x0
j(1,0) − x0

j(1,0)+r1

∥∥∥ <
ϑ1

2
+

ϑ1

2
= ϑ1.

In the both cases, we get ∥∥∥ xj(1,0) − xj(1,0)+r1

∥∥∥ ≥ ϑ1

2
. (5.53)

Considering (5.51) and the construction, we can express∥∥∥ xj(1,1) − xj(1,1)+r2

∥∥∥ =
∥∥∥ Bj(1,1)−1 · · · B1 · B0 · u− Bj(1,1)+r2−1 · · · B1 · B0 · u

∥∥∥
=

∥∥∥∥ B(1,2)
j(1,1)−1 · · · B

(1,2)
1 · B(1,2)

0 · B̃1
j(1,1)−1 · · · B̃

1
1 · B̃1

0 · u

− B(1,2)
j(1,1)+r2−1 · · · B

(1,2)
1 · B(1,2)

0 · B̃1
j(1,1)+r2−1 · · · B̃

1
1 · B̃1

0 · u
∥∥∥∥

=

∥∥∥∥ B(1,2)
j(1,1)−1 · · · B

(1,2)
1 · B(1,2)

0 · x1
j(1,1)

− B(1,2)
j(1,1)+r2−1 · · · B

(1,2)
1 · B(1,2)

0 · x1
j(1,1)+r2

∥∥∥∥,
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i.e., ∥∥∥ xj(1,1) − xj(1,1)+r2

∥∥∥
=
∥∥∥ B(1,2)

j(1,1)−1 · · · B
(1,2)
1 · B(1,2)

0 · x1
j(1,1) − B(1,2)

j(1,1)+r2−1 · · · B
(1,2)
1 · B(1,2)

0 · x1
j(1,1)+r2

∥∥∥ .
(5.54)

If (5.31) is valid, then (5.54) takes the form∥∥∥ xj(1,1) − xj(1,1)+r2

∥∥∥ =
∥∥∥ I · · · I · I · x1

j(1,1) − I · · · I · I · x1
j(1,1)+r2

∥∥∥ ≥ ϑ2

2
. (5.55)

If (5.31) is not valid, then we have∥∥∥ xj(1,1) − xj(1,1)+r2

∥∥∥ =
∥∥∥ I · · · I · I · x1

j(1,1) −M2
l2 · · ·M

2
2 ·M2

1 · x1
j(1,1)+r2

∥∥∥ >
ζ

2
≥ ϑ2

2
. (5.56)

Indeed, it suffices to consider (5.21), (5.24), (5.25), and the inequality (see also (5.29))∥∥∥ u− x1
j(1,1)+r2

∥∥∥ ≤ ∥∥∥ u− x1
j(1,1)

∥∥∥+ ∥∥∥ x1
j(1,1) − x1

j(1,1)+r2

∥∥∥ <
ϑ2

2
+

ϑ2

2
= ϑ2.

Again, one can express∥∥∥ xj(2,1) − xj(2,1)+r2−r1

∥∥∥ =
∥∥∥ Bj(2,1)−1 · · · B1 · B0 · u− Bj(2,1)+r2−r1−1 · · · B1 · B0 · u

∥∥∥
=

∥∥∥∥ B(2,2)
j(2,1)−1 · · · B

(2,2)
1 · B(2,2)

0 · B̃(1,2)
j(2,1)−1 · · · B̃

(1,2)
1 · B̃(1,2)

0 · u

− B(2,2)
j(2,1)+r2−r1−1 · · · B

(2,2)
0 · B̃(1,2)

j(2,1)+r2−r1−1 · · · B̃
(1,2)
0 · u

∥∥∥∥
=

∥∥∥∥ B(2,2)
j(2,1)−1 · · · B

(2,2)
1 · B(2,2)

0 · x(1,2)
j(2,1)

− B(2,2)
j(2,1)+r2−r1−1 · · · B

(2,2)
1 · B(2,2)

0 · x(1,2)
j(2,1)+r2−r1

∥∥∥∥,

i.e., ∥∥∥ xj(2,1) − xj(2,1)+r2−r1

∥∥∥ =

∥∥∥∥ B(2,2)
j(2,1)−1 · · · B

(2,2)
1 · B(2,2)

0 · x(1,2)
j(2,1)

− B(2,2)
j(2,1)+r2−r1−1 · · · B

(2,2)
1 · B(2,2)

0 · x(1,2)
j(2,1)+r2−r1

∥∥∥∥.
(5.57)

If (5.34) is valid, then (5.57) gives∥∥∥ xj(2,1) − xj(2,1)+r2−r1

∥∥∥ =
∥∥∥ I · · · I · I · x(1,2)

j(2,1) − I · · · I · I · x(1,2)
j(2,1)+r2−r1

∥∥∥ ≥ ϑ2

2
. (5.58)

If (5.34) is not valid, then (5.57) gives∥∥∥ xj(2,1) − xj(2,1)+r2−r1

∥∥∥
=
∥∥∥ I · · · I · I · x(1,2)

j(2,1) −M2
l2 · · ·M

2
2 ·M2

1 · x
(1,2)
j(2,1)+r2−r1

∥∥∥ >
ζ

2
≥ ϑ2

2
,

(5.59)

where (5.21), (5.24), (5.25), (5.32), and (5.34) are used.
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Finally (see (5.55), (5.56), (5.58), and (5.59)), from the second step of the construction, we
have ∥∥∥ xj(1,1) − xj(1,1)+r2

∥∥∥ ≥ ϑ2

2
,
∥∥∥ xj(2,1) − xj(2,1)+r2−r1

∥∥∥ ≥ ϑ2

2
. (5.60)

Analogously as (5.53) and (5.60) (consider again (5.21), (5.24), (5.25) and the construction
with (5.37), (5.41), (5.42), (5.44), . . . , (5.45), (5.47)), one can obtain∥∥∥ xj(1,n−1)

− xj(1,n−1)+rn

∥∥∥ ≥ ϑn

2
,

∥∥∥ xj(2,n−1)
− xj(2,n−1)+rn−r1

∥∥∥ ≥ ϑn

2
,

...∥∥∥ xj(n,n−1)
− xj(n,n−1)+rn−rn−1

∥∥∥ ≥ ϑn

2
for all n ∈N.

Considering Lemma 5.2, we can assume that (see (5.23) and (5.24))

sup
j∈N

Kj < ∞, i.e., ϑ := inf
j∈N

ϑj > 0. (5.61)

Thus, for all n ∈N, we obtain ∥∥∥ xj(1,n−1)
− xj(1,n−1)+rn

∥∥∥ ≥ ϑ

2
,

∥∥∥ xj(2,n−1)
− xj(2,n−1)+rn−r1

∥∥∥ ≥ ϑ

2
,

...∥∥∥ xj(n,n−1)
− xj(n,n−1)+rn−rn−1

∥∥∥ ≥ ϑ

2
.

Especially, for all i 6= j, i, j ∈N, there exists l ∈ Z such that∥∥∥ xl+li − xl+lj

∥∥∥ ≥ ϑ

2
.

This contradiction (consider (5.50) for 2ξ ≤ ϑ) proves that {xk} is not almost periodic.

Remark 5.4. It is seen that the statement of Theorem 5.3 does not change if we replace system
{Ak} ∈ LP(X ) by a periodic one. Indeed, it follows directly from Definition 3.1.

Remark 5.5. To illustrate Theorem 5.3, let us consider an arbitrary periodic system {Mk} in
the complex case (i.e., for F = C with the usual absolute value). It means that we have a
system

xk+1 = Mk · xk, k ∈ Z, where Mk = Mk+p, k ∈ Z,

for a positive integer p and arbitrarily given non-singular complex matrices M0, M1, . . . , Mp−1.
It is well-known that a solution of {Mk} is almost periodic if and only if it is bounded (see,
e.g., [33, Corollary 3.9] or [35, Theorem 5]). The fundamental matrix Φ(k, 0) of {Mk} satisfying
Φ(0, 0) = I is given by

Φ(lp + i, 0) = Mi−1 · · ·M1 ·M0 ·
(

Mp−1 · · ·M1 ·M0
)l , l ∈N∪ {0}, i ∈ {1, . . . , p}.
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Thus, to describe the structure of almost periodic solutions, it suffices to consider the multiples(
Mp−1 · · ·M1 ·M0

)l and, in fact, the constant system

xk+1 = Mp−1 · · ·M1 ·M0 · xk, k ∈ Z.

For any constant system given by a non-singular complex matrix M, one can easily find
a commutative matrix group X containing M and having property P with respect to a vector
(e.g., one can consider the group generated by matrices cM for all complex numbers c =

sin l + i cos l, l ∈ Z). Applying Theorem 5.3, we know that, in any neighbourhood of the
considered system, there exists a limit periodic system whose coefficient matrices are from
the group and whose fundamental matrix is not almost periodic. In addition, such a limit
periodic system can be found for any commutative group X which contains M and which has
property P with respect to at least one vector.

Remark 5.6. We repeat that the basic motivation of this paper comes from [35], where non-
asymptotically almost periodic solutions of limit periodic systems are considered. Of course,
systems with coefficient matrices from bounded groups are analysed in [35]. For general
groups, it is not possible to prove the main results of [35], i.e., Theorems 4.2 and 4.3. It suffices
to consider the constant system given by matrix I/2 in the complex case. Any solution {xk}k∈Z

of this system has the property that

‖ xl+1 ‖ =
‖ xl ‖

2
, l ∈N.

Thus, there exists a neighbourhood of the system such that, for any solution {yk}k∈Z of an
almost periodic system from the neighbourhood, we obtain limk→∞ ‖ yk ‖ = 0, which gives the
asymptotic almost periodicity of {yk} (see Remark 3.10).

At the same time, in [35], there is required that the studied matrix group has property P.
Since the group X has property P only with respect to one vector in the statement of Theo-
rem 5.3, we can apply this theorem for groups of matrices in the following form

X 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,

where X is taken from a commutative matrix group having property P with respect to a
concrete vector. In this sense, Theorem 5.3 generalizes Theorem 4.2 as well.

The construction from the proof of Theorem 5.3 can be applied for the Cauchy (initial)
problem. Especially, we immediately obtain the following result.

Theorem 5.7. Let a non-zero vector u ∈ Fm be given. Let X have the property that there exist ζ > 0
and K > 0 such that, for all δ > 0, one can find matrices M1, M2, . . . , Ml ∈ X satisfying

Mi ∈ O
$
δ (I), i ∈ {1, 2, . . . , l}, ‖Ml · · ·M2 ·M1 · u− u ‖ > ζ, ‖Ml · · ·M2 ·M1 ‖ < K.

For any {Ak} ∈ LP(X ) and ε > 0, there exists a system {Bk} ∈ Oσ
ε ({Ak})∩LP(X ) for which the

solution of
xk+1 = Bk · xk, k ∈ Z, x0 = u

is not almost periodic.
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Proof. The theorem follows from the proof of Theorem 5.3, where (5.61) is satisfied (i.e., the
case, which is covered by Lemma 5.2, does not happen).

Similarly to Theorem 4.3 which is the almost periodic version of Theorem 4.2, we formulate
the below given Theorem 5.10 as the almost periodic version of Theorem 5.3. To prove it, we
need the next two lemmas.

Lemma 5.8. Let {Ak} ∈ AP(X ) and ε > 0 be arbitrarily given. Let {δn}n∈N ⊂ R be a decreasing
sequence satisfying (5.1) and let {Bn

k }k∈Z ⊂ X be periodic sequences for n ∈ N such that (5.2) and
(5.3) are valid. Then, {Bk} ∈ AP(X ) if

Bk := Ak · B1
k · B2

k · · · Bn
k · · · , k ∈ Z.

In addition, {Bk} ∈ Oσ
ε ({Ak}) if (5.4) is fulfilled.

Proof. The lemma can be proved analogously as Lemma 5.1. In the proof of Lemma 5.1, it
suffices to put Cn

k = Ak for all k ∈ Z, n ∈ N, to use Theorem 3.5, and to consider the almost
periodicity of {Cn

k · B1
k · B2

k · · · Bn
k }k∈Z ⊂ X which follows from Theorem 3.6, Lemma 4.4, and

from Remark 3.4.

Using the same way which is applied in the proof of Lemma 5.2, we can prove its almost
periodic counterpart. Indeed, we do not use the limit periodicity of {Ak} in the proof (consider
also Lemma 5.8).

Lemma 5.9. If for any δ > 0 and K > 0, there exist matrices M1, M2, . . . , Ml ∈ X such that

Mi ∈ O
$
δ (I), i ∈ {1, 2, . . . , l}, ‖Ml · · ·M2 ·M1 ‖ > K,

then, for any {Ak} ∈ AP(X ) and ε > 0, there exists a system {Bk} ∈ Oσ
ε ({Ak}) whose fundamental

matrix is not almost periodic.

Theorem 5.10. Let X have property P with respect to a vector. For any {Ak} ∈ AP(X ) and ε > 0,
there exists a system {Bk} ∈ Oσ

ε ({Ak}) whose fundamental matrix is not almost periodic.

Proof. The theorem can be proved using the same construction as Theorem 5.3. It suffices to
replace Lemma 5.1 by Lemma 5.8 and Lemma 5.2 by Lemma 5.9.

Analogously, we get the following result as well.

Theorem 5.11. Let a non-zero vector u ∈ Fm be given. Let X have the property that there exist ζ > 0
and K > 0 such that, for all δ > 0, one can find matrices M1, M2, . . . , Ml ∈ X satisfying

Mi ∈ O
$
δ (I), i ∈ {1, 2, . . . , l}, ‖Ml · · ·M2 ·M1 · u− u ‖ > ζ, ‖Ml · · ·M2 ·M1 ‖ < K.

For any {Ak} ∈ AP(X ) and ε > 0, there exists a system {Bk} ∈ Oσ
ε ({Ak}) for which the solution

of
xk+1 = Bk · xk, k ∈ Z, x0 = u

is not almost periodic.

Remark 5.12. We add that Theorems 5.10 and 5.11 do not follow from Theorems 5.3 and 5.7.
Indeed, in [5], there is proved that there exist systems which are almost periodic and which are
not limit periodic (e.g., the sequence {eik}k∈Z is almost periodic and, at the same time, it is not
limit periodic). It means that there exist almost periodic systems which have neighbourhoods
without limit periodic systems.



Limit periodic linear difference systems 23

Acknowledgements

The first author was supported by the Czech Science Foundation under Grant P201/10/1032.
The second author was supported by the project “Employment of Best Young Scientists for In-
ternational Cooperation Empowerment” (CZ.1.07/2.3.00/30.0037) co-financed from European
Social Fund and the state budget of the Czech Republic.

References

[1] Z. AlSharawi, J. Angelos, Linear almost periodic difference equations, J. Comput. Math.
Optim. 4(2008), 61–91. MR2433650

[2] J. Andres, D. Pennequin, Semi-periodic solutions of difference and differential equa-
tions, Bound. Value Probl. 141(2012), 1–16. MR3016042; url
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