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the referenes [5, 9,11, 12, 13℄. We are going to study the following problem
y

′

(t) + Ay (t) = Bu (t) , t ∈ (0, T ) \ {tk}k∈σm

1
, (1)

y (0) = y0,

∆y (tk) = Iky (tk) +Dkvk, k ∈ σm
1 , (1k)where the �nal time T is a positive number, y0 is an initial ondition in aHilbert spae H endowed with an inner produt 〈., .〉H , y (t) : [0, T ] → H is avetor funtion, σm

1 is a subset of N given by σm
1 = {1, 2, ..., m}, and �nally,

{tk}k∈σm

1
is an inreasing sequene of numbers in the open interval (0, T ) ,and ∆y (tk) denotes the jump of y (t) at t = tk, i.e.,

∆y (tk) = y
(
t+k
)
− y

(
t−k
)where y (t+k ) and y (t−k ) represent the right and left limits of y (t) at t = tkrespetively. On the other hand, the operators A, B, Ik, Dk : H → H aregiven linear bounded operators. Moreover, we set the following assumptions:(H1) A∗ = −A,(H2) I∗k = −Ik, for every k ∈ σm

1 , and for eah k ∈ σm
1 , the operator

Ik = Ik + I is invertible,(H3) B∗ = B ≥ 0 and there is d0 > 0 suh that
(Bu, u)H ≤ d0 ‖u‖2

H , for all u ∈ H,(H4) D∗
k = Dk ≥ 0, for every k ∈ σm

1 , and for eah k ∈ σm
1 there is

dk > 0 suh that
(Dku, u)H ≤ dk ‖u‖2

H , for all u ∈ H.In the sequel we shall designate by h the funtionh (t) =
(
u (t) , {vk}k∈σm

1

)
,where u (t) ∈ L2

(
(0, T ) \ {tk}k∈σm

1
;H
) and

{vk}k∈σm

1
∈ l2 (σm

1 ;H) +

{
{vk}k∈σm

1
, vk ∈ H

}
.EJQTDE, 2007 No. 19, p. 2



We point out that the spae Km = L2
(
(0, T ) \ {tk}k∈σm

1
;H
)
× l2 (σm

1 ;H) isa Hilbert spae with respet to the inner produt
(h, h̃)

Km

=

∫ T

0

(u (t) , ũ (t))H dt+

m∑

k=1

(vk, ṽk)H ,de�ned for all h = (u (t) , {vk}m
k=1) and h̃ = (ũ (t) , {ṽk}m

k=1) ∈ Km.We shall denote by B the ontrol operator given by
B =

(
B, {Dk}k∈σm

1

)
∈ L

(
L2
(
(0, T ) \ {tk}k∈σm

1
;H
)
× l2 (σm

1 ;H)
)
,so that

Bh (t) =
(
Bu (t) , {Dkvk}k∈σm

1

)
.We have for every h = (u(t), {vk}m

k=1) ∈ Km

(Bh, h)Km
=

∫ T

0

(Bu (t) , u (t))H dt+

m∑

k=1

(Dkvk, vk)H

=

∫ T

0

(u (t) , Bu (t))H dt+

m∑

k=1

(vk, Dkvk)H

= (h,Bh)Km
,whih shows that B∗ = B, that is, B is self-adjoint. On the other hand, wehave

(Bh, h)Km
=

∫ T

0

(Bu (t) , u (t))H dt+
m∑

k=1

(Dkvk, vk)H

≤ d0

∫ T

0

‖u (t)‖2
H dt+

m∑

k=1

dk ‖vk‖2
H

≤ δ ‖h‖2
Km

,where δ = max {d0, d1, ..., dm} . Thus, the operator is B bounded in Km.Next, we onsider the homogeneous system assoiated with (1) :
ϕ

′

(t) + Aϕ (t) = 0, t ∈ (0, T ) \ {tk}k∈σm

1
, (2)

ϕ (0) = ϕ0,

∆ϕ (tk) = Ikϕ (tk) , k ∈ σm
1 . (2k)EJQTDE, 2007 No. 19, p. 3



We point out that on eah interval [tk, tk+1), for k = 0, ..., m, the solution ϕis left ontinuous at eah time tk.Consider the orresponding homogeneous bakward problem :
−ϕ̃′

(t) + Aϕ̃(t) = 0, , t ∈ (0, T ) \ {tk}k∈σm

1
, (3)

ϕ̃(T ) = ϕ0,

∆ϕ̃(tm−(k−1)) = −Ĩm−(k−1)ϕ̃(t+m−(k−1)), k ∈ σm
1 , (3k)where

A = A∗ = −A, Ĩm−(k−1) = I∗m−(k−1) = −Im−(k−1), k ∈ σm
1 .We observe that the problem (3) on the interval [tm, T ] is equivalent to thelassial bakward problem

−ϕ̃′

(t) + Aϕ̃(t) = 0, t ∈ [tm, T ] ,
ϕ̃(T ) = ϕ0.We introdue the following spae : PC ([0, T ] ;H) = {y, y : [0, T ] → Hsuh that y(t) is ontinuous at t 6= tk, and has disontinuities of �rst kind at

t = tk, for every k ∈ σm
1 }.Evidently, PC ([0, T ] ;H) is a Banah spae with respet to the norm

‖y‖PC = sup
t∈(0,T )

‖y(t)‖ .On the other hand, we de�ne the subspaes PLC, (respetively, PRC)=
{y, y ∈ PC suh that y(t) is left ( respetively, right) ontinuous at t = tk,for every k ∈ σm

1 }.Remark 1 1) The spae PLC, (respetively, PRC) an be identi�ed to asubspae of Km. That is, to eah y ∈ PLC, (respetively, ỹ ∈ PRC) isassigned the funtion h (respetively, h̃) de�ned byh (t) =
(
y (t) , {y (tk)}k∈σm

1

)
,and h̃ (t) =

(
ỹ (t) , {ỹ (tk)}k∈σm

1

)
.The mapping y 7→ h (t) (respetively, ỹ 7→ h̃) is a linear injetion.EJQTDE, 2007 No. 19, p. 4



2) Let ỹ ∈ PRC, the funtion y an be written as :
ỹ(t) =





ỹ[0](t) if t ∈ [t0, t1)
ỹ[k](t) if t ∈ [tk, tk+1)
ỹ[m](t) if t ∈ [tm, T ] .Next, let τk = tk − tk−1, we de�ne the operator T : D(T ) = PRC ⊂ Km →

Km by
(T ỹ)(t) =





ỹ[0]((T − t) τ1
τm+1

+ t0) if t ∈ [tm, T ] ,

ỹ[k]((tm−(k−1) − t)
τk+1

τm−(k−1)
+ tk) if t ∈

[
tm−k, tm−(k−1)

)
, k ∈ σm−1

1 ,

ỹ[m]((t1 − t) τm+1

τ1
+ tm) if t ∈ (0, t1] . (4)We note that the range of T is exatly PLC. The funtion (T ỹ)(t) an bewritten as follows:

(T ỹ)(t) =





y[0](t) if t ∈ [t0, t1] ,
y[k](t) if t ∈ (tk, tk+1] , k ∈ σm−1

1 ,

y[m](t) if t ∈ (tm, T ] .Let X (t) be the resolvent solution of the operator system
X

′

(t) + AX(t) = 0, 0 = t0 < t < tm+1 = T, t 6= tk, k = 1, 2, ..., m,
X(0) = I,

X(tk + 0) −X(tk − 0) = IkX(tk), k = 1, 2, ..., m,where I : H → H is the identity operator. We shall suppose that the operator
Ik = Ik + I has a bounded inverse.De�nition 1 A funtion y ∈ PC ([0, T ] ;H)is a mild solution to the impul-sive problem (1) if the impulsive onditions are satis�ed and

y(t) = G(t, 0+)y0 +
∫ t

0
G(t, s)Bu (s) ds

+
∑

0<tk≤tG(t, tk)(Dkvk), for every t ∈ (0, T ),where the evolution operator G(t, s) is given by
G(t, s) = X(t)X−1(s).EJQTDE, 2007 No. 19, p. 5



It is not hard to hek that the operator G(t, tk) satis�es the operator system
G

′

(t, tk) + AG(t, tk) = 0, t ∈ [tk, tk+1) , k ∈ σm
0 ,

G(tk, tk) = I,

G(t+k+1, tk) −G(t−k+1, tk) = Ik+1G(t−k+1, tk).It is well known that (1) has a unique solution y suh that
y ∈ PLC ([0, T ] ;H) ∩ C1

(
[0, T ] \ {tk}k∈σm

1
;H
)
.Now, we de�ne the onept of mild solution for the bakward impulsivesystem (3) assoiated with system (2).De�nition 2 We say that ϕ̃ ∈ PRC ([0, T ] ;H) is a mild solution for thebakward impulsive system (3) if T ϕ̃ is a mild solution for the homogeneousimpulsive system (2).Let us introdue the notion of the null ontrollability of the initial stateas follows:De�nition 3 We say that the initial state y0 ∈ H is null ontrollable at time

T , if there is a ontrol funtion h ∈ Km for whih the solution y of system(1) satis�es y (T ) = 0.2 Main ResultsFirst we begin by the following lemma.Lemma 1 Assume that ξ (t) , ζ (t) ∈ L1 ([0, T ] ;H) and {ξk}m
k=1 , {ζk}

m
k=1 ∈

l1(σm
1 , H). Then, for every vetor funtions

γ (t) ∈ PLC ([0, T ] ;H) ∩ C1
(
[0, T ] \ {tk}k∈σm

1
;H
)and

η (t) ∈ PRC ([0, T ] ;H) ∩ C1
(
[0, T ] \ {tk}k∈σm

1
;H
)satisfying the problem

d

dt
〈γ (t) , η (t)〉 = 〈ξ (t) , ζ (t)〉, t 6= tk, for k ∈ σm

1 ,

∆〈γ (tk) , η (tk)〉 = 〈∆γ (tk) , η (tk)〉 + 〈γ (tk) ,∆η (tk)〉 = 〈ξk, ζk〉, k ∈ σm
1 ,EJQTDE, 2007 No. 19, p. 6



we have the following identity
〈γ (t) , η (t)〉|T0 = 〈γ (T ) , η (T )〉 − 〈γ (0) , η (0)〉 (5)

=

∫ T

0

〈ξ (t) , ζ (t)〉dt+
m∑

k=1

〈ξk, ζk〉.Proof. It is straightforward. �We also need the following Lemmas.Lemma 2 [14] If B ∈ L(Km) is self-adjoint and nonnegative, then
‖Bh‖ ≤ ‖B‖1/2 (Bh, h)

1/2
Km
, h ∈ Km.Lemma 3 If τk+1 = τm−(k−1), k ∈ σm−1

0 , then for the mild solution ϕ̃ of (3),the identity holds :
∫ T

0

|Bϕ̃|2H dt+

m∑

k=1

∣∣Dkϕ̃
(
t+k
)∣∣2

H
=

∫ T

0

|Bϕ|2H dt+

m∑

k=1

∣∣Dkϕ
(
tm−(k−1)

)∣∣2
H
.(6)Proof. For eah k ∈ σm

0 , using the hange of variable t → (tm−(k−1) −
t) τk+1

τm−(k−1)
+ tk we have

∫ tm−(k−1)

tm−k

(Bϕ[m−k](t), Bϕ[m−k](t))dt

=

∫ tm−(k−1)

tm−k

(Bϕ̃[k]((tm−(k−1) − t)
τk+1

τm−(k−1)

+ tk), Bϕ̃[k]((tm−(k−1) − t)
τk+1

τm−(k−1)

+ tk))dt

=
−τm−(k−1)

τk+1

∫ tk

tk+1

(Bϕ̃[k](s), Bϕ̃[k](s))ds

=

∫ tk+1

tk

(Bϕ̃[k](s), Bϕ̃[k](s))ds.Summing up with respet to k, we get
m∑

k=0

∫ tm−(k−1)

tm−k

(Bϕ[m−k]((t)), Bϕ[m−k](t))dt =
m∑

k=0

∫ tk+1

tk

(Bϕ̃[k](t), Bϕ̃[k](t))dt.EJQTDE, 2007 No. 19, p. 7



Thus, we obtain ∫ T

0

|Bϕ̃|2H dt =

∫ T

0

|Bϕ|2H dt.On the other hand, by virtue of the de�nition of the funtion ϕ̃ we get
ϕ (tm−k) = ϕ̃ (tk+1) , k ∈ σm−1

0 .Also, we have
ϕ
(
tm−(k−1)

)
= ϕ̃ (tk) , k ∈ σm

1 ,and
ϕ̃ (tm−k) = ϕ (tk+1) , k ∈ σm−1

0 .This implies that
m∑

k=1

|Dkϕ̃ (tk)|2H =

m−1∑

k=0

〈Dm−kϕ̃ (tm−k) , Dm−kϕ̃ (tm−k)〉H

=

m−1∑

k=0

〈Dm−kϕ (tk+1) , Dm−kϕ (tk+1)〉H

=

m∑

l=1

〈
Dlϕ

(
tm−(l−1)

)
, Dlϕ

(
tm−(l−1)

)〉
H

=
m∑

k=1

〈
Dkϕ

(
tm−(k−1)

)
, Dkϕ

(
tm−(k−1)

)〉
H

=
m∑

k=1

∣∣Dkϕ
(
tm−(k−1)

)∣∣2
H
,whih gives (6). �Corollary 1 If τk+1 = τm−(k−1), for k ∈ σm−1

0 , and B,Dk are nonnegativein H, then the following holds:
∫ T

0

〈Bϕ̃(t), ϕ̃(t)〉dt+
k=m∑

k=1

〈Dkϕ̃(tk), ϕ̃(tk)〉

=

∫ T

0

〈Bϕ(t), ϕ(t)〉dt+
k=m∑

k=1

〈Dkϕ(tm−(k−1)), ϕ(tm−(k−1))〉.EJQTDE, 2007 No. 19, p. 8



Proof. This follows immediately from Lemma 3 if we substitute B by B 1
2 ,and Dk by D 1

2
k . �Now, we state and establish the following Theorem.Theorem 1 Let y0 ∈ H be a given initial state for the system (1), then y0 isnull ontrollable at time T if and only if there is a positive onstant C suhthat

∣∣〈y0, ϕ̃0〉H
∣∣ ≤ C

{∫ T

0

|Bϕ|2H dt+
m∑

k=1

∣∣Dkϕ
(
tm−(k−1)

)∣∣2
H

}1/2

, ∀ϕ̃0 ∈ H,(7)where ϕ ∈ PLC ([0, T ] ;H) is the unique mild solution to (2) with ϕ (T ) = ϕ̃0.Proof. It su�es to prove this Theorem for the speial ase τk+1 = τm−(k−1),for k ∈ σm−1
0 , beause the norm ‖|.|‖ +

{∑m
k=0

τm−(k−1)

τk+1

∫ tk+1

tk
|.|2H dt

}1/2 isequivalent to the usual norm of L2 ([0, T ] ;H) .We shall proeed in several steps.Step 1: Let y and ϕ̃ be strong solutions to (1) and (3), respetively.Then, for t 6= tk, k ∈ σm
1 , we have

d

dt
〈y (t) , ϕ̃ (t)〉 = 〈y (t) , ϕ̃

′

(t)〉 + 〈y′

(t) , ϕ̃ (t)〉 (8)
= 〈y (t) ,−Aϕ̃ (t)〉 + 〈−Ay (t) +Bu (t) , ϕ̃ (t)〉
= 〈y (t) ,−Aϕ̃ (t)〉 + 〈−Ay (t) , ϕ̃ (t)〉 + 〈Bu (t) , ϕ̃ (t)〉
= 〈Bu (t) , ϕ̃ (t)〉.Multiplying equation (3k) in (3) from the left by y (tm−(k−1)

) the solution of
(1), and multiplying equation (1k) in (1) from the right by ϕ̃ (tk) the solutionof (3), and �nally adding memberwise we get

∆〈y(t), ϕ̃(t)〉|t=tk = 〈y(tk),∆ϕ̃(tk)〉 + 〈∆y(tk), ϕ̃(tk)〉 (9)
= 〈y(tk), Ikϕ̃(tk)〉 + 〈Iky(tk) +Dkvk, ϕ̃(tk)〉
= 〈y(tk), Ikϕ̃(tk)〉 + 〈Iky(tk), ϕ̃(tk)〉 + 〈Dkvk, ϕ̃(tk)〉
= 〈Dkvk, ϕ̃(tk)〉.Setting γ(t) = y(t), η(t) = ϕ̃(t), ξ(t) = Bu(t), ζ(t) = ϕ̃(t), ξk = Dkvk,

ζk = ϕ̃(tk), then equations (5), (8) and (9) giveEJQTDE, 2007 No. 19, p. 9



〈y(T ), ϕ̃(T )〉 − 〈y(0), ϕ̃(0)〉 =

∫ T

0

〈Bu(t), ϕ̃(t)〉dt+

k=m∑

k=1

〈Dkvk, ϕ̃(tk)〉. (10)Sine B is bounded, self-adjoint and B ≥0, then by density the latter identityis still valid for mild solutions y of (1). Identity (10) an be written as follows
〈y(T ), ϕ̃(T )〉 − 〈y(0), ϕ̃(0)〉 =

∫ T

0

〈u(t), Bϕ̃(t)〉dt+

k=m∑

k=1

〈vk, Dkϕ̃(tk)〉. (11)Next, if there is a ertain h(t) ∈ Km suh that the mild solution of (1) with
y(0) = y0 satis�es y(T ) = 0, then

−〈y(0), ϕ̃(0)〉 =

∫ T

0

〈u(t), Bϕ̃(t)〉dt+
k=m∑

k=1

〈vk, Dkϕ̃(tk)〉,and so by Cauhy-Shwarz Inequality we obtain
|〈y(0), ϕ̃(0)〉H| ≤

{∫ T

0

‖u(t)‖2
H dt+

k=m∑

k=1

‖vk‖2
H

}1/2 (12)
×
{∫ T

0

‖Bϕ̃(t)‖2
H dt+

k=m∑

k=1

‖Dkϕ̃((tk)‖2
H

}1/2

.Using Lemma 3, and equation (12) we have
|〈y(0), ϕ̃(0)〉H | ≤

{∫ T

0

‖u(t)‖2
H dt+

k=m∑

k=1

‖vk‖2
H

}1/2

×
{∫ T

0

‖Bϕ(t)‖2
H dt+

k=m∑

k=1

∥∥Dkϕ(tm−(k−1))
∥∥2

H

}1/2

.Setting
C = ‖h(t)‖Km

=

{∫ T

0

‖u(t)‖2
H dt+

k=m∑

k=1

‖vk‖2
H

}1/2EJQTDE, 2007 No. 19, p. 10



we �nd that
|(〈y(0), ϕ̃(0)〉H| ≤ C

{∫ T

0

‖Bϕ(t)‖2
H dt+

k=m∑

k=1

∥∥Dkϕ(tm−(k−1))
∥∥2

H

}1/2

.This shows the neessary ondition of the Theorem.Step 2: To prove the su�ieny we need the following result when B ≥
α > 0.Claim 1 Assume that there is α > 0 suh that
{∫ T

0

‖Bu(t)‖2
H dt+

k=m∑

k=1

‖Dkvk‖2
H

}
≥ α

{∫ T

0

‖u(t)‖2
H dt+

k=m∑

k=1

‖vk‖2
H

}then, for every y0 ∈ H there is ϕ0 ∈ H suh that the mild solution of (1)with h(t) = (ϕ̃(t), ϕ̃(t1), .., ϕ̃(tk).., ϕ̃(tm)) ∈ Km and y(0) = y0satis�es y(T ) = 0.To prove this Claim, we onsider for every z ∈ H the solution ϕ of (2)satisfying ϕ(T ) = z and the unique mild solution y to the problem
y

′

(t) + Ay(t) = Bϕ̃(t), t ∈ (0, T )
∖
{tk}k∈σm

1
,

∆y(tk) = Iky(tk) +Dkϕ̃(tk),

y(T ) = 0.Next, we introdue a bounded linear operator Λ : H → H de�ned by
Λz = −y(0).Aording to formula (11) and the Corollary 1 we have

|〈Λz, z〉| = |−〈y(0), ϕ̃(0)〉| =

∣∣∣∣∣

∫ T

0

〈Bϕ̃(t), ϕ̃(t)〉dt+

k=m∑

k=1

〈Dkϕ̃(tk), ϕ̃(tk)〉
∣∣∣∣∣

=

∣∣∣∣∣

∫ T

0

〈Bϕ(t), ϕ(t)〉dt+
k=m∑

k=1

〈Dkϕ(tm−(k−1)), ϕ(tm−(k−1))〉
∣∣∣∣∣

≤ ς

{∫ T

0

‖ϕ(t)‖2
dt+

k=m∑

k=1

‖ϕ(tk)‖2

}
,EJQTDE, 2007 No. 19, p. 11



where
ς = sup

k∈σm

0

{dk} <∞.We have
∫ T

0

‖ϕ(t)‖2
dt =

∫ t1

0

‖ϕ(t)‖2
dt+

∫ t2

t1

‖ϕ(t)‖2
dt+ ... +

∫ T

tm

‖ϕ(t)‖2
dt.Sine there is no impulse in the interval [tk, tk+1) we have

‖ϕ(t)‖ =
∥∥ϕ(t+k )

∥∥ , for every t ∈ [tk, tk+1) , k ∈ σm
0 ,

∥∥ϕ(t−k+1)
∥∥ =

∥∥ϕ(t+k−1)
∥∥ , k ∈ σm

0 . (13)Therefore, there are τk+1 = tk+1 − tk > 0, k ∈ σm
0 suh that

∫ tk+1

tk
‖ϕ(t)‖2

dt ≤ ρk

∥∥ϕ(t+k )
∥∥2

= τk+1

∥∥Ikϕ(t−k ) + ϕ(t−k )
∥∥2
, k ∈ σm

1 . (14)On the other hand, the ontinuity of Ik implies that
∥∥ϕ(t+k )

∥∥2
=
∥∥(Ik + I)ϕ(t−k )

∥∥2 ≤ (1 + L(Ik))
2
∥∥ϕ(t−k )

∥∥2
, k ∈ σm

1 . (15)It follows from (14) and (15) that
∫ tk+1

tk
‖ϕ(t)‖2

dt ≤ τk+1(1 + L(Ik))
2
∥∥ϕ(t−k )

∥∥2
, k ∈ σm

1 . (16)Sine m is �nite, and due to (13),(16), then there is a onstant 0 < µ < ∞suh that 〈Λz, z〉 ≤ µ ‖z‖2
, and thus, Λ is bounded.Now, as B is nonnegative in Km, we have

‖Bξ (t)‖ ≥ α {(ξ (t) , ξ (t))Km
}1/2for all ξ ∈ Km; thus, by virtue of Lemma 2, we have

{∫ T

0

(Bu(t), u(t))Hdt+
k=m∑

k=1

(Dkvk, vk)H

} (17)
≥ α ‖B‖

{∫ T

0

‖u(t)‖2
H dt+

k=m∑

k=1

‖vk‖2
H

}
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It follows from (11), (17) and Corollary 1 that
〈Λz, z〉 = −〈y(0), ϕ̃(0)〉

=

∫ T

0

〈Bϕ(t), ϕ(t)〉dt+

k=m∑

k=1

〈Dkϕ(tm−(k−1)), ϕ(tm−(k−1))〉

≥ α ‖B‖
{∫ T

0

‖ϕ(t)‖2
dt+

k=m∑

k=1

‖ϕ(tk)‖2

}

≥ α ‖B‖
∫ t1

0

‖ϕ(t)‖2
dt = ‖B‖αt1 ‖z‖2 = θ ‖z‖2

,beause there is no impulse before time t1. Therefore, Λ is oerive on H .To show that there is a bijetion from H onto H, it su�es to prove that
Λ + I is a bijetion from H onto H. Clearly, Λ + I is injetive sine

〈Λz + z, z〉 = 〈Λz, z〉 + 〈z, z〉 ≥ (θ + 1) ‖z‖2
.On the other hand, let y0 ∈ H , as the form a(f, g) + 〈f, g〉 = 〈Λf, g〉+ 〈f, g〉is symmetri and oerive, then, by virtue of Lax-Milgram Theorem, thereis an element f ∈ H suh that

a(f, g) + 〈f, g〉 = 〈y0, g〉, for all g ∈ H.This implies that Λ(H) = H . Thus, for every y0 ∈ H , there is a unique
z ∈ H suh that Λ(z) = −y0, whih ompletes the proof of Claim 1.Step 3: Assume that B,Dk ≥ 0, then B ≥ 0,

B̃2 = B, D̃2
k = Dk.We de�ne for ε > 0,

βε
+ B̃2 + εI,

δε
k + D̃2

k + εI,and
Bε

+ (βε; δε
1, .., δ

ε
m) = (B̃2 + εI; D̃2

1 + εI, .., D̃2
m + εI).Aording to Claim 1, there is ϕ̃0,ε ∈ H suh that the mild solution yε of (1)with yε(0) = y0 satis�es yε(T ) = 0; where B(h) has been replaed by

Bε(ϕ̃(t), ϕ̃(t1), .., ϕ̃(tk).., ϕ̃(tm)) ∈ Km.EJQTDE, 2007 No. 19, p. 13



We obtain from (11) and Corollary 1
−〈y(0), ϕ̃ε(0)〉 =

∫ T

0

〈βε
εϕ̃(t), ϕ̃ε(t)〉dt+

k=m∑

k=1

〈δε
kϕ̃ε(tk), ϕ̃ε(tk)〉, (18)and (7) gives

−〈y(0), ϕ̃ε(0)〉 ≤ C

{∫ T

0

〈B̃2ϕε(t), ϕε(t)〉dt+
k=m∑

k=1

〈D̃2
kϕε(tm−(k−1)), ϕε(tm−(k−1))〉

}1/2

.(19)Whene,
−〈y(0), ϕ̃ε(0)〉 ≤ C

{∫ T

0

〈βεϕε(t), ϕε(t)〉dt+

k=m∑

k=1

〈δε
kϕε(tm−(k−1)), ϕε(tm−(k−1))〉

}1/2

.(20)It follows at one from (18), (19) and (20) that
ε

{∫ T

0
‖ϕε(t)‖2

dt+
k=m∑
k=1

‖ϕε(tk)‖2

}

+
∫ T

0
〈B̃ϕε(t), B̃ϕε(t)〉dt+

k=m∑
k=1

〈D̃kϕε(tm−(k−1)), D̃kϕε(tm−(k−1))〉

=
∫ T

0
(βεϕε(t), ϕε(t))dt+

k=m∑
k=1

〈δε
kϕε(tm−(k−1)), ϕε(tm−(k−1))) ≤ C2. (21)Step 4: Aording to the estimate (20) the family

bε = Bε(ϕ̃ε(t); ϕ̃ε(t1)..., ϕ̃ε(tm)

= (B̃2
ε ϕ̃(t); D̃2

1ϕ̃ε(t1)..., D̃mϕ̃ε(tm)) + ε(ϕ̃ε(t); ϕ̃ε(t1)..., ϕ̃ε(tm))is ontained in a bounded subset Km.Thus, both of the families
√
ε(ϕ̃ε(t); ϕ̃ε(t1)..., ϕ̃ε(tm)) and (Bϕ̃ε(t);D1ϕ̃ε(t1)..., Dmϕ̃ε(tm))are bounded in Km. Therefore, we may extrat a subfamily, say

(Bϕ̃ε(t);D1ϕ̃ε(t1)..., Dmϕ̃ε(tm)) ⇀ h, weakly in Km.EJQTDE, 2007 No. 19, p. 14



Then learly
(B̃2ϕ̃ε(t); D̃

2
1ϕ̃ε(t1)..., D̃

2
mϕ̃ε(tm))+ε(ϕ̃ε(t); ϕ̃ε(t1)..., ϕ̃ε(tm)) ⇀ Bh, weakly in Km.Step 5: Taking the limit as ε→ 0, we see that the solution y of (1) withinitial ondition y(0) = y0, h being as in step 4 satis�es y(T ) = 0. Thisompletes the proof of Theorem 1. �As an immediate appliation of the foregoing Theorem we give the fol-lowing example.Example. One dimensional impulsive Shrödinger equation :We onsider the problem

∂y (t, x)

∂t
+ i

∂2y

∂x2
(t, x) = χω0u (t, x) , t ∈ (0, T ) \ {tk}k∈σm

1
, x ∈ Ω = (0, 2π),

y(t, 0) = y(t, 2π) = 0, (22)
y (0, x) = y0,

∆y (tk, x) = iαky (tk, x) + χωk
vk(x), k ∈ σm

1 ,where
tk+1 − tk > 2π, ωk = (ak

1, a
k
2) ⊂ Ω, k ∈ σm

0 , {αk}k∈σm

1
⊂ R+.Let

H = L2(Ω,C), Aw(x) = i∂
2w

∂x2 (x), D(A) =
{
w ∈ H, ∂2w

∂x2 ∈ H,w(0) = w(π) = 0
}
,and Ikw(x) = iαkw(x) and the ontrol operator is given by B = χω0 , Dk =

χωk
, then the system (22) beomes an abstrat formulation of (1). As aonsequene of Theorem 1, the initial state y0 ∈ L2(Ω,C) = H of thesolution of (22) is null-ontrollable at t = T, if and only if, there is C > 0suh that
∣∣∣∣
∫

Ω

y0(x)ϕ̃0(x)dx

∣∣∣∣ (23)
≤ C

{∫ T

0

∫

ω0

|ϕ|2 (t, x)dxdt+
m∑

k=1

∫

ωk

|ϕ|2 (tm−(k−1), x)

} 1
2

, ∀ϕ̃0 ∈ L2(Ω,C),
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where ϕ̃0(x) = ϕ(T, x) and ϕ is the mild solution of
∂ϕ(t, x)

∂t
+ i

∂2ϕ(t, x)

∂x2
= 0, t ∈ (0, T ) \ {tk}k∈σm

1
, x ∈ Ω,

ϕ(t, 0) = ϕ(t, 2π) = 0,

ϕ (0, x) = ϕ0(x), x ∈ Ω,

∆ϕ (tk, x) = iαkϕ (tk, x) , x ∈ Ω, k ∈ σm
1 .Here ϕ is given by

ϕ(t) =






ϕ[0](t) , if t ∈ [t0, t1)
ϕ[k](t) , if t ∈

[
tk, tk+1)

)

ϕ[m](t) , if t ∈ [tm, T ] ,where ϕ[k](t) is a solution of the lassial Shrödinger equation
∂ϕ[k] (t, x)

∂t
+ i

∂2ϕ[k]

∂x2
(t, x) = χω0u (t, x) , t ∈ (t0, t1) , x ∈ Ω = (0, 2π),

ϕ[k](t, 0) = ϕ[k](t, 2π) = 0,

ϕ[0] (t0, x) = ϕ0(x), x ∈ Ω,and
∂ϕ[k] (t, x)

∂t
+ i

∂2ϕ[k]

∂x2
(t, x) = χω0u (t, x) , t ∈ (tk, tk+1) , x ∈ Ω = (0, 2π),

ϕ[k](t, 0) = ϕ[k](t, 2π) = 0,

ϕ[k] (tk, x) = (1 + iαk)ϕ[k−1] (tk, x) , x ∈ Ω, k ∈ σm
1 .Then a standard appliation of a variant of Ingham's Inequality [8℄ showsthat ∫ tk+1

tk

∫

w0

∣∣ϕ[k]

∣∣ (t, x)dtdx ≥ c(τk, w0)

∫

Ω

∣∣ϕ[k]

∣∣ (t+k , x)dx,for some positive onstants c(τk, w0) > 0. Summing up we get
m∑

k=0

∫ tk+1

tk

∫

w0

∣∣ϕ[k]

∣∣ (t, x)dtdx =

∫ T

0

∫

ω0

|ϕ|2 (t, x)dxdt

≥ c1

m∑

k=1

∫

Ω

∣∣ϕ[k]

∣∣ (t+k , x)dx,EJQTDE, 2007 No. 19, p. 16



where c1 = min
k∈σm

0

c(τk, w0) > 0.On the other hand, there is a positive onstant c2 > 0 suh that
m∑

k=1

∫

ωk

|ϕ|2 (tm−(k−1), x) ≥ c2

m∑

k=1

∫

Ω

∣∣ϕ[k]

∣∣2 (t+k , x)dx.It follows that
∫ T

0

∫

ω0

|ϕ|2 (t, x)dxdt

+
m∑

k=1

∫

ωk

|ϕ|2 (tm−(k−1), x)

≥ (c1 + c2)
m∑

k=1

∫

Ω

∣∣ϕ[k]

∣∣2 (t+k , x)dx

≥ (c1 + c2)

∫

Ω

∣∣ϕ[m]

∣∣2 (t+m, x)dx

= (c1 + c2)

∫

Ω

|ϕ|2 (T, x)dx.Now, sine ϕ̃0(x) = ϕ̃(0, x) = ϕ(T, x), then,
∫ T

0

∫

ω0

|ϕ|2 (t, x)dxdt+

m∑

k=1

∫

ωk

|ϕ|2 (tm−(k−1), x) ≥ m(c1 + c2)

∫

Ω

∣∣ϕ̃0
∣∣2 (x)dx,from whih we get

∫

Ω

∣∣ϕ̃0
∣∣2 (x)dx ≤ 1

m(c1 + c2)

(∫ T

0

∫

ω0

|ϕ|2 (t, x)dxdt+
m∑

k=1

∫

ωk

|ϕ|2 (tm−(k−1), x)

)
.We onlude by Cauhy-Shwarz inequality that

∣∣∣∣
∫

Ω

y0(x)ϕ̃0(x)dx

∣∣∣∣ ≤
{∫

Ω

∣∣y0
∣∣2 (x)dx

∫

Ω

∣∣ϕ̃0
∣∣2 (x)dx

}1/2

≤
{∫

Ω
|y0|2 (x)dx

m(c1 + c2)

}1/2(∫ T

0

∫

ω0

|ϕ|2 (t, x)dxdt

+
m∑

k=1

∫

ωk

|ϕ|2 (tm−(k−1), x)dx

)1/2
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whih establishes the neessary and su�ient ondition of null ontrollabilitystated in Theorem 1.We onlude our paper by a speial ase when our initial state is aneigensolution of the following linear operator Γ : H → H de�ned by
Γ(ψ) =

∫ T

0

X−1(s)B2X(s)ψds+

k=m∑

k=1

X−1(tk)D
2
kX(tk)ψ.We have the following result of null-ontrollability.Proposition 1 Let λ > 0 be an eigenvalue of Γ with eigenvetor ψ ∈ H.Then, the solution y to the problem






y
′

(t) + Ay(t) = − 1
λ
B2(X(t)ψ), t ∈ (0, T )

∖
{tk}k∈σm

1
,

∆y(tk) = Iky(tk) − 1
λ
D2

k(X(tk)ψ), k ∈ σm
1

y(0) = ψ,

(24)satis�es
y(T ) = 0.Proof.Write system (24) into the form





y
′

(t) + Ay(t) = − 1
λ
B2(X(t)ψ), t ∈ (0, T )

∖
{tk}k∈σm

1
,

y(t+k ) = Iky(tk) − 1
λ
D2

k(X(tk)ψ), k ∈ σm
1

y(0) = ψ.Therefore, this impulsive problem has a solution whih an be representedexpliitly as follows
y(t) = X(t)ψ+

∫ t

0

G(t, s)

[
−1

λ
B2(X(s)ψ

]
ds+

∑

0<tk≤t

G(t, tk)

[
−1

λ
D2

kX(tk)ψ

]
,where the evolution operator G(t, s) is given by

G(t, s) = X(t)X−1(s).
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On the other hand, the system (24) yields
y(T ) = X(T )ψ +

∫ T

0

G(T, s)

{
−1

λ
B2(X(s)ψ

}
ds

+
∑

0<tk≤T

G(T, tk)

{
−1

λ
D2

kX(tk)ψ

}

= X(T )

[
ψ +

∫ T

0

X−1(T )G(T, s)

{
−1

λ
B2(X(s)ψ

}
ds

−1

λ

∑

0<tk≤T

X−1(T )G(T, tk)
{
D2

kX(tk)ψ
}
]

= X(T )

[
ψ +

∫ T

0

X−1(s)

{
−1

λ
B2(X(s)ψ

}
ds

−1

λ

∑

0<tk≤T

X−1(tk)
{
D2

kX(tk)ψ
}
]

= X(T ))

[
ψ − 1

λ
Γ (ψ)

]
= 0.This shows that the initial state ψ is null-ontrollable at time T with ontrolh (t) =

(
u (t) , {vk}k∈σm

1

)
=

(
−1

λ
X (t)ψ,

{
−1

λ
X(tk)ψ

}

k∈σm

1

)
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