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1 Introduction

Let S be a nonempty subset of Rp, F a multifunction mapping S to nonempty subsets of Rp

and consider the state constrained differential inclusion

y′(t) ∈ F(y(t)). (1.1)

A solution of (1.1) on [0, T] is an absolutely continuous function y : [0, T] → S that satisfies
y′(t) ∈ F(y(t)) for a.e. t ∈ [0, T] . A solution of (1.1) on a semi-open interval [0, T) is defined
similarly.

The S-constrained minimal time problem associated to a nonempty subset Σ of S (called
the target set) is the problem in which the goal is to steer an initial point x ∈ S to Σ along a
solution of (1.1) in minimal time. The minimal time value is denoted by T(x), which is defined
to be +∞ if no solution of (1.1) from x can reach Σ. The function T is called the S-constrained
minimal time function. When S = Rp, T coincides with the well known (unconstrained) min-
imal time function associated with the target Σ. In this paper we study continuity properties
of the S-constrained minimal time function.

The regularity properties of the minimal time function, being strongly connected to con-
trollability properties of the system, have been the object of an extensive literature. For more
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details on controllability see, e.g., [3, 12]. The Lipschitz continuity of the unconstrained mini-
mal time function associated to a point target was first studied in [29]. In that paper, Petrov
introduced a necessary and sufficient condition, called Petrov condition, for the Lipschitz con-
tinuity of the minimal time function in a neighborhood of the origin. That result was extended
later to more general target sets in [4, 32]. In [33], Veliov obtained a necessary and sufficient
condition for the local Lipschitz continuity of the unconstrained minimal time function for
closed target sets, when the multifunction F is nonautonomous and depends measurably on
time. In [35], in the absence of constraints, Wolenski and Zhuang showed that the Lipschitz
continuity of the minimal time function near the target Σ is equivalent to the boundedness of
the proximal subgradient of the minimal time function on Σ.

For the state constrained case we mention the paper [28], where the authors generalize
the results obtained for the unconstrained minimal time function in [35]. They gave necessary
and sufficient conditions for the proto-Lipschitzness of T (the definition is given in Section
3), imposing some geometric assumptions for the pair (Σ, S) (the admissibility of Σ for S
and conditions involving points near Σ which are exterior to S). Moreover, under further
geometric assumptions on S, in [28] there are given necessary and sufficient conditions for T
to be Lipschitz on a neighborhood of Σ in S.

In [27], a Petrov type condition is provided for the state constrained minimal time function
T to be proto-Lipschitz. More exactly, the following result is proved.

Theorem 1.1. Let F : S → Rp be an upper semi-continuous multifunction with nonempty compact
convex values, S a nonempty closed subset of Rp and Σ a closed subset of S. Suppose that there exist
ρ > 0 and γ > 0 such that

inf
s∈πΣ(x)

inf
u∈F(x)∩TS(x)

〈x− s, u〉 ≤ −γdΣ(x) (1.2)

for all x ∈ S ∩ (Σ + ρB). Then the S-constrained minimal time function T is proto-Lipschitz.

We denoted by πΣ(x) the set of projections of x on Σ and TS(x) is the Bouligand tangent
cone to S at x. Moreover, in [27] there are given examples where the hypothesis of Theorem 1.1
holds, but the geometric conditions from [28] are not satisfied.

This paper is a continuation of [27] and its goal is to get the propagation of the continuity
of the state constrained minimal time function T around the target to the whole reachable
set, without imposing explicitly the geometric assumptions from [28]. Instead, we use some
regularity properties of the multifunction

S 3 x F(x) ∩ TS(x). (1.3)

The propagation of the continuity properties of the S-constrained minimal time function
was previously discussed in [9] and [17]. In [9] the authors considered the control system
y′ ∈ f (t, y, U) with state constraints and proved the Lipschitz continuity of T under Lipschitz
hypotheses on f and some regularity assumptions on the set of constraints. In that paper, the
set of constraints is the closure of an open set Ω ⊂ Rp and the target Σ is a subset of Ω. In
our paper we require only that Σ ⊂ S with S a closed subset of Rp and we do not assume
Lipschitz continuity of F. In [17] we imposed that F(x) ⊂ TS(x) for any x ∈ S, which, in fact,
implies the invariance of S with respect to the solutions of the differential inclusion y′ ∈ F(y).
For other results on the propagation of continuity properties of the minimal time function, in
the absence of constraints, see, [10,13,15,35]. A key role in obtaining these results is played by
the dependence of the solutions on the initial conditions. In this paper, in order to obtain the
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propagation results, we first prove a Filippov type result for our state constrained differential
inclusion (1.1), which is a main result of the paper.

In the absence of state constraints, we recall the celebrated Filippov theorem and various
extensions of it, under different frames and assumptions on F (see, e.g., [1,2,14,16,21,22,24,36]).

There are also many papers on Filippov type results, in the state constrained case. We recall
the paper of Frankowska and Rampazzo [25], where there are given Filippov and Filippov–
Wazewski theorems in the case when the state variable is constrained to the closure of an
open subset of Rn. Nour and Stern [28], while investigating the Lipschitz continuity of the
minimal time function, established the Lipschitz dependence of the solutions of (1.1) on the
initial data, under Lipschitz hypothesis on F and certain assumptions on S. In [8], Bressan and
Facchi established a result of this type, assuming that S is compact and convex, F is Lipschitz
and satisfies a strict inward pointing condition at every boundary point x ∈ ∂S, that is

co F(x) ∩ int TS(x) 6= ∅. (1.4)

Filippov type results were also obtained in [5, 7]. We want to remark that in all the papers
above, the Filippov type results were obtained under the Lipschitz hypothesis on F.

In this paper, we prove a Filippov type result for our state constrained differential inclusion
(1.1), avoiding explicit geometric assumptions on S or Σ and using regularity properties of the
multifunction defined by (1.3). We give examples that do not satisfy the conditions imposed
in [28] and/or [8], but satisfy our hypotheses. It is important to remark that the technique for
obtaining our result, by viability, was used for the first time in [14], for a semilinear system,
with F Lipschitz. This technique was also used in [16, 17, 31]. It requires the convexity of the
values of F, as it was remarked also in [31]. From this point of view, the Filippov type results
of this paper are new compared to the previous ones, because this technique of the proof
allows us to weaken the Lipschitz conditions; moreover, they are new and important even in
the absence of state constraints. However, by these results we relax the Lipschitz hypothesis,
but we impose F to have convex values.

2 Preliminaries

For any subset K ⊆ Rp we denote by int K the interior of K, K the closure of K, πK(x) the set
of projections of x ∈ Rp in K and by dK(x) the Euclidean distance from x to the set K. The
open unit ball is denoted by B.

A vector η ∈ Rp is tangent to the set K at a point ξ ∈ K if

lim inf
h↓0

1
h

dK(ξ + hη) = 0.

We denote by TK(ξ) the set of all tangent vectors to K at ξ ∈ K. For each ξ ∈ K, the set TK(ξ) is
a closed cone. A well-known characterization by sequences is the following: η ∈ TK(ξ) if and
only if there exist two sequences (hn)n in R+ with hn ↓ 0 and (qn)n in Rp with limn→∞ qn = η

such that ξ + hnqn ∈ K for each n ∈N.
We recall that a closed set K is called sleek if the multifunction

K 3 x TK(x)

is lower semicontinuous. For more details on tangent cones we refer for instance to [2].
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Let F : K Rp be a given multifunction and consider the differential inclusion

w′(t) ∈ F (w(t)). (2.1)

The set K is viable with respect to F if for each ξ ∈ K there exists θ > 0 such that (2.1) has at
least one solution w : [0, θ]→ K with w(0) = ξ.

The following viability theorem can be found, for instance, in [1, 2, 18].

Theorem 2.1. Let K be a nonempty, locally closed subset in Rp and let F : K  Rp be an upper
semicontinuous multifunction with nonempty, compact and convex values. A necessary and sufficient
condition in order that K be viable with respect to F is the following tangency condition:

F (ξ) ∩ TK(ξ) 6= ∅ (2.2)

for each ξ ∈ K.

The following conditions on a multifunction, weaker than the Lipschitz continuity, intro-
duced in [20, 23], will be used in the next sections of the paper.

Definition 2.2. A multifunction G : K Rp is said to be
1) one-sided Lipschitz of constant L if for any x, y ∈ K, any v ∈ F(x) there exists w ∈ F(y) such
that

〈x− y, v− w〉 ≤ L ‖x− y‖2 .

2) one-sided Perron if for any x, y ∈ K, any v ∈ F(x) there exists w ∈ F(y) such that

〈x− y, v− w〉 ≤ ϑ(‖x− y‖) ‖x− y‖ ,

where ϑ : [0, ∞)→ [0, ∞) is a Perron function.

By a Perron function we mean a continuous function ϑ : [0, ∞) → [0, ∞) with ϑ(0) = 0
such that the differential equation z′ = ϑ(z) has the null function as the unique solution with
z(0) = 0. This function was introduced by Perron in [30]. It is clear that the class of one-sided
Perron multifunctions is larger than the class of one-sided Lipschitz ones.

3 Lipschitz continuity of the state constrained minimal time func-
tion

Let S ⊂ Rp be a closed nonempty set and let Σ ⊂ S be a closed subset. The S-constrained
minimal time function T : S→ [0,+∞] is defined by

T(x) = inf {τ ≥ 0; there exists a solution y of (1.1) with y(0) = x, y(τ) ∈ Σ} .

If no solution from x can reach Σ then T(x) = +∞. We denote by R the set of all points x ∈ S
such that T(x) < +∞.

Following [28], the minimal time function T is said to be proto-Lipschitz if there exist ρ > 0
and M > 0 such that

T(x) ≤ MdΣ(x)

for all x ∈ (Σ + ρB) ∩ S.



The state constrained minimal time function 5

In the same spirit, we say that T is proto-continuous if there exist ρ > 0 and ω : [0, ρ] →
[0,+∞) such that lims→0+ ω(s) = 0 and

T(x) ≤ ω(dΣ(x))

for all x ∈ (Σ+ ρB)∩ S. As it is proved in [3, p. 229], when Σ is closed with compact boundary,
T is proto-continuous iff it is continuous in each point of Σ.

In the case when ω is of type ω(s) = Msα, with 0 < α < 1, M > 0, we say that T is
proto-Hölder continuous.

We define the multifunction G : S Rp by

G(x) = F(x) ∩ TS(x) (3.1)

and we impose some regularity properties for G in order to obtain the Lipschitz/continuous
dependence of the solutions of (1.1) on the initial data, that is the key for the propagation
Theorems 3.4 and 4.5.

First, we give an extension of the Filippov theorem, on the Lipschitz dependence of the
solutions of (1.1) on the initial data, in the state constraints case. The proof is based on the
viability Theorem 2.1 with F and K appropriately chosen as in [17, Theorem 2.1].

Theorem 3.1. Let F : S  Rp be an upper semicontinuous multifunction, with convex and compact
values. Assume that G, defined by (3.1), has nonempty convex values, is lower semicontinuous and
one-sided Lipschitz of constant L. Then, for any x1, x2 ∈ S, any solution y1 : [0, σ] → S of (1.1) with
y1(0) = x1, there exists a solution y2 : [0, σ]→ S of (1.1) with y2(0) = x2 such that

‖y1(t)− y2(t)‖ ≤ eLt ‖x1 − x2‖ (3.2)

for all t ∈ [0, σ] .

Proof. Let x1, x2 ∈ S and let y1 : [0, σ] → S be a solution of (1.1) with y1(0) = x1. Since
G has nonempty values, we can apply Theorem 2.1 to conclude that the solution y1 can be
continued up to a noncontinuable one, denoted also y1 : [0, σ1) → S, σ1 > σ. Consider the
space X = Rp+2, the set

K = {(τ, x, λ) ∈ [0, σ1)× S×R; ‖y1(τ)− x‖ ≤ λ}

and the multifunction F : K → X defined by

F (τ, x, λ) = {1} × F(x)× {Lλ} .

We shall prove that the tangency condition

TK(τ, x, λ) ∩ F (τ, x, λ) 6= ∅ (3.3)

holds for any (τ, x, λ) ∈ K. To this end, we show that there exists w ∈ F(x) such that
(1, w, Lλ) ∈ TK(τ, x, λ). Indeed, let (τ, x, λ) ∈ K, hence ‖y1(τ)− x‖ ≤ λ. By a result of
Wazewski [34, p. 866] (see also [19, Proposition 1]), there exists v ∈ F(y1(τ)) and a sequence
(hn)n ⊂ [0, σ1), hn ↓ 0, such that the sequence vn := (y1(τ + hn)− y1(τ))/hn converges to v.
Moreover, we have that y1(τ) + hnvn ∈ S for n sufficiently large, i.e., v ∈ TS(y1(τ)). Hence
v ∈ G(y1(τ)). Using now the one-sided Lipschitz property of G, we get w ∈ G(x) such that

〈y1(τ)− x, v− w〉 ≤ L ‖y1(τ)− x‖2 .
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As G is lower semicontinuous and has closed convex values, by Michael’s selections theorem
and Peano’s existence result, there exists an y(·) solution of (1.1) with y(0) = x such that
wn := (y(hn)− x)/hn converges to w and x + hnwn ∈ S, for every n ∈N. We have that

‖y1(τ + hn)− (x + hnwn)‖ ≤ λ + hnLλ + hnrn,

where

rn =

∥∥∥∥y1(τ + hn)− y1(τ)

hn
− v
∥∥∥∥+ ‖y1(τ)− x + hn(v− w)‖ − ‖y1(τ)− x‖

hn

+ ‖wn − w‖ − 〈y1(τ)− x, v− w〉
‖y1(τ)− x‖ ,

and (rn)n converges to 0. So, we obtained that

(τ + hn, x + hnwn, λ + hnLλ + hnrn) ∈ K

for every n ∈ N, hence the tangency condition (3.3) holds. Then, by Theorem 2.1, the set
K is viable with respect to F . Since (0, x2, ‖x1 − x2‖) ∈ K, there exist θ > 0 and a solution
w = (t, y, z) of the problem w′ ∈ F (w), on [0, θ] , with w(0) = (0, x2, ‖x1 − x2‖), such that
(t(s), y(s), z(s)) ∈ K for all s ∈ [0, θ] . It is easy to see that t(s) = s, y is a solution of (1.1) with
y(0) = x2 and z(s) = eLs ‖x1 − x2‖ . Hence, on [0, θ] , we have that

‖y1(s)− y(s)‖ ≤ eLs ‖x1 − x2‖ .

By usual continuation arguments, there exists a solution y : [0, c) → S of (1.1) with y(0) = x2

such that
‖y1(s)− y(s)‖ ≤ eLs ‖x1 − x2‖ (3.4)

for all s ∈ [0, c), noncontinuable with this property. Finally, we shall prove that c = σ1. As-
sume by contradiction that c < σ1. By (3.4) we have that y is bounded on [0, c) and, since F
is compact valued, we have that there exists y∗ := lims↑c y(s), which belongs to the closed set
S. Moreover, by (3.4) we get that ‖y1(c)− y∗‖ ≤ eLc ‖x1 − x2‖ . Applying now Theorem 2.1
for (c, y∗, eLc ‖x1 − x2‖) ∈ K we obtain that y can be continued to the right of c with property
(3.4), which contradicts the maximality of y. Hence c = σ1. In conclusion, there exists a non-
continuable solution y2 : [0, σ2) → S, σ2 ≥ σ1, of (1.1) with y2(0) = x2 such that (3.2) holds for
all t ∈ [0, σ1).

Remark 3.2. The lower semicontinuity and convexity hypotheses on G are satisfied, for in-
stance, if S is sleek, F is lower semicontinuous and

F(x) ∩ int TS(x) 6= ∅ (3.5)

for any x ∈ S. Indeed, if the set S is sleek it is known that TS(x) is a convex cone (see, e.g., [2]),
hence the multifunction G has convex values. If, in addition, F is lower semicontinuous
and (3.5) is satisfied, then the multifunction G is lower semicontinuous (see [6, Lemma 3.1]).
However, condition (3.5) is not necessary for the lower semicontinuity of G (see the Example
below). It should be interesting to find general conditions on S and F to ensure that the
multifunction G is one-sided Lipschitz. An interesting case when this happens is when F(x) ⊂
TS(x) for any x ∈ S (which, in fact, assures invariance) and F is one-sided Lipschitz.
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Example 3.3. Consider the set S = {(x1, x2); x2 ≥ 0} and the multifunction F(x1, x2) = B ∩
{(y1, y2); y2 ≤ 0} for all (x1, x2) ∈ S. We have that TS(x1, x2) = S for (x1, x2) ∈ ∂S, so condition
(3.5) is not satisfied. However, it is easy to see that the multifunction G, given by

G(x1, x2) =

{
B ∩ {(y1, y2); y2 ≤ 0} if x2 > 0

[−1, 1]× {0} if x2 = 0
(3.6)

is lower semicontinuous.
For this system, Lemma 1 from [8] can not be applied because S does not satisfy the

following assumption required there, that there exist a non-zero vector a ∈ F = F(x1, x2) and
ρ > 0 such that

S + Γa,ρ = S, (3.7)

where Γa,ρ := {λy; λ ≥ 0, ‖y − a‖ ≤ ρ}. Indeed, for any a = (a1, a2) ∈ F and ρ > 0 take
s = 0 ∈ S and y = a ∈ Γa,ρ if a2 < 0 or y = (a1,−ρ) ∈ Γa,ρ if a2 = 0. It is easy to see that
s + y /∈ S, so (3.7) does not hold. Neither [28, Lemma 14] can be used because one of the
conditions required is not fulfilled, that is

min
v∈F(x)

〈η, v〉 < 0 for all η ∈ NC
S (x), x ∈ ∂S,

where NC
S (x) denotes the Clarke normal cone to S at x. Take, for instance, x = (0, 0) and

η = (0,−1), then minv∈F(x) 〈η, v〉 = 0.
However, it is easy to see that our hypotheses from Theorem 3.1 hold. We shall only prove

that G is one-sided Lipschitz. Take (x1, x2) ∈ int S, (y1, y2) ∈ ∂S and (v1, v2) ∈ G(x1, x2), hence
x2 > 0, y2 = 0, |v1| ≤ 1 and v2 ≤ 0. Then there exists (v1, 0) ∈ G(y1, y2) such that

〈(x1, x2)− (y1, y2), (v1, v2)− (v1, 0)〉 = 〈(x1 − y1, x2), (0, v2)〉 = x2v2 ≤ 0.

The other cases can be solved similarly. In conclusion, by Theorem 3.1, we get the Lipschitz
dependence of solutions on initial states.

Now we are ready to prove the propagation of the Lipschitz continuity of the state con-
strained minimal time function associated to (1.1).

Theorem 3.4. Assume the hypotheses of Theorem 3.1. Suppose that T is proto-Lipschitz. Then R is
open in S and T is locally Lipschitz on R, i.e., for every x ∈ R there exists a neighborhood U of x and
a constant k > 0 such that

|T(z1)− T(z2)| ≤ k ‖z1 − z2‖

for every z1, z2 ∈ U ∩ S.

Proof. Let ρ > 0 and M > 0 be from the definition of the proto-Lipschitzness of T and L be
from the one-sided Lipschitzness of G.

Let x ∈ R. We prove that if z ∈ S with ‖z− x‖ < ρe−L(T(x)+1) then z ∈ R and

T(z) ≤ T(x) + MeL(T(x)+1) ‖z− x‖ . (3.8)

To this end, fix ε ∈ (0, 1) and consider τ < T(x) + ε and a solution y : [0, τ] → S of (1.1) with
y(0) = x such that y(τ) ∈ Σ. Let z ∈ S be such that ‖z− x‖ < ρe−L(T(x)+1). By Theorem 3.1
there exists yz : [0, τ]→ S a solution of (1.1) with yz(0) = z such that

‖yz(t)− y(t)‖ ≤ eLt ‖z− x‖
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for each t ∈ [0, τ] . Therefore,

dΣ(yz(τ)) ≤ eLτ ‖z− x‖ < ρ.

Since T is the proto-Lipschitz, we get

T(yz(τ)) ≤ MdΣ(yz(τ)) ≤ MeL(T(x)+1) ‖z− x‖ .

This implies that T(z) ≤ τ+ MeL(T(x)+1) ‖z− x‖. Further, T(z) ≤ T(x)+ ε+ MeL(T(x)+1) ‖z− x‖ .
Finally, since ε ∈ (0, 1) is arbitrary, we get (3.8).

Now, let x0 ∈ R and let z1, z2 ∈ S be such that

‖zi − x0‖ <
ρ

2
e−L(T(x0)+Mρ+1),

for i = 1, 2. We show that

‖T(z1)− T(z2)‖ ≤ MeL(T(x0)+Mρ+1) ‖z1 − z2‖ . (3.9)

To this end, we observe, by the first part of the proof, that zi ∈ R and T(zi) ≤ T(x0) +

MeL(T(x0)+1) ‖zi − x0‖ ≤ T(x0) + Mρ, for i = 1, 2. Moreover,

‖z1 − z2‖ ≤ ρe−L(T(x0)+Mρ+1) ≤ ρe−L(T(zi)+1)

for i = 1, 2. Therefore, by the first part of the proof,

T(z1) ≤ T(z2) + MeL(T(z2)+1) ‖z1 − z2‖
≤ T(z2) + MeL(T(x0)+Mρ+1) ‖z1 − z2‖ .

By symmetry, we get (3.9), as claimed.

In [9, Theorem 3.8] the Lipschitz continuity of the minimal time function is proved under
some regularity assumptions on the set of constraints. We remind that in [9] S = Ω with Ω
open and Σ ⊂ Ω. Moreover, the following condition on the boundary of Ω is imposed: there
exist α > 0 and I a multifunction with some properties (called there uniformly hypertangent
conical field) such that for any x ∈ ∂Ω

F(x) ∩ I(x) ∩ {v ∈ Rp; ‖v‖ ≥ α} 6= ∅. (3.10)

In the following example we present a system with Σ ⊂ Ω that does not satisfy (3.10) because
F(x) ∩ {v ∈ Rp; ‖v‖ ≥ α} = ∅ for some x ∈ ∂Ω and any α > 0, but satisfies our hypotheses.

Example 3.5. Let S =
{
(x1, x2) ∈ R2; x2 ≥ 0

}
, the target set

Σ =
{
(x1, x2) ∈ R2; x2 ≥ 1

}
and the multifunction F : S R2 given by

F(x1, x2) =


{0} × [−x2, x2] if x2 > 0

{0} × [− |x1| , 0] if x1 6= 0, x2 = 0

{(0, 0)} if (x1, x2) = (0, 0).
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It is easy to see that for any α > 0,

F(0, 0) ∩
{

v ∈ R2; ‖v‖ ≥ α
}
= ∅,

so Theorem 3.8 from [9] can not be applied for this system. However, the conditions of
Theorem 3.4 hold. Indeed, F is upper semicontinuous, with convex compact values. The
multifunction G is given by

G(x1, x2) =

{
{0} × [−x2, x2] if x2 > 0

{(0, 0)} if x2 = 0

and it is easy to see that G is convex valued and Lipschitz continuous. We only have to show
that T is proto-Lipschitz. To this end, we shall prove that condition (1.2) is satisfied. Let
ρ ∈ (0, 1), (x1, x2) ∈ S, with 1 ≥ x2 ≥ ρ. Then G(x1, x2) = {0} × [−x2, x2] , πΣ(x1, x2) = (x1, 1)
and dΣ(x1, x2) = 1− x2. Then

min
u∈G(x1,x2)

〈(x1, x2)− (x1, 1), u〉 = min
u2∈[−x2,x2]

(x2 − 1)u2

= −x2(1− x2) ≤ −ρdΣ(x1, x2).

Then, by Theorem 1.1, T is proto-Lipschitz. Applying now Theorem 3.4, we get that T is
locally Lipschitz on R.

In the following example, we consider a system with F not Lipschitz continuous, which can
not be framed in the settings of [9] or [28], but satisfies the conditions of Theorem 3.4, therefore
we get the Lipschitz continuity of the associated minimal time function on the reachable set.

Example 3.6. Consider S = {(x1, x2); x2 ≥ 0} , Σ = {(0, 0)} and F : S R2 defined by

F(x1, x2) =

{
B ∩ {(x, y); y ≤ 0} if x2 = 0{
(x, y); x2 + 9y2 ≤ 1, y ≤ 0

}
if x2 > 0.

Clearly, F is upper semicontinuous with convex compact values. Since TS(x) = S for x ∈ ∂S,
we have that G is given by

G(x1, x2) =

{
[−1, 1]× {0} if x2 = 0,{
(x, y); x2 + 9y2 ≤ 1, y ≤ 0

}
if x2 > 0,

and it is easy to see that G is convex valued, lower semicontinuous and one-sided Lipschitz.
Moreover, (1.2) holds. Indeed, for (x1, x2) ∈ S, x2 > 0, we have that

〈(x1, x2), u〉 ≤ −1
3
‖(x1, x2)‖ (3.11)

for u = −(1/ ‖(x1, x2)‖)(x1, 1
3 x2) which obviously belongs to G(x1, x2). For (x1, 0) take u =

(− sgn(x1), 0) and (3.11) holds. Therefore, by Theorem 1.1, T is proto-Lipschitz. Finally, by
Theorem 3.4, we get that T is locally Lipschitz on R. To get this final result we can not
apply [9, Theorem 3.8], because Σ ⊂ ∂S, or [28, Theorem 15] because the condition that
minv∈F(x) 〈η, v〉 < 0 for all η ∈ NC

S (x) and x ∈ ∂S is not satisfied. Moreover, the multifunction
F is not locally Lipschitz continuous.

By Theorems 1.1 and 3.4 we get the following corollary.
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Corollary 3.7. Assume the hypotheses of Theorem 3.1. Moreover, assume that there exist ρ > 0 and
γ > 0 such that

inf
s∈πΣ(x)

inf
u∈G(x)

〈x− s, u〉 ≤ −γdΣ(x)

for all x ∈ S ∩ (Σ + ρB). Then R is open in S and T is locally Lipschitz on R.

4 Small time controllability and continuity of the state constrained
minimal time function

In the previous section we assumed that the multifunction G is one-sided Lipschitz and we
obtained the Lipschitz continuity of the S-constrained minimal time function. In this section
we study the propagation of the regularity of the S-constrained minimal time function when
the proto-Lipschitz condition is replaced by a weaker one (proto-continuous, proto-Hölder
continuous), related to small time controllability on Σ, studied in [3, Chapter IV].

First, we give a Petrov-type condition that assures that the S-constrained minimal time
function is proto-continuous and then we present a propagation result of this continuity prop-
erty. In order to get the propagation result we consider a weaker condition on G than one-
sided Lipschitz, used in the previous section, that assures the continuity of the solution map
of (1.1) in the sense of Hausdorff metric.

Theorem 4.1. Let F : S  Rp be an upper semicontinuous multifunction, with convex and compact
values. Suppose that G, defined by (3.1), is nonempty valued and there exist ρ > 0 and µ : [0, ρ] →
[0, ∞) an integrable function with

∫ ρ
0

1
µ(s) ds < +∞ such that

inf
s∈πΣ(x)

inf
u∈G(x)

〈x− s, u〉 ≤ −µ(dΣ(x))dΣ(x) (4.1)

for all x ∈ S ∩ (Σ + ρB). Then S ∩ (Σ + ρB) ⊆ R and we have that

T(x) ≤
∫ dΣ(x)

0

1
µ(s)

ds

for any x ∈ S ∩ (Σ + ρB), therefore T is proto-continuous.

Proof. Take x ∈ (S ∩ (Σ + ρB))\Σ.
Step 1. We first prove that there exists an y : [0, τ) → (S ∩ (Σ + ρB))\Σ a noncontinuable

solution of
y′(t) ∈ F(y(t)), y(0) = x, (4.2)

and z : [0, τ)→ R a solution of

z′(t) = −µ(z(t)), z(0) = dΣ(x), (4.3)

such that
dΣ(y(t)) ≤ z(t) (4.4)

for all t ∈ [0, τ).
To this aim, we consider the set

K = {(y, z); y ∈ (S ∩ (Σ + ρB))\Σ, dΣ(y) ≤ z, }
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the multifunction F : K Rp+1 defined by

F (y, z) = F(y)× {−µ(z)}

for all (y, z) ∈ K and we apply Theorem 2.1. To this end, we use (4.1) to prove the tangency
condition (2.2). For details, see the proof of Theorem 1.1 developed in [27], where µ(z) = −γ.

Step 2. We prove that x can be transferred to the target Σ in time τ ≤
∫ dΣ(x)

0 (1/µ(s)) ds .
To this aim, let us first observe that the solution z (obtained in Step 1) is continuous, nonin-
creasing and 0 ≤ z(t) ≤ z(0) = dΣ(x) < δ, for all t ∈ [0, τ). We have that∫ t

0

z′(s)
µ(z(s))

ds =
∫ z(t)

z(0)

ds
µ(s)

,

hence

t =
∫ dΣ(x)

z(t)

ds
µ(s)

. (4.5)

Passing to the limit for t ↑ τ in (4.5), we get that

τ =
∫ dΣ(x)

z(τ)

ds
µ(s)

≤
∫ δ

0

ds
µ(s)

< ∞. (4.6)

By (4.4), y is bounded on [0, τ) and, as F maps bounded sets into bounded sets, we have
that F(y) is bounded on [0, τ). Then there exists y∗ := limt↑τ y(t) and y∗ ∈ S. Passing to the
limit for t ↑ τ in (4.4) we get that

dΣ(y∗) ≤ z(τ) ≤ z(0) = dΣ(x) < ρ,

so y∗ ∈ S ∩ (Σ + ρB). Moreover, since y(·) is noncontinuable, it follows that y∗ ∈ Σ, hence x
can be transferred to the target in time τ. Therefore, T(x) ≤ τ, and, using (4.6), we get

T(x) ≤
∫ dΣ(x)

0

ds
µ(s)

,

as claimed.

Example 4.2. Let S be the closed ball of center 0 and radius 1/2 from R2 and Σ = {(0, 0)} .
Define the function f : S→ R2 by

f (x1, x2) =


(

x1
4
√

x2
1+x2

2 ln(x2
1+x2

2)
, x2

4
√

x2
1+x2

2 ln(x2
1+x2

2)

)
, if (x1, x2) 6= (0, 0),

(0, 0), if (x1, x2) = (0, 0),

and consider the multifunction F : S R2 given by

F(x1, x2) = {u f (x1, x2); u ∈ [0, 1]} .

It is clear that F has compact convex values and is continuous, since f is continuous on S.
Moreover, we have that F(x1, x2) ⊂ TS(x1, x2) for any (x1, x2) ∈ S, hence G(x1, x2) = F(x1, x2).
Take (x1, x2) ∈ S\{(0, 0)}. We have that

inf
v∈G(x1,x2)

〈(x1, x2), v〉 = inf
u∈[0,1]

u
x2

1 + x2
2

4
√

x2
1 + x2

2 ln(x2
1 + x2

2)

=
x2

1 + x2
2

4
√

x2
1 + x2

2 ln(x2
1 + x2

2)

= −µ(dΣ(x1, x2))dΣ(x1, x2),
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where µ : [0, 1/2]→ [0,+∞) is defined by µ(s) = −
√

s/2 ln s for s 6= 0 and µ(0) = 0. It is easy
to see that µ is continuous on [0, 1/2] and

∫ 1/2
0 (1/µ(s))ds < +∞. Hence, by Theorem 4.1, T

satisfies the following estimate

T(x1, x2) ≤ 2
∫ √x2

1+x2
2

0

|ln s|√
s

ds

for any (x1, x2) ∈ S, therefore T is proto-continuous.

In the next example, inspired by [11], T is proto-Hölder continuous of exponent 1/2.

Example 4.3. Let S =
{
(x1, x2) ∈ R2; x2 ≥ 0

}
, the target set

Σ = ([0, ∞)× [1, ∞)) ∪ ∆,

where ∆ = {(x1, x2); x1 ≥ 1− (−x2
2 + 2x2)1/2, x2 ∈ [0, 1]}, and the multifunction F : S  R2

given by

F(x1, x2) =


[0, 1]× [−1, 0] if x2 = 0

[0, 1]× {0} if x2 ∈ (0, 1]

[0, 1]× [0, x2 − 1] if x2 > 1.

It is easy to see that F is upper semicontinuous, is not lower semicontinuous at (x1, 0) (so F is
not Lipschitz), has convex compact values and G is given by

G(x1, x2) =

{
[0, 1]× {0} if 0 ≤ x2 ≤ 1

[0, 1]× [0, x2 − 1] if x2 > 1.
(4.7)

Let (x0, y0) ∈ S\Σ with y0 ∈ [0, 1]. Then (x, y) := πΣ(x0, y0) ∈ ∂∆ is given by

(x, y) =

(
1− 1− x0√

(1− x0)2 + (1− y0)2
, 1− 1− y0√

(1− x0)2 + (1− y0)2

)
and

dΣ(x0, y0) =
√
(1− x0)2 + (1− y0)2 − 1.

We have that

min
u∈G(x0,y0)

〈(x0, y0)− (x, y), u〉 = min
u1∈[0,1]

(x0 − x)u1

= (x0 − 1)

(
1− 1√

(1− x0)2 + (1− y0)2

)

≤ − dΣ(x0, y0)

dΣ(x0, y0) + 1

√
dΣ(x0, y0)

2 + 2dΣ(x0, y0).

Moreover, for any (x0, y0) ∈ S\Σ with y0 = 0 we have that

min
u∈G(x0,y0)

〈(x0, y0)− (x, y), u〉 = − dΣ(x0, y0)

dΣ(x0, y0) + 1

√
dΣ(x0, y0)

2 + 2dΣ(x0, y0).

Now, let (x0, y0) ∈ S\Σ with y0 > 1. Then (x, y) = (0, y0), dΣ(x0, y0) = −x0 and

min
u∈G(x0,y0)

〈(x0, y0)− (x, y), u〉 = −dΣ(x0, y0).
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In conclusion, for any (x0, y0) ∈ S ∩ (Σ + 1
2 B) we have that

min
u∈G(x0,y0)

〈(x0, y0)− (x, y), u〉 ≤ −
√

dΣ(x0, y0)dΣ(x0, y0),

so, (4.1) holds with µ(s) =
√

s, for s ∈ [0, 1/2]. By Theorem 4.1, we get that T is proto-
continuous. More precisely, we have that

T(x0, y0) ≤ 2
√

dΣ(x0, y0) (4.8)

for any (x0, y0) ∈ S ∩ (Σ + 1
2 B).

Now, relaxing the one-sided Lipschitz condition on G (assumed in Theorem 3.1) to one-
sided Perron, we obtain the continuity of the solution map of (1.1) in the sense of Hausdorff
metric. The continuity of the solution map was also proved in [17] but under a stronger
assumption, that is, F(x) ⊆ TS(x) for all x ∈ S.

Theorem 4.4. Let F : S  Rp be an upper semicontinuous multifunction, with convex and compact
values. Assume that G, defined by (3.1), has nonempty convex values, is lower semicontinuous and one-
sided Perron. Then, for any ε > 0 there exists δ > 0 such that, for any x1, x2 ∈ S with ‖x1 − x2‖ < δ

and for any solution y1 : [0, σ]→ S of (1.1) with y1(0) = x1, there exists a solution y2 : [0, σ]→ S of
(1.1) with y2(0) = x2 such that

‖y1(t)− y2(t)‖ ≤ ε (4.9)

for all t ∈ [0, σ] .

Proof. The technique of the proof is similar to the one of Theorem 3.1, this time defining the
multifunction F by

F (τ, x, λ) = {1} × F(x)× {ϑ(λ)} .

A key role in the proof is played by the result from [26, p. 24] on the upper semicontinuity
of the solution map for the differential equation z′(t) = ϑ(z(t)). See also the proof of [17,
Theorem 2.4].

By Theorem 4.4 we obtain the propagation of the continuity of the state constrained mini-
mal time function associated to (1.1).

Theorem 4.5. Assume the hypotheses of Theorem 4.4. Suppose that T is proto-continuous. Then R is
open in S and T is locally uniformly continuous on R.

Proof. The proof is similar to the one of [17, Theorem 3.1], where the target is zero.

Remark 4.6. Under the assumptions of Theorem 4.4, with G one-sided Lipschitz, if T is proto-
continuous with ω(s) = Msα, M > 0, α ∈ (0, 1), we get that T is locally Hölder continuous of
exponent α on R.

Example 4.7. Consider again the system from Example 4.3. We have proved that T satisfies
(4.8) for any (x0, y0) ∈ S∩ (Σ + 1

2 B). It is easy to verify that G, given by (4.7), is Lipschitz con-
tinuous and convex valued. Then, by Remark 4.6, T is locally Hölder continuous of exponent
1/2 on R.

By Theorems 4.1 and 4.5 we get the following corollary.

Corollary 4.8. Assume the hypotheses of Theorem 4.1. Moreover, assume that G is convex valued,
lower semicontinuous and one-sided Perron. ThenR is open in S and T is locally uniformly continuous
on R.
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