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Abstract. In this paper we prove the existence of weak solutions of the dynamic Cauchy
problem

x(∆m)(t) = f (t, x(t)), t ∈ T,

x(0) = 0,

x∆(0) = η1, . . . , x(∆(m−1))(0) = ηm−1, η1, . . . , ηm−1 ∈ E,

where x(∆m) denotes a weak m-th order ∆-derivative, T denotes an unbounded time
scale (nonempty closed subset of R such that there exists a sequence (an) in T and
an → ∞), E is a Banach space and f is weakly – weakly sequentially continuous and
satisfies some conditions expressed in terms of measures of weak noncompactness.

The Sadovskii fixed point theorem and Ambrosetti’s lemma are used to prove the
main result.

As dynamic equations are a unification of differential and difference equations our
result is also valid for differential and difference equations. The results presented in this
paper are new not only for Banach valued functions but also for real valued functions.

Keywords: Cauchy dynamic problem, Banach space, measure of weak noncompact-
ness, weak solutions, time scales, fixed point.
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1 Introduction

A time scale T is a nonempty closed subset of real numbers R, with the subspace topology
inherited from the standard topology of R. Thus R, Z, N and the Cantor set are examples of
time scales while Q and (0, 1) are not time scales.

Time scales (or measure chains) was introduced by Hilger in his Ph.D. thesis in 1988 [18].
Since the time Hilger formed the definitions of a derivative and integral on a time scale,

several authors have extended on various aspects of the theory [1, 2, 4, 6, 10, 11, 16, 17, 18, 20].
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Time scale has been shown to be applicable to any field that can be described by means of
discrete or continuous models.

The study of dynamic equations on time scales, which has been created in order to unify
the study of differential and difference equations, is an area of mathematics research that has
recently received a lot of attention. Dynamic equations on a time scale have an enormous
potential for applications such as in population dynamics. For example, it can model insect
populations that are continuous while in season, die out in say winter, while their eggs are
incubating or dormant, and then hatch in a new season, giving rise to a nonoverlapping
population (see [10]). There are applications of dynamic equations on time scales to quantum
mechanics, electrical engineering, neural networks, heat transfer, and combinatorics. A recent
cover story article in New Scientist [30] discusses several possible applications.

In this paper we consider the problem

x(∆m)(t) = f (t, x(t)), t ∈ T,

x(0) = 0,

x∆(0) = η1, . . . , x(∆(m−1))(0) = ηm−1, η1, . . . , ηm−1 ∈ E,

(1.1)

where x(∆m) denotes the m-th weak ∆-derivative, T denotes an unbounded time scale
(nonempty closed subset of R such that there exists a sequence (an) in T and an → ∞) and
(E, ‖ · ‖) is a Banach space. The function f , with values in a Banach space, is weakly – weakly
sequentially continuous and satisfies some regularity conditions expressed in terms of the De
Blasi measure of weak noncompactness.

Using Sadovskii’s fixed point theorem [27] and the properties of measures of weak non-
compactness, we prove an existence result for problem (1.1).

The study for weak solutions of Cauchy differential equations in Banach spaces was ini-
tiated by A. Szép [31] and theorems on the existence of weak solutions of this problem
were proved by F. Cramer, V. Lakshmikantam and A. R. Mitchell [14], I. Kubiaczyk [23],
I. Kubiaczyk, S. Szufla [24], A. R. Mitchell and Ch. Smith [26], S. Szufla [33], M. Cichoń,
I. Kubiaczyk [12].

Similar methods for solving existence problems for difference equations in Banach spaces
equipped with its weak topology were studied for instance in [3]. In particular the importance
of conditions expressed in terms of the weak topology was remarked in [3].

We will unify both cases as well as we obtain the first result for weak solutions of dynamic
Cauchy problem m-th order. (So far a first time also for q-difference equations).

The main goal of this work is to construct a theory that unifies the existence of weak
solutions of the Cauchy problem for both Z and R. Our result extends the existence of weak
solutions not only to the discrete intervals with uniform step size (hZ) but also to the discrete
intervals with nonuniform step size (Kq).

We assume that the function f is weakly – weakly sequentially continuous with values in
a Banach space and satisfies some regularity conditions expressed in terms of the De Blasi
measure of weak noncompactness. We introduce a weakly sequentially continuous operator
associated to an integral equation which is equivalent to (1.1).

There exist many important examples of mappings which are weakly sequentially contin-
uous but not weakly continuous. The relation between weakly sequentially continuous and
weakly continuous mappings are studied by Ball [7].

Results presented in this paper extend existence results known from the literature, for
example: I. Kubiaczyk, A. Sikorska-Nowak [25], S. Szufla [34], A. Sikorska-Nowak [28, 29], A.
Szukała [35] and others.
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2 Preliminaries

To understand the so-called dynamic equation and follow this paper easily, we present some
preliminary definitions and notations of time scale which are very common in the literature
(see [1, 2, 10, 11] and references therein). We generalize some definitions given in these refer-
ences for the functions f : T × E→ E instead of f : T → R.

If a, b are points in T, then we denote by [a, b] = {t ∈ T : a ≤ t ≤ b}, Ia = {t ∈ T : 0 ≤
t ≤ a} and J = {t ∈ T : 0 ≤ t < ∞}. Other types of intervals are approached similarly. By a
subinterval Ib of Ia we mean the time scale subinterval.

Definition 2.1. The forward jump operator σ : T → T and the backward jump operator
ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup {s ∈ T : s < t}, respectively.

We put inf ∅ = sup T (i.e. σ(M) = M if T has a maximum M) and sup ∅ = inf T (i.e.
ρ(m) = m if T has a minimum m).

The jump operators σ and ρ allow the classification of points in time scale in the following
way: t is called right dense, right scattered, left dense, left scattered, dense and isolated if σ(t) = t,
σ(t) > t, ρ(t) = t, ρ(t) < t, ρ(t) = t = σ(t) and ρ(t) < t < σ(t), respectively.

Moreover the graininess function µ : T → [0, ∞) is defined by µ(t) = σ(t)− t, ∀t ∈ T.
Furthermore Tk denotes Hilger’s above truncated set consisting of T except for a possible

left-scattered maximal point.
Recall that a function f : T → E is said to be weakly continuous if it is continuous from T to

E, endowed with its weak topology. A function g : E→ E1, where E and E1 are Banach spaces,
is said to be weakly – weakly sequentially continuous if, for each weakly convergent sequence (xn)

in E, the sequence (g(xn)) is weakly convergent in E1. When the sequence xn tends weakly to
x0 in E, we write xn

w−→ x0.

Definition 2.2. We say that u : T → E is right-dense continuous (rd-continuous) if u is continuous
at every right-dense point t ∈ T and lim

s→t−
u(s) exists and is finite at every left-dense point

t ∈ T.

Due to Definition 2.2, the weakly rd-continuity is defined as follows:

Definition 2.3. We say that u : T → E is weakly right-dense continuous (weakly rd-continuous) if
u is weakly continuous at every right dense point t ∈ T and lims→t− u(s) exists and is finite at
every left dense point t ∈ T.

The so-called ∆-weak derivative and ∆-weak integral for Banach valued functions are de-
fined by generalizing the notions of ∆-derivative and ∆- integral on time scales [10, 11].

Definition 2.4. Let u : T → E. Then we say that u is ∆-weak differentiable at t ∈ T if there exists
an element Y(t) ∈ E such that for each x∗ ∈ E∗ the real valued function x∗u is ∆-differentiable
at t and (x∗u)∆(t) = (x∗Y)(t). Such a function Y is called ∆-weak derivative of u and denoted
by u∆w.

Definition 2.5. If U∆w(t) = u(t) for all t, then we define the ∆-weak Cauchy integral by

wC−
t∫

a

u(τ)∆τ = U(t)−U(a).
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By generalizing the Theorem 1.74 of [10] we can obtain the existence of weak antideriva-
tives.

Remark 2.6 (Existence of weak antiderivatives). Every weakly rd-continuous function has a
weak antiderivative. In particular if t0 ∈ T then U defined by

U(t) := wC−
t∫

t0

u(τ)∆τ, t ∈ T

is a weak antiderivative of u.

Since the weak Cauchy ∆-integral is defined by means of weak antiderivatives, the space
of weak Cauchy ∆-integrable functions is too narrow. Therefore, we need to define the weak
Riemann ∆-integral for Banach space-valued functions.

Let P = {a0, a1, . . . , an} where ai ∈ T, i = 0, 1, . . . , n, be a partition of the interval [a, b]. P
is called finer than δ > 0 if either

(i) µ∆([ai−1, ai]) ≤ δ or
(ii) µ∆([ai−1, ai]) > δ if only ai = σ(ai−1), where µ∆([ai−1, ai]) is the Lebesgue ∆-measure

of [ai−1, ai].

Definition 2.7. A function u : [a, b] → E is called weak Riemann ∆-integrable if there exists
U ∈ E such that for any ε > 0, there exists δ > 0 with the following property: for any
partition P = {a0, a1, . . . , an} which is finer than δ and any set of points t1, t2, . . . , tn with
tj ∈ [aj−1, aj) for j = 1, 2, . . . , n one has∣∣∣∣∣x∗(U)−

n

∑
j=1

x∗(u(tj))µ∆([aj−1, aj))

∣∣∣∣∣ ≤ ε, ∀x∗ ∈ E∗.

According to Definition 2.7, U is uniquely determined and it is called the weak Riemann

∆-integral of u and denoted by U = wR−
b∫

a
u(t)∆t.

By regarding the definitions of weak integrals and by using Theorem 4.3 of Guseinov
[17], we are able to state that every Riemann ∆-weak integrable function is a Cauchy ∆-weak
integrable and in this case, these two integrals coincide. Therefore, in the following part of
the paper we will use the notation

∫
f (t)∆t as a ∆-weak integral.

Let (E, ‖ · ‖) be a Banach space and E∗ be its dual space. We consider the space of continu-
ous functions J → E with its weak topology, i.e. (C(J, E), ω) = (C(J, E), γ (C(J, E), C∗(J, E))).

Our fundamental tool is the measure of weak noncompactness developed by De Blasi [9].
Let A be a bounded nonempty subset of E. The measure of weak noncompactness β(A) is

defined by

β(A) = inf{t > 0 : there exists C ∈ Kω such that A ⊂ C + tB0},

where Kω is the set of weakly compact subsets of E and B0 is the norm unit ball in E.
We will use the following properties of the measure of weak noncompactness β (for

bounded nonempty subsets A and B of E):

(i) if A ⊂ B then β(A) ≤ β(B),

(ii) β(A) = β(Āw), where Āw denotes the weak closure of A,
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(iii) β(A) = 0 if and only if A is relatively weakly compact,

(iv) β(A ∪ B) = max {β(A), β(B)},

(v) β(λA) = |λ|β(A), (λ ∈ R),

(vi) β(A + B) ≤ β(A) + β(B),

(vii) β(convA) = β(conv A) = β(A), where conv A denotes the convex hull of A.

The lemma below is an adaptation of the corresponding result of Banaś, Goebel [8].

Lemma 2.8. Let X be an equicontinuous bounded set in C(T, E), where C(T, E) denotes the space of
all continuous functions from the time scale T to the Banach space E.

a∫
0

X(s)∆s =


a∫

0

x(s)∆s : x ∈ X

 .

Then

β

 a∫
0

X(s)∆s

 ≤ a∫
0

β (X(s))∆s.

Proof. For δ > 0 we choose points in T in the following way:

t0 = 0, t1 = sup
s∈Ia

{s : s ≥ t0, s− t0 ≤ δ} ,

t2 = sup
s∈Ia

{s : s ≥ t1, s− t1 ≤ δ} , t3 = sup
s∈Ia

{s : s ≥ t2, s− t2 ≤ δ}, . . . ,

tn−1 = sup
s∈Ia

{s : s ≥ tn−2, s− tn−2 ≤ δ} , tn = a.

If some ti = ti−1 then ti+1 = inf
s∈Ia
{s : s > ti}. By the equicontinuity of X there exists δ > 0 and

ξi ∈ [ti−1, ti] such that ∥∥∥∥∥∥
a∫

0

x(s)∆s−
n

∑
i=1

x(ξi)µ∆ ((ti−1, ti))

∥∥∥∥∥∥ ≤ ε.

Thus we have

a∫
0

X(s)∆s ⊂

 a∫
0

x(s)∆s−
n

∑
i=1

x(ξi)µ∆ ((ti−1, ti)) : x ∈ X

+

+

[
n

∑
i=1

x(ξi)µ∆ ((ti−1, ti)) : x ∈ X

]
= A + B.

Now
β(A) ≤ β(K(0, ε)) = εβ(K(0, 1))

and

β(B) ≤
n

∑
i=1

µ∆ ((ti−1, ti))β(X(ξi)).
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Therefore

β

 a∫
0

X(s)∆s

 ≤ β (A + B) ≤ εβ(K(0, 1)) +
n

∑
i=1

µ∆ ((ti−1, ti))β(X(ξi)).

If ε→ 0 and n→ ∞ we obtain

β

 a∫
0

X(s)∆s

 ≤ a∫
0

β (X(s))∆s.

The lemma below is an adaptation of the corresponding result of Ambrosetti [5] proved in
[13]. Let us recall that J ⊂ T.

Lemma 2.9. Let H ⊂ C(J, E) be a family of strongly equicontinuous functions. Let H(t) = {h(t) ∈
E, h ∈ H}, for t ∈ J. Then

β(H(J)) = sup
t∈J

β(H(t)),

and the function t 7→ β(H(t)) is continuous on J.

Let us denote by S∞ the set of all nonnegative real sequences. For ξ = (ξn) ∈ S∞, η =

(ηn) ∈ S∞, we write ξ < η if ξn ≤ ηn (i.e. ξn ≤ ηn, for n = 1, 2, . . . ) and ξ 6= η.
Let C be a closed convex subset of (C(T, E), ω) and φ be a function which assigns to each

nonempty subset Z of C, a sequence φ(Z) ∈ S∞, such that

φ({x} ∪ Z) = φ(Z), for x ∈ C, (2.1)

φ(convZ) = φ(Z), (2.2)

if φ(Z) = ∅ (the zero sequence) then Z̄ is compact. (2.3)

Theorem 2.10 ([27]). If F : K → K is a continuous mapping satisfying φ(F(Z)) < φ(Z) for an
arbitrary nonempty subset Z of K with φ(Z) > 0, then F has a fixed point in K.

Theorem 2.11 (Mean value theorem [13]). If the function f : J → E is ∆- weak integrable then

∫
Ib

f (t)∆t ∈ µ∆(Ib) · conv f (Ib),

where Ib is an arbitrary time scale subinterval of the time scale interval J and µ∆(Ib) is the Lebesgue
∆-measure of Ib.

See [11] for the definition and basic properties of the Lebesgue ∆-measure and the
Lebesgue ∆-integral.
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3 Existence of weak solutions

Let L1(T) denote the space of real valued ∆-Lebesgue integrable functions on a time scale T.
Assume that there exists a function M ∈ L1(T), M(t) ≥ 0, t ∈ T, such that
‖ f (t, x)‖ ≤ M(t) µ∆ a.e. on T, for all x ∈ E.

Let

bt =
m−1

∑
j=1

∥∥ηj
∥∥ tj

j!
+

t∫
0

t1∫
0

· · ·
tm−1∫
0

M(tm)∆tm . . . ∆t2∆t1,

K(τ, s) =
s∫

τ

t1∫
0

· · ·
tm−1∫
0

M(tm)∆tm . . . ∆t2∆t1,

p(t) =


0, m = 1
m−1
∑

j=1
ηj · tj

j! , m > 1, η1, η2, . . . , ηm−1 ∈ E,

B̃t =
{

x ∈ (C(It, E), ω) : ||x(s)|| ≤ bt,

||x(τ)− x(s)|| ≤ ||p(τ)− p(s)||+ K(τ, s), t, τ, s ∈ T, 0 ≤ s < τ ≤ t
}

,

where T denotes an unbounded time scale and It = {s ∈ T : 0 ≤ s ≤ t}.
We recall that a function g : E → E is a weakly – weakly sequentially continuous function

if xn
w−→ x in E then g(xn)

w−→ g(x) in E.
In investigating the existence of solutions of (1.1), we consider weak solutions.

Definition 3.1. A function x : J → E is said to be a weak solution of the problem (1.1) if x has
∆-weak derivative of m-th order and satisfies (1.1) for all t ∈ J.

We consider an appropriate integral equation

x(t) = p(t) +
t∫

0

t1∫
0

· · ·
tm−1∫
0

f (tm, x(tm))∆tm . . . ∆t2∆t1. (3.1)

Notice that each solution of the problem (3.1) is the solution of (1.1)
Let the operator F : (C(J, E), ω)→ (C(J, E), ω) be defined by

F(x)(t) = p(t) +
t∫

0

t1∫
0

· · ·
tm−1∫
0

f (tm, x(tm))∆tm . . . ∆t2∆t1.

Theorem 3.2. Suppose that a function f : T × E → E and that there exists a function M ∈ L1(T),
M(t) ≥ 0, t ∈ T, such that

|| f (t, x)|| ≤ M(t) µ∆ a.e. on T, for all x ∈ E.

Moreover, let the following conditions hold:

(C1) f (t, ·) is weakly – weakly sequentially continuous, for each t ∈ J,

(C2) for each strongly absolutely continuous function x : J → E, f (·.x(·)) is weakly continuous,
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(C3) there exists a function L : T × [0, ∞) → [0, ∞), such that for each continuous function
u : [0, ∞)→ [0, ∞) the mapping t 7→ L(t, u(t)) is continuous and L(t, 0) ≡ 0 on T,

(C4)
∞∫
0

t1∫
0
· · ·

tm−1∫
0

L(tm, r)∆tm . . . ∆t2∆t1 < r, for all r > 0 and

(C5) β( f (I × A)) ≤ sup{L(t, β(A)) : t ∈ I},

for any compact subinterval I of T and each nonempty bounded subset A of E. Then there exists at least
one ∆-weak solution of the problem (1.1) on some subinterval Ib ⊂ J.

Proof. The condition (C2) implies that the operator F : B̃t → (C(J, E), ω) is well-defined. Now
we show that the operator F maps B̃t into B̃t.

(i)

||F(x)(t)|| =

∥∥∥∥∥∥p(t) +
t∫

0

t1∫
0

· · ·
tm−1∫
0

f (tm, x(tm))∆tm . . . ∆t2∆t1

∥∥∥∥∥∥
≤ ||p(t)||+

∥∥∥∥∥∥
t∫

0

t1∫
0

· · ·
tm−1∫
0

f (tm, x(tm))∆tm . . . ∆t2∆t1

∥∥∥∥∥∥
≤

m−1

∑
j=1

∥∥ηj
∥∥ tj

j!
+

t∫
0

t1∫
0

· · ·
tm−1∫
0

‖ f (tm, x(tm))‖∆tm . . . ∆t2∆t1

≤
m−1

∑
j=1

∥∥ηj
∥∥ tj

j!
+

t∫
0

t1∫
0

· · ·
tm−1∫
0

M(tm)∆tm . . . ∆t2∆t1 = bt, t ∈ T.

(ii) Consequently we show, the set F(B̃t) is almost equicontinuous. Since for x∗ ∈ E∗ with
‖x∗‖ ≤ 1 we have

|x∗ ( f (tm, x(tm)))| ≤ sup
x∗∈E∗,‖x∗‖≤1

|x∗ ( f (tm, x(tm)))| = ‖ f (tm, x(tm))‖ ≤ M(tm)

and

|x∗[F(x)(τ)− F(x)(s)]| ≤ |x∗[p(τ)− p(s)]|+
τ∫

s

t1∫
0

· · ·
tm−1∫
0

|x∗( f (tm, x(tm)))|∆tm . . . ∆t2∆t1

≤ ||p(τ)− p(s)||+ K(τ, s), τ, s ∈ T, for each x ∈ B̃t

so F(B̃t) is strongly almost equicontinuous.

(iii) Now we show weak sequential continuity of F. Let xn
w−→ x in B̃t.

|x∗[F(xn)(t)− F(x)(t)]|

≤
t∫

0

t1∫
0

· · ·
tm−1∫
0

∣∣x∗( f (tm, xn(tm))− f (tm, x(tm)))
∣∣∆tm . . . ∆t2∆t1.

(see [10, 11, 17] for the inequality). Since J is a times scale interval, is a locally compact,
Hausdorff space. By a result of Dobrakov (see [15], Thm. 9), F(xn) is weakly convergent
to F(x) in C(J, E) so that F is weakly sequentially continuous.
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From (i)–(iii) it follows that F is well-defined, weakly sequentially continuous and maps
B̃t into B̃t.

Let an ∈ T is increasing, an → ∞ if n → ∞ and Ian = [0, an]. Let V be a countable subset
of B̃an . For t ∈ J, let V(t) = {v(t) ∈ E, v ∈ V} and An = V(Ian) =

⋃ {V(t) : t ∈ Ian} satisfying
the condition V = conv({x} ∪ F(V)), for some x ∈ B̃an . Remark, that since B̃an is bounded,
An is bounded.

For any given ε > 0 there exists δ > 0 such that t′, t′′ ∈ Ian with |t′ − t′′| < δ imply∣∣L(t′, β(An))− L(t′′, β(An))
∣∣ < ε. (3.2)

We divide the interval Ian into r parts 0 = tn
0 < tn

1 < · · · < tn
r = an in such a way that:

tn
0 = 0,

tn
1 = sup

s∈Ian

{s : s ≥ tn
0 , s− tn

0 ≤ δ} ,

tn
2 = sup

s∈Ian

{s : s ≥ tn
1 , s− tn

1 ≤ δ} ,

...

tn
r = sup

s∈Ian

{
s : s ≥ tn

r−1, s− tn
m−1 ≤ δ

}
.

Since T is a closed subset of R, tn
i ∈ Ian . If some tn

i = tn
i−1, then tn

i+1 = inf
{

s ∈ Ian : s > tn
i
}

.
Let t ∈ Ian

(F(V))(t) =

p(t) +
t∫

0

t1∫
0

· · ·
tm−1∫
0

f (tm, x(tm))∆tm . . . ∆t2∆t1 : x ∈ V


= p(t) +

t∫
0

t1∫
0

· · ·
tm−1∫
0

f (tm, V(tm))∆tm . . . ∆t2∆t1.

Let for t ∈ In
k = [tn

k−1, tn
k ] ∩ T, k = 1, 2, . . . , r, qn

j , j = 1, 2, . . . , k − 1 be chosen in In
j so that

L(qn
j , β(An

j )) = max{L(t, β(An
j ) : t ∈ In

j , j = 1, 2, . . . , k− 1} and qn
k be chosen in [tn

k−1, tm−1] ∩ T
so that

L(qn
k , β(An

k )) = max{L(t, β(An
k ) : t ∈ [tn

k−1, tm−1] ∩ T},

where An
j = V(In

j ), An
k = V([tn

k−1, tm−1] ∩ T), j = 1, 2, . . . , k− 1, k = 1, 2, . . . , r.
Now, using the mean value theorem and Lemma 2.8 we obtain

β(V(t)) = β(conv({x} ∪ F(V))) = β(F(V)(t))

= β

p(t) +
t∫

0

t1∫
0

· · ·
tm−1∫
0

f (tm, V(tm))∆tm . . . ∆t2∆t1


≤

t∫
0

t1∫
0

· · ·
tm−2∫
0

β

k−1

∑
j=0

∫
In
j

f (tm, V(tm))∆tm +

tm−1∫
tn
k−1

f (tm, V(tm))∆tm

∆tm−1 . . . ∆t2∆t1
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So

β(V(t)) ≤
t∫

0

t1∫
0

· · ·
tm−2∫
0

β

(
k−1

∑
j=0

µ∆(In
j )conv( f (In

j × An
j ))

+ µ∆([tn
k−1, tm−1] ∩ T)conv( f ([tn

k−1, tm−1] ∩ T × An
k ))

)
∆tm−1 . . . ∆t2∆t1

≤
t∫

0

t1∫
0

· · ·
tm−2∫
0

(
k−1

∑
j=0

µ∆(In
j )L(qn

j , β(An
j ))

+ µ∆([tn
k−1, tm−1] ∩ T)L(qn

k , β(An
k ))

)
∆tm−1...∆t2∆t1.

Remark that by inequality (3.2)

k−1

∑
j=0

µ∆(In
j )L(qn

j , β(An
j )) + µ∆([tn

k−1, tm−1] ∩ T)L(qn
k , β(An

k ))

≤
k−1

∑
j=0

∫
In
j

L(tm, β(An
j ))∆tm +

k−1

∑
j=0

∫
In
j

∣∣∣L(qn
j , β(An

j ))− L(tm, β(An
j ))
∣∣∣∆tm

+

tm−1∫
tn
k−1

L(tm, β(An
k ))∆tm +

tm−1∫
tn
k−1

∣∣∣L(qn
k , β(An

k ))− L(tm, β(An
k ))
∣∣∣∆tm

<

tm−1∫
0

L(tm, β(An))∆tm + εtm−1.

So

β(F(V)(t)) ≤
t∫

0

t1∫
0

· · ·
tm−2∫
0

 tm−1∫
0

L(tm, β(An))∆tm + εtm−1

∆tm−1 . . . ∆t2∆t1

=

t∫
0

t1∫
0

· · ·
tm−2∫
0

εtm−1 +

tm−1∫
0

L(tm, sup{β(V(tm)) : tm ∈ Ian})∆tm

∆tm−1 . . . ∆t2∆t1.

As ε > 0 is arbitrary, this implies

sup{β(F(V)(t) : t ∈ Ian}

≤
t∫

0

t1∫
0

· · ·
tm−1∫
0

L(tm, sup{β(V(tm)) : tm ∈ Ian})∆tm . . .∆t2∆t1

≤
∞∫

0

t1∫
0

· · ·
tm−1∫
0

L(tm, sup{β(V(tm)) : tm ∈ Ian})∆tm . . . ∆t2∆t1

< sup {β(V(t)) : t ∈ Ian} , for β(V(t)) > 0.

(3.3)

If β(V(t)) = 0 then, because L(t, 0) = 0, we have β(F(V)(t)) = 0.
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Define φ(V) =
(
supt∈I1

β(V(t)), supt∈I2
β(V(t)), . . .

)
for any nonempty subset V of B̃an .

Evidently, φ(V) ∈ S∞. Thanks to the properties of β, the function φ satisfies conditions
(2.1), (2.2) listed above. From inequality (3.3) it follows that φ(F(V)) < φ(V) whenever
φ(V) > 0. If φ(V) = 0, then for each t ∈ T, β(V(t)) = 0. By the Arzelà–Ascoli theorem
the set V is compact. This means that the condition (2.3) is satisfied. Thus, all assumptions of
Sadovskii’s fixed point theorem (see [27]) have been satisfied, F has a fixed point in B̃an and
the proof is complete.

Remark 3.3. The conditions in Theorem 3.2 can be also generalized to the Sadovskii condition
[27], Szufla condition [32] and the others and β can be replaced by some axiomatic measure
of noncompactness.
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