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Abstract

In this paper we prove the exponential decay in the case n > 2, as time goes to infinity, of regular
solutions for a nonlinear coupled system of beam equations of Kirchhoff type with memory and

weak damping

up + A% — M(|[Vul[Z2 q,) + [IV0][72(q,)) Au

~

t

+/ g1(t — s)Au(s)ds + aus + h(u —v) =0 in @,
0

Vit + A2’U — M(HVUH%Q(Qt) + ||V'U||%2(Qt))A'U

+/tgg(t—s)Av(s)ds+owt—h(u—v) =0 in Q
0

in a non cylindrical domain of R**! (n > 1) under suitable hypothesis on the scalar functions
M, h, g1 and g0, and where « is a positive constant. We show that such dissipation is strong
enough to produce uniform rate of decay. Besides, the coupling is nonlinear which brings up
some additional difficulties, which plays the problem interesting. We establish existence and
uniqueness of regular solutions for any n > 1.
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1. INTRODUCTION

Let © be an open bounded domain of R” containing the origin and having C? boundary. Let

v : [0,00[— R be a continuously differentiable function. See hypothesis (1.15)-(1.17) on . Let
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us consider the family of subdomains {2 }o<t<oo of R given by
B =TQ), T:yeQ—xz=~(t)y
whose boundaries are denote by I'; and @ the non cylindrical domain of R™t1

Q= U Q x {t}

0<t<o0

with lateral boundary

S = U nox e

0<t<o0o

Let us consider the Hilbert space L?(Q2) endowed with the inner product

and corresponding norm
HUH%Q(Q) = (u,u).
We also consider the Sobolev space H!(Q2) endowed with the scalar product

(u,v) g1 () = (u,v) + (Vu, Vo).

We define the subspace of H(Q), denoted by H{(Q), as the closure of C§°(f) in the strong
topology of H'(Q). By H~1(Q) we denote the dual space of HE(2). This space endowed with

the norm induced by the scalar product

(1,0)) 13y = (Vt, V)
is, owing to the Poincaré inequality

[ull720y < ClIVull?2(q),
a Hilbert space. We define for all 1 < p < o0

oy = | lu(o)da,

and if p = o0

[ull o< (@) = sup ess|u(z)|.
€N

In this work we study the existence of strong solutions as well the exponential decay of the

energy of the nonlinear coupled system of beam equations of Kirchhoff type with memory given

EJQTDE, 2007 No. 9, p. 2



uy + Au — M(HVUH%Q(QH - HvUH%Q(Qt))Au

t
+/ g1(t — 8)Au(s)ds + aus + h(u —v) =0 in Q, (1.1)
0
v + A% — M(HVUH%Q(QQ + HVUH%Q(QQ)AU
t
—|—/ g2(t — 8)Av(s)ds + vy — h(u—v) =0 in Q, (1.2)
0
ou Ov -
u—v—a—g—() on Z, (1.3)

(u(z,0),v(x,0)) = (ug(x),vo(x)), (u(x,0),v¢(x,0)) = (ur(z),v1(z)) in Qo, (1.4)

where v = v(0,t) is the unit normal at (o,t) € ¥ directed towards the exterior of Q. If we

denote by 7 the outer normal to the boundary I' of €2, we have, using a parametrization of I"
1 2
v(o,t) = —(n(&), =" ()¢ - n(©)), &= o) (1.5)

where

=

r= 1+l n©)P)e.

In fact, fix (0,t) € . Let = 0 be a parametrization of a part U of I', U containing £ = SOE

The parametrization of a part V of ¥ is (o, t) = @(ﬁ) = (&) = 0. We have

1
Viblort) = —5 (Vo) = (1) Vel£).
From this and observing that n(§) = Ve (§)/|Ve(€)|, the formula (1.5) follows.
Let 7(-,t) be the x-component of the unit normal v(-,-), || < 1. Then by the relation (1.5),

one has

7(o.t) = (7). (L6)

In this paper we deal with nonlinear coupled system of beam equations of Kirchhoff type with
memory over a non cylindrical domain. We show the existence and uniqueness of strong so-
lutions to the initial boundary value problem (1.1)-(1.4). The method we use to prove the
result of existence and uniqueness is based on the transformation of our problem into another
initial boundary value problem defined over a cylindrical domain whose sections are not time-
dependent. This is done using a suitable change of variable. Then we show the existence and
uniqueness for this new problem. Our existence result on non cylindrical domain will follow

using the inverse transformation. That is, using the diffeomorphism 7 : Q — Q defined by

TZQ—)Q, (x,t) € U — (y,t) = (—=,1) (1.7)
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and 771 : Q — Q defined by

Ty, t) = (x,t) = (v()y, t).

Denoting by ¢ and ¢ the functions

oy, t) =uor Hy,t) =u(y()y, 1), @(y,t) =vor '(y,t) =v(v(t)y,1)

the initial boundary value problem (1.1)-(1.4) becomes

Gt +7 A% =y TPM (YT (IV T2 + Vel T20)) A0

t
+/ g1(t — 5)772(8)A¢(5)d8 +apr — At)p +ay - Voo
0
taz-Vo+h(p—¢)=0 in Q,
o+ A% — 772M(7n72(uv¢ui2(9) + HV<PH%2(Q)))A<P

t
T / g2t — )7 2(3)Ap(5)ds + gy — A(t)p + a1 - Vorp
0
+as-Vo—h(p—¢)=0 in Q,
09 Oy
¢|F—s0|r—ayr—ayr—0,

(&, 0)lt=0 = (d0,%0) (D¢, ¢t)lt=0 = (¢1,1) in €,

where

At)p = Z ayi(aijayj 9), Alt)p = Z ayi(aijayj ©)

1,j=1 1,j=1
and
aij(y’ t) = _(’7/7_1)2yiyj (Z,] = 1’ o ,TL),

a1(y,t) = =297 1y,

az(y,t) = =7 2y(Y"y + (v + (n — 1)7")).

To show the existence of a strong solution we will use the following hypotheses:

Y<0 n>2, >0 if n<2,

L inf =
7€ L¥(0,00),  inf ~(t) =0 >0,

7€ W0, 00) N W10, 00).

(1.9)

(1.10)

(1.11)
(1.12)
(1.13)

(1.14)

(1.15)
(1.16)

(1.17)

Note that the assumption (1.15) means that Q is decreasing if n > 2 and increasing if n < 2

in the sense that when ¢t >t/ and n > 2 then the projection of Qy on the subspace t = 0 contain

the projection of {2; on the same subspace and contrary in the case n < 2. The above method

EJQTDE, 2007 No. 9, p. 4



was introduced by Dal Passo and Ughi [21] to study certain class of parabolic equations in non

cylindrical domain. We assume that h € C*(R) satisfies
h(s)s >0, VseR.
Additionally, we suppose that h is superlinear, that is
h(s)s > H(s), H(z)= /OZ h(s)ds, VseR,
with the following growth conditions
\h(t) — h(s)| S CA+|tP~ 4 [s|P Y|t — 5|, Vs €R,

for some C' > 0 and p > 1 such that (n —2)p < n. Concerning the function M € C*([0, ccl), we
assume that

—

M(t) > —mgy, M(r)Tr > M(1), VY7 >0, (1.18)
where ]\/4\(7') = [y M(s)ds and
0 <mo < Aillyllg2 (1.19)

where A\ is the first eigenvalue of the spectral Dirichlet problem

A’w =X \w in 9,

0
w = 8—1;) =0 on T.
We recall also the classical inequality
[[Aw|[r2q) = VA1l[VWl[ L2 (q)- (1.20)

Unlike the existing papers on stability for hyperbolic equations in non cylindrical domain, we
do not use the penalty method introduced by J. L. Lions [16], but work directly in our non
cylindrical domain Q To see the dissipative properties of the system we have to construct a
suitable functional whose derivative is negative and is equivalent to the first order energy. This
functional is obtained using the multiplicative technique following Komornik [8] or Rivera [20].
We only obtained the exponential decay of solution for our problem for the case n > 2. The
main difficulty in obtaining the decay for n < 2 is due to the geometry of the non cylindrical
domain because it affects substantially the problem, since we work directly in Q Therefore the
case n < 2 is an important open problem. From the physics point of view, the system (1.1)-(1.4)
describes the transverse deflection of a streched viscoelastic beam fixed in a moving boundary

device. The viscoelasticity property of the material is characterized by the memory terms
t ¢
/ g1(t — s)Au(s)ds, / g2(t — s)Av(s)ds.
0 0
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The uniform stabilization of plates equations with linear or nonlinear boundary feedback was
investigated by several authors, see for example [7, 9, 10, 11, 13, 22] among others. In a fixed
domain, it is well-known, the relaxation function g decays to zero implies that the energy of the
system also decays to zero, see [2, 12, 19, 23]. But in a moving domain the transverse deflection
u(x,t) and v(x,t) of a beam which charges its configuration at each instant of time, increasing
its deformation and hence increasing its tension. Moreover, the horizontal movement of the
boundary yields nonlinear terms involving derivatives in the space variable. To control these
nonlinearities, we add in the system a frictional damping, characterized by u; and v;. This term
will play an important role in the dissipative nature of the problem. A quite complete discussion
in the modelling of transverse deflection and transverse vibrations, respectively, of purely for the
nonlinear beam equation and elastic membranes can be found in J. Ferreira et al. [6], J. Limaco
et al. [17] and L. A. Medeiros et al. [18]. This model was proposed by Woinowsky [24] for the
case of cylindrical domain, without the terms —Aw and fg g1(t — s)Au(s)ds but with the term

—M(/Q |Vul|?)Aw.

See also Eisley [5] and Burgreen [1] for physics justification and background of the model. We
use the standard notations which can be found in Lion’s book [15, 16]. In the sequel by C
(sometimes C1,Cy,...) we denote various positive constants which do not depend on ¢ or on
the initial data. This paper is organized as follows. In section 2 we prove a basic result on
the existence, regularity and uniqueness of regular solutions. We use Galerkin approximation,
Aubin-Lions theorem, energy method introduced by Lions [16] and some technical ideas to show
existence regularity and uniqueness of regular solution for the problem (1.1)-(1.4). Finally, in
section 3, we establish a result on the exponential decay of the regular solution to the problem
(1.1)-(1.4). We use the technique of the multipliers introduced by Komornik [8], Lions [16] and

Rivera [20] coupled with some technical lemmas and some technical ideas.

2. EXISTENCE AND REGULARITY OF GLOBAL
SOLUTIONS

In this section we shall study the existence and regularity of solutions for the system (1.1)-(1.4).
For this we assume that the kernels g; : R, — R, is in C'(0,00), and satisfy
o0
g1 =9, 20, = / gi(s)y*(s)ds = ;> 0, i=12, (2.1)
0
where

1= sup ().
0<t<oo
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To simplify our analysis, we define the binary operator

// (t — 5)72(5)|B(¢) — D(s)Pdsda.

With this notation we have the following lemma.

Lemma 2.1 For ® € C1(0,T : H3(Q?)) and g € C’l(%Jr) we have

¢
//g(t—s)’y_Q(s)Vfb(s)-V@tdsdx _ L1y /D_
QJO 2 O
1d
_§d_[ /\w ).
and
t 1
// g(t—s)'y*2(s)A(I>(S)AfI)tdsdx = 2d +§ /D_
aJo
i [ / a]
57 98— — ds Ad|dx| .
2 |95 Uy 2™ fy 5

The proof of this lemma follows by differentiating the terms gO V;I&()t ) and gd Aj{g ). The well-

posedness of system (1.10)-(1.13) is given by the following theorem.

Theorem 2.1 Let us take (¢o, p0) € (HZ(Q)NH*(Q))?2, (¢1, 1) € (HE(Q))? and let us suppose
that assumptions (1.15)-(1.20) and (2.1) hold. Then there exists a unique solution (¢, @) of the
problem (1.10)-(1.13) satisfying

6,0 € L(0,00 : Hy(Q) N HY(Q)),
1, 1 € L(0,00 : Hy(92)),
bt prr € L(0,00 = L*(92)).
Proof. Let us denote by B the operator
Bw = —A%*w, D(B)= HZQ)n H Q).

It is well know that B is a positive self adjoint operator in the Hilbert space L?(2) for which
there exist sequences {wy, }neny and {\, }nen of eigenfunctions and eigenvalues of B such that
the set of linear combinations of {wy,}nen is dense in D(B) and A\ < Ay < ... <\, — o0 as
n — 00. Let us denote by

m m

¢ =D _(do,wi)ws, 05 =Y (0, w;)w;,
P =1
m m
T=> GLww; @7 = (1, wi)w;.
P =1
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Note that for any {(¢o,#1), (w0, 1)} € (D(B) x HZ(2))?, we have ¢f* — ¢o strong in D(B),
O — g strong in D(B), ¢7* — ¢1 strong in H3(Q) and @* — ¢; strong in HZ(L).
Let us denote by V,, the space generated by wi,...,w,,. Standard results on ordinary

differential equations imply the existence of a local solution (¢™, ¢"™) of the form

@™(1), ™) =D _(gjm(t), fim(t))wj,

j=1

to the system
/(ﬁgfwjdy—i-a/ ¢§”wjdy+/'y4A2¢mwjdy
Q Q Q
MO gy + IV ) | Ad™wsdy
// g1t —s)y 2(s)V™(s) - ijdsdy—l—/ A(t)p"w;dy

+ [ oy + / a2 Yo" widy + [ ho— p)usdy = (2.2)
Q Q Q
(j=1,...,m),
/gogwjdy—i-a/ wgnwjdy—i—/ 7*4A2cpmwjdy
Q Q Q

MV By + V0™ 220) /ﬂ Ag™w;dy

// gat — )y *(s) V™ (s )-ij‘dsder/QA(t)w’”wj‘dy

+/Qa1 -Vt wsdy + /Qaz V" w;dy —/ﬂh(qb — p)wjdy =0, (2.3)
(Jj=1,...,m),
(0™ (y,0), 9™ (y,0)) = (66" 6"), (&4 (y,0), 96" (y,0)) = (91", ¢1")- (2.4)

The extension of the solution to the whole interval [0, 00) is a consequence of the first estimate
which we are going to prove below.
A Priori estimate I

Multiplying the equations (2.2) by g;m(t) and (2.3) by f]’m(t), summing up the product result
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inj=1,2,...,m and using the Lemma 2.1 we get

1 d m m m m . m m  m
S LT (0™, ™) + ol é H%?(Q) +/A(t)¢ bt dy—i—/al-V(]ﬁt ot dy
+/Qa2-V¢m¢?dy+a!\¢f\!%z(g)+/§2A(t)<ﬁ’”<p?dy+/ﬂa1-v<p?<p?dy

n_27, n— m m n— m m
—(2% V21V 6™ 22y + 19607 () M (2 (196" |y + 96" )

M(y" <\rv¢mr\Lz(g+r\kuL2 )]
lg

() m 1, Vo™
1 goft
279%(0

— X agm?
75 L2(Q)

L, Ve
V™ 172 @t QQDT - 4$”A¢MH%Q(Q)7

where

1 t
L7 6™ 0™ = o872y + (72—(75)—/0 91(8)7_2(8)613) V™ 720

M (V™ [ F2 ) + V™ 72()

m

_ Vo
+y A 122 gy +QIDT + 1108720

1 t —2 m||2
(o [ o2 00s) 1967 B
. Vi
A e + 920 +2 /Q H(é — p)dy

From (1.16)-(1.17) and (1.19)-(1.20) it follows that

7’"M( "IV L2 () + IV T2(0) + 7 1A 12 () + 18¢™ 1 2(q))

mi m m
= H,YHQ (Ve H%%Q)"‘HV@ H%?(Q))' (2.5)

where m; = (Hi‘ﬁ — myg). Taking into account (1.16), (1.17), (2.1) and the last equality we

obtain

1d

S L1 (60", ™) + o6 172() + @l 720y < CUY [+ DLV 9™, ™). (2.6)

Integrating the inequality (2.6), using Gronwall’s Lemma and taking account (1.17) we get

t
£’1”<t,¢’",<pm)+/0 165 ()II72(q) + €8 (5)|[F2yds < C, VmeN, Vte[0,T].  (2.7)

A priori estimate 11

Now, if we multiply the equations (2.2) by \/)\jg;.m and (2.3) by ‘/)‘jf],'m and summing up in
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.
I
—_

., m we get

1 d 7_4

—2
’Y n— m m m
+ My 2(HV¢ 1Z200) + 11V [Z2(0) tHAqﬁ I72(q)

—IVAS™ 122

/ / g1 (8 — )7 2(5) Ag™ (s) A dsdy
- / A()$™ Adpdy — / ar - VA dy
Q Q
- /Q a2 VoA dy + [ Ho" = o)Ay = 0
v 4
2 dt
’y_ n— m m m
F M2V oy + V6™ ) S 1867 (e

thllvso 72 + @l Ve 120 + - HVAsD’”IILz(Q
// g2t — 8)72(8) Ap™ (5) A} dsdy
—/QA(t)sD’”Aso%”dy—/Qal Vi Apydy

- /Q az - Vo™ Apytdy — /Q h(¢™ — ™) Apy"dy = 0.

Summing the last two equalities and using the lemma 2.1 we obtain

1d . . m 1 91( ) 1A am

Szt (t) + a(IVe} 72y + Ve 720)) = 20 )H " 720
1 Ap™ 2’y m m

+509—— = S (IVAS" |12 (0) + VAG" [ 12()

d — n— m m m m
+2 (MO By + 967 Bage)) (1867 By + 1867 22(0)

+ / A()d™ Adpdy + /Q ar - VO Ay + /Q az - V™ AGT dy

192(t) mi|2 1 ! A@m m
5 2(0)HA4P HLQ(Q)+§Q2DT+ QA() Apidy

+/a1 Vo' Apl dy+/a2 V™ Aptdy
Q Q

—/h(¢m—wm)A¢§”dy+/h(¢m ") Apydy
Q Q

where
860 = IV + (a5~ [ o0 2<s>ds)uA¢ e
VA ) + VAL ) + 002 + 967 g
+7‘2M(’V T B+ 1757 ) A6 gy + 1A )

1 ¢ _9 Ap™
— = Ap™||? o—/.
(o~ [ #2005 ) 1867 gy + 2025
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From (1.16)-(1.17) and (1.19)-(1.20), we have

74(HVA¢mH%2(Q) + VA" 122(g))
+7_2M( "2V 122 ) + VO™ 72 0) (A 720y + 1A [72(0)
= H H2 ("A¢m"L2(Q +HA<pmHL2 Q))

Using similar arguments as (2.7), the hypothesis for the function h and observing the above

inequality we obtain
¢
50+ [ (196 ey + IV ay)ds < C. VmeN, Vi [0.7] (2.8)

A priori estimate I1I
It easy to see from (2.2)-(2.3) and of the growth hypothesis for the function h together with the
Sobolev’s imbedding that

165 0)[172 () + 19 (0)[[F2(q) < O, ¥m €N (2.9)
Differentiating the equations (2.2)-(2.3) with respect to the time, we obtain
/Q Prywidy + o / i wjdy + / AP w;dy
d - n— m m
= [ SOTMOM TS ) + 196" ) A" sy
m 90 0 m
—/A2¢ wjdy — 2(0)/QA¢0 wjdy
//91 (t =)y “(s)Ve™(s) - Vw;dsdy
m d
+ [ SO+ [ e Vo yudy
d
+ [ W =g = uidy+ [ e Yoy =0 (210
/Q itwidy + o / priwjdy + 5 / A piMwjdy
d,B _ n— m m
- [ SOTMOM TS ) + V6" o)Ay
m 92(0) m
—/Azﬂp wjdy — 2(0)/9&% wjdy
// (t — s)y " 2(s)V"(s) - Vw;dsdy
d
+ dt(A(t) "w;dy + dt(al Vi Jwjdy

!/ m m m m d
- /Q HE™ = )67 — wgdy+ [ e Veuydy =0. (21
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Multiplying the equations (2.10)-(2.11) by g7,,(¢) and f7,(t), respectively, and summing up the

product result in j = 1,2,...,m we have

s [ 1omPay+a [ 1oray+ 25 [ 180rray
d
- / OOV g + V67 20y AG™) 6y

5 [ aromaay - 50 [ aoporay

/ / Gt = $)72(s) V4™ (5) - Voidsdy

+ [ amems; dy+/jt< VT oy

+ [ W - - eedy+ [ Gl Vemay =0 (212)

2dt/|80tt|d?/+a/|80tt|d + = 9 dt/|ASDt|dy

- [ GOTME T ey + V6" o)A ety

47 9 92(0) /
2 +2(0) Jq Po Pu AY

// (t— s}y 2(s) V" (5) - Viglpdsdy

m d
+ [ Saweerdy+ [ Gl Veregdy

d
- [ = emer - eedy + [ Gl VeMepay =0, (213)
Let us take p, = % From the growth condition of the function h and from the Sobolev

imbedding we obtain

/ W™ — g™ pdy < C / (1+206™ — o™ P~ g6 |dy

Q Q

<c [ JEERE som|p—1>"dy] ' [ / |¢;“|pndy} g [ / |¢3;;|2dy} :
<c [ [a+wen- wn?mﬂ 2 [ / |v¢;"|2dy} : [ / |¢3;;|2dy} :

Taking into account the estimate (2.7), we conclude that

/ (™ — g™y epdy < c[ / |V¢’;“|2dy]2 [ / |¢’;?|2dy]2
Q Q Q
SC{ /Q Py + /Q W?dy}. (2.14)
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Similarly we get
/Qh’<<z>m—so o dy<0{/ V| dy+/ 3 Qdy} (2.15)
/ h’<¢m—wm>¢?wgdysc{ [ivoreay+ [ e |2dy}
Q Q Q
/Q H(6™ — o™ oy < C { /Q Ve Py + /Q !wa\Qdy} . (2.17)

, (2.16)

Summing the equations (2.12) and (2.13), substituting the inequalities (2.14)-(2.17) and using
similar arguments as (2.7)-(2.8) we obtain, after some calculations and taking into account the

lemma 2.1 and hypothesis on M

1d . m m
5%66 (t) + a(]| o) (t)”%2(ﬂ) + ||t (t)H%%Q))

< CY 1+ I DUAG™ [F20) + IV [ 72(0)
(YT + W DUAC™ 1220y + IV 1 22(0)
+C(IVe |72 +||Vs0’£“||L2 )+ O T+ ) £5 (1),

where

Vo Vo
5(t) = ||¢§?||%2(Q)+||90§?||%2(Q)+9157+ 920—— S

+y MO (VO 12 ) + V™ T2 (VO] |22(0) + Ve [ 72(0)
t

~( /0 91(s)7"2(5)ds)| [Vl 2oy — ( /0 92517 2(5)d3) Vot B ey

Using Gronwall’s lemma and relations (1.17), (2.7)-(2.8) we get

t
£3'(t) +a/0 (655 (T2 + 1€5:(8)[72())ds <€, VE€[0,T], VmeN.  (218)

A priori estimate IV
Multiplying the equations (2.2)-(2.3) by g;jm(t) and fj,,(t), respectively, summing up the product

result in j = 1,2,...,m and using the hypothesis on h we deduce

1 d m m —
2dt£4 (t) — llot H%?(Q) — I} H%?(Q) +7 4(HA¢H%Q(Q) + HA‘:OH%Q(Q))

2M (5 ”-2<||v¢m||%2(m + IVl @) (V6™ 3 + [Vl 22qy)

/ / 01(5)7~2(5) A ()™ (£)dsdy

/ / g2(5)72(5) Ag™ (5) ™ (t)dsdy

<C(|+ |7"|)(||¢m||L2(Q + 1™ 72 () + [186™ 720
HIAL™[Z2(q) + 10711220y + 18" 172 (6))s (2.19)
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where
£70 =2 | @07 + @)+ 16" Bagey + e o)
Choosing k > %, we obtain

REP() + £7() = (k-

SHES

(16" l1Z20) + 107 122 (@) + 1071220 + 1™ [[72()
( ® ( ®

N UAG™ 220y + 18¢™[[72(0)
() (

MV G20y + V™ [F2(0))) > 0. (2.20)

(k-

QIro

Now, multiplying the equations (2.2) and (2.3) by kgjn(t) and kf;m(t), respectively, summing
up the product result and combining with (2.19), we get, taking into account (2.5)

1d, . N ~
5 g7 BLT () + LTD) + (ke = (67|72 + 7" 172

+O 1A L2 () + 180" 7o) < CUY [+ W D(RLT () + £3(2).  (2:21)
From (2.21), using the Gronwall’s Lemma we obtain the following estimate, taking into account
(2.5) and (1.17)
t
0
HIAL™(8)[720))ds < Cll911l72(q) + le1ll72(0) + 1A0lZ2(q) + [[Avol[72(q))-(2:22)

RLT (L) + £7(0) + / (67 () ey + 67 (5] 22y + 11AG™ ()22

From estimates (2.7), (2.8), (2.18) and (2.22) it’s follows that (¢™,¢"™) converge strong to
(¢, 0) € L*(0,00 : HZ(S)). Moreover, since M € C[0,00] and V¢™, Vo™ are bounded in
L>®(0,00 : L2(Q2)) N L?(0,00 : L?(2)), we have for any ¢ > 0

t
/0 MO 2 (V™[ + VO™ I220)) = MO 2(IVOlIZ20) + [IVelIZ20)))]

t
<c / (N16™ = 9l 21 + 6™ = @l

where C' is a positive constant independent of m and ¢, so that

M2V |22y + V™ [F20) ) (A™ wi) — M2 (IV][72 () + IVl Z20))) (A0, wj)

and

MOV [0y HIVE™ 20 (D™ wj) — M2 (IVlI22 () HIVlZ20))) (A, wy).
Using similar arguments as above we conclude that

h(@™ = ™) = h(¢ —¢) in L0, T;L*(Q)).
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Letting m — oo in the equations (2.2)-(2.3) we conclude that (¢, ) satisfies (1.10)-(1.11) in
L>®(0,00 : L?(R)). Therefore we have that

¢, € L>(0,00 : H3(Q) N H'()),

th,%pt € LOO(O’ oo Hol(Q)),
Gues pu € L0, 00 : LQ(Q))-

To prove the uniqueness of solutions of problem (1.10), (1.11), (1.12) and (1.13) we use the
method of the energy introduced by Lions [16], coupled with Gronwall’s inequality and the hy-
potheses introduced in the paper about the functions g;, h,M and the obtained estimates. M

To show the existence in non cylindrical domain, we return to our original problem in the non
cylindrical domain by using the change of variable given in (1.8) by (y,t) = 7(x,t), (x,t) € Q.
Let (¢, ) be the solution obtained from Theorem 2.1 and (u,v) defined by (1.9), then (u,v)
belong to the class

u,v € L®(0,00 : HZ(Q) N HY(Y)), (2.23)
ug, vy € L(0,00 = Hy (%)), (2.24)
U, Vgt € LOO(O, o0 L2(Qt)) (225)

Denoting by

u(x,t) = ¢(y7t) = (¢ o T)(.%',t), U(xvt) - (P(yat) = ((P o T)(xvt)

then from (1.9) it is easy to see that (u,v) satisfies the equations (1.1)-(1.2) in L>(0, 00 : L*()).
If (w1, v1), (u2,v2) are two solutions obtained through the diffeomorphism 7 given by (1.7), then
(¢1,%1), (¢2,¢2) are the solution to (1.10)-(1.11). By uniqueness result of Theorem 2.1, we have
(61, 01) = (P2, 92), so (u1,v1) = (u2,v2). Therefore, we have the following result.

Theorem 2.2 Let us take (ug,v9) € (H3(0) N H*(Q))?, (u1,v1) € (H3(Q))? and let us
suppose that assumptions (1.15)-(1.17), (1.19)-(1.20) and (2.1) hold. Then there exists a unique
solution (u,v) of the problem (1.1)-(1.4) satisfying (2.23)-(2.25) and the equations (1.1)-(1.2)
in L>=(0,00 : L2()).
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3. EXPONENTIAL DECAY

In this section we show that the solution of system (1.1)-(1.4) decays exponentially. To this end

we will assume that the memory g; satisfies:

g:(t) < —Chgi(t) 3.1)
<1 - /0 gi(s)d8> =0>0, Vi=1,2 (3.2)

for all ¢ > 0, with positive constant C;. Additionally, we assume that the function ~(-) satisfies

the conditions

N <0, t>0, n>2 (3.3)
1

0 ") < = 3.4

< B Ol < 5 (34)

where d = diam(€2). The condition (3.4) (see also (1.5)) imply that our domain is ”time like”
in the sense that

lu| < 7|

where v and 7 denote the t-component and z-component of the outer unit normal of 2

Remark: It is important to observe that to prove the main Theorem of this section, that

is, Theorem 3.1 as well the Lemmas 3.4 and 3.5 we use the following substantial hypothesis:
M(s) >mo >0, Vsel0,00]. (3.5)

This because we worked directly in our domain with moving boundary, where the geometry of
our domain influence directly in the problem, what generated several technical difficulties in

limiting some terms in Lemma 3.5 and consequent to prove Theorem 3.1.

To facilitate our calculations we introduce the following notation

t
(gOVu)(t) = / / g(t — 8)|Vu(t) — Vu(s)|*dsdz.
Q¢ JO
First of all we will prove the following three lemmas that will be used in the sequel.
Lemma 3.1 Let F(-,-) be the smooth function defined in € x [0,00[. Then
d d 5 .
— | F(x,t)de = —F(x,t)de + — [ F(x,t)(x-7)dly, (3.6)
dt Jo, 0, dt I,

where U is the x-component of the unit normal exterior v.
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Proof. We have by a change variable z = y(t)y, y € Q

d d
= F - — | F n
it Jo, (z,t)dx i o (v(t)y, t)y" (t)dy

— [ (G Gm @y

+;/n %xi<%—€<7<t>y7t>)w"<t)dy

n /Q V(O ) F (b, t)dy.

If we return at the variable x, we get

d OF 5 o

— F(z,t)dx = —(x,t)dx + — x-VF(xz,t)de +n— F(z, t)dzx.

i [, Fende= [ Snder T [ o vre e n [ Fe
Integrating by parts in the last equality we obtain the formula (3.6). |

Lemma 3.2 Let v € H2(Q) N HY(Q). Then for alli=1,...,n we have

ov ov
—r 3.7
95~ "o (3.7)
Proof. We consider r € C%(€2,R") such that
r=v on I. (3.8)

(It is possible to choose such a field r(+) if we consider that the boundary T is sufficiently smooth).

Let € D(I') and ¢ € H™(Q2) with m > max(%,2) such that p|r = 0. Since D(I") C Hm_%(l“),

such function ¢ exists and we have

02 / 0 / ov o
—(vrjp)dy = —(vr;o)dl = [ Ony—dl’ (i,7=1,...,n).
/Qayiayj( ip)dy Fmay]( i) g, (4,7 )

Note that €2 is regular, we also obtain

0? 0 ov
——(vry)dy = / i—(vr; dI‘:/Hz dl’
ov
= [ §—dI.
r Oy
It follows that 5 5
v v
0 dI‘z/Gni—dI‘ Vo € D(I'
/r Oyi r ( 3yi) @)
which implies (3.7). [
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From the Lemma 3.2 it is easy to see that

_ Ou
Vu-7 = % 0 Ty, (3.9)
and for u € HZ(Q) N H*(Q) (see Komornik [8] page 26) we have

0?2 0
|Vu| =0, a—_g = Au — 8—;div? =Au on T}. (3.10)
v

Lemma 3.3 For any function g € C*(Ry) and u € C1(0,00 : H3(S) N HA(Y)) we have that

t
1

/ / g(t — s)Vu(s) - Vupdsdr = —lg(t)/ |Vu(t)|*dz + = ¢'OVu

Q0 J0 2 o 2

3 [smvu ([ atoas) [ 1va).

Proof. Differentiating the term ¢gOVwu and applying the lemma 3.1 we obtain
4 ov / d /t (t — 8)|Vau(t) — Vu(s)[2dsda
ad u = = _ _
at? o, dt Jo ?
o t
+— / / g(t — 8)|Vu(t) — Vu(s)|*(z - 7)dsdly.
v Jre Jo
Using (3.10) we have

d t
—g0OVu = / / gt — 8)|Vu(t) — Vu(s)|*dsdz
dt o, Jo

-2 /Qt /Otg(t — 8)Vuy(t) - Vu(s)dsdr + (/Otg(t - s)d5> /Qt %|Vu(t)|2dx

from where it follows that

t d t
2/9/0 g(t — 8)Vu(t) - Vu(s)dsdr = —@{guvu—/o g(t — s)ds Qt|Vu(t)|2dx}

t , , 2
+/Q/0 gt = 8)[Vu(t) - Vu(s)["dsdz — g(t) / V() Pda.

The proof is now complete. |

Let us introduce the functional of energy
t
E(t) = HutH%Q(Qt) + HAUH%Q(QQ + (1 _/0 91(3)d3> HVUH%Q(QQ +910Vu

t
+Hthi2(Qt) + HAUH%Q(QQ + (1 - /0 92(3)d3> HVUH%%m) + 920Vu

M (IVulBa gy + 119012 q,) + z/ﬂ H(u— v)da.
t
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Lemma 3.4 Let us take (ug,vo) € (H3(Q0)NH*(20))2, (u1,v1) € (H3(0))? and let us suppose
that assumptions (1.15), (1.16), (1.17), (1.19), (1.20), (2.1) and (3.5) hold. Then any strong
solution of system (1.1)-(1.4) satisfies

d v .
SEWO + 20(junls 0 + 0 Ba) — [ T @)l + |AuP)ar,
r,
28 Y
—/ ~ (@ z)(|ve|* + |Av|*)dl, — 2/ —(T-x)H(u —v)dly
r. r.

:—/Q gl(t)|Vu|2dx—|—g'1DVu—/Q g2 (t)|Vo|2de + ghOVw.
t t

Proof. Multiplying the equation (1.1) by u, performing an integration by parts over €2; and

using the lemmas 3.1, 3.2 and 3.3 we obtain

1d
2dt

7, — 2 2
A — —(v - A dar
by Aula, /F 3 7 )l + | Auyar,

—lluel|Za0,) + MIVullZ2 g + [IV0]72q,) tHqu%ﬂ(Qt)

+al|u[ 720, + 5

+ya mov- ([ t n(o)is) [ vufa]

+/ h(u — v)udx = 0.
Q¢

1 1
3010 [ [VuPds - Sg0va
o 2

Similarly, using equation (1.2) instead (1.1) we get
d 2 2 2 1d 2
Il + MIVullzz @) + IVOllz2 )5 7 1Vl12(0,)

2!
I ey 2 2
byl — [ 3@ @)+ A

1 1
292 / \Vo|2de — —gQDVv

4200V — (/ )/ Vol dm]

—/ h(u — v)vdx = 0.
Q¢

ool o) +

1d
2dt

Summing these two last equalities, taking into account the lemma 3.1 and hypothesis on h we
|

obtain the conclusion of lemma.

Let us consider the follow functional

w(t) = 2/Q uudz + o |ull7 o) + 2/9 vwds + el g,
t

t
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Lemma 3.5 Let us take (ug,vo) € (H3(Q0)NH*(20))2, (u1,v1) € (H3(0))? and let us suppose
that assumptions (1.15), (1.16), (1.17), (1.19), (1.20), (2.1) and (3.5) hold. Then any strong
solution of system (1.1)-(1.4) satisfies

551“ ) < ”UtH%%Qt) + ”UtH%ﬂ(Qt) - ”AUH%%Q,&) - HAUH%%Q )

NI

t 2
IVl + V0l 20 ( /O 91(8)d8> =

=

t 2
Vel + IVl ( / 92(5)d8> (g20V)

Proof. Multiplying the equations (1.1) by u and (1.2) by v, integrating by parts over 2; and

summing up the results we obtain

5%1#( ) = HUtH%?(Qt) + Hth%Q(Qt) - HAUH%Q(QQ N ||AU||%2(Qt)
—M(|[VulF2(q, + IV2][720) VUl F20,)

t
+/ / g1(t — 5)Vu(s) - Vu(t)dsdx
o Jo
_M(HVUH%Q(Q + (| Vvl [72 Qt))HVUH%g(Q )

/Qt/ggt—va s) - Vou(t)dsdx
/Qt h(u —v)(u — v)dx.

Noting that

/Qt /Otgl(t—s)Vu(s)-Vu(t)dsdm _ /Q /Otgl(t_s)(w(s)_w(t))‘stdm

o, ([ow) e

‘/Qt /Otgz(t—s)Vv(s).Vv(t)dsdx = /Qt/ 9ot — 8)(Vo(s) — V(b)) - Vodsda

o, ([ o)

/ t 91(8)d8> (@0Va)}

and taking into account that

N
N

< Va2 (

/Q /0 g1(t — s)(Vu(s) — Vu(t)) - Vudz

~
(SIS

/0 gg(s)ds> (g20V0)2,

t
[ [ aate = )¥et6) = 9o Vda] < [0l (
t
—M(HVUH%%Q) + "VU"%2(Qt))("VU\’%2(Q) + HVUH%Q(QQ)
< —M(HVUH%%Q) + HVUH%2(Q,5))7

—/ h(u—v)(u—v)de < — | H(u—v)dx
Qs Q

EJQTDE, 2007 No. 9, p. 20



follows the conclusion of lemma. [ |

Let us introduce the functional

L(t) = NE(t) +9(t), (3.11)

with N > 0. It is not difficult to see that L(t) verifies
koE(t) < L(t) < k1 E(t), (3.12)
for kg and kq positive constants. Now we are in a position to show the main result of this paper.

Theorem 3.1 Let us take (ug,vo) € (HZ(20) N H*(Q0))?, (u1,v1) € (HE(Q))? and let us
suppose that assumptions (1.15), (1.16), (1.17), (1.19), (1.20), (2.1), (3.1), (3.2), (3.4) and
(3.5) hold. Then any strong solution of system (1.1)-(1.4) satisfies

E(t) < Ce S'E(0), Vt>0
where C' and { are positive constants.

Proof. Using the lemmas (3.4) and (3.5) we get

d
%ﬁ(t)

—aNafulZa0, — C1Ng1OVa+ w220,
—[lAulZ2q, — M(HVUH%Q(Q) +1IVoll72,)

t
+ </0 91(8)d5> IVulZ2 0,

t 3 .

HIVulZa,) ( /0 gl<s>ds) (10Vu)?

—2Nalve[|72(0,) — C1N G20V + [ve|72 (g,
t

Al + ( /0 gz<s>ds) .

t 2
+HIVollZaq, </0 92(5)d5> (920V)

— | H(u—v)dz.
Q¢

N
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Using Young inequality we obtain for € > 0

< e

7 —QNOzHUtH%Q(Qt) — C1Ng1OVu + HutH%Q(Qt)

~lAulZ2 0,y — M([Vullf2q, +1IV0]72(q,)

t
+ (/0 91(8)d3> Va7,

Hgl”Ll(o,oo)
2¢
—2Nallvi|72(,) — C1Ng20Vo + [|vt]|72 (0,

t
N8y + ([ (o) 10l

€
+§HVUH%2(Qt) + 910Vu

192121 (0,00)

€ 2
+5IVUllLe ) + =2

9280V

— | H(u—v)dz.
Q¢

Choosing N large enough and e small we obtain

%L(t) < “NE() (3.13)

where )\ is a positive constant independent of ¢. From (3.12) and (3.13) follows that
oy

L(t) < L(0)e =, V> 0.

From equivalence relation (3.12) our conclusion follows. The proof now is completed. |
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