
Electronic Journal of Qualitative Theory of Differential Equations
2013, No. 65, 1–7; http://www.math.u-szeged.hu/ejqtde/

Global bifurcation from intervals for Sturm–Liouville
problems which are not linearizable ∗
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Abstract

In this paper, we study unilateral global bifurcation which bifurcates from the
trivial solutions axis or from infinity for nonlinear Sturm–Liouville problems of the
form 

− (pu′)′ + qu = λau+ af (x, u, u′, λ) + g (x, u, u′, λ) for x ∈ (0, 1),
b0u(0) + c0u

′(0) = 0,
b1u(1) + c1u

′(1) = 0,

where a ∈ C([0, 1], [0,+∞)) and a(x) 6≡ 0 on any subinterval of [0, 1], f, g ∈
C([0, 1]× R3,R). Suppose that f and g satisfy

|f(x, ξ, η, λ)| ≤M0|ξ|+M1|η|, ∀x ∈ [0, 1] and λ ∈ R,

g(x, ξ, η, λ) = o(|ξ|+ |η|), uniformly in x ∈ [0, 1] and λ ∈ Λ,

as either |ξ| + |η| → 0 or |ξ| + |η| → +∞, for some constants M0, M1, and any
bounded interval Λ.

Keywords: interval bifurcation; Sturm–Liouville problem; unilateral global bi-
furcation.
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1 Introduction

Consider the following nonlinear Sturm–Liouville problem − (pu′)′ + qu = λau+ h (x, u, u′, λ) for x ∈ (0, 1),
b0u(0) + c0u

′(0) = 0,
b1u(1) + c1u

′(1) = 0,
(1.1)

where p is a positive, continuously differentiable function on [0, 1], q is a continuous func-
tion on [0, 1] and bi, ci are real numbers such that |bi| + |ci| 6= 0, i = 0, 1, and a satisfies
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the following condition

(A0) a ∈ C([0, 1], [0,+∞)) and a(x) 6≡ 0 on any subinterval of [0, 1].

Moreover, the nonlinear term h has the form h = af + g, where f and g are continuous
functions on [0, 1]× R3, satisfying some of the following conditions

(A1) For any x ∈ [0, 1] and λ ∈ R, there are constants M0
0 , M0

1 such that

|f(x, ξ, η, λ)| ≤M0
0 |ξ|+M0

1 |η| as |ξ|+ |η| → 0;

(A2) For any x ∈ [0, 1] and λ ∈ R, there are constants M∞
0 , M∞

1 such that

|f(x, ξ, η, λ)| ≤M∞
0 |ξ|+M∞

1 |η| as |ξ|+ |η| → +∞;

(A3) For any bounded interval Λ ⊆ R,

g(x, ξ, η, λ) = o(|ξ|+ |η|) near (ξ, η) = (0, 0), uniformly for (x, λ) ∈ [0, 1]× Λ;

(A4) For any bounded interval Λ ⊆ R,

g(x, ξ, η, λ) = o(|ξ|+ |η|) near (ξ, η) = (∞,∞), uniformly for (x, λ) ∈ [0, 1]× Λ.

Note that problem (1.1) does not have in general a linearization about u = 0 or
u = ∞. Thus the standard bifurcation theory of [12–15, 19] cannot be applied directly.
If a is strictly positive on [0, 1], h has the form of h = f + g and (A1), (A3) hold with
M0

1 = 0, Berestycki [2] established an important global bifurcation theorem from intervals
for (1.1). The authors of [17] obtained similar results as [2] if p(x) ≡ 1 ≡ a(x). Although
the conditions may weaker in [17], their results only hold for k ≥ k0 with some k0 ∈ N.
Similar problems have been considered in [3, 10, 11]. These results have been extended
by Rynne [16] (with the help of some estimates come from [1]) under the assumption that

|h(x, ξ, η, λ)| ≤M0|ξ|+M1|η|, (x, ξ, η, λ) ∈ [0, 1]× R3,

as either |(ξ, η)| → 0 or |(ξ, η)| → +∞, for some constants M0 and M1. However, the
bifurcation intervals appear to be larger and the assumption a ∈ C1[0, 1] is too strong.
Moreover, it is not clear whether these results of [16] with M1 = 0 degenerates to the
corresponding ones of [2]. Recently, Ma and Dai [9] improved Berestycki’s result to show
a unilateral global bifurcation result for (1.1) with similar conditions as in [2]. We refer
to [5, 6, 7, 8, 13, 18] and their references for the theory of unilateral global bifurcation.

The aim of this paper is to improve or extend the corresponding results of [9] and [16]
under weaker assumptions. In order to introduce our main results, next, we give some
notations.

Let Lu := − (pu′)′ + qu. It is well known (see [4] or [20, p. 269]) that the linear
Sturm–Liouville problem 

Lu = λau, x ∈ (0, 1),
b0u(0) + c0u

′(0) = 0,
b1u(1) + c1u

′(1) = 0
(1.2)

possesses infinitely many eigenvalues λ1 < λ2 < · · · < λk → +∞, all of which are simple.
The eigenfunction ϕk corresponding to λk has exactly k − 1 simple zeros in (0, 1). Let

E :=
{
u ∈ C1[0, 1] : b0u(0) + c0u

′(0) = 0, b1u(1) + c1u
′(1) = 0

}
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with the norm ‖u‖ = maxx∈[0,1] |u(x)|+ maxx∈[0,1] |u′(x)|. Let S+
k denote the set of func-

tions in E which have exactly k − 1 simple zeros in (0,1) and are positive near x = 0,
and set S−k = −S+

k , and Sk = S+
k ∪ S

−
k . It is clear that S+

k and S−k are disjoint and open
in E. We also let Φ±k = R × S±k and Φk = R × Sk under the product topology. Finally,
we use S to denote the closure in R × E of the set of nontrivial solutions of (1.1), and
S ±
k to denote the subset of S with u ∈ S±k and Sk = S +

k ∪S −
k .

The first main result of this paper is the following theorem.

Theorem 1.1. Let Ik = [λk −M0
0 − c1kM0

1 , λk +M0
0 + c2kM

0
1 ] for every k ∈ N∗ and

some constants c1k and c
2
k which only depend on k. And assume that (A0), (A1) and (A3)

hold. Then the component D+
k of S +

k ∪ (Ik × {0}), containing Ik×{0} is unbounded and
lies in Φ+

k ∪ (Ik × {0}) and the component D−k of S −
k ∪ (Ik × {0}), containing Ik × {0}

is unbounded and lies in Φ−k ∪ (Ik × {0}).

Use T to denote the closure in R×E of the set of nontrivial solutions of (1.1) under
conditions (A0), (A2) and (A4). Our second main result is the following theorem.

Theorem 1.2. Let Ik = [λk −M∞
0 − d1kM∞

1 , λk +M∞
0 + d2kM

∞
1 ] for every k ∈ N∗ and

some constants d1k and d2k which only depend on k. For every ν ∈ {+,−}, there exists a
component Dν

k of T ∪ (Ik × {∞}), containing Ik×{∞}. Moreover, if Λ ⊂ R is an inter-
val such that Λ ∩ (∪∞k=1Ik) = Ik and M is a neighborhood of Ik × {∞} whose projection
on R lies in Λ and whose projection on E is bounded away from 0, then either

1o. Dν
k −M is bounded in R× E in which case Dν

k −M meets R = {(λ, 0)
∣∣λ ∈ R}

or

2o. Dν
k −M is unbounded.

If 2o occurs and Dν
k −M has a bounded projection on R, then Dν

k −M meets Ij×{∞}
for some j 6= k. In addition, there exists a neighborhood N ⊂M of Ik × {∞} such that
(Dν

k ∩N ) ⊆ (Φν
k ∪ (Ik × {∞})).

The rest of this paper is arranged as follows. In Section 2, we give the proof of
Theorem 1.1. In Section 3, we present the proof of Theorem 1.2 and give some remarks.

2 Proof of Theorem 1.1

Firstly, by an argument similar to that of [9, Lemma 2.2], we can show the following
lemma.

Lemma 2.1. If (λ, u) is a solution of (1.1) under assumptions (A0), (A1), (A3) and u
has a double zero, then u ≡ 0.

Thus if (λ, u) is a nontrivial solution of (1.1) under assumptions (A0), (A1) and (A3),
then u ∈ ∪∞k=1Sk. We still use the approximation technique introduced in [2] to prove
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Theorem 1.1. Hence consider the following approximate problem − (pu′)′ + qu = λau+ af (x, u|u|ε, u′|u|ε, λ) + g (x, u, u′, λ) for x ∈ (0, 1),
b0u(0) + c0u

′(0) = 0,
b1u(1) + c1u

′(1) = 0.
(2.1)

The next lemma will play a key role in this paper which provides uniform a priori bounds
for the solutions of problem (2.1) near the trivial solutions and will also ensure that
(S ν

k ∩ (R× {0})) ⊂ (Ik × {0}).

Lemma 2.2. Let εn, 0 ≤ εn ≤ 1, be a sequence converging to 0. If there exists a
sequence (λn, un) ∈ R × Sνk such that (λn, un) is a nontrivial solution of problem (2.1)
corresponding to ε = εn, and (λn, un) converges to (λ, 0) in R× E, then λ ∈ Ik.

Proof. Without loss of generality, we may assume that ‖un‖ ≤ 1. Let wn = un/ ‖un‖,
then wn satisfies the problem − (pw′n)′ + qwn = λawn + afn(x) + gn(x), x ∈ (0, 1),

b0wn(0) + c0w
′
n(0) = 0,

b1wn(1) + c1w
′
n(1) = 0,

(2.2)

where

fn(x) =
f (x, un(x)|un(x)|εn , u′n(x)|un(x)|εn , λn)

‖un‖
, gn(x) =

g (x, un(x), u′n(x), λn)

‖un‖
.

It follows from (A3) that gn(x) → 0 uniformly in x ∈ [0, 1]. Furthermore, (A1) implies
that

|fn(x)| ≤ |un(x)|εn (M0
0 |un(x)|+M0

1 |u′n(x)|)
‖un‖

≤ ‖un‖εn
(
M0

0 |wn(x)|+M0
1 |w′n(x)|

)
≤ M0

0 |wn(x)|+M0
1 |w′n(x)|

≤ M0
0 +M0

1

for all x ∈ [0, 1]. In view of (2.2), we know that wn is bounded in C2. By the Arzelà–
Ascoli theorem, we may assume that wn → v in C1 with ‖w‖ = 1. Clearly, we have
w ∈ Sνk .

We claim that w ∈ Sνk . On the contrary, suppose that w ∈ ∂Sνk , then w has at least
one double zero x∗ ∈ [0, 1]. It follows that wn (x∗) → 0 and w′n (x∗) → 0 as n → +∞.
Then by the argument of [2, p. 379], we can deduce wn → 0 in C1, which is a contradiction
with ‖wn‖ = 1.

Now, we deduce the boundedness of λ. Let ϕνk ∈ Sνk be an eigenfunction of problem
(1.2) corresponding to λk and [α, β] ⊆ [0, 1]. Integrating by parts and taking the limit as
n→ +∞, we can obtain that[

p
(
w (ϕνk)

′ − ϕνkw′
)]β
α

=

∫ β

α

(λ− λk) awϕνk dx+ lim
n→+∞

∫ β

α

afn(x)ϕνk dx.

It was shown in [2] that there are two intervals (ξ1, η1) and (ξ2, η2) in (0, 1) where wn and
ψνk do not vanish and have the same sign and such that[

p
(
w (ϕνk)

′ − ϕνkw′
)]η1
ξ1
≥ 0,

[
p
(
w (ϕνk)

′ − ϕνkw′
)]η2
ξ2
≤ 0.
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So we have that ∫ η1

ξ1

(λ− λk) awϕνk dx+ lim
n→+∞

∫ η1

ξ1

afn(x)ϕνk dx ≥ 0

and ∫ η2

ξ2

(λ− λk) awϕνk dx+ lim
n→+∞

∫ η2

ξ2

afn(x)ϕνk dx ≤ 0.

Furthermore, one has that∫ η1

ξ1

(
λ− λk +M0

0

)
awϕνk dx+

∫ η1

ξ1

aM0
1 |w′ϕνk| dx ≥ 0 (2.3)

and ∫ η2

ξ2

(
λ− λk −M0

0

)
awϕνk dx−

∫ η2

ξ2

aM0
1 |w′ϕνk| dx ≤ 0. (2.4)

We choose c̃k ≥ 1 and ck ≥ 1 such that∫ η1

ξ1

a |ϕνk| dx ≤ c̃k

∫ η1

ξ1

awϕνk dx,

∫ η2

ξ2

a |ϕνk| dx ≤ ck

∫ η2

ξ2

awϕνk dx.

It follows that∫ η1

ξ1

a |w′ϕνk| dx ≤
∫ η1

ξ1

a(1− |w|) |ϕνk| dx ≤ c1k

∫ η1

ξ1

awϕνk dx (2.5)

and ∫ η2

ξ2

a |w′ϕνk| dx ≤
∫ η2

ξ2

a(1− |w|) |ϕνk| dx ≤ c2k

∫ η2

ξ2

awϕνk dx (2.6)

where c1k = c̃k − 1 and c2k = ck − 1. From (2.3)–(2.6), we can see that

λ ≥ λk −M0
0 − c1kM0

1 and λ ≤ λk +M0
0 + c2kM

0
1 .

Therefore, we have that λ ∈ Ik.

Proof of Theorem 1.1. By Lemma 2.1, 2.2 and an argument similar to that of [10,
Theorem 2.1], we can obtain the desired conclusion.

3 Proof of Theorem 1.2

We add the points {(λ,∞)
∣∣λ ∈ R} to the space R× E.

Proof of Theorem 1.2. If (λ, u) ∈ T with ‖u‖ 6= 0, dividing (1.1) by ‖u‖2 and
setting w = u/‖u‖2 yield

− (pw′)′ + qw = λaw + h(t,u,u′,λ)
‖u‖2 for x ∈ (0, 1),

b0w(0) + c0w
′(0) = 0,

b1w(1) + c1w
′(1) = 0.

(3.1)
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Define

h̃ (x,w,w′, λ) =

{
‖w‖2h (x,w/‖w‖2, w′/‖w‖2, λ) , if w 6= 0,
0 , if w = 0.

Then (3.1) can be rewritten as − (pw′)′ + qw = λaw + af̃ (x,w,w′, λ) + g̃ (x,w,w′, λ) for x ∈ (0, 1),
b0w(0) + c0w

′(0) = 0,
b1w(1) + c1w

′(1) = 0.

(3.2)

It is obvious that (λ, 0) is always the solution of (3.2). By an easy calculation, we can show

that assumptions (A2) and (A4) imply that f̃ and g̃ satisfy (A1) and (A3). Now applying
Theorem 1.1 to problem (3.2), we have the component Ck,0 of Sk∪(Ik × {0}), containing
Ik×{0} is unbounded and lies in Φk∪ (Ik × {0}). Under the inversion w → w/‖w‖2 = u,
Ck,0 → Dk satisfying (1.1). By an argument similar to that of [9, Theorem 2.3], we can
prove the existence of N such that (Dν

k ∩N ) ⊂ (Φν
k ∪ (Ik × {∞})) for ν = + and −.

Remark 3.1. Note that if M0
1 = 0, Theorem 1.1 degenerates to Theorem 2.1 of [9],

and if M∞
1 = 0, Theorem 1.2 degenerates to Theorem 2.2 and 2.3 of [9]. In fact, even

in these special cases, the bifurcation intervals in this paper are smaller than the corre-
sponding ones of [9].

Remark 3.2. Note that our assumption on a is weaker than any mentioned paper
(in introduction) dealing with this kind of problems.
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