Existence of solutions of nonlinear differential equations with ψ-exponential or ψ-ordinary dichotomous linear part in a Banach space

Atanaska Georgieva, Hristo Kiskinov, Stepan Kostadinov ${ }^{\otimes}$ and Andrey Zahariev
Faculty of Mathematics and Informatics, Plovdiv University, 236 Bulgaria Blvd., Plovdiv, BG-4003, Bulgaria

Received 12 July 2013, appeared 13 March 2014
Communicated by László Hatvani

Abstract

In this article we consider nonlinear differential equations with ψ-exponential and ψ-ordinary dichotomous linear part in a Banach space. By the help of the fixed point principle of Banach sufficient conditions are found for the existence of ψ-bounded solutions of these equations on \mathbb{R} and \mathbb{R}_{+}.

Keywords: ψ-dichotomy for ordinary differential equations, ψ-boundedness.
2010 Mathematics Subject Classification: 34G20, 34D09, 34C11.

1 Introduction

The problem of ψ-boundedness and ψ-stability of the solutions of differential equations in finite dimensional Euclidean spaces has been studied by many auhtors, as e.g. Akinyele [1], Constantin [6]. In these papers, the function ψ is a scalar continuous function (and increasing, differentiable and bounded in [1], nondecreasing and such that $\psi(t) \geq 1$ on \mathbb{R}_{+}in [6]). In Diamandescu [8-15] and Boi [2-4] ψ is a nonnegative continuous diagonal matrix function.

Inspired by the famous monographs of Coppel [5], Daleckii and Krein [7] and Massera and Schaeffer [17], where the important notion of exponential and ordinary dichotomy is considered in detail, Diamandescu [8-12] and Boi [2-4] introduced and studied the ψ-dichotomy for linear differential equations in finite dimensional Euclidean space.

In our paper [16] we introduced the concept of ψ-dichotomy for arbitrary Banach spaces, where ψ is an arbitrary bounded invertible linear operator.

In this paper nonlinear perturbed differential equations with ψ-dichotomous linear part are considered in an arbitrary Banach space. We will show that some properties of these equations will be influenced by the corresponding ψ-dichotomous homogeneous linear equation. Sufficient conditions for the existence of ψ-bounded solutions of this equations on \mathbb{R} and \mathbb{R}_{+}in case of ψ-exponential or ψ-ordinary dichotomy are found.

[^0]
2 Preliminaries

Let X be an arbitrary Banach space with norm $|\cdot|$ and identity I. Let $L B(X)$ be the space of all linear bounded operators acting in X with the norm $\|\cdot\|$. By J we shall denote \mathbb{R} or $\mathbb{R}_{+}=[0, \infty)$.

We consider the nonlinear differential equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=A(t) x+F(t, x) \tag{2.1}
\end{equation*}
$$

the corresponding linear homogenous equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=A(t) x \tag{2.2}
\end{equation*}
$$

and the appropriate inhomogeneous equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=A(t) x+f(t) \tag{2.3}
\end{equation*}
$$

where $A(\cdot): J \rightarrow L B(X), f(\cdot): J \rightarrow X$ are strongly measurable and Bochner integrable on the finite subintervals of J and $F(\cdot, \cdot): J \times X \rightarrow X$ is a continuous function with respect to t.

By a solution of equation (2.1) (or (2.2) or (2.3)) we will understand a continuous function $x(t)$ that is differentiable (in the sence that it is representable in the form $x(t)=\int_{a}^{t} y(\tau) d \tau$ of a Bochner integral of a strongly measurable function y) and satisfies (2.1) (or (2.2) or (2.3)) almost everywhere.

By $V(t)$ we will denote the Cauchy operator of (2.2).
Let $R L(X)$ be the subspace of all invertible operators in $L B(X)$ and $\psi(\cdot): J \rightarrow R L(X)$ be continuous for any $t \in J$ operator-function.

Definition 2.1 ([16]). A function $u(\cdot): J \rightarrow X$ is said to be ψ-bounded on J if $\psi(t) u(t)$ is bounded on J.

Let $C_{\psi}(X)$ denote the Banach space of all ψ-bounded and continuous functions with values in X with the norm

$$
\left\|\|f\|_{C_{\psi}}=\sup _{t \in J}|\psi(t) f(t)| .\right.
$$

Definition 2.2 ([16]). The equation (2.2) is said to have a ψ-exponential dichotomy on J if there exist a pair of mutually complementary projections P_{1} and $P_{2}=I-P_{1}$ and positive constants $N_{1}, N_{2}, v_{1}, v_{2}$ such that

$$
\begin{array}{ll}
\left\|\psi(t) V(t) P_{1} V^{-1}(s) \psi^{-1}(s)\right\| \leq N_{1} e^{-v_{1}(t-s)} & (s \leq t ; s, t \in J) \\
\left\|\psi(t) V(t) P_{2} V^{-1}(s) \psi^{-1}(s)\right\| \leq N_{2} e^{-v_{2}(s-t)} & (t \leq s ; s, t \in J) \tag{2.5}
\end{array}
$$

The equation (2.2) is said to have a ψ-ordinary dichotomy on J if (2.4) and (2.5) hold with $v_{1}=v_{2}=0$.

Remark 2.3. For $\psi(t)=I$ for all $t \in J$ we obtain the notion of exponential and ordinary dichotomy in [5,7,17].

Let us introduce the principal Green function of (2.3) with the projections P_{1} and P_{2} from the definition for ψ-exponential dichotomy

$$
G(t, s)= \begin{cases}V(t) P_{1} V^{-1}(s) & (t>s ; t, s \in J) \tag{2.6}\\ -V(t) P_{2} V^{-1}(s) & (t<s ; t, s \in J)\end{cases}
$$

Clearly G is continuous except at $t=s$ where it has a jump discontinuity.
Definition 2.4. Let $r>0$ be an arbitrary number. We say that the conditions (H) are fulfilled if there exist positive functions $m(t), k(t)$ such that

H1. $|\psi(t) F(t, x)| \leq m(t) \quad(|\psi(t) x| \leq r, t \in J)$
H2. $\left|\psi(t)\left(F\left(t, x_{1}\right)-F\left(t, x_{2}\right)\right)\right| \leq k(t)\left|\psi(t)\left(x_{1}-x_{2}\right)\right| \quad\left(\left|\psi(t) x_{1}\right|,\left|\psi(t) x_{2}\right| \leq r, t \in J\right)$
Definition 2.5. The nonnegative function $m(t)$ is said to be integrally bounded on J if the following inequality holds:

$$
B(m(t))=\sup _{t \in J} \int_{t}^{t+1} m(s) \mathrm{d} s<\infty .
$$

Definition 2.6. We say that the function $F(t, x)$ belongs to the class $E D_{\psi}\left(a_{1}, a_{2}, r\right)$ if the conditions (H) are fulfilled, the functions $m(t), k(t)$ are integrally bounded on J and $B(m(t)) \leq$ $a_{1}, B(k(t)) \leq a_{2}$.

For each integrable on J function $m(t)$ we introduce the notation

$$
L(m(t))=\int_{J} m(s) \mathrm{d} s
$$

Definition 2.7. We say that the function $F(t, x)$ belongs to the class $D_{\psi}\left(a_{1}, a_{2}, r\right)$ if the conditions (H) are fulfilled, the functions $m(t), k(t)$ are integrable on J and $L(m(t)) \leq a_{1}, L(k(t)) \leq a_{2}$.

3 Main results

Theorem 3.1. Let the following conditions be fulfilled:

1. The linear part of (2.1) has ψ-exponential dichotomy on \mathbb{R} with projections P_{1} and P_{2}.
2. The function $F(t, x)$ belongs to the class $E D_{\psi}\left(a_{1}, a_{2}, r\right)$.

Then for an arbitrary $r>0$ for sufficient small values of a_{1}, a_{2} the equation (2.1) has a unique solution $x(t)$, which is defined for $t \in \mathbb{R}$ and for which $|\psi(t) x(t)| \leq r(t \in \mathbb{R})$.

Proof. Let $J=\mathbb{R}$. We consider in the space $C_{\psi}(X)$ the operator $Q: C_{\psi}(X) \rightarrow C_{\psi}(X)$ defined by the formula

$$
\begin{equation*}
Q x(t)=\int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau \tag{3.1}
\end{equation*}
$$

where G is defined by (2.6).
Let $x(t)$ be a solution of equation (2.1) that remains for $t \in J$ in the ball

$$
S_{\psi, r}=\left\{x:\|x\|_{C_{\psi}} \leq r\right\} .
$$

Then the function $F(t, x(t))$ is ψ-bounded on J and it follows (see [16, Theorem 3.6]) that such solution satisfies the integral equation

$$
\begin{equation*}
x(t)=Q x(t) . \tag{3.2}
\end{equation*}
$$

The converse is also true: a solution of the integral equation (3.2) which remains for $t \in J$ in the ball $S_{\psi, r}$ satisfies the differential equation (2.1) for $t \in J$.

Now we shall show that the ball $S_{\psi, r}$ is invariant with respect to Q and the operator Q is contracting.

First we shall prove that the operator Q maps the ball $S_{\psi, r}$ into itself. Indeed we have

$$
|\psi(t) Q x(t)| \leq\left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right| .
$$

We have

$$
\begin{aligned}
|\psi(t) Q x(t)| \leq & \left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right| \\
\leq & \int_{J}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\||\psi(\tau) F(\tau, x(\tau))| \mathrm{d} \tau \\
= & \int_{t \leq \tau}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\||\psi(\tau) F(\tau, x(\tau))| \mathrm{d} \tau \\
& +\int_{t \geq \tau}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\||\psi(\tau) F(\tau, x(\tau))| \mathrm{d} \tau \\
\leq & N_{2} \int_{t \leq \tau} e^{-v_{2}(\tau-t)} m(\tau) \mathrm{d} \tau+N_{1} \int_{t \geq \tau} e^{-v_{1}(t-\tau)} m(\tau) \mathrm{d} \tau \\
\leq & N_{2} \int_{s \geq 0} e^{-v_{2} s} m(t+s) \mathrm{d} s+N_{1} \int_{s \leq 0} e^{v_{1} s} m(t+s) \mathrm{d} s \\
\leq & N_{2} a_{1} \sum_{k=0}^{\infty} e^{-v_{2} k}+N_{1} a_{1} \sum_{k=0}^{\infty} e^{-v_{1} k}=\frac{N_{2} a_{1}}{1-e^{-v_{2}}}+\frac{N_{1} a_{1}}{1-e^{-v_{1}} .}
\end{aligned}
$$

Hence by $a_{1} \leq r\left(\frac{N_{2}}{1-e^{-v_{2}}}+\frac{N_{1}}{1-e^{-v_{1}}}\right)^{-1}$ we obtain

$$
\left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right| \leq r
$$

Thus the operator Q maps the ball $S_{\psi, r}$ into itself.
Now we shall prove that the operator Q is a contraction in the ball $S_{\psi, r}$. Let $x_{1}, x_{2} \in S_{\psi, r}$. We obtain

$$
\begin{aligned}
\mid \psi(t) Q x_{1}(t) & -\psi(t) Q x_{2}(t)|\leq| \psi(t) \int_{J} G(t, \tau)\left(F\left(\tau, x_{1}(\tau)\right)-F\left(\tau, x_{2}(\tau)\right) \mathrm{d} \tau \mid\right. \\
& \leq \int_{J}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\| \mid \psi(\tau)\left(F\left(\tau, x_{1}(\tau)\right)-F\left(\tau, x_{2}(\tau)\right) \mid \mathrm{d} \tau\right. \\
& \left.\leq \int_{J}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\| k(\tau) \mid \psi(\tau)\left(x_{1}(\tau)\right)-x_{2}(\tau)\right) \mid \mathrm{d} \tau \\
& \left.\leq \int_{J}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\| k(\tau) \mathrm{d} \tau \sup _{\tau \in J} \mid \psi(\tau)\left(x_{1}(\tau)\right)-x_{2}(\tau)\right) \mid \\
& \left.\left.\leq\left(\frac{N_{2} a_{2}}{1-e^{-v_{2}}}+\frac{N_{1} a_{2}}{1-e^{-v_{1}}}\right) \sup _{\tau \in J} \right\rvert\, \psi(\tau)\left(x_{1}(\tau)\right)-x_{2}(\tau)\right) \mid .
\end{aligned}
$$

Hence

$$
\left\|Q x_{1}-Q x_{2}\right\|_{C_{\psi}} \leq\left(\frac{N_{2} a_{2}}{1-e^{-v_{2}}}+\frac{N_{1} a_{2}}{1-e^{-v_{1}}}\right)\left\|x_{1}-x_{2}\right\|_{C_{\psi}}
$$

Thus by $a_{2}<\left(\frac{N_{2}}{1-e^{-v_{2}}}+\frac{N_{1}}{1-e^{-v_{1}}}\right)^{-1}$ the operator Q is a contraction in the ball $S_{\psi, r}$.
From Banach's fixed point principle the existence of a unique fixed point of the operator Q follows.

Corollary 3.2. If the conditions of Theorem 3.1 are fulfilled and if, moreover, $F(t, 0)=0(t \in \mathbb{R})$ then $x=0$ is a unique solution of (2.1) in $C_{\psi}(X)$.

Proof. Let $F(t, 0)=0(t \in \mathbb{R})$. Then from H 2 it follows

$$
|\psi(t) F(t, x(t))| \leq k(t)|\psi(t) x(t)| \quad(t \in \mathbb{R})
$$

Thus every solution $x(t)$ except $x(t) \equiv 0(t \in \mathbb{R})$ will leave any ball $S_{\psi, r_{1}}\left(r_{1}<r\right)$ by $t \rightarrow \infty$ or $t \rightarrow-\infty$.

Theorem 3.3. Let the following conditions be fulfilled:

1. The linear part of (2.1) has ψ-ordinary dichotomy on \mathbb{R} with projections P_{1} and P_{2}.
2. The function $F(t, x)$ belongs to the class $D_{\psi}\left(a_{1}, a_{2}, r\right)$.

Then for each $r>0$ for sufficient small values of a_{1}, a_{2} the equation (2.1) has a unique solution $x(t)$, which is defined for $t \in \mathbb{R}$ and for which $|\psi(t) x(t)| \leq r(t \in \mathbb{R})$.

Proof. Let $J=\mathbb{R}$. In the proof of Theorem 3.1 it was mentioned that each solution $x(t)$ of equation (2.1) that remains for $t \in J$ in the ball $S_{\psi, r}$ satisfies the integral equation

$$
x(t)=\int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau
$$

and vice versa.
We consider again in the space $C_{\psi}(X)$ the operator $Q: C_{\psi}(X) \rightarrow C_{\psi}(X)$ defined in (3.1).
For $|\psi(t) Q x(t)|$ we obtain the following estimate:

$$
|\psi(t) Q x(t)| \leq\left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right|
$$

With $a_{1} \leq r \max \left\{N_{1}, N_{2}\right\}$ we have

$$
\begin{aligned}
|\psi(t) Q x(t)| \leq & \left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right| \\
\leq & \int_{J}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\||\psi(\tau) F(\tau, x(\tau))| \mathrm{d} \tau \\
= & \int_{t \leq \tau}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\||\psi(\tau) F(\tau, x(\tau))| \mathrm{d} \tau \\
& +\int_{t \geq \tau}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\||\psi(\tau) F(\tau, x(\tau))| \mathrm{d} \tau \\
\leq & N_{2} \int_{t \leq \tau} m(\tau) \mathrm{d} \tau+N_{1} \int_{t \geq \tau} m(\tau) \mathrm{d} \tau \\
\leq & \max \left\{N_{1}, N_{2}\right\} \int_{J} m(\tau) \mathrm{d} \tau \leq \max \left\{N_{1}, N_{2}\right\} a_{1} \leq r
\end{aligned}
$$

Thus the operator Q maps the ball $S_{\psi, r}$ into itself.

Now we shall prove that the operator Q is a contraction in the ball $S_{\psi, r}$. Let $x_{1}, x_{2} \in S_{\psi, r}$. We obtain

$$
\begin{aligned}
\mid \psi(t) Q x_{1}(t) & -\psi(t) Q x_{2}(t)|\leq| \psi(t) \int_{J} G(t, \tau)\left(F\left(\tau, x_{1}(\tau)\right)-F\left(\tau, x_{2}(\tau)\right) \mathrm{d} \tau \mid\right. \\
& \leq \int_{J}\left|\psi \psi(t) G(t, \tau) \psi^{-1}(\tau) \|\right| \psi(\tau)\left(F\left(\tau, x_{1}(\tau)\right)-F\left(\tau, x_{2}(\tau)\right) \mid \mathrm{d} \tau\right. \\
& \left.\leq \int_{J}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\| k(\tau) \mid \psi(\tau)\left(x_{1}(\tau)\right)-x_{2}(\tau)\right) \mid \mathrm{d} \tau \\
& \left.\leq \int_{J}\left\|\psi(t) G(t, \tau) \psi^{-1}(\tau)\right\| k(\tau) \mathrm{d} \tau \sup _{\tau \in J} \mid \psi(\tau)\left(x_{1}(\tau)\right)-x_{2}(\tau)\right) \mid \\
& \left.\leq\left(\max \left\{N_{1}, N_{2}\right\} a_{2}\right) \sup _{\tau \in J} \mid \psi(\tau)\left(x_{1}(\tau)\right)-x_{2}(\tau)\right) \mid .
\end{aligned}
$$

Hence

$$
\left\|Q x_{1}-Q x_{2}\right\|_{C_{\psi}} \leq\left(a_{2} \max \left\{N_{1}, N_{2}\right\}\right)\left\|x_{1}-x_{2}\right\|_{C_{\psi}} .
$$

Thus by $a_{2}<\left(\max \left\{N_{1}, N_{2}\right\}\right)^{-1}$ the operator Q is a contraction in the ball $S_{\psi, r}$.
From Banach's fixed point principle the existence of a unique fixed point of the operator Q follows.

Theorem 3.4. Let the following conditions be fulfilled:

1. The linear part of (2.1) has ψ-exponential dichotomy on \mathbb{R}_{+}with projections P_{1} and P_{2}.
2. The function $F(t, x)$ belongs to the class $E D_{\psi}\left(a_{1}, a_{2}, r\right)$.

Then for any $r>0$ by sufficient small a_{1}, a_{2} there exists $\rho<r$ such that the equation (2.1) has for each $\xi \in X_{1}=P_{1} X$ with $|\psi(0) \xi| \leq \rho$ a unique solution $x(t)$ on \mathbb{R}_{+}for which $P_{1} x(0)=\xi$ and $|\psi(t) x(t)| \leq r\left(t \in \mathbb{R}_{+}\right)$.

Proof. Let $J=\mathbb{R}_{+}$and $x(t)$ be a solution of equation (2.1) that remains for $t \in J$ in the ball $S_{\psi, r}=\left\{x:\| \| x \|_{C_{\psi}} \leq r\right\}$. From the results obtained in [16, Theorem 3.6 and Remark 3.8] it follows that such $x(t)$ satisfies the integral equation

$$
\begin{equation*}
x(t)=V(t) \xi+\int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau \tag{3.3}
\end{equation*}
$$

where $\xi=P_{1} x(0)$. The converse is also true: a solution of the integral equation (3.3) satisfies the differential equation (2.1) for $t \in J$.

Let $\xi \in X_{1}$ and $|\psi(0) \xi| \leq \rho<r$. We consider in the space $C_{\psi}(X)$ the operator $Q: C_{\psi}(X) \rightarrow$ $C_{\psi}(X)$ defined by the formula

$$
\begin{equation*}
Q x(t)=V(t) \xi+\int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau \tag{3.4}
\end{equation*}
$$

First we shall prove, that the operator Q maps the ball $S_{\psi, r}$ into itself. Indeed we have

$$
|\psi(t) Q x(t)| \leq|\psi(t) V(t) \xi|+\left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right| .
$$

For the first addend with $\rho \leq \frac{r}{2 N_{1}}$ we obtain

$$
|\psi(t) V(t) \xi| \leq N_{1} e^{-v_{1} t}|\psi(0) \xi| \leq N_{1} e^{-v_{1} t} \rho \leq \frac{r}{2} .
$$

Using the same technique and notations as in the proof of Theorem 3.1 we obtain for the second addend the estimate

$$
\left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right| \leq \frac{N_{2} a_{1}}{1-e^{-v_{2}}}+\frac{N_{1} a_{1}}{1-e^{-v_{1}}}
$$

Hence by $a_{1} \leq \frac{r}{2}\left(\frac{N_{2}}{1-e^{-v_{2}}}+\frac{N_{1}}{1-e^{-v_{1}}}\right)^{-1}$ we obtain

$$
\left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right| \leq \frac{r}{2}
$$

Thus the operator Q maps the ball $S_{\psi, r}$ into itself.
Now we shall prove that the operator Q is a contraction in the ball $S_{\psi, r}$. Let $x_{1}, x_{2} \in S_{\psi, r}$. We obtain as in the proof of Theorem 3.1 the estimate

$$
\left\|\left\|Q x_{1}-Q x_{2}\right\|_{C_{\psi}} \leq\left(\frac{N_{2} a_{2}}{1-e^{-v_{2}}}+\frac{N_{1} a_{2}}{1-e^{-v_{1}}}\right)\right\| x_{1}-x_{2} \|_{C_{\psi}}
$$

By $a_{2}<\left(\frac{N_{2}}{1-e^{-v_{2}}}+\frac{N_{1}}{1-e^{-v_{1}}}\right)^{-1}$ the operator Q is a contraction in the ball $S_{\psi, r}$.
From Banach's fixed point principle the existence of a unique fixed point of the operator Q follows.

Theorem 3.5. Let the following conditions be fulfilled:

1. The linear part of (2.1) has ψ-ordinary dichotomy on \mathbb{R}_{+}with projections P_{1} and P_{2}.
2. The function $F(t, x)$ belongs to the class $D_{\psi}\left(a_{1}, a_{2}, r\right)$.

Then for any $r>0$ by sufficiently small a_{1}, a_{2} there exists $\rho<r$ such that the equation (2.1) has for each $\xi \in X_{1}=P_{1} X$ with $|\psi(0) \xi| \leq \rho$ a unique solution $x(t)$ on \mathbb{R}_{+}for which $P_{1} x(0)=\xi$ and $|\psi(t) x(t)| \leq r\left(t \in \mathbb{R}_{+}\right)$.

Proof. Let $J=\mathbb{R}_{+}, \xi \in X_{1}$ and $|\psi(0) \xi| \leq \rho<r$. We consider again in the space $C_{\psi}(X)$ the operator $Q: C_{\psi}(X) \rightarrow C_{\psi}(X)$ defined by the formula (3.4).

First we shall prove, that the operator Q maps the ball $S_{\psi, r}$ into itself. We have

$$
|\psi(t) Q x(t)| \leq|\psi(t) V(t) \xi|+\left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right|
$$

For the first addend with $\rho \leq \frac{r}{2 N_{1}}$ we obtain

$$
|\psi(t) V(t) \xi| \leq N_{1}|\psi(0) \xi| \leq N_{1} \rho \leq \frac{r}{2}
$$

For the second addend with $a_{1} \leq \frac{r}{2 \max \left\{N_{1}, N_{2}\right\}}$ as in the proof of Theorem 3.3 we have

$$
\left|\psi(t) \int_{J} G(t, \tau) F(\tau, x(\tau)) \mathrm{d} \tau\right| \leq \max \left\{N_{1}, N_{2}\right\} a_{1} \leq \frac{r}{2}
$$

Thus the operator Q maps the ball $S_{\psi, r}$ into itself.
Let $x_{1}, x_{2} \in S_{\psi, r}$. As in the proof of Theorem 3.3 we obtain the estimate

$$
\left\|Q x_{1}-Q x_{2}\right\|_{C_{\psi}} \leq\left(a_{2} \max \left\{N_{1}, N_{2}\right\}\right) \mid\left\|x_{1}-x_{2}\right\|_{C_{\psi}} .
$$

Hence by $a_{2}<\left(\max \left\{N_{1}, N_{2}\right\}\right)^{-1}$ the operator Q is a contraction in the ball $S_{\psi, r}$.

From the fixed point principle of Banach it follows the existence of a unique fixed point of the operator Q.

In the proof of Theorem 3.4 it was already mentioned that every solution of the differential equation (2.1) which lies in the ball $S_{\psi, r}$ fulfil the equality

$$
x(t)=Q x(t)
$$

and vice versa.
Corollary 3.6. Let the conditions of Theorem 3.5 hold and let $x_{1}(t)$ and $x_{2}(t)$ be two solutions whose initial values fulfil $P_{1} x_{1}(0)=\xi$ and $P_{1} x_{2}(0)=\eta$. Let $N=\max \left\{N_{1}, N_{2}\right\}$.

Then for $N a_{2}<1$ the following estimate holds

$$
\left|\psi(t)\left(x_{1}(t)-x_{2}(t)\right)\right| \leq \frac{N}{1-N a_{2}}|\psi(0)(\xi-\eta)| \quad\left(t \in \mathbb{R}_{+}\right)
$$

Proof. Applying the presentation (3.3) for the solutions x_{1} and x_{2} we obtain

$$
x_{1}(t)-x_{2}(t)=V(t)(\xi-\eta)+\int_{0}^{\infty} G(t, \tau)\left(F\left(\tau, x_{1}(\tau)\right)-F\left(\tau, x_{2}(\tau)\right)\right) \mathrm{d} \tau
$$

From here and the conditions of Theorem 3.5 for $u(t)=\psi(t)\left(x_{1}(t)-x_{2}(t)\right)$ we obtain

$$
|u(t)| \leq N|\psi(0)(\xi-\eta)|+N \int_{0}^{\infty} k(\tau) u(\tau) \mathrm{d} \tau
$$

Let us consider the equation

$$
\begin{equation*}
u(t)=\alpha+N \int_{0}^{\infty} k(\tau) u(\tau) \mathrm{d} \tau \tag{3.5}
\end{equation*}
$$

where $\alpha=N|\psi(0)(\xi-\eta)|$. Let us introduce the functional $\Phi: C \rightarrow \mathbb{R}_{+}$, where C is the space of all bounded functions on \mathbb{R}_{+}with values in \mathbb{R}_{+}by the formula

$$
(\Phi u)(t)=N \int_{0}^{\infty} k(\tau) u(\tau) \mathrm{d} \tau
$$

For the norm of Φ we obtain the estimate

$$
\|\Phi\| \leq N \int_{0}^{\infty} k(\tau) \mathrm{d} \tau \leq N a_{2}
$$

For sufficiently small a_{2} we have $\|\Phi\| \leq 1$.
Let I_{C} be the identity of the space C. Then the equation $\left(I_{C}-\Phi\right) u=\alpha$ has a bounded solution $u(t)$, i.e. there exists a constant $c=\sup _{t \in \mathbb{R}_{+}}|u(t)|<\infty$. We shall estimate the constant c from equation (3.5):

$$
c \leq \alpha+N c \int_{0}^{\infty} k(\tau) \mathrm{d} \tau \leq \alpha+N c a_{2}
$$

i.e.

$$
c \leq \frac{\alpha}{1-N a_{2}}
$$

Finally we obtain

$$
\left|\psi(t)\left(x_{1}(t)-x_{2}(t)\right)\right| \leq \frac{N|\psi(0)(\xi-\eta)|}{1-N a_{2}}
$$

Acknowledgements

This research has been partially supported by Plovdiv University NPD grant NI13 FMI-002.

References

[1] O. Akinyele, On partial stability and boundedness of degree k, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8 65(1978), 259-264. MR0586610
[2] P. N. BoI, On the ψ-dichotomy for homogeneous linear differential equations, Electron. J. Differ. Equ. 2006, No. 40, 1-12. MR2213584
[3] P. N. BoI, Existence of ψ-bounded solutions for nonhomogeneous linear differential equations, Electron. J. Differ. Equ. 2007, No. 52, 1-10. MR2299606
[4] P. N. BoI, Behavior at infinity of ψ-evanescent solutions to linear differential equations, Electron. J. Differ. Equ. 2010, No. 102, 1-9. MR2680305
[5] W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. MR0481196
[6] A. CONStANTIN, Asymptotic properties of solutions of differential equations, An. Univ. Timişoara Ser. Ştiinţ. Mat. 30(1992), No. 2-3, 183-225. MR1330747
[7] J. L. Daleckir, M. G. Krein, Stability of solutions of differential equations in Banach space, Translations of Mathematical Monographs, Vol. 43, American Mathematical Society, Providence, R.I., 1974. MR0352639
[8] A. DiAmANDESCU, Note on the Ψ-boundedness of the solutions of a system of differential equations, Acta Math. Univ. Comen., New Ser. 73(2004), No. 2, 223-233, ISSN 0862-9544. MR2122210
[9] A. DIAMANDESCU, Existence of Ψ-bounded solutions for a system of differential equations, Electron. J. Differ. Equ. 2004, No. 63, 1-6. MR2057650
[10] A. DiAmANDESCU, A note on the existence of Ψ-bounded solutions for a system of differential equations on \mathbb{R}, Electron. J. Differ. Equ. 2008, No. 128, 1-11. MR2443151
[11] A. DIAMANDESCU, A note on existence of Ψ-bounded solutions for linear difference equations on Z, Kuwait J. Sci. Eng. 36(2009), No. 2A, 35-49. MR2596982
[12] A. DIAMANDESCU, Existence of Ψ-bounded solutions for nonhomogeneous linear difference equations, Appl. Math. E-Notes 10(2010), 94-102. MR2658119
[13] A. Diamandescu, Existence of Ψ-bounded solutions for nonhomogeneous Lyapunov matrix differential equations on \mathbb{R}, Electron. J. Qual. Theory Differ. Equ. 2010, No. 42, 1-9. MR2678384
[14] A. DIAMANDESCU, On Ψ-stability of nonlinear Lyapunov matrix differential equations, Electron. J. Qual. Theory Differ. Equ. 2009, No. 54, 1-18. MR2546347
[15] A. Diamandescu, Ψ-bounded solutions for a Lyapunov matrix differential equation, Electron. J. Qual. Theory Differ. Equ. 2009, No. 17, 1-11. MR2486660
[16] A. Georgieva, H. Kiskinov, S. Kostadinov, A. Zahariev, Psi-exponential dichotomy for linear differential equations in a Banach space, Electron. J. Differ. Equ. 2013, No. 153, 1-13. MR3084633
[17] J. L. Massera, J. J. Schaeffer, Linear differential equations and function spaces, Pure and Applied Mathematics, Vol. 21, Academic Press, New York-London, 1966. MR0212324

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: stkostadinov@uni-plovdiv.bg

