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1 Introduction

Boundary value problems with positive solutions describe many phenomena in the applied
sciences such as the nonlinear diffusion generated by nonlinear sources, thermal ignition of
gases and concentration in chemical or biological problems. Problems with integral boundary
conditions arise in thermal conduction problems, semiconductor problems and hydrodynamic
problems. In the last decades, many authors studied various problems with integral boundary
conditions. In the paper [17], by using the fixed point index theory for compact maps, the
authors investigated the existence and multiplicity of positive solutions for general systems of

perturbed Hammerstein integral equations. We also mention the recent papers [2], [3], [5],
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[16], [18], [19], [22], [23], where the authors studied the existence of positive solutions for some
systems of boundary value problems with integral conditions.
In this paper, we consider the system of nonlinear second-order ordinary differential equa-

tions
(5)
with the integral boundary conditions

au(0) — a(0)u’(0) = /0 u(s)dHy(s), yu(1l)+ da(1)u'(1) = /(i u(s) dHy(s),

(BC) _ ! -
av(0) — Be(0)v'(0) = /0 v(s) dK1(s), Fu(1) 4 de(1)v'(1) = /o v(s) dKs(s),

where the above integrals are Riemann—Stieltjes integrals.

We shall give sufficient conditions on A, i, f and g such that positive solutions of problem
(S) — (BC) exist. By a positive solution of problem (S5) — (BC) we mean a pair of functions
(u,v) € C*([0,T]) x C*([0,T]) satisfying (S) and (BC) with u(t) > 0, v(t) > 0 for all ¢ € [0, T
and (u,v) # (0,0). We also present a nonexistence result for the positive solutions of the
above problem. The case in which the functions Hy, Hs, K7, K5 are scale functions, that is the

boundary conditions (BC') become multi-point boundary conditions
au(0) — Zau &), 1)+ da(1 Zbu ),
av(0) — ZCZ (Gi), vv(1 —|—5c Zdv Pi),

where m, n, r, | € N, has been studied in [10] (with 7" = 1). The system (S) with a(t) = 1,
c(t) =1,0b(t) =0, d(t) =0 for all t € [0,T], f(t,u,v) = f(u,v), g(t,u,v) = g(u,v) (denoted
by (S1)) and (BCY) was investigated in [11]. Some particular cases of the problem from [11]
have been studied in [6] (where in (BC}), a; =0 foralli=1,...,m,¢=0foralli=1,...,r,
y=7=1and § =0 = 0 (denoted by (BCy)), in [20] (where in (S1), flu,v) = f(v),
(u,v) = E(u) — denoted by (5;), and in (BCy) we have n = [, b; = d;, n; = p; for all
i=1,...,n,a=aand 8 = 3 — denoted by (BCj3)), in [14] (the problem (S;) — (BC3) with
a=a=16=5=0T=1),in[12] and [15] (the system (S5) with 7' = 1 and the boundary
conditions u(0) = 0, u(1) = au(n), v(0) = 0, v(1) = av(n), n € (0,1) and 0 < a < 1/n, or
u(0) = Bu(n), u(l) = au(n), v(0) = Pv(n), v(1) = av(n)). In [13], the authors investigated the
system (S3) with "= 1 and the boundary conditions au(0) — fu'(0) = 0, yu(1) 4+ du/(1) = 0,
av(0) — pv'(0) = 0, yo(1) + 6v'(1) = 0, where o, 5,7v,0 > 0, a+ 5+ +0 > 0. The

(BCY)

=t
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existence of positive solutions for a second-order singular system of multi-point boundary value
problems was studied in [8]. The multiplicity of positive solutions of some systems of multi-point
boundary value problems has been investigated in [7], [9].

In Section 2, we shall present some auxiliary results which investigate a boundary value
problem for second-order equations. In Section 3, we shall prove two existence theorems for
the positive solutions with respect to a cone for our problem (S) — (BC'), which are based on

the Guo—Krasnosel’skii fixed point theorem (see [4]) which we present now.

Theorem 1.1 Let X be a Banach space and let C C X be a cone in X. Assume 1 and )y
are bounded open subsets of X with 0 € Q1 C Q1 C Qy and let A: CN(Q\ Q) — C be a

completely continuous operator such that, either
i) | Au|| < ||ull, we C NIy, and ||Aul| > |lull, ue C NIy, or
i) || Au|| > ||ull, we C NIy, and || Aull < |lu]|, uve CNOIN,.

Then A has a fized point in C N (Qy\ ).

The nonexistence of positive solutions of (S) — (BC) is also studied in this section. Finally, an

example is presented in Section 4 to illustrate our main results.

2 Auxiliary results

In this section, we shall present some auxiliary results, related to the following second-order

differential equation with integral boundary conditions
(a(t)u'(t))" = b(t)u(t) +y(t) =0, t € (0,1), (1)

au(0) — Ba(0)u'(0) = /0 w(s) dHy(s), yu(l)+ da(1)u'(1) = /0 u(s) dHs(s). (2)
For a € C'([0,1],(0,00)), b € C([0,1],[0,00)), o, B, 7, 6 € R, || + 8] # 0, [y + |0] # 0,

we denote by 1 and ¢ the solutions of the following linear problems

(3)

{ (a(t)e! (1)) —b(t)p(t) =0, 0 <t <1,
$(0) = B, a(0)y/(0) = a,

and
{ (alt)g' (1)) — b(t)p(t) =0, 0 <t <1,
$(1) =4, a(l)¢/(1) = —,

respectively.
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We denote by 6; the function 6;(t) = a(t)(o(t)y'(t) — ¢'(t)(t)) for t € [0,1]. By using
the equations (3) and (4), we deduce that 8(t) = 0, that is 6,(¢) = const., for all ¢ € [0, 1].
We denote this constant by 7. Then 60,(t) = 7 for all ¢ € [0,1], and so 7 = 0,(0) =
a(0)(¢(0)¢'(0)=¢'(0)¢(0)) = ag(0)—Fa(0)¢'(0) and 71 = 61(1) = a(1)(¢(1)¢'(1)—¢'(1)1(1)) =
da(1)"(1) +y4(1).

Lemma 2.1 We assume that a € C*([0,1],(0,00)), b € C([0,1],[0,00)), @, 8,7, § € R, |a| +
|ﬁ| #0, |’y\ + 14| sé 0, and Hy, Hy : [0,1] — R are functions of bounded variation. If 71 # 0,

— Jy ) dta(s)) (r = fi és) dHi(s)) = (fy w(s) dHi(s )(fo s)dHy(s)) # 0,
and y € C’([O, 1]) then the (unique) solution of (1)-(2) is given by u(t fo Gi(t, s)y(s)ds,
where the Green’s function Gy is defined by

Gl (t> S) :gl(t> S)

—[w@)(/ld)(s)d%(s))w (n /w ) dH (s ﬂ/ogmsdm )
+—[ (ﬁ /¢ ) dH, (s )+¢ (/w ) dH, (s H/OgldeQ)

(5)
for all (t,s) € [0,1] x [0, 1], where

(6)

a1(t,s) = 1 { d(t)v(s), 0<s<t<1,

P(s)o(t), 0<t<s<lI,

71
and ¥, ¢ are the functions defined by (3) and (4), respectively.

Proof. Because 7, # 0, the functions ¢ and ¢ are two linearly independent solutions of
the equation (a(t)u/(t))" — b(t)u(t) = 0. Then the general solution of equation (1) is u(t) =
AY(t)+ Bo(t) +uo(t), with A, B € R and ug is a particular solution of (1). We shall determine
ug by the method of variation of constants, namely we look for two functions C(t) and D(t)
such that ug(t) = C(t)1(t) + D(t)¢(t) is a solution of equation (1). The derivatives of C'(t) and
D(t) satisfy the system

{cwww+waw=a
C' () (1) + D' (H)a(t)d/(t) = —y(t), t € (0,1).

The above system has the determinant dy = —m; # 0, and the solution of the above system
is C”( ) = 711 (t) (t) and D'(t) = Z4(t)y(t). Then we choose C(t) = ft s)ds and
=1 fo s)ds. We deduce that the general solution of equatlon (1) is

__ﬁ!/¢ d4~—1/¢ $)ds + Ab(t) + Bo(0).
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Then we obtain .
ut) = [ on(t.5)us)ds -+ A0 + Boe).
0
where g; is defined in (6).
By sing the conditions (2), we conclude

( /w (s)y(s)ds + Ap(0) + Bo(0

+AY(0) —%B¢<>) !/ (Almeaﬂyr -

(
( /¢> s)y(s)ds + Ap(1) + Bo(1
(

cav o) = [ ([ ot

[ 400 + sa0) / ) ( 6(0) + 5a0)0) + [
=—/¢ Jo(O)y(s) ds — 4 [/¢ /(OlsT " dr
)

A( da(1)y'(1 /1/) ) dHo( ) ( 1)+ da(1)¢

\=——/¢ (s /¢ /
Therefore, we obtai
-

a() 1¢<3>dH1<3>) B(-n+ [Cowame) == [ ([t ame),
\A<n—/01¢(s)dﬂ >+B< /qb dH()) /0</01g1(5,7')y(7')d7') A (s).

(7)

The above system with the unknown A and B has the determinant

o0 (= o) (- [ o) ([ seranco) ([, sronco).

By using the assumptions of this lemma, we have A; # 0. Hence, the system (7) has a unique
solution, n mly

b () [ oere) )
+(n= [Coame) ([ ([ ats.rwrrar) ams)]

s (s ([ ) e
#(n= [veam) ([ ([ a6numir) )]
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Then, the solution of problem (1)—(2) is

)
it = [ tesiwtsras+ S0 ([Coams)) ([ ([ ats.mwtrar ) ainis)
( / o(s)dH, (s ) (/0 ( Olgl(s,T)y(T) dT) ng(s))
(s) s, 5 (s

Therefore, we deduce

i) = [ atestuts)as+ 5 ot ([ sramta() +0) (m = [ vis)aits) )]

ot /w }/ /Og<m>dﬂ2<f

So, the solution u of (1)—(2) i
(5). O
Now, we introduce the assumptions
) a € CY([0,T],(0,00)), b € C([0,T1, [0, 0))-

) a, B,7, 6 €[0,00) with a+ >0 and v+ 4§ > 0.
) If b(t) = 0, then oo + v > 0.
)

H,y, Hy :[0,1] — R are nondecreasing functions.

AB) 7 /qﬁ YdH,(s) >0, 7, — /¢ )dHs(s) > 0 and A; > 0.

Lemma 2.2 (/1)) Let (Al) and (A2) hold. Then
a) the function v is nondecreasing on [0,1], ¥(t) > 0 for all t € [0,1] and ¥(t) > 0 on (0, 1];
b) the function ¢ is nonincreasing on [0,1], ¢(t) > 0 for all t € [0,1] and ¢(t) > 0 on [0,1).

Lemma 2.3 ([1]) Let (Al) and (A2) hold.
a) If b(t) is not identically zero, then 7 > 0.
b) If b(t) is identically zero, then T1 > 0 if and only if o+ v > 0.
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Lemma 2.4 Let (A1)—(A3) hold. Then the function g, given by (6) has the properties

a) g1 is a continuous function on [0, 1] x [0, 1].

b) gi(t,s) >0 for allt, s € [0,1], and g1(t,s) > 0 for all t, s € (0,1).

¢) For any o € (0,1/2), we have min gi(t,s) > v1g1(s,s) for all s € [0,1], where v; =

tefo,1—o]
min{ £ 00 )

For the proof of Lemma 2.4 a)-b) see [1], and for the proof of Lemma 2.4 ¢) see [21].

Lemma 2.5 Let (A1)—~(Ab5) hold. Then the Green’s function Gi of the problem (1)-(2) is
continuous on [0, 1] x [0, 1] and satisfies G1(t,s) > 0 for all (t,s) € [0,1] x [0,1]. Moreover, if
y € C([0,1)) satisfies y(t) > 0 for all t € [0,1], then the unique solution u of problem (1)-(2)
satisfies u(t) > 0 for all t € [0, 1].

Proof. By using the assumptions of this lemma, we deduce G;(t,s) > 0 for all (¢,s) €
[0,1] x [0,1], and so u(t) > 0 for all ¢ € [0, 1]. O

Lemma 2.6 Assume that (A1)—(A5) hold. Then the Green’s function G of the problem (1)-
(2) satisfies the inequalities
@) Ga(t,) < Ji(s), V(ts) € [0,1] x [0,1], where

J1<S) =01 (57 S)

+Ai1[z/;(T) (/01¢(s)dH2(s)>+¢ (71 /10 ) dHs(s )]/9173 ) dHy(7)
v [on (n = [Csame ) o0 ([ oame)] [ oo

b) For every o € (0,1/2), we have
fmn }Gl(t ,8) > v Ji(s) > nGy(t)s), V', s e0,1],
telo,l1—o

where vy 1s given in Lemma 2.4.

Proof. The first inequality a) is evident. For the second inequality b), for o € (0,1/2) and
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t€lo,1—o0],sel0,1], we conclude

Gilt,5) 2 man(s,9) + 5 010 (/¢ ) dHy(s )+mvwwﬁ—éﬁwmm@0}
< [t ramn+ 1 o) (n= [ oame) ot o) ([ v ames) )]

x/ngsng T)

(s, ) —[—m (/¢ ) dHy (s ) %m)

N
(- /Olw ) dHy(s )}/ (7, s) dHy (r )+Ai1{% ()(1—/01¢(s)dH1(s)>
¢(1_”) (/ W(s) dH, (s )]/ g1(7,8) dHa(7) > 11 Ji(s).

[e=]

O

Lemma 2.7 Assume that (A1)~(A5) hold and let o € (0,1/2). If y € C([0,1]), y(t) > 0
for all t € [0,1], then the solution u(t), t € [0,1] of problem (1)-(2) satisfies the inequality

min u(t) > 1y max u(t).
tefo,1—0] ()_ 1t’€[0§] ( )

Proof. For 0 € (0,1/2),t € [0,1 — 0], t' € [0, 1], we have

Mﬂ:AGﬁﬁM@%ZWAL@M@%zm/Gﬁﬁw@%szW

0

so min u(t) > vy max u(t). 0
telo,1—o] t'€[0,1]
We can also formulate similar results as Lemmas 2.1-2.7 above for the boundary value
problem

() () — d(E)o(t) + h(t) =0, 0<t<1, (8)
F0(0) — Be(0)'(0) = /0 o(s) dE(s), Fu(1) + 3e(1)/(1) = /O o(s)da(s),  (9)

under similar assumptions as (A1)—(A5) and h € C([0, 1]). We denote by 1;, q~5, Oy, T2, Do, go,
G, 15 and Jy the corresponding constants and functions for the problem (8)—(9) defined in a

similar manner as v, ¢, 61, 71, Ay, g1, G1, 1 and Ji, respectively.

3 Main results

In this section, we shall give sufficient conditions on A, p, f and g such that positive solu-
tions with respect to a cone for our problem (S) — (BC') exist. We shall also investigate the
nonexistence of positive solutions of (S) — (BC).

We present the assumptions that we shall use in the sequel.
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(I1) The functions a, ¢ € C*([0,1],(0,00)) and b, d € C([0,1], [0, c0)).

(I2) a, 8,7, 6, 3,7, 0 €[0,00) withao+8>0,y+3>0,a+8>07+06>0;ifb=0
then a +v > 0; if d =0 then a +7v > 0.

(I3) Hy, Hy, Ky, Ky :[0,1] — R are nondecreasing functions.

fo s) (s) >0, — fo s)dHy(s) > 0, 9 — fo s)dK;(s)ds > 0,
— fo w s) 2(3) >0, Ay >0, AQ > 0, where 71, 7o, Ay, Ay are defined in Section 2.

(I5) The functions p, ¢ € C([0,1],[0,00)) and there exist ¢, to € (0,1) such that p(t;) > 0,
q(tg) > 0.

(16) The functions f, g € C([0,1] x [0,00) X [0, 00), [0, 00)).

From assumption (I5), there exists o € (0,1/2) such that ¢, t2 € (0,1 —0). We shall work

in this section with this number o. This implies that
1-—0o 1—0o 1-o I—o
[ s is>0. [ mesasds>0. [ a0, [ a(slalsds >0,

for all t € [0, 1], where g1, g2, J1 and Jy are defined in Section 2 (Lemma 2.1 and Lemma 2.6).

For o defined above, we introduce the following extreme limits

St u,v) g(t, u,v)
fo = limsup max ————=, g5 = limsup max ————,
u+v—0+ t€[0,1] U+ vV utv—0t tEO0,1] U+ v
fi=liminf min M, gs = liminf min gt u,v)
utv—0t t€fo,1—0] U+ V utv—07t t€fo,1—0] U+ V
f5 = limsup max M, g5, = lim sup max M,
utv—oo t€[0,1] U+ V utv—oo t€[0,1] U+ V
t t
fi =liminf min M, g', = liminf min M
utv—oo telo,l-0] U+ V utv—=oo telo,l—0] U+ V

By using the Green’s functions G; and G from Section 2 (Lemma 2.1), our problem

(S) — (BC) can be written equivalently as the following nonlinear system of integral equations

u(t) = )\/0 Gi(t, s)p(s)f(s,u(s),v(s))ds, 0 <t <1,
v(t) = u/ﬂ Ga(t, s)q(s)g(s,u(s),v(s))ds, 0 <t <1.

We consider the Banach space X = C([0,1]) with supremum norm || - ||, and the Banach
space Y = X x X with the norm ||(u,v)||y = ||u|| + ||v||. We define the cone P C Y by

P={(u,v) €Y; u(t) >0, v(t) >0, Vt € [0,1] and inf (u(t)+v(t)) > v|(u,v)|y},

telo,1—o]
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where v = min{v,»} and vy, v» are the constants defined in Section 2 (Lemma 2.4) with
respect to the above o.
For A, u > 0, we introduce the operators @1, @2 : Y — X and Q : Y — Y defined by

Q1(u,v)(t) = )\/0 Gi(t,s)p(s)f(s,u(s),v(s))ds, 0 <t <1,

@mumwngGN»M@MaM$MQMaogtgL

and Q(u,v) = (Q1(u,v),Q2(u,v)), (u,v) €Y. The solutions of our problem (S) — (BC) are
the fixed points of the operator Q. By using similar arguments as those used in the proof of

Lemma 3.1 from [10], we obtain the following lemma.
Lemma 3.1 If (I1)-(I6) hold, then Q : P — P is a completely continuous operator.

Let us introduce the notations
1-0o 1
A= [ e s B= [ s
01—0 O1
C = / Jo(s)q(s)ds, D = / Ja(s)q(s) ds.
o 0

First, for f§, g5, f%, g°. € (0,00) and numbers ay, ay > 0, &y, @y > 0 such that ay+ay =1
and a; + as = 1, we define the numbers Ly, Lo, L3, L4, L), L by

(6%} 621 (0] 622 , 1 1

= Ly=——, Ly=—"— L[, =—— =_——, L= .
v fi A 0T B T gl C7 YT gD TP fsB YT giD

Ly

Theorem 3.1 Assume that (I1)—(16) hold, oy, as > 0, @y, ag > 0 such that oy + ag = 1,

oy + oy = 1.

1) If f5, 95, s 9 € (0,00), Ly < Ly and Ly < Ly, then for each X\ € (Ly,Ls) and pu €
(L3, Ly) there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

2) If f§ =0, g5, f, g, € (0,00) and Lz < L}, then for each X € (Ly,00) and u € (L3, L)
there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

3) If g5 =0, f§, fi, g € (0,00) and Ly < L}, then for each X € (Ly, L) and p € (L3, o0)
there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

4) If f§ =95=0, fi, ', € (0,00), then for each X\ € (Ly,00) and p € (L3, 0) there erists a
positive solution (u(t),v(t)), t € [0,1] for (S)— (BC).
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5) If {f5. g8: fo € (0,00), gig = 00} or {f§, g5, g € (0,00), f5, = oo} or {5, g5 € (0,00),
fio = g' = oo}, then for each A € (0,Ls) and u € (0, Ly) there exists a positive solution
(u(t),v(t), t€[0,1] for (5) — (BC).

6) If {f5 =0, g5, fo € (0,00), gi, = o0} or {f5 =0, fi, = o0, g5, g5 € (0,00)} or {f5 =0,
g5 € (0,00), fi =g, = oo} then for each X € (0,00) and pu € (0, L}) there exists a positive
solution (u(t),v(t)), t € [0,1] for (S)— (BC).

7 IAS oo € (0,00), g5 = 0, gig = o0} or {5, gio € (0,00), g5 = 0, fio = oo} or
{fs €(0,00), g5 =0, fi, =g., = oo} then for each X € (0, L) and p € (0,00) there exists

[e.e]

a positive solution (u(t),v(t)), t € [0,1] for (S)— (BC).

8) [f{fg = gé =0, féo S (0,00), géo - OO} or {fés - 98 =0, féo = o0, g?)o < (0,00)} or
{fs=9g5=0, fi = g', = oo} then for each X € (0,00) and p € (0,00) there exists a
positive solution (u(t),v(t)), t € [0,1] for (S)— (BC).

Proof. We consider the above cone P C Y and the operators )1, 2 and Q. Because the
proofs of the above cases are similar, in what follows we shall prove one of them, namely the
case 3). So, we suppose g5 = 0, f§, fi, g5 € (0,00) and Ly < Ly . Let A € (Ly,L}) and
u € (L3, 00), that is A € (Jﬁ»f@%)» e <W2°;]$,oo>. We choose o) € (Af§B,1). Let
ab, =1—a and let € > 0 be a positive number such that ¢ < min{f_, ¢’ .} and

aq (0] 52,1 52,2
T i N A < A? T s N < b e . N1 Z A? =S Z .
vy (fi, —e)A — via(gi, —e)C — a (fs+¢)B eD H

By using (I6) and the definitions of f§ and g§, we deduce that there exists R; > 0 such
that for all ¢t € [0,1], u, v € Ry, with 0 < u+ v < Ry, we have f(t,u,v) < (f§ + ¢)(u + v)
and g(t,u,v) < e(u + v). We define the set 0 = {(u,v) € Y, [[(u,v)|ly < R1}. Now let
(u,v) € PNOSY, that is (u,v) € P with ||(u,v)|ly = Ry or equivalently ||u| + ||v]| = R;. Then
u(t) + v(t) < Ry for all ¢t € [0,1], and by Lemma 2.6, we obtain

Qu(u,v)(t) < A/O Ji(8)p(s)f(s,u(s),v(s)) ds < )\/0 Ji(8)p(s)(fg + €)(uls) + v(s)) ds
< A(Jfs +8)/0 Ju(s)p(s)(lull + [[vl]) ds = A(fg + &) B[ (u, v)[ly < @ [l(w, v)lly, ¥Vt €[0,1].
Therefore, ||Q1(u,v)|| < & ||(u,v)|ly. In a similar manner, we conclude

Qu(u,0)(t) < / Jo(8)a(s)g(s, u(s), v(s)) ds < p / J()a(s)e(u(s) + v(s)) ds

< uff/o Ja(s)a(s)(lull + [[ol]) ds = peD||(u, v)lly < &5|[(w, v)lly, Vit € [0,1].
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Therefore, [|Qa(u, )|l < @l(u, v)]ly-
Then, for (u,v) € P N0, we deduce

1Q(uw, v)lly = Q1 (u, v)|| + 1Q2(u, )| < &Y [(w, )|y + &5 (w, v)lly = [[(u, v)ly-

By the definitions of fi_ and ¢, there exists Ry > 0 such that f(¢,u,v) > (fi —¢&)(u+v)
and g(t,u,v) > (¢°, —¢)(u+w) for all u, v > 0 with u+v > Ry and t € 0,1 — o]. We consider
Ry = max{2R;, Ry/v}, and we define Qy = {(u,v) € Y, ||(u,v)||y < Rz}. Then for (u,v) € P

with ||(u,v)|y = Ra, we obtain

u(t) +o(t) > inf  (u(t) +o(t) > v||(u,v)|ly = vRy > R,

 t€lo,1-0]

forallt € [o0,1—0].
Then, by Lemma 2.6, we conclude
l1-0o

Qu(u,v)(0) = Am/ﬂ Ji(s)p(s)f(s,u(s),v(s)) ds > >\V1/ Ji(s)p(s) (s, u(s),v(s)) ds

> Ml/ () (s — £)(uls) + v(s))ds = Aa(f, — AV (u,v)ly = aull(a,v) -

So, [Q1(w, v)[| = Qi(u, v)(0) = au|(u, v)]ly-

In a similar manner, we deduce

Qu(u,v)(0) > v / Ja()a(8)g(s, u(s), v(s)) ds > / 7 ha(s)a()g(s, uls), o(s)) ds

> /W2/  R()a(s)(ghe — D) (uls) + () ds > gl — Cw V)l > aall(u,0)ly-

So, [|Q2(u, v)|| = Q2(u,v)(0) > azl|(u,v)|y-
Hence, for (u,v) € P N0, we obtain

1Q(u, v)lly = [|Qu(w, v)[| + [[Qa(u, V) [| = (a1 + a2)||(u, v)lly = [[(u, v)]|y-

By using Lemma 3.1 and Theorem 1.1 i), we conclude that Q has a fixed point (u,v) €
PN (Q\ Q) such that Ry < |Jul| + ||v|| £ R,. O

Remark 3.1 We mention that in Theorem 3.1 we have the possibility to choose a; = 0 or
as = 0. Therefore, each of the first four cases contains three subcases. For example, in the
second case f§ =0, g5, f., g' € (0,00), we have the following situations:

a) if o, az € (0,1), oy + a2 =1 and Ly < L}, then X\ € (Ly,00) and pn € (Ls, L});

b)ifa; =1, ay =0, then X € (L}, 0) and u € (0, L)), where L} = m;

c)ifa; =0, as =1 and L < L}, then X € (0,00) and pu € (L}, L)), where Ly = —*

gt C-
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In what follows, for fi, i, 12, g5, € (0,00) and numbers ay, ay > 0, @y, @y > 0 such that
a1+ as =1 and oy + oy = 1, we define the numbers Zl, Zg, Zg, Z4, Zg and zﬁl by

~ o1 ~ o

~ (0%} ~ &2 =, 1 = 1

(631
= : Ly=—"+ Lo=—"+ L,=—— =—— L, = .
v fEA’ 2 fsB’ 3 vaghC’ 4 g:. D’ 2 fs.B’ 4 95D

Theorem 3.2 Assume that (I11) — (16) hold, oy, as > 0, ay, as > 0 such that oy + ag = 1,

ay + oy = 1.

1) If fi, g, 15, g5 € (0,00), Ly < Ly and Ly < 24, then for each A € (”L],’L}) and p € (Zg,z4)
there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

2) If fi, gb, f5 € (0,00), g5, = 0 and Ly < L, then for each X € (Ly, L}) and pu € (L3, 00)
there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

3) If fi. gi, g5 € (0,00), f& =0 and Ly < L}, then for each A € (Ly,00) and p € (Ls, L)
there exists a positive solution (u(t),v(t)), t € [0,1] for (S) — (BC).

4) If fi, gb € (0,00), f5 = g5 =0, then for each A € (L1, 00) and pu € (L3, 00) there eists a
positive solution (u(t),v(t)), t € [0,1] for (S)— (BC).

5) If {fo = 00, g, for 95 € (0,00)} or {5, f5, 95 € (0,00), g5 = oo} or {f5 = gj = o,
5, g5 € (0,00)}, then for each A € (0, Ly) and p € (0, Ly) there exists a positive solution

(oo}

(u(t), v(t)), t€[0,1] for (S) — (BC).

6) If{fs =00, gy, [ € (0,00), g3 = 0} or {fg, f5 € (0,00), g = 00, g%, = 0} or {fg = g5 =
0o, f3 € (0,00), g5 = 0}, then for each X € (0,L}) and p € (0,00) there ezists a positive
solution (u(t),v(t)), t € [0,1] for (S)— (BC).

7) 1f {15 = 00, gy, 9% € (0,00), f5, =0} or {f5, g € (0,00), gy = 00, f, =0} or {f = g5 =
0o, 5 =0, g5 € (0,00)}, then for each X € (0,00) and p € (0, L}) there exists a positive
solution (u(t),v(t)), t € [0,1] for (S)— (BC).

8) If {f5 = 00, g5 € (0,00), f&% = g5 = 0} or {f5 € (0,00), g5 = o0, f% = g5 = 0} or
{fe =g = oo, f5 = g5, = 0}, then for each A € (0,00) and u € (0,00) there exists a
positive solution (u(t),v(t)), t € [0,1] for (S)— (BC).

Proof. We consider the above cone P C Y and the operators ()1, (o and Q. Because the
proofs of the above cases are similar, in what follows we shall prove one of them, namely the

third case of 7). So, we suppose fi = gi = oo, f5 =0, g5, € (0,00). Let A € (0,00) and
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pe (0,L), that is p € (O, ggiD)' We choose o € (0,1) and o, € (ug5,D,1). Let oy, =1 —af,

oy =1 —aj and let € > 0 be a positive number such that
/ / ~/ -~/
=4 < )\7 =% < W, ﬂ > )\7 L
v A v C eB (95, +¢)D

> 1.

By using (I6) and the definitions of f¢ and g, we deduce that there exists R3 > 0 such that
[t u,v) > 2(u+v), g(t,u,v) > L(u+wv) forall u, v > 0 with 0 < u+v < Rz and ¢ € [0,1—o0].
We denote by Q3 = {(u,v) € Y, ||(u,v)|ly < R3}. Let (u,v) € P with ||(u,v)|]y = Rj3, that is
|lul| + ||v]| = Rs. Because u(t) +v(t) < ||ul| + ||v|| = R3 for all ¢ € [0,1], then by using Lemma
2.6, we obtain

l1—0o 1-o 1

Qﬂw@@?th/ A@mwvwmwxw@wwzxm/’ J(3)p(s)= (u(s) + v(s)) ds

o o €

-0 1 .
> AWli/ Ji(s)p(s)(lull + lvl]) ds = AvvrZAll(u, v)lly = aq(w, v)lly-

Therefore, ||Q1(u,v)|| > Q1(u,v)(c) > o ||(u,v)|ly. In a similar manner, we conclude
1

l—0o

1

Ja(s)q(s)g(s, uls), v(s)) ds > MV2/ - J2(s)a(s)—(u(s) +v(s)) ds

Qulu0)(0) 2 s [

g

1-0o 1
> MW2§/ Ja(s)a(s)(lull + fJoll) ds = pre=Cll(u, v)lly 2 a5l (w, o)y

So, [|Q2(u, v)| = Q2(u, v)(0) = asl|(u, v)|ly-
Thus, for an arbitrary element (u,v) € PNoSs, we deduce ||Q(u, v)|ly > (o) +ab)|[(u,v)|y

= [|(w, v)[ly-
Now, we define the functions f* ¢* : [0,1] x Ry — Ry, f*(t,z) = o Jnax f(t,u,v),
g*(t,x) = max g(t,u,v),t €[0,1], z € Ry. Then f(t,u,v) < f*(t,x), g(t,u,v) < g*(t,x) for

0<u+tv<zx
all t € [0,1], w > 0, v > 0 and u + v < z. The functions f*(¢,-), ¢*(¢,) are nondecreasing for

every t € [0,1], and they satisfy the conditions

*(t,x *(t,x
lim max [t =0, limsup max J )
x—00 t€[0,1] X z—oo t€[0,1] x

< 9%

Therefore, for € > 0, there exists R4 > 0 such that for all z > Ry and t € [0, 1], we have

“(1 (¢ (4 “(t,
f(’:r)Slim maxf(’x)—I—g:s, g(’$)§11msupmax—g( ?)
x zoo0te0l] T roo tE0]]

+e < g +e,

and so f*(t,x) < ex and g*(t,x) < (g5, + )x.
We consider Ry = max{2R3, Ry} and we denote by Qy = {(u,v) € Y, |(u,v)||y < Rs}.
Let (u,v) € PN 0Qy. By the definitions of f* and ¢*, we conclude

fu@),v(t)) < [ N (u0)lly), g uld), v(t)) < g* (¢ [[(uw, v)[ly), Vi elo,1].
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Then for all ¢ € [0, 1], we obtain

Qu(u,v)(t) < A / T(8)p(s) (5. (u(s), v(s)) ds < A / J(8)p(3) 1 (s, [, 0) ) dis
< e / T (8)p(5) | (s )y ds = AeBt, )y < @l 0)]ly,

and so, [|Q1(u,v)| < a4 |(u,v)|y-
In a similar manner, we deduce

1

Qulu,0)(t) < 1 / T(8)a(3)g(s, u(s), v(s)) ds < p / 1(8)a(s)g" (5, | (u, 0)|y) ds
< plgis+e) / To(5)q()) s 0) 1y ds = u(g2s + &) DIl (s )y < @l 0)

and 0, [|Q2(u, v)|| < a@bl|(u, v)lly-
Therefore, for (u,v) € PNOQy, it follows that ||Q(u, v)|ly < (af+ab)||(u,v)|ly = ||(u,v)||y.
By using Lemma 3.1 and Theorem 1.1 ii), we conclude that Q has a fixed point (u,v) €
PN (Q\ Q) such that Ry < ||(u,v)|ly < Ry. O
In what follows, we shall determine intervals for A\ and p for which there exists no positive
solution of problem (5) — (BC).

Theorem 3.3 Assume that (I11)—(16) hold. If f5, f%, g5, g5, < oo, then there exist positive
constants Ao, po such that for every A € (0, o) and p € (0, po), the boundary value problem
(S) — (BC) has no positive solution.

Proof. Since f;, f3, 95, 95, < 0o, we deduce that there exist M;, My > 0 such that
flt,u,v) < Mi(u+v), g(t,u,v) < My(u+wv), Yu,v >0, te€l0,1].

We define )\ = ﬁ and g = m, where B = foJl p(s)ds and D = fOJQ q(s) ds.
We shall show that for every A € (0, Ag) and p € (0, uo), the problem (S)—(BC) has no p081t1ve
solution.

Let A € (0,\) and p € (0,p0). We suppose that (S) — (BC) has a positive solution

(u(t),v(t)), t €]0,1]. Then, we have

u(t) =Qu(u,v)(t) = A/ G, s)p(s)f(s,u(s), v(s)) ds

<A [ Jil(s)p(s) f (s, uls), v(s)) ds < /\Ml/ Ji(s)p(s)(u(s) +v(s)) ds

0

SAM([full + HUH)/O Ju(s)p(s) ds = AMy B[ (u, v)|ly, Vi€ [0,1].
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Therefore, we conclude
1
lull < AMLBI|(w, )]y < XM Bl|(w, )]y = 5l1(w, )]y
In a similar manner, we have v(t) < uMsD||(u,v)||y for all ¢ € [0, 1], and so
1
loll < 2Dl (u, 0)lly < poMaDl(u, 0) |y = S (w, v)lly-

Hence, ||(u,v)|ly = ||u|l + [|v| < 2H(u v)|ly + 2H(u v)|ly = ||(u, v)]||y, which is a contradic-

tion. So, the boundary value problem (S) — (BC) has no positive solution. O

4 An example

Let T =1, a(t) =1,b(t) =4, c(t) =1,d(t) =1, p(t) =1, ¢t) =1 for all t € (0,1), a = 1,
B=3,y=1,6=1,a=308=27=1,0=3/2,

0, tel0,1/3), 0. te0.1/2)
Hl(t) _ t2, Hg(t) = 7/2, te [1/3, 2/3), Kl(t) = { 4/’3 te [17/2 1]7

11/2, te[2/3,1],

Kg(t) == t3.

Thenf0 s) dHs(s) = Zu (3)+2u (3), fo s)dK,(s) = zu (%),f u(s) dH, (s —2f0 su(s) ds,
f u(s) dKs(s —3f03u ) ds.

We consider the second-order differential system

(%) { W'(t) = du(t) + Af(t,u(t),v(t) =0, t € (0,1),
V(E) = v(t) + pg(t, u(t), v(8) = 0, t€ (0,1),
with the boundary conditions
(BCy) { u(0) — 3u/(0) = 2f0 su(s)ds, w(l)+u'(1)=2u(3)+2u(3),
30(0) — 20/(0) = 3v (3), v(l)+3/'(1) = f s?v(s) ds,

where the functions f and ¢ are given by

Flt ) = e'lpr(u+v) + 1) (u+v)(q + Sinv)’

u+v+1

e pa(u+v) + 1](u + v)(ga + cosu)
u+v+1

for all t € [0,1], w, v > 0, with p;, po > 0 and ¢, g2 > 1. For 0 = 1/4, we deduce f5 = eq,

g(t,u,v) =

Y

B=a+1, fio=eip(q — 1), gi = e ¥ ipy(qe — 1).

The functions ¥ and ¢ from Section 2 are the solutions of the following problems

{ YIt) —4e(t) =0, 0<t <1, { ¢"(t) —4o(t) =0, 0 <t <1,
$(0) =3, ¥'(0) = o(1) =1, ¢(1)= -
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4t 1 At 21e’ =5
Mad¢ iforallte 0,1, n = °
42t 42215

Ay =7y — /01 ¥(s) dHy(s) = 1 — (;w (%) v (§)>

—(42e* — 28103 — 4983 — 35643 — 20e2/® — 10)/(8€?) ~ 10.51047404 > 0,

Ay imry — /0 () dHL(s) = 71 — 2 /0 ' so(s) ds

We obtain ¢ (t) =

1
=(21e* — 5)/(4e*) — 2 / s(1 4 3e*%) /(4e* %) ds =~ 36.83556247 > 0,
0

1 1 1
A, ;:/ (s) dH, () :2/ s1b(s) ds:2/ 5(7e™ +5) /(46 ds ~ 7.71167043,
0

- oo (3) (3

=7(1 + 3¢%/3) /(864/3) +2(1 + 3e"%) /(4¢*?) ~ 13.36733534,

A

W~

The functions g; and J; are given by

(1 + 3e*~4)(Te* 4 5)
(ts) = ~ o()e(s), s<t, (t.5) = 4¢? o S<h
g\, 8) = '5! ¢(S)¢(t) t<s g1\t, 21t — 5 (1 + 3e —48)(764t + 5) )
Y f— ) ’ S,
16e2—25+2t

! + 2 2 s
— S —
37 a 37

3o 0) + 2a0(0) (0 () 0060 +

)
5 () + 2a0(0) (Jo0 (3) +26 (3 ) vto)) izac

= {olste) + 5 awa) + 0000 x 2 (69) [ rotryar 4 vt [ o))

+ )+ 400 (T (3) 2000 (5) )} 22s <1
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The functions QZ and 5 from Section 2 are the solutions of the following problems
) - =0, 0<t<1, [ &M -dt)=0, 0<t<1,
2 )=3 o(1) =3, ¢(1) = 1.

He?t — 1 ~ 1 + 22t 2562 +1
n —

We obtain 1(t) = e for all ¢ € [0,1], T P
e e

Ay =1 — /w )dKs(s) = 75 — 3/1 s2(s) ds

— (25¢% + 1)/ (4e) — / 2(5¢% — 1)/(2¢*) ds ~ 11.93502177 > 0,

K2 2 — /¢ dK1 —72——¢(%)

(25e +1)/(4e ) (1+5€)/( 1/2) ~ 14.13118562 > 0,
Ag =

ARG
o f o

s)dKy(s) = _¢ (5) = (10e — 2)/(3e"/?) ~ 5.09138379,

1 1
Ay = dK2 / s*p(s)ds =3 / s (14 5e*7%) /(4e' ) ds ~ 1.83529455,
0
The functions g, and J, are given by
-~ o~ (1+ 5e*2")(5e* — 1)
1) o(t)Y(s), s<t, de 1—t+s , 51
golt,5) = — or ga(t,s) = 5y o) ot _

P(s)(t), t <s, 25¢2 1+ 1) (1456272
Rel—stt ’

Jo(s) = ga(s,s) + A%(MZ(D + Klg(o))%l% (%v 3)
b (Rad(0) + Rad0) x 3 [ an(ris)ar
— 2(5,9) + 2 (Ral0) + R0 g0 (3.9)

+A (Asth(1) + Asp(0)) x 3(/879273 dT—l—/s TSdT)
1
{¢<> <>+—(A4w< )+ 3150)) x 33 (5) )
+ 12 < 1) 4+ A30(0 > (gb(s)/o TQJ(T) d7+%z(3)/s 2(7) d7>}, 0<s<i,
=\ 1 - 4~ ~(1
—{¢< )36+ 5 () + 8150 x 3397 (3)
| x (800 +30)) %3 (36) [T+ 36 [ Pomar) ) ds <t

We also have v = v = (14 3e)e?2/(1 4 3e*), vy = (5e'/? — 1)e%/*/(5e? — 1). After some
/ 1

3/4
computations, we deduce A = / Ji(s)ds ~ 1.35977188, B = / Ji(s)ds ~ 2.51890379, C' =
/4 0
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3/4 1
Jo(s)ds =~ 0.48198213, D = / Jo(s)ds =~ 0.93192847. For ay, ag > 0 with oy + ay = 1,

1/4 0

we consider a; = aq, @y = ay. Then, we obtain

I o (1 + 3et)? [ @
PB4+ 3e)2py (¢ — DA 2T eqB’
L= (1 + 3et)(5e? — 1) L= Qg
321+ 3e)(5e2 — Dpa(g — 1)C ' (@ +1)D’

The conditions Ly < Ly and L3 < Ly become
pi(q —1) (1+3e")2eB  pa(qe — 1) (1+ 3e*)(5e? —1)D
¢ (14 3e)2el3/4A” ¢ +1 (14 3e)(5el/2 —1)e3/2C"

If p1(qn —1)/q1 > 64 and pa(ga — 1)/(g2 + 1) > 39, then the above conditions are satisfied. For
example, if a1 = ay = 1/2, py = 128, ¢4 = 2, ps = 117, g» = 2, we obtain L; =~ 0.03609275,
Loy ~ 0.03651185, L3 ~ 0.17672178, L4 ~ 0.17884062. Therefore, by Theorem 3.1 1), for each
A € (Ly,Ls) and pu € (Ls, Ly), there exists a positive solution (u(t),v(t)), t € [0,1] for the
problem (Sy) — (BCy).

S

Because f§ = eq1, f5 =epi(qn + 1), 95 = q2 + 1, g5, = p2(g2 + 1) are finite, we can also

apply Theorem 3.3. Using the same values for py, q1, p2, g2 as above, that is p; = 128, ¢; = 2,
pe = 117, g3 = 2, we deduce

t 1 i
M; = sup max M = e sup pr(u+v) + (g1 +sinv) ~ 1043.82022212,
wp>0t€0,1] U+ v wv>0 u+v+1
t 1
M, = sup max g(t,u,v) = sup P2+ v) +1)(g2 + cosw) = 351,
w,w>0tE€0,1] U +v u,v>0 u+v+1
Then, we obtain Ao = 575 ~ 0.00019016 and o = 555 ~ 0.00152855. Therefore, by

Theorem 3.3, we conclude that for every A € (0, \g) and p € (0, 1o), the problem (Sy) — (BCp)

has no positive solution.
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