Quasilinear degenerated equations with L^{1} datum and without coercivity in perturbation terms*

L. AHAROUCH, E. AZROUL and A. BENKIRANE

Département de Mathématiques et Informatique
Faculté des Sciences Dhar-Mahraz
B.P 1796 Atlas Fès, Morocco

Abstract

In this paper we study the existence of solutions for the generated boundary value problem, with initial datum being an element of $L^{1}(\Omega)+W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$ $$
-\operatorname{div} a(x, u, \nabla u)+g(x, u, \nabla u)=f-\operatorname{div} F
$$ where $a($.$) is a Carathéodory function satisfying the classical condition of type Leray-Lions$ hypothesis, while $g(x, s, \xi)$ is a non-linear term which has a growth condition with respect to ξ and no growth with respect to s, but it satisfies a sign condition on s.

1. Introduction

Let Ω be a bounded subset of $\mathbb{R}^{N}(N \geq 2), 1<p<\infty$, and $w=\left\{w_{i}(x) ; i=0, \ldots, N\right\}$, be a collection of weight functions on Ω i.e., each w_{i} is a measurable and strictly positive function everywhere on Ω and satisfying some integrability conditions (see section 2). Let us consider the non-linear elliptic partial differential operator of order 2 given in divergence form

$$
\begin{equation*}
A u=-\operatorname{div}(a(x, u, \nabla u)) \tag{1.1}
\end{equation*}
$$

It is well known that equation $A u=h$ is solvable by Drabek, Kufner and Mustonen in [7] in the case where $h \in W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$.
In this paper we investigate the problem of existence solutions of the following Dirichlet problem

$$
\begin{equation*}
A u+g(x, u, \nabla u)=\mu \text { in } \Omega . \tag{1.2}
\end{equation*}
$$

[^0]where $\mu \in L^{1}(\Omega)+\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)$.
In this context of nonlinear operators, if μ belongs to $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$ existence results for problem (1.2) have been proved in [2], where the authors have used the approach based on the strong convergence of the positive part u_{ε}^{+}(resp. ngative part u_{ε}^{-}).
The case where $\mu \in L^{1}(\Omega)$ is investigated in [3] under the following coercivity condition,
\[

$$
\begin{equation*}
|g(x, s, \xi)| \geq \beta \sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p} \text { for }|s| \geq \gamma \tag{1.3}
\end{equation*}
$$

\]

Let us recall that the results given in [2, 3] have been proved under some additional conditions on the weight function σ and the parameter q introduced in Hardy inequality.
The main point in our study to prove an existence result for some class of problem of the kind (1.2), without assuming the coercivity condition (1.3). Moreover, we didn't supose any restriction for weight function σ and parameter q.
It would be interesting at this stage to refer the reader to our previous work [1]. For different appproach used in the setting of Orlicz Sobolev space the reader can refer to [4], and for same results in the L^{p} case, to [10].
The plan of this is as follows : in the next section we will give some preliminaries and some technical lemmas, section 3 is concerned with main results and basic assumptions, in section 4 we prove main results and we study the stability and the positivity of solution.

2. Preliminaries

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$. Let $1<p<\infty$, and let $w=\left\{w_{i}(x) ; 0 \leq i \leq N\right\}$, be a vector of weight functions i.e. every component $w_{i}(x)$ is a measurable function which is strictly positive a.e. in Ω. Further, we suppose in all our considerations that for $0 \leq i \leq N$

$$
\begin{equation*}
w_{i} \in L_{l o c}^{1}(\Omega) \text { and } w_{i}^{-\frac{1}{p-1}} \in L_{l o c}^{1}(\Omega) . \tag{2.1}
\end{equation*}
$$

We define the weighted space with weight γ in Ω as

$$
L^{p}(\Omega, \gamma)=\left\{u(x): u \gamma^{\frac{1}{p}} \in L^{1}(\Omega)\right\},
$$

which is endowed with, we define the norm

$$
\|u\|_{p, \gamma}=\left(\int_{\Omega}|u(x)|^{p} \gamma(x) d x\right)^{\frac{1}{p}} .
$$

We denote by $W^{1, p}(\Omega, w)$ the weighted Sobolev space of all real-valued functions $u \in L^{p}\left(\Omega, w_{0}\right)$ such that the derivatives in the sense of distributions satisfy

$$
\frac{\partial u}{\partial x_{i}} \in L^{p}\left(\Omega, w_{i}\right) \text { for all } i=1, \ldots, N .
$$

This set of functions forms a Banach space under the norm

$$
\begin{equation*}
\|u\|_{1, p, w}=\left(\int_{\Omega}|u(x)|^{p} w_{0} d x+\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{\frac{1}{p}} . \tag{2.2}
\end{equation*}
$$

To deal with the Dirichlet problem, we use the space

$$
X=W_{0}^{1, p}(\Omega, w)
$$

defined as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm (2.2). Note that, $C_{0}^{\infty}(\Omega)$ is dense in $W_{0}^{1, p}(\Omega, w)$ and $\left(X,\|\cdot\|_{1, p, w}\right)$ is a reflexive Banach space.
We recall that the dual of the weighted Sobolev spaces $W_{0}^{1, p}(\Omega, w)$ is equivalent to $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, where $w^{*}=\left\{w_{i}^{*}=w_{i}^{1-p^{\prime}}\right\}, \quad i=1, \ldots, N$ and p^{\prime} is the conjugate of p i.e. $p^{\prime}=\frac{p}{p-1}$. For more details we refer the reader to [8].
We introduce the functional spaces, we will need later.
For $p \in(1, \infty), \mathcal{T}_{0}^{1, p}(\Omega, w)$ is defined as the set of measurable functions $u: \Omega \longrightarrow \mathbb{R}$ such that for $k>0$ the truncated functions $T_{k}(u) \in W_{0}^{1, p}(\Omega, w)$.
We give the following lemma which is a generalization of Lemma 2.1 [5] in weighted Sobolev spaces.

Lemma 2.1. For every $u \in \mathcal{T}_{0}^{1, p}(\Omega, w)$, there exists a unique measurable function $v: \Omega \longrightarrow$ \mathbb{R}^{N} such that

$$
\nabla T_{k}(u)=v \chi_{\{|u|<k\}}, \quad \text { almost everywhere in } \Omega, \quad \text { for every } k>0
$$

We will define the gradient of u as the function v, and we will denote it by $v=\nabla u$.
Lemma 2.2. Let $\lambda \in \mathbb{R}$ and let u and v be two functions which are finite almost everywhere, and which belongs to $\mathcal{T}_{0}^{1, p}(\Omega, w)$. Then,

$$
\nabla(u+\lambda v)=\nabla u+\lambda \nabla v \quad \text { a.e. in } \quad \Omega
$$

where $\nabla u, \nabla v$ and $\nabla(u+\lambda v)$ are the gradients of u, v and $u+\lambda v$ introduced in Lemma 2.1.
The proof of this lemma is similar to the proof of Lemma $2.12[6]$ for the non weighted case.

Definition 2.1. Let Y be a reflexive Banach space, a bounded operator B from Y to its dual Y^{*} is called pseudo-monotone if for any sequence $u_{n} \in Y$ with $u_{n} \rightharpoonup u$ weakly in $Y . B u_{n} \rightharpoonup \chi$ weakly in Y^{*} and $\limsup _{n \rightarrow \infty}\left\langle B u_{n}, u_{n}\right\rangle \leq\langle\chi, u\rangle$, we have

$$
B u_{n}=B u \quad \text { and }\left\langle B u_{n}, u_{n}\right\rangle \rightarrow\langle\chi, u\rangle \text { as } n \rightarrow \infty
$$

Now, we state the following assumptions.
$\left(\mathbf{H}_{\mathbf{1}}\right)$-The expression

$$
\begin{equation*}
\|u\|_{X}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{\frac{1}{p}} \tag{2.3}
\end{equation*}
$$

is a norm defined on X and is equivalent to the norm (2.2). (Note that $\left(X,\|u\|_{X}\right)$ is a uniformly convex (and reflexive) Banach space.
-There exist a weight function σ on Ω and a parameter $q, 1<q<\infty$, such that the Hardy inequality

$$
\begin{equation*}
\left(\int_{\Omega}|u|^{q} \sigma(x) d x\right)^{\frac{1}{q}} \leq C\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{\frac{1}{p}} \tag{2.4}
\end{equation*}
$$

holds for every $u \in X$ with a constant $C>0$ independent of u. Moreover, the imbeding

$$
\begin{equation*}
X \hookrightarrow L^{q}(\Omega, \sigma) \tag{2.5}
\end{equation*}
$$

determined by the inequality (2.4) is compact.
We state the following technical lemmas which are needed later.

Lemma 2.3 [2]. Let $g \in L^{r}(\Omega, \gamma)$ and let $g_{n} \in L^{r}(\Omega, \gamma)$, with $\left\|g_{n}\right\|_{\Omega, \gamma} \leq c, 1<r<\infty$. If $g_{n}(x) \rightarrow g(x)$ a.e. in Ω, then $g_{n} \rightharpoonup g$ weakly in $L^{r}(\Omega, \gamma)$.

Lemma 2.4 [2]. Assume that $\left(H_{1}\right)$ holds. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be unifomly Lipschitzian, with $F(0)=0$. Let $u \in W_{0}^{1, p}(\Omega, w)$. Then $F(u) \in W_{0}^{1, p}(\Omega, w)$. Moreover, if the set D of discontinuity points of F^{\prime} is finite, then

$$
\frac{\partial F(u)}{\partial x_{i}}=\left\{\begin{array}{clll}
F^{\prime}(u) \frac{\partial u}{\partial x_{i}} & \text { a.e. } & \text { in } & \{x \in \Omega: u(x) \notin D\} \\
0 & \text { a.e. } & \text { in } & \{x \in \Omega: u(x) \in D\}
\end{array}\right.
$$

From the previous lemma, we deduce the following.

Lemma 2.5 [2]. Assume that $\left(H_{1}\right)$ holds. Let $u \in W_{0}^{1, p}(\Omega, w)$, and let $T_{k}(u), k \in \mathbb{R}^{+}$, be the usual truncation, then $T_{k}(u) \in W_{0}^{1, p}(\Omega, w)$. Moreover, we have

$$
T_{k}(u) \rightarrow u \quad \text { strongly in } W_{0}^{1, p}(\Omega, w)
$$

3. Main results

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$. Consider the second order operator $A: W_{0}^{1, p}(\Omega, w) \longrightarrow W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$ in divergence form

$$
A u=-\operatorname{div}(a(x, u, \nabla u))
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function Satisfying the following assumptions: $\left(\mathbf{H}_{\mathbf{2}}\right)$ For $i=1, \ldots, N$

$$
\begin{gather*}
\left|a_{i}(x, s, \xi)\right| \leq \beta w_{i}^{\frac{1}{p}}(x)\left[k(x)+\sigma^{\frac{1}{p^{\prime}}}|s|^{\frac{q}{p^{\prime}}}+\sum_{j=1}^{N} w_{j}^{\frac{1}{p^{\prime}}}(x)\left|\xi_{j}\right|^{p-1}\right] \tag{3.1}\\
{[a(x, s, \xi)-a(x, s, \eta)](\xi-\eta)>0 \text { for all } \xi \neq \eta \in \mathbb{R}^{N}} \tag{3.2}\\
a(x, s, \xi) \xi \geq \alpha \sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p} \tag{3.3}
\end{gather*}
$$

where $k(x)$ is a positive function in $L^{p^{\prime}}(\Omega)$ and α, β are positive constants.
Assume that $g: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \longrightarrow \mathbb{R}$ is a Carathéodory function satisfying :
$\left(\mathbf{H}_{3}\right) g(x, s, \xi)$ is a Carathéodory function satisfying

$$
\begin{equation*}
g(x, s, \xi) \cdot s \geq 0 \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
|g(x, s, \xi)| \leq b(|s|)\left(\sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p}+c(x)\right) \tag{3.5}
\end{equation*}
$$

where $b: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a positive increasing function and $c(x)$ is a positive function which belong to $L^{1}(\Omega)$.
Furthermore we suppose that

$$
\begin{equation*}
\mu=f-\operatorname{div} F, \quad f \in L^{1}(\Omega), F \in \prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right) \tag{3.6}
\end{equation*}
$$

Consider the nonlinear problem with Dirichlet boundary condition

$$
(P)\left\{\begin{array}{l}
u \in \mathcal{T}_{0}^{1, p}(\Omega, w), \quad g(x, u, \nabla u) \in L^{1}(\Omega) \\
\int_{\Omega} a(x, u, \nabla u) \nabla T_{k}(u-v) d x+\int_{\Omega} g(x, u, \nabla u) T_{k}(u-v) d x \\
\quad \leq \int_{\Omega} f T_{k}(u-v) d x+\int_{\Omega} F \nabla T_{k}(u-v) d x \\
\forall v \in W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega) \forall k>0 .
\end{array}\right.
$$

We shall prove the following existence theorem
Theorem 3.1. Assume that $\left(H_{1}\right)-\left(H_{3}\right)$ hold true. Then there exists at least one solution of the problèm (P).

Remark 3.1. If $w_{i}=\sigma=q=1$, the result of the preceding theorem coincides with those of Porretta (see [10]).

4. Proof of main results

In order to prove the existence theorem we need the following
Lemma 4.1 [2]. Assume that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ are satisfied, and let $\left(u_{n}\right)_{n}$ be a sequence in $W_{0}^{1, p}(\Omega, w)$ such that

1) $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$,
2) $\int_{\Omega}\left[a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right] \nabla\left(u_{n}-u\right) d x \rightarrow 0$
then,

$$
u_{n} \rightarrow u \quad \text { in } W_{0}^{1, p}(\Omega, w) .
$$

We give now the proof of theorem 3.1.

STEP 1. The approximate problem.

Let f_{n} be a sequence of smooth functions which strongly converges to f in $L^{1}(\Omega)$.
We Consider the sequence of approximate problems:

$$
\left\{\begin{array}{l}
u_{n} \in W_{0}^{1, p}(\Omega, w), \tag{4.1}\\
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla v d x+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) v d x \\
=\int_{\Omega} f_{n} v d x+\int_{\Omega} F \nabla v d x \\
\forall v \in W_{0}^{1, p}(\Omega, w) .
\end{array}\right.
$$

where $g_{n}(x, s, \xi)=\frac{g(x, s, \xi)}{\left.1+\frac{1}{n} \right\rvert\, g(x, s, \xi)} \theta_{n}(x)$ with $\theta_{n}(x)=n T_{1 / n}\left(\sigma^{1 / q}(x)\right)$.
Note that $g_{n}(x, s, \xi)$ satisfises the following conditions

$$
g_{n}(x, s, \xi) s \geq 0, \quad\left|g_{n}(x, s, \xi)\right| \leq|g(x, s, \xi)| \text { and }\left|g_{n}(x, s, \xi)\right| \leq n .
$$

We define the operator $G_{n}: X \longrightarrow X^{*}$ by,

$$
\left\langle G_{n} u, v\right\rangle=\int_{\Omega} g_{n}(x, u, \nabla u) v d x
$$

and

$$
\langle A u, v\rangle=\int_{\Omega} a(x, u, \nabla u) \nabla v d x
$$

Thanks to Hölder's inequality, we have for all $u \in X$ and $v \in X$,

$$
\begin{align*}
\left|\int_{\Omega} g_{n}(x, u, \nabla u) v d x\right| & \leq\left(\int_{\Omega}\left|g_{n}(x, u, \nabla u)\right|^{q^{\prime}} \sigma^{-\frac{q^{\prime}}{q}} d x\right)^{\frac{1}{q^{\prime}}}\left(\int_{\Omega}|v|^{q} \sigma d x\right)^{\frac{1}{q}} \\
& \leq n\left(\int_{\Omega} \sigma^{q^{\prime} / q} \sigma^{-q^{\prime} / q} d x\right)^{\frac{1}{q^{\prime}}}\|v\|_{q, \sigma} \tag{4.2}\\
& \leq C_{n}\|v\|_{X},
\end{align*}
$$

the last inequality is due to (2.3) and (2.4).

Lemma 4.2. The operator $B_{n}=A+G_{n}$ from X into its dual X^{*} is pseudomonotone. Moreover, B_{n} is coercive, in the following sense:

$$
\frac{\left\langle B_{n} v, v\right\rangle}{\|v\|_{X}} \longrightarrow+\infty \text { if }\|v\|_{X} \longrightarrow+\infty, v \in W_{0}^{1, p}(\Omega, w)
$$

This Lemma will be proved below.
In view of Lemma 4.2, there exists at least one solution u_{n} of (4.1) (cf. Theorem 2.1 and Remark 2.1 in Chapter 2 of [11]).

STEP 2. A priori estimates.

Taking $v=T_{k}\left(u_{n}\right)$ as test function in (4.1), gives

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla & T_{k}\left(u_{n}\right) d x+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}\right) d x \\
= & \int_{\Omega} f_{n} T_{k}\left(u_{n}\right) d x+\int_{\Omega} F_{n} \nabla T_{k}\left(u_{n}\right) d x
\end{aligned}
$$

and by using in fact that $g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}\right) \geq 0$, we obtain

$$
\int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x \leq c k+\int_{\Omega} F_{n} \nabla T_{k}\left(u_{n}\right) d x .
$$

Thank's to Young's inequality and (3.3), one easily has

$$
\begin{equation*}
\frac{\alpha}{2} \int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p} w_{i}(x) d x \leq c_{1} k . \tag{4.3}
\end{equation*}
$$

STEP 3. Almost everywhere convergence of u_{n}.

We prove that u_{n} converges to some function u locally in measure (and therefore, we can
aloways assume that the convergence is a.e. after passing to a suitable subsequence). To prove this, we show that u_{n} is a Cauchy sequence in measure in any ball B_{R}.
Let $k>0$ large enough, we have

$$
\begin{aligned}
k \operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\} \cap B_{R}\right) & =\int_{\left\{\left|u_{n}\right|>k\right\} \cap B_{R}}\left|T_{k}\left(u_{n}\right)\right| d x \leq \int_{B_{R}}\left|T_{k}\left(u_{n}\right)\right| d x \\
& \leq\left(\int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{p} w_{0} d x\right)^{\frac{1}{p}}\left(\int_{B_{R}} w_{0}^{1-p^{\prime}} d x\right)^{\frac{1}{q^{\prime}}} \\
& \leq c_{0}\left(\int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{\frac{1}{p}} \\
& \leq c_{1} k^{\frac{1}{p}}
\end{aligned}
$$

Which implies that

$$
\begin{equation*}
\operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\} \cap B_{R}\right) \leq \frac{c_{1}}{k^{1-\frac{1}{p}}} \quad \forall k>1 \tag{4.4}
\end{equation*}
$$

Moreover, we have, for every $\delta>0$,

$$
\begin{gather*}
\operatorname{meas}\left(\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \cap B_{R}\right) \leq \operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\} \cap B_{R}\right)+\operatorname{meas}\left(\left\{\left|u_{m}\right|>k\right\} \cap B_{R}\right) \\
+\operatorname{meas}\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\delta\right\} . \tag{4.5}
\end{gather*}
$$

Since $T_{k}\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega, w)$, there exists some $v_{k} \in W_{0}^{1, p}(\Omega, w)$, such that

$$
\begin{array}{ll}
T_{k}\left(u_{n}\right) \rightharpoonup v_{k} & \text { weakly in } W_{0}^{1, p}(\Omega, w) \\
T_{k}\left(u_{n}\right) \rightarrow v_{k} & \text { strongly in } L^{q}(\Omega, \sigma) \text { and a.e. in } \Omega .
\end{array}
$$

Consequently, we can assume that $T_{k}\left(u_{n}\right)$ is a Cauchy sequence in measure in Ω.
Let $\varepsilon>0$, then, by (4.4) and (4.5), there exists some $k(\varepsilon)>0$ such that meas $\left(\left\{\left|u_{n}-u_{m}\right|>\right.\right.$ $\left.\delta\} \cap B_{R}\right)<\varepsilon$ for all $n, m \geq n_{0}(k(\varepsilon), \delta, R)$. This proves that $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure in B_{R}, thus converges almost everywhere to some measurable function u. Then

$$
\begin{array}{ll}
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) & \text { weakly in } W_{0}^{1, p}(\Omega, w), \\
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) & \text { strongly in } L^{q}(\Omega, \sigma) \text { and } \text { a.e. in } \Omega .
\end{array}
$$

STEP 4. Strong convergence of truncations.

We fix $k>0$, and let $h>k>0$.
We shall use in (4.1) the test function

$$
\left\{\begin{array}{l}
v_{n}=\phi\left(w_{n}\right) \tag{4.6}\\
w_{n}=T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}\right)-T_{k}(u)\right)
\end{array}\right.
$$

with $\phi(s)=s e^{\gamma s^{2}}, \gamma=\left(\frac{b(k)}{\alpha}\right)^{2}$.
It is well known that

$$
\begin{equation*}
\phi^{\prime}(s)-\frac{b(k)}{\alpha}|\phi(s)| \geq \frac{1}{2} \quad \forall s \in \mathbb{R} \tag{4.7}
\end{equation*}
$$

It follows that

$$
\begin{gather*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla w_{n} \phi^{\prime}\left(w_{n}\right) d x+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(w_{n}\right) d x \\
=\int_{\Omega} f_{n} \phi\left(w_{n}\right) d x+\int_{\Omega} F \nabla \phi\left(w_{n}\right) d x \tag{4.8}
\end{gather*}
$$

Since $\phi\left(w_{n}\right) g_{n}\left(x, u_{n}, \nabla u_{n}\right)>0$ on the subset $\left\{x \in \Omega,\left|u_{n}(x)\right|>k\right\}$, we deduce from (4.8) that

$$
\begin{gather*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla w_{n} \phi^{\prime}\left(w_{n}\right) d x+\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(w_{n}\right) d x \tag{4.9}\\
\leq \int_{\Omega} f_{n} \phi\left(w_{n}\right) d x+\int_{\Omega} F \nabla \phi\left(w_{n}\right) d x
\end{gather*}
$$

Denote by $\varepsilon_{h}^{1}(n), \varepsilon_{h}^{2}(n), \ldots$ various sequences of real numbers which converge to zero as n tends to infinity for any fixed value of h.
We will deal with each term of (4.9). First of all, observe that

$$
\begin{equation*}
\int_{\Omega} f_{n} \phi\left(w_{n}\right) d x=\int_{\Omega} f \phi\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x+\varepsilon_{h}^{1}(n) \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} F \nabla \phi\left(w_{n}\right) d x=\int_{\Omega} F \nabla T_{2 k}\left(u-T_{h}(u)\right) \phi^{\prime}\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x+\varepsilon_{h}^{2}(n) \tag{4.11}
\end{equation*}
$$

Splitting the first integral on the left hand side of (4.9) where $\left|u_{n}\right| \leq k$ and $\left|u_{n}\right|>k$, we can write,

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla w_{n} \phi^{\prime}\left(w_{n}\right) d x \\
&=\int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(w_{n}\right) d x \tag{4.12}\\
&+\int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla w_{n} \phi^{\prime}\left(w_{n}\right) d x
\end{align*}
$$

Setting $m=4 k+h$, using $a(x, s, \xi) \xi \geq 0$ and the fact that $\nabla w_{n}=0$ on the set where $\left|u_{n}\right|>m$, we have

$$
\begin{align*}
& \int_{\left\{\left|u_{n}\right|>k\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla w_{n} \phi^{\prime}\left(w_{n}\right) d x \\
& \geq-\phi^{\prime}(2 k) \int_{\left\{\left|u_{n}\right|>k\right\}}\left|a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right)\right|\left|\nabla T_{k}(u)\right| d x \tag{4.13}
\end{align*}
$$

and since $a(x, s, 0)=0 \quad \forall s \in \mathbb{R}$, we have

$$
\begin{align*}
\int_{\left\{\left|u_{n}\right| \leq k\right\}} a\left(x, T_{k}\left(u_{n}\right)\right. & \left., \nabla T_{k}\left(u_{n}\right)\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(w_{n}\right) d x \tag{4.14}\\
& =\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(w_{n}\right) d x
\end{align*}
$$

Combining (4.13) and (4.14), we get

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla w_{n} \phi^{\prime}\left(w_{n}\right) d x \\
& \geq \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(w_{n}\right) d x \tag{4.15}\\
& \quad-\phi^{\prime}(2 k) \int_{\left\{\left|u_{n}\right|>k\right\}}\left|a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right)\right|\left|\nabla T_{k}(u)\right| d x
\end{align*}
$$

The second term of the right hand side of the last inequality tends to 0 as n tends to infinity. Indeed. Since the sequence $\left(a\left(x, T_{m}\left(u_{n}\right), \nabla T_{m}\left(u_{n}\right)\right)\right)_{n}$ is bounded in $\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)$ while $\nabla T_{k}(u) \chi_{\left|u_{n}\right|>k}$ tends to 0 strongly in $\prod_{i=1}^{N} L^{p}\left(\Omega, w_{i}\right)$, which yields

$$
\begin{align*}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla & w_{n} \phi^{\prime}\left(w_{n}\right) d x \\
& \geq \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(w_{n}\right) d x+\varepsilon_{h}^{3} \tag{4.16}
\end{align*}
$$

On the other hand, the term of the right hand side of (4.16) reads as

$$
\begin{align*}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) & {\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(w_{n}\right) d x } \\
=\int_{\Omega}[& {\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] } \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] \phi^{\prime}\left(w_{n}\right) d x \tag{4.17}\\
& +\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla T_{k}\left(u_{n}\right) \phi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \\
& \quad-\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla T_{k}(u) \phi^{\prime}\left(w_{n}\right) d x
\end{align*}
$$

Since $a_{i}\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \phi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \rightarrow a_{i}\left(x, T_{k}(u), \nabla T_{k}(u)\right) \phi^{\prime}(0)$ strongly in $L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)$ by using the continuity of the Nymetskii operator, while $\frac{\partial\left(T_{k}\left(u_{n}\right)\right)}{\partial x_{i}} \rightharpoonup \frac{\partial\left(T_{k}(u)\right)}{\partial x_{i}}$ weakly in $L^{p}\left(\Omega, w_{i}\right)$, we have

$$
\begin{align*}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla\right. & \left.T_{k}(u)\right) \nabla T_{k}\left(u_{n}\right) \phi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x \tag{4.18}\\
& =\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) \phi^{\prime}(0) d x+\varepsilon_{h}^{4}(n)
\end{align*}
$$

In the same way, we have

$$
\begin{align*}
-\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right),\right. & \left.\nabla T_{k}(u)\right) \nabla T_{k}(u) \phi^{\prime}\left(w_{n}\right) d x \\
& =-\int_{\Omega} a\left(x, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) \phi^{\prime}(0) d x+\varepsilon_{h}^{5}(n) \tag{4.19}
\end{align*}
$$

Combining (4.16)-(4.19), we get

$$
\left.\begin{array}{rl}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla & w_{n} \phi^{\prime}\left(w_{n}\right) d
\end{array}\right)
$$

The second term of the left hand side of (4.9), can be estimated as

$$
\begin{align*}
\mid \int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n},\right. & \left.\nabla u_{n}\right) \left.\phi\left(w_{n}\right) d x\left|\leq \int_{\left\{\left|u_{n}\right| \leq k\right\}} b(k)\left(c(x)+\sum_{i=1}^{N} w_{i}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p}\right)\right| \phi\left(w_{n}\right) \right\rvert\, d x \\
\leq & b(k) \int_{\Omega} c(x)\left|\phi\left(w_{n}\right)\right| d x \\
& +\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right)\left|\phi\left(w_{n}\right)\right| d x \tag{4.21}
\end{align*}
$$

EJQTDE, 2006 No. 19, p. 9

Since $c(x)$ belongs to $L^{1}(\Omega)$ it is easy to see that

$$
\begin{equation*}
b(k) \int_{\Omega} c(x)\left|\phi\left(w_{n}\right)\right| d x=b(k) \int_{\Omega} c(x)\left|\phi\left(T_{2 k}\left(u-T_{h}(u)\right)\right)\right| d x+\varepsilon_{h}^{7}(n) \tag{4.22}
\end{equation*}
$$

On the other side, we have

$$
\begin{align*}
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) & \nabla T_{k}\left(u_{n}\right)\left|\phi\left(w_{n}\right)\right| d x \\
=\int_{\Omega}[& \left.a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\left|\phi\left(w_{n}\right)\right| d x \tag{4.23}\\
& +\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}(u)\left|\phi\left(w_{n}\right)\right| d x \\
& +\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\left|\phi\left(w_{n}\right)\right| d x
\end{align*}
$$

As above, by letting n go to infinity, we can easily see that each one of last two integrals of the right-hand side of the last equality is of the form $\varepsilon_{h}^{8}(n)$ and then

$$
\begin{align*}
&\left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(w_{n}\right) d x\right| \\
& \leq \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \tag{4.24}\\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\left|\phi\left(w_{n}\right)\right| d x \\
&+b(k) \int_{\Omega} c(x)\left|\phi\left(T_{2 k}\left(u-T_{h}(u)\right)\right)\right| d x+\varepsilon_{h}^{9}(n) .
\end{align*}
$$

(4.9)-(4.11), (4.20) and (4.24), we get

$$
\begin{aligned}
& \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \qquad \begin{array}{r}
\times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\left(\phi^{\prime}\left(w_{n}\right)-\frac{b(k)}{\alpha}\left|\phi\left(w_{n}\right)\right|\right) d x \\
\leq b(k)
\end{array} \int_{\Omega} c(x)\left|\phi\left(T_{2 k}\left(u-T_{h}(u)\right)\right)\right| d x+\int_{\Omega} f \phi\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x \\
& \quad+\int_{\Omega} F \nabla T_{2 k}\left(u-T_{h}(u)\right) \phi^{\prime}\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x+\varepsilon_{h}^{10}(n)
\end{aligned}
$$

which and (4.7) implies that

$$
\begin{aligned}
& \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
& \quad \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
& \leq 2 b(k) \int_{\Omega} c(x)\left|\phi\left(T_{2 k}\left(u-T_{h}(u)\right)\right)\right| d x+2 \int_{\Omega} f \phi\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x \\
& \quad+2 \int_{\Omega} F \nabla T_{2 k}\left(u-T_{h}(u)\right) \phi^{\prime}\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x+\varepsilon_{h}^{11}(n)
\end{aligned}
$$

in which, we can pass to the limit as $n \rightarrow+\infty$ to obtain

$$
\begin{gather*}
\limsup _{n \rightarrow \infty} \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x \\
\leq 2 b(k) \int_{\Omega} c(x)\left|\phi\left(T_{2 k}\left(u-T_{h}(u)\right)\right)\right| d x+2 \int_{\Omega} f \phi\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x \\
+2 \int_{\Omega} F \nabla T_{2 k}\left(u-T_{h}(u)\right) \phi^{\prime}\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x \tag{4.25}
\end{gather*}
$$

It remains to show, for our purposes, that the all terms on the right hand side of (4.25) converge to zero as h goes to infinity. The only difficulty that exists is in the last term. For the other terms it suffices to apply Lebesgue's theorem.
We deal with this term. Let us observe that, if we take $\phi\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right.$) as test function in (4.1) and use (3.3), we obtain

$$
\begin{aligned}
& \alpha \int_{\left\{h \leq\left|u_{n}\right| \leq 2 k+h\right\}} \sum_{i=1}^{N} \left\lvert\, \frac{\partial u_{n}}{\partial x_{i}}\right.\left.\right|^{p} w_{i} \phi^{\prime}\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x \\
&+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) \phi\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x \\
& \leq \int_{\left\{h \leq\left|u_{n}\right| \leq 2 k+h\right\}} F \nabla u_{n} \phi^{\prime}\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x \\
& \int_{\Omega} f_{n} \phi\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x,
\end{aligned}
$$

and thanks to the sign condition (3.4), we get

$$
\begin{aligned}
\alpha \int_{\left\{h \leq\left|u_{n}\right| \leq 2 k+h\right\}} \sum_{i=1}^{N}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} w_{i} \phi^{\prime}\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x \\
\leq \int_{\left\{h \leq\left|u_{n}\right| \leq 2 k+h\right\}} F \nabla u_{n} \phi^{\prime}\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x \\
\quad+\int_{\Omega} f_{n} \phi\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x .
\end{aligned}
$$

Using the Young inequality we have

$$
\begin{align*}
\frac{\alpha}{2} \int_{\left\{h \leq\left|u_{n}\right| \leq 2 k+h\right\}} & \sum_{i=1}^{N}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} w_{i} \phi^{\prime}\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x \tag{4.26}\\
& \leq \int_{\Omega} f_{n} \phi\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x+c_{k} \int_{\left\{h \leq\left|u_{n}\right|\right\}}\left|w^{\frac{-1}{p}} \cdot F\right|^{p^{\prime}} d x
\end{align*}
$$

so that, since $\phi^{\prime} \geq 1$, we have

$$
\begin{aligned}
& \int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{2 k}\left(u-T_{h}(u)\right)}{\partial x_{i}}\right|^{p} w_{i} d x \\
& \quad \leq \int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{2 k}\left(u-T_{h}(u)\right)}{\partial x_{i}}\right|^{p} w_{i} \phi^{\prime}\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x
\end{aligned}
$$

again because the norm is lower semi-continuity, we get

$$
\begin{align*}
& \int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{2 k}\left(u-T_{h}(u)\right)}{\partial x_{i}}\right|^{p} w_{i} \phi^{\prime}\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x \\
& \leq c_{k} \int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{2 k}\left(u-T_{h}(u)\right)}{\partial x_{i}}\right|^{p} w_{i} d x \\
& \leq \liminf _{n \rightarrow \infty} \int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)}{\partial x_{i}}\right|^{p} w_{i} d x \\
& \leq c_{k} \liminf _{n \rightarrow \infty} \int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)}{\partial x_{i}}\right|^{p} w_{i} \phi^{\prime}\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x \tag{4.27}
\end{align*}
$$

Consequently, in view of (4.26) and (4.27), we obtain

$$
\begin{aligned}
& \int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{2 k}\left(u-T_{h}(u)\right)}{\partial x_{i}}\right|^{p} w_{i} \phi^{\prime}\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x \\
& \leq \liminf _{n \rightarrow \infty} c_{k} \int_{\left\{h \leq\left|u_{n}\right|\right\}}\left|w^{\frac{-1}{p}} F\right|^{p^{\prime}} d x \\
& \quad+\liminf _{n \rightarrow \infty} \int_{\Omega} f_{n} \phi\left(T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)\right)\right) d x .
\end{aligned}
$$

Finally, the strong convergence in $L^{1}(\Omega)$ of f_{n}, we have, as first n and then h tend to infinity,

$$
\limsup _{h \rightarrow \infty} \int_{\{h \leq|u| \leq 2 k+h\}_{i=1}} \sum_{i}^{N}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i} \phi^{\prime}\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x=0,
$$

hence

$$
\lim _{h \rightarrow \infty} \int_{\Omega} F \nabla T_{2 k}\left(u-T_{h}(u)\right) \phi^{\prime}\left(T_{2 k}\left(u-T_{h}(u)\right)\right) d x=0 .
$$

Therefore by (4.25), letting h go to infinity, we conclude,

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left[a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x=0,
$$

which and using Lemma 4.1 implies that

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightarrow T_{k}(u) \text { strongly in } W_{0}^{1, p}(\Omega, w) \quad \forall k>0 \tag{4.28}
\end{equation*}
$$

STEP 5. Passing to the limit.

By using $T_{k}\left(u_{n}-v\right)$ as test function in (4.1), with $v \in W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega)$, we get

$$
\begin{gather*}
\int_{\Omega} a\left(x, T_{k+\|v\|_{\infty}}\left(u_{n}\right), \nabla T_{k+\|v\|_{\infty}}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}-v\right) d x+\int_{\Omega} g_{n}\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}-v\right) d x \\
=\int_{\Omega} f_{n} T_{k}\left(u_{n}-v\right) d x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-v\right) d x \tag{4.29}
\end{gather*}
$$

By Fatou's lemma and the fact that

$$
a\left(x, T_{k+\|v\|_{\infty}}\left(u_{n}\right), \nabla T_{k+\|v\|_{\infty}}\left(u_{n}\right)\right) \rightharpoonup a\left(x, T_{k+\|v\|_{\infty}}(u), \nabla T_{k+\|v\|_{\infty}}(u)\right)
$$

weakly in $\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)$ one easily sees that

$$
\begin{align*}
\int_{\Omega} a\left(x, T_{k+\|v\|_{\infty}}(u),\right. & \left.\nabla T_{k+\|v\|_{\infty}}(u)\right) \nabla T_{k}(u-v) d x \tag{4.30}\\
\leq & \liminf _{n \rightarrow \infty} \int_{\Omega} a\left(x, T_{k+\|v\|_{\infty}}\left(u_{n}\right), \nabla T_{k+\|v\|_{\infty}}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}-v\right) d x .
\end{align*}
$$

For the second term of the right hand side of (4.29), we have

$$
\begin{equation*}
\int_{\Omega} F \nabla T_{k}\left(u_{n}-v\right) d x \longrightarrow \int_{\Omega} F \nabla T_{k}(u-v) d x \text { as } n \rightarrow \infty \tag{4.31}
\end{equation*}
$$

since $\nabla T_{k}\left(u_{n}-v\right) \rightharpoonup \nabla T_{k}(u-v)$ weakly in $\prod_{i=1}^{N} L^{p}\left(\Omega, w_{i}\right)$, while $F \in \prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)$.
On the other hand, we have

$$
\begin{equation*}
\int_{\Omega} f_{n} T_{k}\left(u_{n}-v\right) d x \longrightarrow \int_{\Omega} f T_{k}(u-v) d x \text { as } n \rightarrow \infty . \tag{4.32}
\end{equation*}
$$

To conclude the proof of theorem, it only remains to prove

$$
\begin{equation*}
g_{n}\left(x, u_{n}, \nabla u_{n}\right) \rightarrow g(x, u, \nabla u) \text { strongly in } L^{1}(\Omega) \tag{4.33}
\end{equation*}
$$

in particular it is enough to prove the equiintegrable of $g_{n}\left(x, u_{n}, \nabla u_{n}\right)$. To this purpose, we take $T_{l+1}\left(u_{n}\right)-T_{l}\left(u_{n}\right)$ as test function in (4.1), we obtain

$$
\int_{\left\{\left|u_{n}\right|>l+1\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \int_{\left\{\left|u_{n}\right|>l\right\}}\left|f_{n}\right| d x
$$

Let $\varepsilon>0$. Then there exists $l(\varepsilon) \geq 1$ such that

$$
\begin{equation*}
\int_{\left\{\left|u_{n}\right|>l(\varepsilon)\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x<\varepsilon / 2 . \tag{4.34}
\end{equation*}
$$

For any measurable subset $E \subset \Omega$, we have

$$
\begin{aligned}
\int_{E}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq & \int_{E} b(l(\varepsilon))\left(c(x)+\sum_{i=1}^{N} w_{i}\left|\frac{\partial\left(T_{l(\varepsilon)}\left(u_{n}\right)\right)}{\partial x_{i}}\right|^{p}\right) d x \\
& +\int_{\left\{\left|u_{n}\right|>l(\varepsilon)\right\}}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x
\end{aligned}
$$

In view of (4.28) there exists $\eta(\varepsilon)>0$ such that

$$
\begin{align*}
\int_{E} b(l(\varepsilon))\left(c(x)+\sum_{i=1}^{N} w_{i}\left|\frac{\partial\left(T_{l(\varepsilon)}\left(u_{n}\right)\right)}{\partial x_{i}}\right|^{p}\right) d x<\varepsilon / 2 \tag{4.35}\\
\quad \text { for all E such that meas } E<\eta(\varepsilon) .
\end{align*}
$$

Finally, by combining (4.34) and (4.35) one easily has

$$
\int_{E}\left|g_{n}\left(x, u_{n}, \nabla u_{n}\right)\right| d x<\varepsilon \text { for all } E \text { such that meas } E<\eta(\varepsilon)
$$

which shows that $g_{n}\left(x, u_{n}, \nabla u_{n}\right)$ are uniformly equintegrable in Ω as required.
Thanks to (4.30)-(4.33) we can pass to the limit in (4.29) and we obtain that u is a solution of the problem (P).
This completes the proof of Theorem 3.1.
Remark 4.1. Note that, we obtain the existence result withowt assuming the coercivity condition. However one can overcome this difficulty by introduced the function $w_{n}=T_{2 k}\left(u_{n}-\right.$ $\left.T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}\right)-T_{k}(u)\right)$ in the test function (4.6).

Proof of Lemma 4.2.

From Hölder's inequality, the growth condition (3.1) we can show that A is bounded, and by using (4.2), we have B_{n} bounded. The coercivity folows from (3.3) and (3.4). it remain to
show that B_{n} is pseudo-monotone.
Let a sequence $\left(u_{k}\right)_{k} \in W_{0}^{1, p}(\Omega, w)$ such that

$$
\begin{gathered}
u_{k} \rightharpoonup u \text { weakly in } W_{0}^{1, p}(\Omega, w) \\
B_{n} u_{k} \rightharpoonup \chi \text { weakly in } W^{-1, p^{\prime}}\left(\Omega, w^{*}\right),
\end{gathered}
$$

and $\limsup _{k \rightarrow \infty}\left\langle B_{n} u_{k}, u_{k}\right\rangle \leq\langle\chi, u\rangle$.
We will prove that

$$
\chi=B_{n} u \text { and }\left\langle B_{n} u_{k}, u_{k}\right\rangle \rightarrow\langle\chi, u\rangle \text { as } k \rightarrow+\infty
$$

Since $\left(u_{k}\right)_{k}$ is a bounded sequence in $W_{0}^{1, p}(\Omega, w)$, we deduce that $\left(a\left(x, u_{k}, \nabla u_{k}\right)\right)_{k}$ is bounded in $\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)$, then there exists a function $h \in \prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)$ such that

$$
a\left(x, u_{k}, \nabla u_{k}\right) \rightharpoonup h \text { weakly in } \prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right) \text { as } k \rightarrow \infty
$$

similarly, it is easy to see that $\left(g_{n}\left(x, u_{k}, \nabla u_{k}\right)\right)_{k}$ is bounded in $L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right)$, then there exists a function $k_{n} \in L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right)$ such that

$$
g_{n}\left(x, u_{k}, \nabla u_{k}\right) \rightharpoonup k_{n} \quad \text { weakly in } \mathrm{E}^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right) \text { as } k \rightarrow \infty
$$

It is clear that, for all $w \in W_{0}^{1, p}(\Omega, w)$, we have

$$
\begin{aligned}
\langle\chi, w\rangle= & \lim _{k \rightarrow+\infty}\left\langle B_{n} u_{k}, w\right\rangle \\
= & \lim _{k \rightarrow+\infty} \int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla w d x \\
& +\lim _{k \rightarrow+\infty} \int_{\Omega} g_{n}\left(x, u_{k}, \nabla u_{k}\right) \cdot w d x
\end{aligned}
$$

Consequently, we get

$$
\begin{equation*}
\langle\chi, w\rangle=\int_{\Omega} h \nabla w d x+\int_{\Omega} k_{n} \cdot w d x \quad \forall w \in W_{0}^{1, p}(\Omega, w) \tag{4.36}
\end{equation*}
$$

On the one hand, we have

$$
\begin{equation*}
\int_{\Omega} g_{n}\left(x, u_{k}, \nabla u_{k}\right) \cdot u_{k} d x \longrightarrow \int_{\Omega} k_{n} \cdot u d x \quad \text { as } \quad k \rightarrow \infty \tag{4.37}
\end{equation*}
$$

and, by hypotheses, we have

$$
\begin{gathered}
\limsup _{k \rightarrow \infty}\left\{\int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x+\int_{\Omega} g_{n}\left(x, u_{k}, \nabla u_{k}\right) \cdot u_{k} d x\right\} \\
\leq \int_{\Omega} h \nabla u d x+\int_{\Omega} k_{n} \cdot u d x
\end{gathered}
$$

therefore

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x \leq \int_{\Omega} h \nabla u d x \tag{4.38}
\end{equation*}
$$

By virtue of (3.2), we have

$$
\begin{equation*}
\int_{\Omega}\left(a\left(x, u_{k}, \nabla u_{k}\right)-a\left(x, u_{k}, \nabla u\right)\right)\left(\nabla u_{k}-\nabla u\right) d x>0 . \tag{4.39}
\end{equation*}
$$

Consequently

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x \geq & -\int_{\Omega} a\left(x, u_{k}, \nabla u\right) \nabla u d x+\int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u d x \\
& +\int_{\Omega} a\left(x, u_{k}, \nabla u\right) \nabla u_{k} d x
\end{aligned}
$$

hence

$$
\liminf _{k \rightarrow \infty} \int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x \geq \int_{\Omega} h \nabla u d x
$$

This implies by using (4.38)

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega} a\left(x, u_{k}, \nabla u_{k}\right) \nabla u_{k} d x=\int_{\Omega} h \nabla u d x \tag{4.40}
\end{equation*}
$$

By means of (4.36), (4.37) and (4.40), we obtain

$$
\left\langle B_{n} u_{k}, u_{k}\right\rangle \rightarrow\langle\chi, u\rangle \quad \text { as } \quad k \longrightarrow+\infty .
$$

On the other hand, by (4.40) and the fact that $a\left(x, u_{k}, \nabla u\right) \rightarrow a(x, u, \nabla u)$ strongly in $\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)$ it can be easily seen that

$$
\lim _{k \rightarrow+\infty} \int_{\Omega}\left(a\left(x, u_{k}, \nabla u_{k}\right)-a\left(x, u_{k}, \nabla u\right)\right)\left(\nabla u_{k}-\nabla u\right) d x=0
$$

and so, thanks to Lemma 4.1

$$
\nabla u_{n} \rightarrow \nabla u \text { a.e. in } \Omega .
$$

We deduce then that

$$
a\left(x, u_{k}, \nabla u_{k}\right) \rightarrow a(x, u, \nabla u) \text { weakly in } \prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{1-p^{\prime}}\right)
$$

$$
\text { and } \quad g_{n}\left(x, u_{k}, \nabla u_{k}\right) \rightarrow g(x, u, \nabla u) \text { weakly in } \quad L^{q^{\prime}}\left(\Omega, w_{i}^{1-q^{\prime}}\right)
$$

Thus implies that $\chi=B_{n} u$.
Corollary 4.1. Let $1<p<\infty$. Assume that the hypothesis $\left(H_{1}\right)-\left(H_{3}\right)$ holds, let f_{n} be any sequence of functions in $L^{1}(\Omega)$ which converge to f weakly in $L^{1}(\Omega)$ and let u_{n} the solution of the following problem

$$
\left(P_{n}^{\prime}\right)\left\{\begin{array}{c}
u_{n} \in \mathcal{T}_{0}^{1, p}(\Omega, w), \quad g\left(x, u_{n}, \nabla u_{n}\right) \in L^{1}(\Omega) \\
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-v\right) d x+\int_{\Omega} g\left(x, u_{n}, \nabla u_{n}\right) T_{k}\left(u_{n}-v\right) d x \\
\leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-v\right) d x \\
\forall v \in W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega), \forall k>0
\end{array}\right.
$$

Then there exists a subsequence of u_{n} still denoted u_{n} such that u_{n} converges to u almost everywhere and $T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u)$ strongly in $W_{0}^{1, p}(\Omega, w)$, further u is a solution of the problem (P) (with $F=0$).

Proof. We give a brief proof.

Step 1. A priori estimates.

As before we take $v=0$ as test function in $\left(P_{n}^{\prime}\right)$, we get

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{N} w_{i}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p} d x \leq C_{1} k \tag{4.41}
\end{equation*}
$$

Hence, by the same method used in the first step in the proof of Theorem 3.1 there exists a function $u \in \mathcal{T}_{0}^{1, p}(\Omega, w)$ and a subsequence still denoted by u_{n} such that

$$
u_{n} \rightarrow u \text { a.e. in } \Omega, T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \text { weakly in } W_{0}^{1, p}(\Omega, w), \forall k>0
$$

Step 2. Strong convergence of truncation.

The choice of $v=T_{h}\left(u_{n}-\phi\left(w_{n}\right)\right)$ as test function in $\left(P_{n}^{\prime}\right)$, we get, for all $l>0$

$$
\begin{aligned}
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{l}\left(u_{n}\right. & \left.-T_{h}\left(u_{n}-\phi\left(w_{n}\right)\right)\right) d x+\int_{\Omega} g\left(x, u_{n}, \nabla u_{n}\right) T_{l}\left(u_{n}-T_{h}\left(u_{n}-\phi\left(w_{n}\right)\right) d x\right. \\
& \leq \int_{\Omega} f_{n} T_{l}\left(u_{n}-T_{h}\left(u_{n}-\phi\left(w_{n}\right)\right)\right) d x
\end{aligned}
$$

Which implies that

$$
\begin{aligned}
& \int_{\left\{\left|u_{n}-\phi\left(w_{n}\right)\right| \leq h\right\}} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{l}\left(\phi\left(w_{n}\right)\right) \\
& \quad+\int_{\Omega} g\left(x, u_{n}, \nabla u_{n}\right) T_{l}\left(u_{n}-T_{h}\left(u_{n}-\phi\left(w_{n}\right)\right)\right) d x \\
& \quad \leq \int_{\Omega} f_{n} T_{l}\left(u_{n}-T_{h}\left(u_{n}-\phi\left(w_{n}\right)\right)\right) d x
\end{aligned}
$$

Letting h tend to infinity and choosing l large enough, we deduce

$$
\begin{aligned}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla \phi\left(w_{n}\right) d x+\int_{\Omega} g\left(x, u_{n}, \nabla u_{n}\right) \phi\left(w_{n}\right) d x \\
& \leq \int_{\Omega} f_{n} \phi\left(w_{n}\right) d x
\end{aligned}
$$

the rest of the proof of this step is the same as in step 4 of the proof of Theorem 3.1.

Step 3. Passing to the limit.

This step is similar to the step 5 of the proof of Theorem 3.1, by using the Egorov's theorem in the last term of $\left(P_{n}^{\prime}\right)$.

Remark 4.2. In the case where $F=0$, if we suppose that the second member is nonnegative, then we obtain a nonnegative solution.

Indeed. If we take $v=T_{h}\left(u^{+}\right)$in (P), we have

$$
\begin{aligned}
\int_{\Omega} a(x, u, \nabla u) \nabla T_{k} & \left(u-T_{h}\left(u^{+}\right)\right) d x \\
& +\int_{\Omega} g(x, u, \nabla u) T_{k}\left(u-T_{h}\left(u^{+}\right)\right) d x \\
& \leq \int_{\Omega} f T_{k}\left(u-T_{h}\left(u^{+}\right)\right) d x
\end{aligned}
$$

Since $g(x, u, \nabla u) T_{k}\left(u-T_{h}\left(u^{+}\right)\right) \geq 0$, we deduce

$$
\int_{\Omega} a(x, u, \nabla u) \nabla T_{k}\left(u-T_{h}\left(u^{+}\right)\right) d x \leq \int_{\Omega} f T_{k}\left(u-T_{h}\left(u^{+}\right)\right) d x
$$

and remark also that by using $f \geq 0$ we have

$$
\int_{\Omega} f T_{k}\left(u-T_{h}\left(u^{+}\right)\right) d x \leq \int_{\{u \geq h\}} f T_{k}\left(u-T_{h}(u)\right) d x
$$

On the other hand, thanks to (3.3), we conclude

$$
\alpha \int_{\Omega} \sum_{i=1}^{N} w_{i}\left|\frac{\partial T_{k}\left(u^{-}\right)}{\partial x_{i}}\right|^{p} d x \leq \int_{\{u \geq h\}} f T_{k}\left(u-T_{h}(u)\right) d x
$$

Letting h tend to infinity, we can easily deduce

$$
T_{k}\left(u^{-}\right)=0, \quad \forall k>0
$$

which implies that

$$
u \geq 0
$$

References

[1] L. Aharouch, Y. Akdim and E. Azroul, Quasilinear degenerate elliptic unilateral problems, AAA 2005:1 (2005) 11-31. DOI: 10.1155/AAA.2005.11
[2] Y. Akdim, E. Azroul and A. Benkirane, Existence of Solution for Quasilinear Degenerated Elliptic Equations, Electronic J. Diff. Equ., Vol. 2001, N 71, (2001) pp 1-19.
[3] Y. Akdim, E. Azroul and A. Benkirane, Existence Results for Quasilinear Degenerated Equations vias Strong Convergence of Truncations, Revista Matemática Complutence, Madrid, (2004), 17; N 2, 359-379.
[4] A. Benkirane, A. Elmahi, and D. Meskine , An existence theorem for a class of elliptic problems in L^{1}, Applicationes Mathematicae., 29, 4, (2002) 439-457.
[5] P. Bénilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre and J. L. VÁzqUEz, An L^{1}-theory of existence and uniqueness of nonlinear elliptic equations.,, Ann. Scuola Norm. Sup. Pisa 22 (1995), 240-273.
[6] G. Dalmaso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup Pisa Cl. Sci 124 (1999) 741-808.
[7] P. Drabek, A. Kufner and V. Mustonen, Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221.
[8] P. Drabek, A. Kufner and F. Nicolosi, Non linear elliptic equations, singular and degenerate cases, University of West Bohemia, (1996).
[9] P. Drabek, A. Kufner and F. Nicolosi, On the solvability of degenerated quasilinear elliptic equations of higher order, Journal of differential equations, 109 (1994), 325-347.
[10] A. Porretta, Existence for elliptic equations in L^{1} having lower order terms with natural growth, Portugal. Math. 57 (2000), 179-190.
[11] J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).
L. Ahrouch (E-mail: l_{-}aharouch@yahoo.fr)
E. AazRoul (E-mail: azroul_elhoussine@yahoo.fr)

Département de Mathématiques et Informatique, Faculté des Sciences Dhar-Mahraz, B.P. 1796 Atlas, Fès, Maroc.
(Received October 15, 2005)

[^0]: *AMS Subject Classification: 35J15, 35J20, 35J70.
 Key words and phrases: Weighted Sobolev spaces, boundary value problems, truncations, unilateral problems

