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NON-AUTONOMOUS BIFURCATION IN IMPULSIVE
SYSTEMS

M. U. AKHMET∗ AND A. KASHKYNBAYEV

Abstract. This is the first paper which considers non-autonomous
bifurcations in impulsive differential equations. Impulsive generaliza-
tions of the non-autonomous pitchfork and transcritical bifurcation
are discussed. We consider scalar differential equation with fixed mo-
ments of impulses. It is illustrated by means of certain systems how
the idea of pullback attracting sets remains a fruitful concept in the
impulsive systems. Basics of the theory are provided.

Asymptotic behavior of fixed points and analysis of bifurcation is of
great importance in the qualitative theory of differential equations. In au-
tonomous ordinary differential equations this theory is well developed. As
in the autonomous systems, non-autonomous bifurcation is understood
as a qualitative change in the structure and stability of the invariant sets
of the system. However, to implement this concept in non-autonomous
systems, locally defined notions of attractive and repulsive solutions are
needed. There are currently qualitative studies which are devoted to
non-autonomous bifurcation theory by treating attractors called pullback
attractors [11, 12, 23, 25, 26, 29, 31, 35]. The theory of pullback attraction
is not concerned with the asymptotic behavior of the solution as t → ∞
for fixed t0, but as t0 → −∞ for fixed t [8,11,13,15–18,25,28,30,32,33].
This approach requires the discussion of bifurcation in non-autonomous
differential equations by defining various types of stability and instability.

Investigation of states of dynamical systems which are not constant
in time leads to non-autonomous problems in the form of the equation
of perturbed motion. If this model depends on parameters, it is the
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main object of non-autonomous bifurcation theory to describe qualitative
changes when these parameters are varied. Extending non-autonomous
bifurcation theory to impulsive systems is a contemporary problem.

Many evolutionary processes in the real world are characterized by
sudden changes at certain times. These changes are called impulsive phe-
nomena [1,9,19,27,34], which are widespread in modeling in mechanics,
electronics, biology, neural networks, medicine, and social sciences [1,4,7].
An impulsive differential equation is one of the basic instruments to un-
derstand better the role of discontinuity for the real world problems.
Therefore, there are qualitative studies on asymptotic behavior of impul-
sive systems [1,3,5,9,27,34]. There are also many studies which deal with
bifurcation theory either in autonomous differential equations [1, 2, 6] or
periodic equations with fixed moments of impulses [10,20,21]. However,
differential equations with fixed moments of impulses are naturally non-
autonomous differential equations. Consequently, one cannot construct
the theory similar to autonomous systems of ordinary differential equa-
tions. Thus, in order to achieve results on fixed moments, it is crucial
to extend the idea of pullback attraction to impulsive systems for non-
autonomous differential equations. Although the theory of impulsive dif-
ferential equations is very developed nowadays, there are no results con-
cerning analogues of equations studied in [8,11,13,17,18,25,26,28,32,33].
This appears to be due to the absence of papers concerning concrete sys-
tems analyzing the existence of non-autonomous bifurcations. It is hoped
that the present paper fills this gap.

Langa et al. in [29] and Caraballo and Langa in [11] present the canon-
ical non-autonomous ODE example of a pitchfork bifurcation,

ẋ = ax− b(t)x3. (1)

Next, Langa et al. in [31] investigate the non-autonomous form of the
canonical transcritical example,

ẋ = λa(t)x− b(t)x2. (2)

Throughout Section 2 we make use of definitions of pullback attracting
sets and pullback stability for impulsive differential equations which are
the same as for ODE. The main novelty of this paper is to give impulsive
extensions of the systems (1) and (2) with appropriate definitions of pull-
back attracting sets. This is the very first step towards the bifurcation of
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non-autonomous differential equations with impulses. We present three
systems which illustrate the given definitions. The first system (Section
3) is the impulsive extension of a non-autonomous pitchfork bifurcation,

ẋ = a(t)x− b(t)x3,
∆x|t=θi = −x+ x√

ci+dix2
. (3)

In Theorem 1 we have obtained impulsive extension for the results of
Caraballo and Langa in [11] and Langa et al. in [29]. Next, in Section
4, we investigate the non-autonomous transcritical bifurcation in the im-
pulsive system

ẋ = a(t)x− b(t)x2,
∆x|t=θi = −x+ x

ci+dix
.

(4)

In particular, in Theorem 2 and Theorem 3, we give impulsive extension
for results of Langa et al. in [31] for equation (2). Finally, in Section 5
we consider bifurcation in the non-order-preserving system

ẋ = a(t)x− b(t)x3,
∆x|t=θi = −x− x√

ci+dix2
. (5)

In the conclusion part, we summarize the results and consider how the
theory might be further developed in a systematic way.

1. Preliminaries

In this section we introduce concepts of attractive and repulsive solu-
tions, which are used to analyze asymptotic behavior of impulsive non-
autonomous systems. This paper is concerned with systems of the type

ẋ = f(t, x),
∆x|t=θi = Ji(x),

(6)

where ∆x|t=θi := x(θi+)− x(θi), x(θi+) = limt→θ+i
x(t). The system (6)

is defined on the set Ω = R × Z × G where G ⊆ Rn. θ is a nonempty
sequence with the set of indexes Z, set of integers, such that |θi| → ∞ as
|i| → ∞. Let ϕ(t, t0, x0) be solution of (6). In this paper, we treat only
scalar impulsive differential equations such that ϕ(t, t0, x0) is continuable
on R. Solutions are unique both forwards and backwards in time and
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Ji(x) is order-preserving so that the whole system (6) is order-preserving,
i.e.,

x0 > y0 ⇒ x(t, t0, x0) > y(t, t0, y0) for all t, t0 ∈ R
allowing x(t) or y(t) to be ±∞ if necessary.

We say that the function ϕ : R → Rn is from the set PC(R, θ), where
θ = {θi} is an infinite set such that |θi| → ∞ as |i| → ∞, if:

• ϕ is left continuous on R;
• it is continuous everywhere except possibly points of θ where it
has discontinuities of the first kind.

Developing the theory for non-autonomous impulsive differential equa-
tions by following the same route as for autonomous systems poses a
problem. Indeed, for generic non-autonomous system we would not ex-
pect to find any fixed points: if x0 is the fixed point, then this would
require that f(x0, t) = 0 and Ji(x0) = 0 for all i ∈ Z and t ∈ R.
Instead, we replace fixed points to the notion of a complete trajec-
tory. The piecewise continuous map x : R → G is said to be a com-
plete trajectory if X(t, t0)x(t0) = x(t) for all t, t0 ∈ I where X(t, t0) is
the solution operator for (6). We investigate appearances and disap-
pearances of complete trajectories that are stable and unstable in the
pullback sense. Note that complete trajectories are particular exam-
ples of invariant sets. A time varying family of sets Σ(t) is invariant if
ϕ(t, t0,Σ(t0)) = Σ(t) for all t, t0 ∈ R. That is, if x(t0) ∈ Σ(t0), then
ϕ(t, t0, x(t0)) ∈ Σ(t). In order to study non-autonomous bifurcation with
impulses we should define corresponding concepts of stability. In this pa-
per, we use Hausdorff semi-distance between sets A and B as dist(A,B)
= supa∈A infb∈B d(a, b)

1.1. Attraction. Asymptotic properties of continuous dynamics and dy-
namics with discontinuity are the same. Therefore, we shall use notion of
pullback attracting sets without any change from [8,11,13,15–18,24,25,
28,30,32,33,35]. In autonomous system, an invariant set Σ is attracting
if there exists a neighborhood N of Σ such that

dist(ϕ(t, 0, x0),Σ) → 0 as t → ∞ for all x0 ∈ N (7)

where initial time is not important, we may take it arbitrary. For this
case it is true that X(t, t0) = X(t− t0, 0). The concept of attraction for
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autonomous systems is equivalent to the existence of a neighborhood N
of Σ for each fixed t ∈ R,

dist(ϕ(t, t0, x0),Σ) → 0 as t0 → −∞ for all x0 ∈ N. (8)

This is the idea of pullback attraction [24, 33], which does not involve
running time backwards. Instead, we consider taking measurements in
an experiment now (at time t) which began at some time in the past
(at time t0 < t). That is, we are interested in asymptotic behavior as
t0 → −∞ for fixed t.

Pullback attraction is a natural tool to study non-autonomous systems
because it provides us to consider asymptotic behavior without having to
consider sets Σ(t) that are moving, since final time is fixed. This approach
has many applications in stochastic differential equations [17,18], ODEs
[24,25] and PDEs [14,16,32].

Definition 1. [24] An invariant set Σ(·) is called (locally) pullback
attracting if for every t ∈ R there exists a δ(t) > 0 such that if

lim
t0→−∞

(dist(x0,Σ(t0)) < δ(t), then lim
t0→−∞

dist(ϕ(t, t0, x0),Σ(t)) = 0.

(9)

It is crucial that δ is not allowed to depend on t0, otherwise every
invariant set would be pullback attracting due to continuous dependence
on initial conditions. If limt0→−∞ dist(ϕ(t, t0, x0),Σ(t)) = 0 for every t ∈
R and every x0 ∈ Rn then Σ(·) is said to be globally pullback attracting.

1.2. Stability. The above discussion helps to define asymptotic stabil-
ity, which has two parts. One of them is attraction and another one is
stability. In this part, we define stability in non-autonomous case in the
pullback sense.

Definition 2. [29] An invariant set Σ(·) is pullback stable if for every
t ∈ R and ϵ > 0 there exists a δ(t) > 0 such that for any t0 < t, x0 ∈
N(Σ(t0), δ(t)) implies that ϕ(t, t0, x0) ∈ N(Σ(t), ϵ).

An invariant set Σ(·) is said to be locally (globally) pullback asymptoti-
cally stable if it is pullback stable and locally (globally) pullback attract-
ing. As in the scalar non-autonomous differential equations, pullback
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attraction implies pullback stability for complete trajectories of scalar
impulsive systems.

Lemma 1. [31] Let y(t) be a complete trajectory in a non-autonomous
scalar impulsive differential equation that is locally pullback attracting;
then, this trajectory is also pullback stable.

The proof of this lemma, given by Langa et al. in [31], is the same
for impulsive systems. This lemma allows us to consider only pullback
attraction properties of complete trajectories rather than their pullback
stability properties.

1.3. Instability. Local pullback instability is defined as the converse of
pullback stability. An invariant set Σ(·) is called locally pullback unstable
if it is not pullback stable, i.e., if there exists a t ∈ R and ϵ > 0 such
that for each δ > 0, there exists a t0 < t and x0 ∈ N(Σ(t0), δ) such that
dist(ϕ(t, t0, x0),Σ(t)) > ϵ. However, we make use of the idea “unstable
set” defined by Crauel for the random dynamical systems which is more
natural concept from a dynamics point of view.

Definition 3. [16] If Σ(·) is an invariant set then the unstable set of Σ,
UΣ(·) is defined as

UΣ(·) = {u : lim
t→−∞

dist(ϕ(t, t0, u),Σ(t)) = 0}.

We say that Σ(·) is asymptotically unstable if for some t we have

UΣ(t) ̸= Σ(t).

Since we always have Σ(t) ⊂ UΣ(t) when Σ(·) is invariant, the last
definition says that Σ(t) is a strict subset of UΣ(t). In this case we will
say that UΣ(t) is non-trivial. The power of this definition comes from the
following result.

Proposition 1. [29] If Σ(·) is asymptotically unstable then it is also
locally pullback unstable and cannot be locally pullback attracting.

This result proven by Langa et al. in [29] is valid for impulsive systems.
Most ideas of instability are related to the behavior of solutions ϕ(t)
as t → −∞. Note that the idea of the asymptotic instability defined
above is a time-reversed definition of ‘forward attraction’. Alternatively,
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it is possible to define instability as a time-reversed version of pullback
attraction.

Definition 4. [31] An invariant set Σ(·) is (locally) pullback repelling
if it is (locally) pullback attracting for time-reversed system, i.e., if for
every t ∈ R and every x0 ∈ Rn,

lim
t0→∞

dist(ϕ(t, t0, x0),Σ(t)) = 0.

2. The pitchfork bifurcation

In this section, we study generalization of the system (1) with fixed
moments of impulses. Consider the system

ẋ = a(t)x− b(t)x3, (10a)

∆x|t=θi = −x+
x√

ci + dix2
, (10b)

where a, b ∈ PC(R, θ). Assume that there exist constants A,B,C and
D such that

|a(t)| < A < ∞ and 0 < ci ≤ C < ∞, (11)

and

0 < b0 ≤ b(t) < B < ∞ and 0 < di ≤ D < ∞, (12)

for i ∈ Z and t ∈ R. We suppose that there exist positive numbers θ and
θ such that

θ ≤ θi+1 − θi ≤ θ. (13)

Moreover, there exists the limit

lim
t−s→∞

2
∫ t

s
a(u)du−

∑
s≤θi<t ln ci

t− s
= γ. (14)

By means of substitution y = 1
x2 , the system (10) is converted to the

linear impulsive system

ẏ = −2a(t)y + 2b(t),
∆y|t=θi = (ci − 1)y + di.

(15)
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In what follows, we discuss the system (15) to analyze the system (10).
Since ci ̸= 0, the transition matrix of the associated homogeneous part
of (15), according to [1], is the following:

Y (t, s) = e−2
∫ t
s a(u)du

∏
s≤θi<t

ci = e−
2
∫ t
s a(u)du−

∑
s≤θi<t ln ci

t−s
(t−s), t ≥ s. (16)

Lemma 2. If α > γ > β > 0, then there exist positive numbers M and
m such that

me−α(t−s) ≤ Y (t, s) ≤ Me−β(t−s), t ≥ s. (17)

Proof. By relation (14), there exists T such that if t − s ≥ T, then

β <
2
∫ t
s a(u)du−

∑
s≤θi<t ln ci

t−s
< α. Consequently, by means of (11) and (13),

it is true that
M = sup

0≤t−s≤T
e−2

∫ t
s a(u)du

∏
s≤θi<t

ci

and
m = inf

0≤t−s≤T
e−2

∫ t
s a(u)du

∏
s≤θi<t

ci.

Hence,

me−α(t−s) ≤ Y (t, s) = e−2
∫ T
s a(u)du+

∑
s≤θi<T ln cie−2

∫ t
T a(u)du+

∑
T≤θi<t ln ci

≤ Me−β(t−s), t ≥ s.

The lemma is proved. �
Theorem 1. Assume that (11), (12) and (14) hold for the system (10).
Then, for γ < 0 the origin is globally asymptotically pullback stable, and
for γ > 0 the origin is asymptotically unstable and there appear posi-
tive and negative, β(t, γ) and −β(t, γ) respectively, locally asymptotically
pullback complete trajectories such that

β2(t, γ) =
1

2
∫ t

−∞ Y (t, s)b(s)ds+
∑

θi<t Y (t, θi+)di
.

Proof. Equation (10b) can be rewritten as x(θi+) = x(θi)√
ci+dix2(θi)

. To

show that equation (10) is order-preserving, it is sufficient that the jump
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equation satisfies x(θi+) > y(θi+) for x(θi) > y(θi). In other words, we

must show that x(θi)√
ci+dix2(θi)

> y(θi)√
ci+diy2(θi)

. Defining f(x) = x√
ci+dix2

, one

can check that f ′(x) > 0. Since uniqueness is assumed and the equation is
order-preserving, for x0 ̸= 0 we have x(t) ̸= 0. Therefore, by substitution
y = 1

x2 , we see that the solution of the system (10), according to [1, 34],
satisfies the integral equation

y(t, t0, y0) = Y (t, t0)y0 + 2
∫ t

t0
Y (t, s)b(s)ds+

∑
t0≤θi<t Y (t, θi+)di. (18)

By means of (14), one can see that the asymptotic behavior of y(t, t0, y0)
depends on the sign of γ.

Consider the case γ < 0. From (18) it follows that y(t, t0, y0) → ∞ as
t0 → −∞. So, x(t, t0, x0) → 0 as t0 → −∞, implying that all solutions
are attracted both forwards and pullback to the point {0}, since this is
also limit of (18) as t → ∞.

If γ > 0, then from (18) it follows that y(t, t0, y0) → 0 as t → ∞
implying that all solutions are unbounded as t → ∞. However, as t0 →
−∞ we have

lim
t0→−∞

y(t, t0, y0) = 2

∫ t

−∞
Y (t, s)b(s)ds+

∑
θi<t

Y (t, θi+)di. (19)

The last equation implies that

lim
t0→−∞

x2(t, t0, x0) = β2(t, γ) =
1

2
∫ t

−∞ Y (t, s)b(s)ds+
∑

θi<t Y (t, θi+)di

where s, θi ∈ (−∞, t]. By means of (13) and Lemma 2, one can show
that

0 <
2mb0
α

< 2

∫ t

−∞
Y (t, s)b(s)ds+

∑
θi<t

Y (t, θi+)di

<
2BM

β
+DM

∑
θi<t

e−β(t−θi) ≤ 2BM

β
+DM

∞∑
i=0

e−iβθ

=
2BM

β
+DM

1

1− eβθ
< ∞.

Thus, β2(t, γ) is bounded both from above and from below. To check
that β(t, γ) is a complete trajectory, it would be enough to check that
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η(t) = 1
β2(t,γ)

satisfies (15).

η̇ = −4a(t)

∫ t

−∞
Y (t, s)b(s)ds+ 2Y (t, t)b(t)− 2a(t)

∑
θi<t

Y (t, θi+)di

= −2a(t)

{
2

∫ t

−∞
Y (t, s)b(s)ds+

∑
θi<t

Y (t, θi+)di

}
+ 2b(t)

= −2a(t)η + 2b(t).

To show that η(t) satisfies the equation jumps, we note for fixed j it is true
that Y (θj+, s)−Y (θj, s) = (cj−1)Y (θj, s); so that Y (θj+, s) = cjY (θj, s).
Then,

∆η(t)|t=θj =η(θj+)− η(θj)

=2

∫ θj+

−∞
Y (θj+, s)b(s)ds+

∑
θi<θj+

Y (θj+, θj+)dj

− 2

∫ θj

−∞
Y (θj, s)b(s)ds−

∑
θi<θj

Y (θj, θj+)dj

=2cj

∫ θj

−∞
Y (θj, s)b(s)ds− 2

∫ θj

−∞
Y (θj, s)b(s)ds+ dj

+
∑
θi<θj

cjY (θj, θj+)dj −
∑
θi<θj

Y (θj, θj+)dj

=(cj − 1)

2

∫ θj

−∞
Y (θj, s)b(s)ds+

∑
θi<θj

Y (θj, θj+)dj

+ dj

=(cj − 1)η(θj) + dj.

Construction of β(t, γ) ensures that it is pullback attracting. Thus,
Lemma 1 implies that β(t, γ) is pullback stable. Moreover, since the
system (10) is order-preserving, for γ > 0 all trajectories with x0 > 0 are
pullback attracted to β(t, γ) and all trajectories with x0 < 0 are pullback
attracted to −β(t, γ) as it is illustrated in Figure 1. By means of (18), it
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follows that

x2(t, t0, x0) =
1

y(t, t0, y0)

=
1

Y (t, t0)x
−2
0 + 2

∫ t

t0
Y (t, s)b(s)ds+

∑
t0≤θi<t Y (t, θi+)di

=
1

Y (t, t0)(x
−2
0 − β−2(t0)) + 2

∫ t

−∞ Y (t, s)b(s)ds+
∑

θi<t Y (t, θi+)di
.

If |x0| < β(t0) so that x−2 − β−2(t0) > 0, then x(t) converges to 0 as
t → −∞ implying that origin is asymptotically unstable. �

Remark 1. We do not consider formal impulsive analogue of equation
(1),

ẋ = a(t)x− b(t)x3,
∆x|t=θi = cix+ dix

3,
(20)

since it is not possible to find explicit solution of the system (20).

Example 1. Let a(t) ≡ a, ci ≡ c, and θi = ih for the system (10) with
h > 0. That is,

ẋ = ax− b(t)x3,
∆x|t=ih = −x+ x√

c+dix2
. (21)

Then γ = 2a− 1
h
ln c. By means of y = 1

x2 , the system (21) is converted
to the linear impulsive system

ẏ = −2ay + 2b(t),
∆y|t=ih = (c− 1)y + di.

(22)

Asymptotic behavior of (22) depends on the sign of 2a − 1
h
ln c = γ,

and results of Theorem 1 are true for the system (21). If, in particular,
c = 1 and di = 0, then there is no equation of jumps in the system (21).
Moreover, γ = 2a so that the asymptotic behavior of (22) depends on the
sign of a. Thus, results of Theorem 1 are generalizations of the results
obtained in the studies of Langa et al. in [29] and Caraballo and Langa
in [11].
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Figure 1. Asymptotic behavior of the system (10).

3. The transcritical bifurcation

Consider the impulsive system

ẋ = a(t)x− b(t)x2, (23a)

∆x|t=θi = −x+
x

ci + dix
, (23b)

where ci > 0, di ∈ R, i ∈ Z, a, b ∈ PC(R, θ). Differently from the previous
section, the function a can be unbounded. However, as in the previous
section, we suppose that there exist positive numbers θ and θ such that
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θ ≤ θi+1 − θi ≤ θ, and there exists the limit

lim
t−s→∞

∫ t

s
a(u)du−

∑
s≤θi<t ln ci

t− s
= γ. (24)

The functions b and di are asymptotically positive as t → −∞, i.e., there
exist constants b and d such that

b(t) ≥ b > 0 for all t ≤ T−, and di ≥ d > 0 for all θi ≤ T−. (25)

By means of substitution x = 1
y
, the system (23) is converted to the

linear impulsive differential equation

ẏ = −a(t)y + b(t),
∆y|t=θi = (ci − 1)y + di.

(26)

The transition matrix of the associated homogeneous part of the system
(26), according to [1], is

Y (t, s) = e−
∫ t
s a(u)du

∏
s≤θi<t

ci = e−
∫ t
s a(u)du−

∑
s≤θi<t ln ci

t−s
)(t−s), t ≥ s. (27)

Assume that there exists a γ0 > 0 such that

0 < mγ ≤ xγ(t) =
1∫ t

−∞ Y (t, s)b(s)ds+
∑

θi<t Y (t, θi+)di
≤ Mγ (28)

for all t ∈ R, i ∈ Z, 0 < γ < γ0, and

lim inf
t0→−∞

Y (t, t0)∫ t

t0
Y (t, s)b(s)ds+

∑
t0≤θi<t Y (t, θi+)di

≥ mγ > 0 (29)

for all −γ0 < γ < 0.

Theorem 2. Assume that the above conditions hold for equation (23).
Then, for −γ0 < γ < 0 the origin is locally pullback attracting in R; and
for 0 < γ < γ0 the origin is asymptotically unstable and the trajectory
xγ(t) is locally pullback attracting.

Proof. Equation (23b) can be rewritten as x(θi+) = x(θi)
ci+dix(θi)

. To show

that (23) is order-preserving, it is enough to show that the jump equation

satisfies x(θi)
ci+dix(θi)

> y(θi)
ci+diy(θi)

if x(θi) > y(θi). Considering f(x) = x
ci+dix

,

one can check that f ′(x) > 0. Next, by introducing the transformation
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x = 1
y
for equation (23), we see that the solution of the impulsive system

(26), according to [1, 34], satisfies the integral equation

y(t, t0, y0) = Y (t, t0)y0 +

∫ t

t0

Y (t, s)b(s)ds+
∑

t0≤θi<t

Y (t, θi+)di. (30)

Transforming backwards we have

x(t, t0, x0) =
1

Y (t, t0)x
−1
0 +

∫ t

t0
Y (t, s)b(s)ds+

∑
t0≤θi<t Y (t, θi+)di

. (31)

By means of (24), one can see that the asymptotic behavior of (31)
depends on the sign of γ.

Consider the case when γ > 0.
If x0 > 0, then as t0 → −∞, (31) implies that

lim
t0→−∞

x(t, t0, x0) = xγ(t) =
1∫ t

−∞ Y (t, s)b(s)ds+
∑

θi<t Y (t, θi+)di
(32)

as long as the solution exists on the interval [t0, t] . To ensure the exis-
tence, it is sufficient to have

Y (τ, t0)x
−1
0 +

∫ τ

t0

Y (τ, s)b(s)ds+
∑

t0≤θi<τ

Y (τ, θi+)di > 0 (33)

for τ ∈ [t0, t]. Let us show that (33) holds if we require x0 < (1+αt)xγ(t0)
for some αt > 0.

Y (τ, t0)x
−1
0 +

∫ τ

t0

Y (τ, s)b(s)ds+
∑

t0≤θi<τ

Y (τ, θi+)di

>
1

1 + αt

{∫ t0

−∞
Y (τ, s)b(s)ds+

∑
θi<t0

Y (τ, θi+)di

}
+

∫ τ

t0

Y (τ, s)b(s)ds+
∑

t0≤θi<τ

Y (τ, θi+)di

=

∫ τ

−∞
Y (τ, s)b(s)ds+

∑
θi<τ

Y (τ, θi+)di

− αt

1 + αt

{∫ t0

−∞
Y (τ, s)b(s)ds+

∑
θi<t0

Y (τ, θi+)di

}
> 0
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for all t0 ≤ τ ≤ t. Taking into account the assumption (25), it suffices
to show that the last expression holds for any τ from the interval [T−, t].
This can be done by choosing αt > 0 appropriately. Hence, choosing
δ(t) = αtmγ and implementing Definition 1, it follows that xγ(t) is locally
pullback attracting.

Since x(t) ≡ 0 and xγ(t) are solutions and the system is order-preserv-
ing, any solution with 0 < x0 < xγ(t0) exists for all t ≤ t0. Moreover,
assumption (28) implies that

0 <

∫ t

−∞
Y (t, s)b(s)ds+

∑
θi<t

Y (t, θi+)di < ∞.

Thus, from equation (31) and relation (24), it follows that x(t, t0, x0) → 0
as t → −∞, which implies that the origin is asymptotically unstable.

If x0 < 0, then for t0 sufficiently large and negative x(τ, t0, x0) blow
up for some τ ≥ t0. To see this, note that Y (t, t0)x

−1
0 is negative and

tends to zero as t0 → −∞, while
∫ t

t0
Y (t, s)b(s)ds +

∑
t0≤θi<t Y (t, θi+)di

is positive and bounded below. As a result, x(τ, t0, x0) → −∞ in a finite
time as the denominator of (31) tends to zero for some τ ≥ t0.

Consider the case γ < 0.
From equation (31) and relation (24), it follows that x(t, t0, x0) → 0

as t0 → −∞ for any x0 ̸= 0 as long as x(τ, t0, x0) exists for all τ ∈ [t0, t].
For x0 > 0, it is sufficient to show that

Y (τ, t0)x
−1
0 +

∫ τ

t0

Y (τ, s)b(s)ds+
∑

t0≤θi<τ

Y (τ, θi+)di > 0 (34)

for τ ∈ [t0, t]. By means of (25), inequality (34) is satisfied if

Y (τ, t0)x
−1
0 +

∫ τ

T−
Y (τ, s)b(s)ds+

∑
T−≤θi<τ

Y (τ, θi+)di > 0 (35)

for τ ∈ [T−, t]. Because of assumption (24), for t0 small enough Y (τ, t0)
is bounded below on (−∞, T−]. Thus, (34) is satisfied provided that

x0 <
inft0≤T− Y (τ, t0)

supτ∈[T−,t] |
∫ τ

T− Y (τ, s)b(s)ds+
∑

T−≤θi<τ Y (τ, θi+)di|
. (36)
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For x0 < 0 the argument requires condition (29), which implies that
there exists a µt such that

Y (τ, t0)∫ τ

t0
Y (τ, s)b(s)ds+

∑
t0≤θi<τ Y (τ, θi+)di

≥ mγ

2
(37)

for all t0 ≤ µt. Now, it is sufficient to show that

Y (τ, t0)x
−1
0 +

∫ τ

t0

Y (τ, s)b(s)ds+
∑

t0≤θi<τ

Y (τ, θi+)di < 0 (38)

for τ ∈ [t0, t]. Denote I(t0, τ) =
∫ τ

t0
Y (τ, s)b(s)ds+

∑
t0≤θi<τ Y (τ, θi+)di.

If I(t0, τ) < 0, then (38) is satisfied. If I(t0, τ) > 0, then we require

|x0| <
Y (τ, t0)∫ τ

t0
Y (τ, s)b(s)ds+

∑
t0≤θi<τ Y (τ, θi+)di

,

which has the right-hand side of this expression is bounded below by mγ

2

using (37). Therefore, for each t there exists a µt such that if t0 ≤ µt

and |x0| is sufficiently small, the solution exists on [t0, t] and, hence, the
origin is locally pullback attracting. The theorem is proved. �

Next, we want to formulate an impulsive extension of the system (23),
which is related to the forward attraction. We assume that the functions b
and di are asymptotically positive as t → ∞, and the ‘balance condition’
(28) is valid. That is,

b(t) ≥ b > 0 for all t ≥ T+, and di ≥ d > 0 for all θi ≥ T+. (39)

0 < mγ ≤ xγ(t) =
1∫ t

−∞ Y (t, s)b(s)ds+
∑

θi<t Y (t, θi+)di
≤ Mγ (40)

for all t ∈ R, 0 < γ < γ0.

Theorem 3. Assume the above conditions hold for equation (23). Then,
for −γ0 < γ < 0 the origin is locally forward attracting, and for 0 < γ <
γ0 the trajectory xγ(t) is locally forward attracting. In addition, if

0 < mγ ≤ xγ(t) =
1∫∞

t
Y (t, s)b(s)ds+

∑
θi<t Y (t, θi+)di

≤ Mγ (41)

for all t ∈ R, γ < 0, then for −γ0 < γ < 0 the trajectory xγ(t) is both
asymptotically unstable and locally pullback repelling.
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Proof. If γ < 0, the origin is locally forward attracting when x0 is suffi-
ciently small, since condition (39) implies that

inf
t≥t0

{∫ t

t0

Y (t, s)b(s)ds+
∑

t0≤θi<t

Y (t, θi+)di

}
> −∞.

If γ > 0, the trajectory xγ(t) is locally forward attracting. To see this,
we notice that(

1

x(t)
− 1

xγ(t)

)
= Y (t, t0)

(
1

x0

− 1

xγ(t0)

)
.

Therefore,

|x(t)−xγ(t)| =
xγ(t)x(t)

xγ(t0)x0

e

(
−

∫ t
t0

a(u)du+
∑

t0≤θi<t ln ci

t−t0

)
(t−t0)

|x0−xγ(t0)|. (42)

Using the balance condition (40) with x0 > 0 implies that

x(t) =
1

Y (t, t0)x
−1
0 +

∫ t

t0
Y (t, s)b(s)ds+

∑
t0≤θi<t Y (t, θi+)di

≤Mγ

∫ t

−∞ Y (t, s)b(s)ds+
∑

θi<t Y (t, θi+)di

Y (t, t0)x
−1
0 +

∫ t

t0
Y (t, s)b(s)ds+

∑
t0≤θi<t Y (t, θi+)di

=Mγ

Y (t, t0)x
−1
γ (t0) +

∫ t

t0
Y (t, s)b(s)ds+

∑
t0≤θi<t Y (t, θi+)di

Y (t, t0)x
−1
0 +

∫ t

t0
Y (t, s)b(s)ds+

∑
t0≤θi<t Y (t, θi+)di

.

Condition (39) guarantees that the integral and the sum in the numerator
and denominator are positive for t sufficiently large. So, from the last
expression it follows that

lim sup
t→∞

x(t) ≤ Mγ max

{
1,

x0

xγ(t0)

}
.

Therefore, any solution with x0 > 0 is bounded as t → ∞. Hence, from
(42) it follows that xγ(t) is forward attracting as long as solutions exist.
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Next, we show that solutions dot not blow up for x0 < (1 + αt0)xγ(t0).

Y (t, t0)x
−1
0 +

∫ t

t0

Y (t, s)b(s)ds+
∑

t0≤θi<t

Y (t, θi+)di

>
1

1 + αt0

{∫ t0

−∞
Y (t, s)b(s)ds+

∑
θi<t0

Y (t, θi+)di

}

+

∫ t

t0

Y (t, s)b(s)ds+
∑

t0≤θi<t

Y (t, θi+)di

=

∫ t

−∞
Y (t, s)b(s)ds+

∑
θi<t

Y (t, θi)di

− αt0

1 + αt0

{∫ t0

−∞
Y (t, s)b(s)ds+

∑
θi<t0

Y (t, θi+)di

}
.

The last expression is positive for sufficiently small αt0 because of the
assumption (39). Therefore, xγ(t) is locally forward attracting.

Under the final assumption (41), the results follow by making the trans-
formations

γ 7→ −γ, x 7→ −x, θ 7→ −θ and t 7→ −t.

�

Remark 2. In this paper, we do not consider the formal impulsive ana-
logue of (2),

ẋ = a(t)x− b(t)x2,
∆x|t=θi = cix+ dix

2,
(43)

since it is not possible to find explicit solution of the system (43).

Example 2. Let a(t) ≡ a, ci ≡ c, and θi = ih for the system (23) with
h > 0. That is,

ẋ = ax− b(t)x2,
∆x|t=ih = −x+ x

c+dix
.

(44)
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Then γ = a− 1
h
ln c. By means of y = 1

x
, the system (21) is converted to

the linear impulsive system

ẏ = −ay + b(t),
∆y|t=ih = (c− 1)y + di.

(45)

Asymptotic behavior of (45) depends on the sign of γ, and results of
Theorem 2 and Theorem 3 are true for the system (44). If c = 1 and
di = 0, then γ = a and there is no equation of jumps in the system (44).

4. Bifurcation in the non-order-preserving system

In the continuous differential equations requiring uniqueness implies
that a system is order-preserving. However, in impulsive systems order-

Figure 2. Asymptotic behavior of the system (5).

preservation is violated even for the scalar case if we do not impose any
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condition on the jump equation. In this section, we want to consider a
non-order-preserving system and analyze bifurcation phenomena. Let us
consider the system (5) which differs only by the jump equation from the
system (10). We assume the same conditions for (5) as for (10). The

impulsive equation of (5) can be rewritten as x(θi+) = − x(θi)√
ci+dix2(θi)

.

Defining f(x) = − x√
ci+dix2

, one can check that f ′(x) < 0. Although

uniqueness of solutions is assumed, the system (5) is non-order-preserving
due to the jump equations. However, by means of transformation y = 1

x2 ,
the system (5) is also transformed into the system (15). Therefore, the
results of Theorem 1 are also true for the system (5). Exceptionally, since
the system (5) is non-order-preserving, for γ > 0 all trajectories of the
system (5) are in the neighborhood of |β(t, γ)| and alternatively change
their position from neighborhood the of β(t, γ) to the neighborhood of
−β(t, γ) as it is shown in Figure 2.

5. Conclusion

The pitchfork and the transcritical bifurcations are considered for non-
autonomous impulsive differential equations. Explicitly solvable models
with the specific equations of jump have been considered. This allowed us
to categorize one-dimensional bifurcations in impulsive systems which are
order-preserving. Moreover, the non-order-preserving system is studied.

This theory could be developed in many ways. One can consider for-
mal impulsive analogues for the pitchfork bifurcation for the system (20),
and corresponding formal impulsive analogue for the system (43), for
the transcritical bifurcation without finding explicit solution similarly to
that done in [35]. Non-autonomous saddle-node bifurcation remains un-
considered even for one-dimensional impulsive systems. Finally, general
theory of higher-dimensional bifurcation results with impulses has to be
developed.
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