ON A HIGHER-ORDER SYSTEM OF DIFFERENCE EQUATIONS

STEVO STEVIĆ*, MOHAMMED A. ALGHAMDI, ABDULLAH ALOTAIBI, AND NASEER SHAHZAD

Abstract. Here we study the following system of difference equations

$$
\begin{aligned}
& x_{n}=f^{-1}\left(\frac{c_{n} f\left(x_{n-2 k}\right)}{a_{n}+b_{n} \prod_{i=1}^{k} g\left(y_{n-(2 i-1)}\right) f\left(x_{n-2 i}\right)}\right), \\
& y_{n}=g^{-1}\left(\frac{\gamma_{n} g\left(y_{n-2 k}\right)}{\alpha_{n}+\beta_{n} \prod_{i=1}^{k} f\left(x_{n-(2 i-1)}\right) g\left(y_{n-2 i}\right)}\right),
\end{aligned}
$$

$n \in \mathbb{N}_{0}$, where f and g are increasing real functions such that $f(0)=g(0)=0$, and coefficients $a_{n}, b_{n}, c_{n}, \alpha_{n}, \beta_{n}, \gamma_{n}, n \in \mathbb{N}_{0}$, and initial values x_{-i}, y_{-i}, $i \in\{1,2, \ldots, 2 k\}$ are real numbers. We show that the system is solvable in closed form, and study asymptotic behavior of its solutions.

1. Introduction

Difference equations and systems of difference equations attract lots of attention (see, e.g. [1]-[49] and references therein). Among numerous topics in this area of mathematics, studying systems of difference equations is one of some recent interest $[7,9,11,15,16,17,18,19,21,23,35,36,39,40,41,42,44,45,46,47,48]$, while solving difference equations and applying them in other areas of sciences reattracted some attention quite recently (see, for example, $[1,2,6,7,22,28,29,32$, $33,35,36,37,39,40,42,43,44,45,46,47,48])$. Among others, the attention was trigged off by note [28] where an equation is solved in an elegant way. Some old methods for solving difference equations can be found, e.g., in [14].

In [44], S. Stević studied the following system of difference equations

$$
\begin{equation*}
x_{n}=\frac{c_{n} x_{n-4}}{a_{n}+b_{n} y_{n-1} x_{n-2} y_{n-3} x_{n-4}}, \quad y_{n}=\frac{\gamma_{n} y_{n-4}}{\alpha_{n}+\beta_{n} x_{n-1} y_{n-2} x_{n-3} y_{n-4}}, n \in \mathbb{N}_{0} \tag{1}
\end{equation*}
$$

with real coefficients $a_{n}, b_{n}, c_{n}, \alpha_{n}, \beta_{n}, \gamma_{n}, n \in \mathbb{N}_{0}$, and initial values $x_{-i}, y_{-i}, i \in$ $\{1,2,3,4\}$, such that $c_{n} \neq 0, \gamma_{n} \neq 0, n \in \mathbb{N}_{0}$. He showed that system (1) is solvable in closed form, and described behavior of all well-defined solutions of the system for constant coefficients $a_{n}, b_{n}, c_{n}, \alpha_{n}, \beta_{n}$ and γ_{n}. Paper [44] is a natural continuation of his previous investigations in $[7,28,35,36,37,39,40,43,45,46,47,48]$, where related difference equations and systems of difference equations were considered.

[^0]Motivated by this line of investigations, here we study the following system of difference equations

$$
\begin{align*}
& x_{n}=f^{-1}\left(\frac{c_{n} f\left(x_{n-2 k}\right)}{a_{n}+b_{n} \prod_{i=1}^{k} g\left(y_{n-(2 i-1)}\right) f\left(x_{n-2 i}\right)}\right), \tag{2}\\
& y_{n}=g^{-1}\left(\frac{\gamma_{n} g\left(y_{n-2 k}\right)}{\alpha_{n}+\beta_{n} \prod_{i=1}^{k} f\left(x_{n-(2 i-1)}\right) g\left(y_{n-2 i}\right)}\right), \quad n \in \mathbb{N}_{0},
\end{align*}
$$

where f and g are increasing real functions, such that

$$
\begin{equation*}
f(0)=g(0)=0 \tag{3}
\end{equation*}
$$

and coefficients $a_{n}, b_{n}, c_{n}, \alpha_{n}, \beta_{n}, \gamma_{n}, n \in \mathbb{N}_{0}$, and initial values $x_{-i}, y_{-i}, i \in$ $\{1,2, \ldots, 2 k\}$ are real numbers.

We show that system (2) is also solvable in closed form, and study the behavior of well-defined solutions of the system when the sequences $a_{n}, b_{n}, c_{n}, \alpha_{n}, \beta_{n}$ and γ_{n} are constant.

Recall that solution $\left(x_{n}, y_{n}\right)_{n \geq-2 k}$, of system (2) is periodic with period p, if

$$
x_{n+p}=x_{n} \quad \text { and } \quad y_{n+p}=y_{n}, \quad n \geq-2 k .
$$

For some results on the periodicity or asymptotic periodicity see, e.g., $[4,5,10,11$, $12,13,14,23,24,26,27,31,34,38,41,49]$.

2. Solvability of System (2) in Closed form

Assume that $x_{-i} \neq 0, y_{-i} \neq 0, i \in\{1,2, \ldots, 2 k\}$. Then (2), the monotonicity of f and g and conditions $f(0)=g(0)=0$, imply that $x_{n} \neq 0$ and $y_{n} \neq 0$, for every $n \in \mathbb{N}_{0}$. Then in this case the following change of variables along with the invertibility of functions f and g

$$
\begin{equation*}
u_{n}=\frac{1}{\prod_{i=0}^{k-1} f\left(x_{n-2 i}\right) g\left(y_{n-2 i-1}\right)}, \quad v_{n}=\frac{1}{\prod_{i=0}^{k-1} g\left(y_{n-2 i}\right) f\left(x_{n-2 i-1}\right)}, \quad n \geq-1 \tag{4}
\end{equation*}
$$

transforms system (2) into the next system of linear difference equations

$$
\begin{equation*}
u_{n}=\frac{a_{n}}{c_{n}} v_{n-1}+\frac{b_{n}}{c_{n}}, \quad v_{n}=\frac{\alpha_{n}}{\gamma_{n}} u_{n-1}+\frac{\beta_{n}}{\gamma_{n}}, \quad n \in \mathbb{N}_{0} . \tag{5}
\end{equation*}
$$

From (5) we have that

$$
\begin{aligned}
& u_{n}=\frac{a_{n} \alpha_{n-1}}{c_{n} \gamma_{n-1}} u_{n-2}+\frac{a_{n} \beta_{n-1}}{c_{n} \gamma_{n-1}}+\frac{b_{n}}{c_{n}} \\
& v_{n}=\frac{\alpha_{n} a_{n-1}}{\gamma_{n} c_{n-1}} v_{n-2}+\frac{\alpha_{n} b_{n-1}}{\gamma_{n} c_{n-1}}+\frac{\beta_{n}}{\gamma_{n}}, \quad n \in \mathbb{N}
\end{aligned}
$$

from which we get (for details see [44])

$$
\begin{align*}
u_{2 n} & =u_{0} \prod_{j=1}^{n} \frac{a_{2 j} \alpha_{2 j-1}}{c_{2 j} \gamma_{2 j-1}}+\sum_{i=1}^{n}\left(\frac{a_{2 i} \beta_{2 i-1}}{c_{2 i} \gamma_{2 i-1}}+\frac{b_{2 i}}{c_{2 i}}\right) \prod_{s=i+1}^{n} \frac{a_{2 s} \alpha_{2 s-1}}{c_{2 s} \gamma_{2 s-1}}, \tag{6}\\
u_{2 n-1} & =u_{-1} \prod_{j=1}^{n} \frac{a_{2 j-1} \alpha_{2 j-2}}{c_{2 j-1} \gamma_{2 j-2}}+\sum_{i=1}^{n}\left(\frac{a_{2 i-1} \beta_{2 i-2}}{c_{2 i-1} \gamma_{2 i-2}}+\frac{b_{2 i-1}}{c_{2 i-1}}\right) \prod_{s=i+1}^{n} \frac{a_{2 s-1} \alpha_{2 s-2}}{c_{2 s-1} \gamma_{2 s-2}}, \tag{7}\\
v_{2 n} & =v_{0} \prod_{j=1}^{n} \frac{\alpha_{2 j} a_{2 j-1}}{\gamma_{2 j} c_{2 j-1}}+\sum_{i=1}^{n}\left(\frac{\alpha_{2 i} b_{2 i-1}}{\gamma_{2 i} c_{2 i-1}}+\frac{\beta_{2 i}}{\gamma_{2 i}}\right) \prod_{s=i+1}^{n} \frac{\alpha_{2 s} a_{2 s-1}}{\gamma_{2 s} c_{2 s-1}}, \tag{8}\\
v_{2 n-1} & =v_{-1} \prod_{j=1}^{n} \frac{\alpha_{2 j-1} a_{2 j-2}}{\gamma_{2 j-1} c_{2 j-2}}+\sum_{i=1}^{n}\left(\frac{\alpha_{2 i-1} b_{2 i-2}}{\gamma_{2 i-1} c_{2 i-2}}+\frac{\beta_{2 i-1}}{\gamma_{2 i-1}}\right) \prod_{s=i+1}^{n} \frac{\alpha_{2 s-1} a_{2 s-2}}{\gamma_{2 s-1} c_{2 s-2}} . \tag{9}
\end{align*}
$$

From (4) we have that

$$
f\left(x_{2 k m+i}\right)=\frac{v_{2 k m+i-1}}{u_{2 k m+i}} f\left(x_{2 k(m-1)+i}\right), \quad i \in\{0, \ldots, 2 k-1\},
$$

$m \in \mathbb{N}_{0}$, and

$$
g\left(y_{2 k m+i}\right)=\frac{u_{2 k m+i-1}}{v_{2 k m+i}} g\left(y_{2 k(m-1)+i}\right), \quad i \in\{0, \ldots, 2 k-1\},
$$

for $2 k m+i \geq 0$, from which along with the invertibility of functions f and g it follows that for every $m \in \mathbb{N}_{0}$ and each $i \in\{0, \ldots, 2 k-1\}$

$$
\begin{align*}
& x_{2 k m+i}=f^{-1}\left(f\left(x_{i}\right) \prod_{j=1}^{m} \frac{v_{2 k j+i-1}}{u_{2 k j+i}}\right), \tag{10}\\
& y_{2 k m+i}=g^{-1}\left(g\left(y_{i}\right) \prod_{j=1}^{m} \frac{u_{2 k j+i-1}}{v_{2 k j+i}}\right) . \tag{11}
\end{align*}
$$

Using (6)-(9) in (10) and (11) we get solutions of system (2) in closed form.

3. System (2) with constant coefficients

Let

$$
a_{n}=\hat{a}, \quad b_{n}=\hat{b}, \quad c_{n}=\hat{c}, \quad \alpha_{n}=\hat{\alpha}, \quad \beta_{n}=\hat{\beta} \quad \text { and } \quad \gamma_{n}=\hat{\gamma}, \quad n \in \mathbb{N}_{0}
$$

then we have

$$
\begin{align*}
& x_{n}=f^{-1}\left(\frac{\hat{c} f\left(x_{n-2 k}\right)}{\hat{a}+\hat{b} \prod_{i=1}^{k} g\left(y_{n-(2 i-1)}\right) f\left(x_{n-2 i}\right)}\right), \tag{12}\\
& y_{n}=g^{-1}\left(\frac{\hat{\gamma} g\left(y_{n-2 k}\right)}{\hat{\alpha}+\hat{\beta} \prod_{i=1}^{k} f\left(x_{n-(2 i-1)}\right) g\left(y_{n-2 i}\right)}\right), \quad n \in \mathbb{N}_{0} .
\end{align*}
$$

If $\hat{c}=0$, then since $f(0)=f^{-1}(0)=0$ we have that $x_{n}=0, n \in \mathbb{N}_{0}$, so that $g\left(y_{n}\right)=\frac{\hat{\gamma}}{\hat{\alpha}} g\left(y_{n-2 k}\right)$ for $n \in \mathbb{N}$ and consequently

$$
y_{2 k m-i}=g^{-1}\left(\left(\frac{\hat{\gamma}}{\hat{\alpha}}\right)^{m} g\left(y_{-i}\right)\right),
$$

for every $m \in \mathbb{N}_{0}$ and $i \in\{0,1, \ldots, 2 k-1\}$.
If $\hat{\gamma}=0$, then since $g(0)=g^{-1}(0)=0$ we have that $y_{n}=0, n \in \mathbb{N}_{0}$, implying $f\left(x_{n}\right)=\frac{\hat{c}}{\hat{a}} f\left(x_{n-2 k}\right)$ for $n \in \mathbb{N}$ and consequently

$$
x_{2 k m-i}=f^{-1}\left(\left(\frac{\hat{c}}{\hat{a}}\right)^{m} f\left(x_{-i}\right)\right),
$$

for every $m \in \mathbb{N}_{0}$ and $i \in\{0,1, \ldots, 2 k-1\}$.
From now on we will assume that $\hat{c} \neq 0$ and $\hat{\gamma} \neq 0$. Note that in this case, system (12) can be written in the following form

$$
\begin{align*}
x_{n} & =f^{-1}\left(\frac{f\left(x_{n-2 k}\right)}{a+b \prod_{i=1}^{k} g\left(y_{n-(2 i-1)}\right) f\left(x_{n-2 i}\right)}\right), \\
y_{n} & =g^{-1}\left(\frac{g\left(y_{n-2 k}\right)}{\alpha+\beta \prod_{i=1}^{k} f\left(x_{n-(2 i-1)}\right) g\left(y_{n-2 i}\right)}\right), \quad n \in \mathbb{N}_{0}, \tag{13}
\end{align*}
$$

where $a=\hat{a} / \hat{c}, b=\hat{b} / \hat{c}, \alpha=\hat{\alpha} / \hat{\gamma}$ and $\beta=\hat{\beta} / \hat{\gamma}$. Therefore we will study system (13) instead of system (12).

Assume $x_{-i} \neq 0$ and $y_{-i} \neq 0$ for every $i \in\{1,2, \ldots, 2 k\}$. System (5) becomes

$$
\begin{equation*}
u_{n}=a v_{n-1}+b, \quad v_{n}=\alpha u_{n-1}+\beta, \quad n \in \mathbb{N}_{0} \tag{14}
\end{equation*}
$$

which implies that

$$
\begin{align*}
u_{n} & =a \alpha u_{n-2}+a \beta+b, \tag{15}\\
v_{n} & =a \alpha v_{n-2}+\alpha b+\beta, \quad n \in \mathbb{N} . \tag{16}
\end{align*}
$$

From (15) and (16) (or (6)-(9)) we obtain

$$
\begin{align*}
u_{2 n-l} & =u_{-l}(a \alpha)^{n}+(a \beta+b) \frac{1-(a \alpha)^{n}}{1-a \alpha} \\
& =\frac{a \beta+b+(a \alpha)^{n}\left(u_{-l}(1-a \alpha)-a \beta-b\right)}{1-a \alpha} \tag{17}
\end{align*}
$$

$n \in \mathbb{N}_{0}, l \in\{0,1\}$, if $a \alpha \neq 1$, or

$$
\begin{equation*}
u_{2 n-l}=u_{-l}+(a \beta+b) n, \quad n \in \mathbb{N}_{0}, l \in\{0,1\} \tag{18}
\end{equation*}
$$

if $a \alpha=1$, and

$$
\begin{align*}
v_{2 n-l} & =v_{-l}(a \alpha)^{n}+(\alpha b+\beta) \frac{1-(a \alpha)^{n}}{1-a \alpha} \\
& =\frac{\alpha b+\beta+(a \alpha)^{n}\left(v_{-l}(1-a \alpha)-\alpha b-\beta\right)}{1-a \alpha} \tag{19}
\end{align*}
$$

$n \in \mathbb{N}_{0}, l \in\{0,1\}$, if $a \alpha \neq 1$, or

$$
\begin{equation*}
v_{2 n-l}=v_{-l}+(\alpha b+\beta) n, \quad n \in \mathbb{N}_{0}, l \in\{0,1\} \tag{20}
\end{equation*}
$$

if $a \alpha=1$.
From relations (17)-(20) we easily obtain the following formulae for solutions of system (13).

Case $a \alpha=1$. In this case we have that

$$
\begin{align*}
x_{2 k m+2 s} & =f^{-1}\left(f\left(x_{2 s}\right) \prod_{j=1}^{m} \frac{v_{2 k j+2 s-1}}{u_{2 k j+2 s}}\right) \\
& =f^{-1}\left(f\left(x_{2 s}\right) \prod_{j=1}^{m} \frac{v_{-1}+(\alpha b+\beta)(k j+s)}{u_{0}+(a \beta+b)(k j+s)}\right) \tag{21}\\
x_{2 k m+2 s+1} & =f^{-1}\left(f\left(x_{2 s+1}\right) \prod_{j=1}^{m} \frac{v_{2 k j+2 s}}{u_{2 k j+2 s+1}}\right) \\
& =f^{-1}\left(f\left(x_{2 s+1}\right) \prod_{j=1}^{m} \frac{v_{0}+(\alpha b+\beta)(k j+s)}{u_{-1}+(a \beta+b)(k j+s+1)}\right) \tag{22}\\
& =g^{-1}\left(g\left(y_{2 s}\right) \prod_{j=1}^{m} \frac{u_{-1}+(a \beta+b)(k j+s)}{v_{0}+(\alpha b+\beta)(k j+s)}\right), \\
y_{2 k m+2 s} & =g^{-1}\left(g\left(y_{2 s}\right) \prod_{j=1}^{m} \frac{u_{2 k j+2 s-1}}{v_{2 k j+2 s}}\right) \tag{23}\\
& =g^{-1}\left(g\left(y_{2 s+1}\right) \prod_{j=1}^{m} \frac{u_{0}+(a \beta+b)(k j+s)}{v_{-1}+(\alpha b+\beta)(k j+s+1)}\right) \\
y_{2 k m+2 s+1} & =g^{-1}\left(g\left(y_{2 s+1}\right) \prod_{j=1}^{m} \frac{u_{2 k j+2 s}}{v_{2 k j+2 s+1}}\right) \tag{24}\\
& (
\end{align*}
$$

for every $m \in \mathbb{N}_{0}$ and $s \in\{0,1, \ldots, k-1\}$.
Case $a \alpha \neq 1$. We have

$$
\begin{align*}
x_{2 k m+2 s} & =f^{-1}\left(f\left(x_{2 s}\right) \prod_{j=1}^{m} \frac{v_{2 k j+2 s-1}}{u_{2 k j+2 s}}\right) \\
& =f^{-1}\left(f\left(x_{2 s}\right) \prod_{j=1}^{m} \frac{\left(\alpha b+\beta+(a \alpha)^{k j+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)\right)}{\left(a \beta+b+(a \alpha)^{k j+s}\left(u_{0}(1-a \alpha)-a \beta-b\right)\right)}\right) \tag{25}
\end{align*}
$$

$$
x_{2 k m+2 s+1}=f^{-1}\left(f\left(x_{2 s+1}\right) \prod_{j=1}^{m} \frac{v_{2 k j+2 s}}{u_{2 k j+2 s+1}}\right)
$$

$$
\begin{equation*}
=f^{-1}\left(f\left(x_{2 s+1}\right) \prod_{j=1}^{m} \frac{\left(\alpha b+\beta+(a \alpha)^{k j+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)\right)}{\left(a \beta+b+(a \alpha)^{k j+s+1}\left(u_{-1}(1-a \alpha)-a \beta-b\right)\right)}\right) \tag{26}
\end{equation*}
$$

$$
\begin{align*}
y_{2 k m+2 s} & =g^{-1}\left(g\left(y_{2 s}\right) \prod_{j=1}^{m} \frac{u_{2 k j+2 s-1}}{v_{2 k j+2 s}}\right) \\
& =g^{-1}\left(g\left(y_{2 s}\right) \prod_{j=1}^{m} \frac{\left(a \beta+b+(a \alpha)^{k j+s}\left(u_{-1}(1-a \alpha)-a \beta-b\right)\right)}{\left(\alpha b+\beta+(a \alpha)^{k j+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)\right)}\right), \quad(27) \tag{27}\\
y_{2 k m+2 s+1} & =g^{-1}\left(g\left(y_{2 s+1}\right) \prod_{j=1}^{m} \frac{u_{2 k j+2 s}}{v_{2 k j+2 s+1}}\right) \\
& =g^{-1}\left(g\left(y_{2 s+1}\right) \prod_{j=1}^{m} \frac{\left(a \beta+b+(a \alpha)^{k j+s}\left(u_{0}(1-a \alpha)-a \beta-b\right)\right)}{\left(\alpha b+\beta+(a \alpha)^{k j+s+1}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)\right)}\right), \tag{28}
\end{align*}
$$

for every $m \in \mathbb{N}_{0}$ and $s \in\{0,1, \ldots, k-1\}$.

4. Behavior of solutions of system (13)

Prior to proving the main results on behavior of solutions of system (13) we present the following extension of Lemma 1 in [44] which guarantees the existence of $2 k$ and $4 k$ periodic solutions of system (13).

Lemma 1. Assume that $a \alpha \neq 1, f, g: \mathbb{R} \rightarrow \mathbb{R}$ are increasing functions satisfying the conditions in (3). Then the following statements are true.
(a) If $\alpha b+\beta=a \beta+b$, then system (13) has $2 k$-periodic solutions.
(b) If $\alpha b+\beta=-(a \beta+b)$, and f and g are odd, then system (13) has $4 k$-periodic solutions.

Proof. It is easy to see that system (14) has a unique equilibrium solution

$$
u_{n}=\bar{u}=\frac{a \beta+b}{1-a \alpha} \neq 0, \quad v_{n}=\bar{v}=\frac{\alpha b+\beta}{1-a \alpha} \neq 0, \quad n \geq-1
$$

This along with (4) implies that

$$
\begin{align*}
f\left(x_{n}\right) & =\frac{1-a \alpha}{(a \beta+b) g\left(y_{n-2 k+1}\right) \prod_{j=1}^{k-1} g\left(y_{n-2 j+1}\right) f\left(x_{n-2 j}\right)} \\
& =\frac{1-a \alpha}{a \beta+b} v_{n-1} f\left(x_{n-2 k}\right)=\frac{\alpha b+\beta}{a \beta+b} f\left(x_{n-2 k}\right), \quad n \in \mathbb{N}_{0}, \tag{29}
\end{align*}
$$

and

$$
\begin{align*}
g\left(y_{n}\right) & =\frac{1-a \alpha}{(\alpha b+\beta) f\left(x_{n-2 k+1}\right) \prod_{j=1}^{k-1} f\left(x_{n-2 j+1}\right) g\left(y_{n-2 j}\right)} \\
& =\frac{1-a \alpha}{\alpha b+\beta} u_{n-1} g\left(y_{n-2 k}\right)=\frac{a \beta+b}{\alpha b+\beta} g\left(y_{n-2 k}\right), \quad n \in \mathbb{N}_{0} \tag{30}
\end{align*}
$$

(a) Since $\alpha b+\beta=a \beta+b$, from (29) and (30) we get $f\left(x_{n}\right)=f\left(x_{n-2 k}\right)$ and $g\left(y_{n}\right)=g\left(y_{n-2 k}\right)$, from which it follows that $x_{n}=x_{n-2 k}$ and $y_{n}=y_{n-2 k}$ that is, there is a $2 k$-periodic solution of system (13).
(b) Since $\alpha b+\beta=-(a \beta+b)$, from (29), (30), and since f and g are odd functions, we get $f\left(x_{n}\right)=-f\left(x_{n-2 k}\right)=f\left(-x_{n-2 k}\right)$ and $g\left(y_{n}\right)=-g\left(y_{n-2 k}\right)=g\left(-y_{n-2 k}\right)$
which implies that $x_{n}=-x_{n-2 k}$ and $y_{n}=-y_{n-2 k}$, and consequently $x_{n}=x_{n-4 k}$ and $y_{n}=y_{n-4 k}$, that is, there is a $4 k$-periodic solution of system (13).

Theorem 1. Assume that a $=1, f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous, odd, increasing functions satisfying the conditions in (3), and $\left(x_{n}, y_{n}\right)_{n \geq-2 k}$ is a well-defined solution of system (13) such that $x_{-i} \neq 0 \neq y_{-i}, i=1, \ldots, 2 k$. Then the following statements are true.
(a) If $|\alpha b+\beta|<|a \beta+b|$, then $x_{n} \rightarrow 0$ and $\left|y_{n}\right| \rightarrow g^{-1}(+\infty)$, as $n \rightarrow \infty$.
(b) If $|\alpha b+\beta|>|a \beta+b|$, then $y_{n} \rightarrow 0$ and $\left|x_{n}\right| \rightarrow f^{-1}(+\infty)$, as $n \rightarrow \infty$.
(c) If $\alpha b+\beta=a \beta+b \neq 0$ and $\frac{v_{-1}-u_{0}}{\alpha b+\beta}>0$, then $\left|x_{2 k m+2 s}\right| \rightarrow f^{-1}(+\infty)$, $s \in$ $\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(d) If $\alpha b+\beta=a \beta+b \neq 0$ and $\frac{v_{-1}-u_{0}}{\alpha b+\beta}<0$, then $\left|x_{2 k m+2 s}\right| \rightarrow 0, s \in\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(e) If $\alpha b+\beta=a \beta+b \neq 0$ and $v_{-1}=u_{0}$, then the sequences $x_{2 k m+2 s}, s \in$ $\{0,1, \ldots, k-1\}$, are convergent.
(f) If $\alpha b+\beta=a \beta+b \neq 0$ and $\frac{v_{0}-u_{-1}}{\alpha b+\beta}>1$, then $\left|x_{2 k m+2 s+1}\right| \rightarrow f^{-1}(+\infty)$, $s \in\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(g) If $\alpha b+\beta=a \beta+b \neq 0$ and $\frac{v_{0}-u_{-1}}{\alpha b+\beta}<1$, then $\left|x_{2 k m+2 s+1}\right| \rightarrow 0, s \in\{0,1, \ldots, k-$ $1\}$, as $m \rightarrow \infty$.
(h) If $\alpha b+\beta=a \beta+b \neq 0$ and $v_{0}=u_{-1}+\alpha b+\beta$, then the sequences $x_{2 k m+2 s+1}$, $s \in\{0,1, \ldots, k-1\}$, are convergent.
(i) If $\alpha b+\beta=a \beta+b \neq 0$ and $\frac{u_{-1}-v_{0}}{\alpha b+\beta}>0$, then $\left|y_{2 k m+2 s}\right| \rightarrow g^{-1}(+\infty), s \in$ $\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(j) If $\alpha b+\beta=a \beta+b \neq 0$ and $\frac{u_{-1}-v_{0}}{\alpha b+\beta}<0$, then $y_{2 k m+2 s} \rightarrow 0, s \in\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(k) If $\alpha b+\beta=a \beta+b \neq 0$ and $u_{-1}=v_{0}$, then the sequences $y_{2 k m+2 s}, s \in$ $\{0,1, \ldots, k-1\}$, are convergent.
(l) If $\alpha b+\beta=a \beta+b \neq 0$ and $\frac{u_{0}-v_{-1}}{\alpha b+\beta}>1$, then $\left|y_{2 k m+2 s+1}\right| \rightarrow g^{-1}(+\infty)$, $s \in\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(m) If $\alpha b+\beta=a \beta+b \neq 0$ and $\frac{u_{0}-v_{-1}}{\alpha b+\beta}<1$, then $y_{2 k m+2 s+1} \rightarrow 0, s \in\{0,1, \ldots, k-$ $1\}$, as $m \rightarrow \infty$.
(n) If $\alpha b+\beta=a \beta+b \neq 0$ and $u_{0}=v_{-1}+\alpha b+\beta$, then the sequences $y_{2 k m+2 s+1}$, $s \in\{0,1, \ldots, k-1\}$, are convergent.
(o) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $\frac{v_{-1}+u_{0}}{\alpha b+\beta}>0$, then $\left|x_{2 k m+2 s}\right| \rightarrow f^{-1}(+\infty)$, $s \in\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(p) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $\frac{v_{-1}+u_{0}}{\alpha b+\beta}<0$, then $\left|x_{2 k m+2 s}\right| \rightarrow 0, s \in\{0,1, \ldots, k-$ $1\}$, as $m \rightarrow \infty$.
(q) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $v_{-1}=-u_{0}$, then the sequences $x_{4 k m+2 s}$ and $x_{4 k m+2 k+2 s}, s \in\{0,1, \ldots, k-1\}$, are convergent.
(r) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $\frac{v_{0}+u_{-1}}{\alpha b+\beta}>1$, then $\left|x_{2 k m+2 s+1}\right| \rightarrow f^{-1}(+\infty)$, $s \in\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(s) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $\frac{v_{0}+u_{-1}}{\alpha b+\beta}<1$, then $\left|x_{2 k m+2 s+1}\right| \rightarrow 0, s \in$ $\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.

EJQTDE, 2013 No. 47, p. 7
(t) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $v_{0}+u_{-1}=\alpha b+\beta$, then the sequences $x_{4 k m+2 s+1}$ and $x_{4 k m+2 k+2 s+1}, s \in\{0,1, \ldots, k-1\}$, are convergent.
(u) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $\frac{u_{-1}+v_{0}}{\alpha b+\beta}<0$, then $\left|y_{2 k m+2 s}\right| \rightarrow g^{-1}(+\infty)$, $s \in\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(v) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $\frac{u_{-1}+v_{0}}{\alpha b+\beta}>0$, then $y_{2 k m+2 s} \rightarrow 0, s \in\{0,1, \ldots, k-$ $1\}$, as $m \rightarrow \infty$.
(w) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $u_{-1}=-v_{0}$, then the sequences $y_{4 k m+2 s}$ and $y_{4 k m+2 k+2 s}, s \in\{0,1, \ldots, k-1\}$, are convergent.
(x) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $\frac{u_{0}+v_{-1}+\alpha b+\beta}{\alpha b+\beta}<0$, then $\left|y_{2 k m+2 s+1}\right| \rightarrow g^{-1}(+\infty)$, $s \in\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(y) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $\frac{u_{0}+v_{-1}+\alpha b+\beta}{\alpha b+\beta}>0$, then $y_{2 k m+2 s+1} \rightarrow 0$, $s \in\{0,1, \ldots, k-1\}$, as $m \rightarrow \infty$.
(z) If $\alpha b+\beta=-(a \beta+b) \neq 0$ and $u_{0}+v_{-1}+\alpha b+\beta=0$, then the sequences $y_{4 k m+2 s+1}$ and $y_{4 k m+2 k+2 s+1}, s \in\{0,1, \ldots, k-1\}$, are convergent.

Proof. (a), (b) We have

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \frac{v_{-1}+(\alpha b+\beta)(k m+s)}{u_{0}+(a \beta+b)(k m+s)}=\lim _{m \rightarrow \infty} \frac{v_{0}+(\alpha b+\beta)(k m+s)}{u_{-1}+(a \beta+b)(k m+s+1)}=\frac{\alpha b+\beta}{a \beta+b}, \\
& \lim _{m \rightarrow \infty} \frac{u_{-1}+(a \beta+b)(k m+s)}{v_{0}+(\alpha b+\beta)(k m+s)}=\lim _{m \rightarrow \infty} \frac{u_{0}+(a \beta+b)(k m+s)}{v_{-1}+(\alpha b+\beta)(k m+s+1)}=\frac{a \beta+b}{\alpha b+\beta} .
\end{aligned}
$$

From these limits, formulae (21)-(24) and the continuity of functions f and g these two statements follow.
(c) $-(n)$ By some calculations, and using the next known formulas

$$
\begin{equation*}
\ln (1+x)=x-x^{2} / 2+O\left(x^{3}\right) \quad \text { and } \quad(1+x)^{-1}=1-x+O\left(x^{2}\right), x \rightarrow 0 \tag{31}
\end{equation*}
$$

(which we may assume that hold for all the terms in products (21)-(24)), we get

$$
\begin{align*}
x_{2 k m+2 s} & =f^{-1}\left(f\left(x_{2 s}\right) \prod_{j=1}^{m} \frac{\left(1+\frac{(\alpha b+\beta) s+v_{-1}}{k j(\alpha b+\beta)}\right)}{\left(1+\frac{u_{0}+(a \beta+b) s}{k j(a \beta+b)}\right)}\right) \\
& =f^{-1}\left(f\left(x_{2 s}\right) \prod_{j=1}^{m}\left(1+\frac{v_{-1}-u_{0}}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right) \\
& =f^{-1}\left(f\left(x_{2 s}\right) \exp \left(\sum_{j=1}^{m}\left(\frac{v_{-1}-u_{0}}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right)\right), \tag{32}
\end{align*}
$$

$$
\begin{align*}
f\left(x_{2 k m+2 s+1}\right) & =f^{-1}\left(f\left(x_{2 s+1}\right) \prod_{j=1}^{m} \frac{\left(1+\frac{v_{0}+(\alpha b+\beta) s}{k j(a b+\beta)}\right)}{\left(1+\frac{u_{-1}+(a \beta+b)(s+1)}{k j(a \beta+b)}\right)}\right) \\
& =f^{-1}\left(f\left(x_{2 s+1}\right) \prod_{j=1}^{m}\left(1+\frac{v_{0}-u_{-1}-(\alpha b+\beta)}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right) \\
& =f^{-1}\left(f\left(x_{2 s+1}\right) \exp \left(\sum_{j=1}^{m}\left(\frac{v_{0}-u_{-1}-(\alpha b+\beta)}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right)\right), \tag{33}\\
y_{2 k m+2 s} & =g^{-1}\left(g\left(y_{2 s}\right) \prod_{j=1}^{m} \frac{\left(1+\frac{u_{-1}+(a \beta+b) s}{k j(a \beta+b)}\right)}{\left(1+\frac{v_{0}+(\alpha b+\beta) s}{k j(\alpha b+\beta)}\right)}\right) \\
& =g^{-1}\left(g\left(y_{2 s}\right) \prod_{j=1}^{m}\left(1+\frac{u_{-1}-v_{0}}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right) \\
& =g^{-1}\left(g\left(y_{2 s}\right) \exp \left(\sum_{j=1}^{m}\left(\frac{u_{-1}-v_{0}}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right)\right), \tag{34}\\
y_{2 k m+2 s+1} & =g^{-1}\left(g\left(y_{2 s+1}\right) \prod_{j=1}^{m} \frac{\left(1+\frac{u_{0}+(a \beta+b) s}{k j(a \beta+b)}\right)}{\left(1+\frac{v_{-1}+(a b+\beta)(s+1)}{k j(\alpha b+\beta)}\right)}\right) \\
& =g^{-1}\left(g\left(y_{2 s+1}\right) \prod_{j=1}^{m}\left(1+\frac{u_{0}-v_{-1}-(\alpha b+\beta)}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right) \\
& =g^{-1}\left(g\left(y_{2 s+1}\right) \exp \left(\sum_{j=1}^{m}\left(\frac{u_{0}-v_{-1}-(\alpha b+\beta)}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right)\right), \tag{35}
\end{align*}
$$

for every $s \in\{0,1,2, \ldots, k-1\}$.
Using (32)-(35), the relations

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{1}{j}=+\infty \quad \text { and } \quad \sum_{j=1}^{+\infty}\left|O\left(\frac{1}{j^{2}}\right)\right|<+\infty, \tag{36}
\end{equation*}
$$

and the continuity of the functions f and g, these results easily follow.
(o)-(z) By some calculations and (31) (which we may also assume that hold for all the terms in products $(21)-(24))$, we get

$$
\begin{align*}
x_{2 k m+2 s} & =f^{-1}\left(f\left(x_{2 s}\right)(-1)^{m} \prod_{j=1}^{m} \frac{\left(1+\frac{(\alpha b+\beta) s+v_{-1}}{k j(a+\beta)}\right)}{\left(1+\frac{(\alpha b+\beta) s-u_{0}}{k j(a \beta+b)}\right)}\right) \\
& =f^{-1}\left(f\left(x_{2 s}\right)(-1)^{m} \prod_{j=1}^{m}\left(1+\frac{v_{-1}+u_{0}}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right) \\
& =(-1)^{m} f^{-1}\left(f\left(x_{2 s}\right) \exp \left(\sum_{j=1}^{m}\left(\frac{v_{-1}+u_{0}}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right)\right), \tag{37}\\
x_{2 k m+2 s+1} & =f^{-1}\left(f\left(x_{2 s+1}\right)(-1)^{m} \prod_{j=1}^{m} \frac{\left(1+\frac{v_{0}+(\alpha b+\beta) s}{k j(\alpha b+\beta))}\right)}{\left(1+\frac{(\alpha b+\beta)(s+1)-u_{-1}}{k j(\alpha b+\beta)}\right)}\right) \\
& =f^{-1}\left(f\left(x_{2 s+1}\right)(-1)^{m} \prod_{j=1}^{m}\left(1+\frac{v_{0}+u_{-1}-(\alpha b+\beta)}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right) \\
& =(-1)^{m} f^{-1}\left(f\left(x_{2 s+1}\right) \exp \left(\sum_{j=1}^{m}\left(\frac{v_{0}+u_{-1}-(\alpha b+\beta)}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right)\right), \tag{38}\\
& =g^{-1}\left(g\left(y_{2 s}\right)(-1)^{m} \prod_{j=1}^{m}\left(1-\frac{u_{-1}+v_{0}}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right) \\
& =(-1)^{m} g^{-1}\left(g\left(y_{2 s}\right) \exp \left(-\sum_{j=1}^{m}\left(\frac{u_{-1}+v_{0}}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right)\right), \quad(39) \\
y_{2 k m+2 s} & =g^{-1}\left(g\left(y_{2 s}\right)(-1)^{m} \prod_{j=1}^{m} \frac{\left(1+\frac{(\alpha b+\beta) s-u-1}{k j(\alpha b+\beta)}\right)}{\left(1+\frac{\left.v_{0}+(\alpha b+\beta) s\right)}{k j(\alpha b+\beta)}\right)}\right) \tag{39}\\
& =g^{-1}\left(g\left(y_{2 s+1}\right)(-1)^{m} \prod_{j=1}^{m}\left(1-\frac{u_{0}+v_{-1}+\alpha b+\beta}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right) \\
& =(-1)^{m} g^{-1}\left(g\left(y_{2 s+1}\right) \exp \left(-\sum_{j=1}^{m}\left(\frac{u_{0}+v_{-1}+\alpha b+\beta}{k j(\alpha b+\beta)}+O\left(\frac{1}{j^{2}}\right)\right)\right)\right),
\end{align*}
$$

for every $s \in\{0,1,2, \ldots, k-1\}$.

Using (37)-(40), relations (36) and the continuity of the functions f and g, the results easily follow.

Theorem 2. Assume that $a \alpha \neq 1, f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous, odd, increasing functions satisfying the conditions in (3), and $\left(x_{n}, y_{n}\right)_{n \geq-2 k}$ is a well-defined solution of system (13) such that $x_{-i} \neq 0 \neq y_{-i}, i=1, \ldots, 2 k$. Then the following statements are true.
(a) If $|a \alpha|>1$, $\left|v_{-1}(1-a \alpha)-\alpha b-\beta\right|<\left|u_{0}(1-a \alpha)-a \beta-b\right|$, then $x_{2 k m+2 s} \rightarrow 0$, $s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(b) If $|a \alpha|>1,\left|v_{-1}(1-a \alpha)-\alpha b-\beta\right|>\left|u_{0}(1-a \alpha)-a \beta-b\right|$, then $\left|x_{2 k m+2 s}\right| \rightarrow$ $f^{-1}(+\infty), s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(c) If $|a \alpha|>1, v_{-1}(1-a \alpha)-\alpha b-\beta=u_{0}(1-a \alpha)-a \beta-b \neq 0$, then the sequences $x_{2 k m+2 s}, s \in\{0,1, \ldots, k-1\}$ are convergent.
(d) If $|a \alpha|>1, v_{-1}(1-a \alpha)-\alpha b-\beta=-\left(u_{0}(1-a \alpha)-a \beta-b\right) \neq 0$, then the sequences $x_{4 k m+2 s}$ and $x_{4 k m+2 k+2 s}, s \in\{0,1, \ldots, k-1\}$ are convergent.
(e) If $|a \alpha|<1$ and $|\alpha b+\beta|<|a \beta+b|$, then $x_{2 k m+2 s} \rightarrow 0$, $s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(f) If $|a \alpha|<1$ and $|\alpha b+\beta|>|a \beta+b|$, then $\left|x_{2 k m+2 s}\right| \rightarrow f^{-1}(+\infty), s \in\{0,1, \ldots, k-$ 1\} as $m \rightarrow \infty$.
(g) If $|a \alpha|<1$ and $\alpha b+\beta=a \beta+b$, then the sequences $x_{2 k m+2 s}, s \in\{0,1, \ldots, k-1\}$ are convergent.
(h) If $|a \alpha|<1$ and $\alpha b+\beta=-(a \beta+b)$, then the sequences $x_{4 k m+2 s}$ and $x_{4 k m+2 k+2 s}$, $s \in\{0,1, \ldots, k-1\}$ are convergent.
(i) If $a \alpha=-1$, then

$$
\begin{equation*}
x_{2 k m+2 s}=f^{-1}\left(f\left(x_{2 s}\right) \prod_{j=1}^{m}\left(\frac{\alpha b+\beta+(-1)^{k j+s}\left(2 v_{-1}-\alpha b-\beta\right)}{a \beta+b+(-1)^{k j+s}\left(2 u_{0}-a \beta-b\right)}\right)\right) . \tag{41}
\end{equation*}
$$

Proof. Let

$$
p_{m}^{s}:=\frac{\alpha b+\beta+(a \alpha)^{k m+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)}{a \beta+b+(a \alpha)^{k m+s}\left(u_{0}(1-a \alpha)-a \beta-b\right)}, \quad m \in \mathbb{N}_{0}, s \in\{0,1, \ldots, k-1\} .
$$

(a) Note that in this case

$$
\lim _{m \rightarrow \infty}\left|p_{m}^{s}\right|=\frac{\left|v_{-1}(1-a \alpha)-\alpha b-\beta\right|}{\left|u_{0}(1-a \alpha)-a \beta-b\right|}<1,
$$

which along with formula (25), and the continuity of function f, easily implies the result.
(b) In this case

$$
\lim _{m \rightarrow \infty}\left|p_{m}^{s}\right|=\frac{\left|v_{-1}(1-a \alpha)-\alpha b-\beta\right|}{\left|u_{0}(1-a \alpha)-a \beta-b\right|}>1,
$$

from which, (25) and the continuity of function f, the result easily follows.
EJQTDE, 2013 No. 47, p. 11
(c) Using (31) we have that for sufficiently large m

$$
\begin{align*}
p_{m}^{s} & =\frac{1+\frac{\alpha b+\beta}{\left.(a \alpha)^{k m+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)\right)}}{1+\frac{a \beta+b}{\left.(a \alpha)^{k m+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)\right)}} \\
& =1+\frac{\alpha b+\beta-a \beta-b}{\left.(a \alpha)^{k m+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)\right)}+\left(\frac{1}{(a \alpha)^{k m}}\right) . \tag{42}
\end{align*}
$$

Employing (42) in (25), then using (31), the condition $|a \alpha|>1$, and the continuity of function f, the statement easily follows.
(d) Using (31) we have that for sufficiently large m

$$
\begin{align*}
p_{m}^{s} & =-\frac{1+\frac{\alpha b+\beta}{\left.(a \alpha)^{k m+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)\right)}}{1-\frac{a \beta+b}{\left.(a \alpha)^{k m+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)\right)}} \\
& =-\left(1+\frac{\alpha b+\beta+a \beta+b}{(a \alpha)^{k m+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)}+\left(\frac{1}{(a \alpha)^{k m}}\right)\right) . \tag{43}
\end{align*}
$$

Using (43) in (25), then (31), the condition $|a \alpha|>1$, and the continuity of function f, the statement easily follows.
(e) In this case

$$
\lim _{m \rightarrow \infty}\left|p_{m}^{s}\right|=\frac{|\alpha b+\beta|}{|a \beta+b|}<1,
$$

which along with (25) and the continuity of function f, the result follows.
(f) In this case

$$
\lim _{m \rightarrow \infty}\left|p_{m}^{s}\right|=\frac{|\alpha b+\beta|}{|a \beta+b|}>1
$$

which along with (25) and the continuity of function f, the result follows.
(g) Using (31) we have that for sufficiently large m

$$
\begin{align*}
p_{m}^{s} & =\frac{\left(1+\frac{\left.(a \alpha)^{k m+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)\right)}{\alpha b+\beta}\right)}{\left(1+\frac{(a \alpha)^{k m+s}\left(u_{0}(1-a \alpha)-\alpha b-\beta\right)}{\alpha b+\beta}\right)} \\
& =1+\frac{(a \alpha)^{k m+s}\left(v_{-1}-u_{0}\right)(1-a \alpha)}{\alpha b+\beta}+\left((a \alpha)^{k m}\right) \tag{44}
\end{align*}
$$

Employing (44) in (25), then using (31), the condition $|a \alpha|<1$ and the continuity of function f, the statement follows.
(h) Using (31) we have that for sufficiently large m

$$
\begin{align*}
p_{m}^{s} & =-\frac{\left(1+\frac{\left.(a \alpha)^{k m+s}\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)\right)}{\alpha b+\beta}\right)}{\left(1-\frac{(a \alpha)^{k m+s}\left(u_{0}(1-a \alpha)+\alpha b+\beta\right)}{\alpha b+\beta}\right)} \\
& =-\left(1+\frac{(a \alpha)^{k m+s}\left(v_{-1}+u_{0}\right)(1-a \alpha)}{\alpha b+\beta}+\left((a \alpha)^{k m}\right)\right) . \tag{45}
\end{align*}
$$

Employing (45) in (25), then using (31), the condition $|a \alpha|<1$, the continuity and oddness of function f, the statement follows.
(i) By using the condition $a \alpha=-1$ in (25), formula (41) directly follows.

EJQTDE, 2013 No. 47, p. 12

Theorem 3. Assume that $a \alpha \neq 1, f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous, odd, increasing functions satisfying the conditions in (3), and that $\left(x_{n}, y_{n}\right)_{n \geq-2 k}$ is a well-defined solution of system (13) such that $x_{-i} \neq 0 \neq y_{-i}, i=1, \ldots, 2 \bar{k}$. Then the following statements are true.
(a) If $|a \alpha|>1,\left|v_{0}(1-a \alpha)-\alpha b-\beta\right|<|a \alpha|\left|u_{-1}(1-a \alpha)-a \beta-b\right|$, then $x_{2 k m+2 s+1} \rightarrow$ $0, s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(b) If $|a \alpha|>1,\left|v_{0}(1-a \alpha)-\alpha b-\beta\right|>|a \alpha|\left|u_{-1}(1-a \alpha)-a \beta-b\right|$, then $\left|x_{2 k m+2 s+1}\right| \rightarrow$ $f^{-1}(+\infty), s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(c) If $|a \alpha|>1, v_{0}(1-a \alpha)-\alpha b-\beta=a \alpha\left(u_{-1}(1-a \alpha)-a \beta-b\right)$, then the sequences $x_{2 k m+2 s+1}, s \in\{0,1, \ldots, k-1\}$ converge.
(d) If $|a \alpha|>1, v_{0}(1-a \alpha)-\alpha b-\beta=-a \alpha\left(u_{-1}(1-a \alpha)-a \beta-b\right)$, then the sequences $x_{4 k m+2 s+1}$ and $x_{4 k m+2 k+2 s+1}, s \in\{0,1, \ldots, k-1\}$ converge.
(e) If $|a \alpha|<1$ and $|\alpha b+\beta|<|a \beta+b|$, then $x_{2 k m+2 s+1} \rightarrow 0, s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(f) If $|a \alpha|<1$ and $|\alpha b+\beta|>|a \beta+b|$, then $\left|x_{2 k m+2 s+1}\right| \rightarrow f^{-1}(+\infty)$, $s \in$ $\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(g) If $|a \alpha|<1$ and $\alpha b+\beta=a \beta+b$, then the sequences $x_{2 k m+2 s+1}, s \in\{0,1, \ldots, k-$ 1\} are convergent.
(h) If $|a \alpha|<1$ and $\alpha b+\beta=-(a \beta+b)$, then the sequences $x_{4 k m+2 s+1}$ and $x_{4 k m+2 k+2 s+1}, s \in\{0,1, \ldots, k-1\}$ are convergent.
(i) If $a \alpha=-1$, then

$$
\begin{equation*}
x_{2 k m+2 s+1}=f^{-1}\left(f\left(x_{2 s+1}\right) \prod_{j=1}^{m}\left(\frac{\alpha b+\beta+(-1)^{k j+s}\left(2 v_{0}-\alpha b-\beta\right)}{a \beta+b+(-1)^{k j+s+1}\left(2 u_{-1}-a \beta-b\right)}\right)\right) . \tag{46}
\end{equation*}
$$

Proof. Let

$$
r_{m}^{s}:=\frac{\alpha b+\beta+(a \alpha)^{k m+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)}{a \beta+b+(a \alpha)^{k m+s+1}\left(u_{-1}(1-a \alpha)-a \beta-b\right)}, \quad m \in \mathbb{N}_{0}, s \in\{0,1, \ldots, k-1\} .
$$

(a) Note that in this case

$$
\lim _{m \rightarrow \infty}\left|r_{m}^{s}\right|=\frac{\left|v_{0}(1-a \alpha)-\alpha b-\beta\right|}{\left|u_{-1}(1-a \alpha)-a \beta-b\right||a \alpha|}<1
$$

which along with formula (26) and the continuity of function f, easily implies the result.
(b) In this case

$$
\lim _{m \rightarrow \infty}\left|r_{m}^{s}\right|=\frac{\left|v_{0}(1-a \alpha)-\alpha b-\beta\right|}{\left|u_{-1}(1-a \alpha)-a \beta-b\right||a \alpha|}>1
$$

from which along with (26) and the continuity of function f, the result follows.
(c) Using (31) we have that for sufficiently large m

$$
\begin{align*}
r_{m}^{s} & =\frac{1+\frac{\alpha b+\beta}{(a \alpha)^{k m+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)}}{1+\frac{a \beta+b}{(a \alpha)^{k m+s+1}\left(u_{-1}(1-a \alpha)-a \beta-b\right)}} \\
& =1+\frac{\alpha b+\beta-a \beta-b}{\left.(a \alpha)^{k m+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)\right)}+\left(\frac{1}{(a \alpha)^{k m}}\right) . \tag{47}
\end{align*}
$$

EJQTDE, 2013 No. 47, p. 13

Employing (47) in (26), then using (31), the condition $|a \alpha|>1$ and the continuity of function f, the statement easily follows.
(d) Using (31) we have that for sufficiently large m

$$
\begin{align*}
r_{m}^{s} & =-\frac{1+\frac{\alpha b+\beta}{(a \alpha)^{k m+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)}}{1-\frac{a \beta+b}{(a \alpha)^{k m+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)}} \\
& =-\left(1+\frac{\alpha b+\beta+a \beta+b}{\left.(a \alpha)^{k m+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)\right)}+\left(\frac{1}{(a \alpha)^{k m}}\right)\right) . \tag{48}
\end{align*}
$$

Employing (48) in (26), then using (31), the condition $|a \alpha|>1$ and the continuity of function f, the statement easily follows.
(e) In this case

$$
\lim _{m \rightarrow \infty}\left|r_{m}^{s}\right|=\frac{|\alpha b+\beta|}{|a \beta+b|}<1
$$

from which along with (26) and the continuity of function f, the result follows.
(f) In this case

$$
\lim _{m \rightarrow \infty}\left|r_{m}^{s}\right|=\frac{|\alpha b+\beta|}{|a \beta+b|}>1
$$

from which along with (26) and the continuity of function f, the result follows.
(g) Using (31) we have that for sufficiently large m

$$
\begin{align*}
r_{m}^{s} & =\frac{1+\frac{(a \alpha)^{k m+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)}{\alpha b+\beta}}{1+\frac{(a \alpha)^{k m+s+1}\left(u_{-1}(1-a \alpha)-\alpha b-\beta\right)}{\alpha b+\beta}} \\
& =1+\frac{(a \alpha)^{k m+s}\left(v_{0}-a \alpha u_{-1}-\alpha b-\beta\right)(1-a \alpha)}{\alpha b+\beta}+\left((a \alpha)^{k m}\right) \tag{49}
\end{align*}
$$

Employing (49) in (26), then using (31), the condition $|a \alpha|<1$ and the continuity of function f, the statement follows.
(h) Using (31) we have that for sufficiently large m

$$
\begin{align*}
r_{m}^{s} & =-\frac{1+\frac{(a \alpha)^{k m+s}\left(v_{0}(1-a \alpha)-\alpha b-\beta\right)}{\alpha b+\beta}}{1-\frac{(a \alpha)^{k m+s+1}\left(u_{-1}(1-a \alpha)+\alpha b+\beta\right)}{\alpha b+\beta}} \\
& =-\left(1+\frac{(a \alpha)^{k m+s}\left(v_{0}+\alpha a u_{-1}-\alpha b-\beta\right)(1-a \alpha)}{\alpha b+\beta}+\left((a \alpha)^{k m}\right)\right) \tag{50}
\end{align*}
$$

Employing (50) in (26), then using (31), the condition $|a \alpha|<1$, the continuity and oddness of function f, the statement follows.
(i) By using the condition $a \alpha=-1$ in (26) formula (46) easily follows.

The proofs of the next two theorems use formulas (27) and (28), and are similar to those ones of Theorems 2 and 3, so they are omitted.

Theorem 4. Assume that $a \alpha \neq 1, f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous, odd, increasing functions satisfying the conditions in (3), and that $\left(x_{n}, y_{n}\right)_{n \geq-2 k}$ is a well-defined solution of system (13) such that $x_{-i} \neq 0 \neq y_{-i}, i=1, \ldots, 2 k$. Then the following statements are true.
(a) If $|a \alpha|>1,\left|v_{0}(1-a \alpha)-\alpha b-\beta\right|>\left|u_{-1}(1-a \alpha)-a \beta-b\right|$, then $y_{2 k m+2 s} \rightarrow 0$, $s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(b) If $|a \alpha|>1,\left|v_{0}(1-a \alpha)-\alpha b-\beta\right|<\left|u_{-1}(1-a \alpha)-a \beta-b\right|$, then $\left|y_{2 k m+2 s}\right| \rightarrow$ $g^{-1}(+\infty), s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(c) If $|a \alpha|>1, v_{0}(1-a \alpha)-\alpha b-\beta=u_{-1}(1-a \alpha)-a \beta-b$, then the sequences $y_{2 k m+2 s}, s \in\{0,1, \ldots, k-1\}$ converge.
(d) If $|a \alpha|>1, v_{0}(1-a \alpha)-\alpha b-\beta=-\left(u_{-1}(1-a \alpha)-a \beta-b\right)$, then the sequences $y_{4 k m+2 s}$ and $y_{4 k m+2 k+2 s}, s \in\{0,1, \ldots, k-1\}$ converge.
(e) If $|a \alpha|<1$ and $|\alpha b+\beta|>|a \beta+b|$, then $y_{2 k m+2 s} \rightarrow 0, s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(f) If $|a \alpha|<1$ and $|\alpha b+\beta|<|a \beta+b|$, then $\left|y_{2 k m+2 s}\right| \rightarrow g^{-1}(+\infty), s \in\{0,1, \ldots, k-$ 1\} as $m \rightarrow \infty$.
(g) If $|a \alpha|<1$ and $\alpha b+\beta=a \beta+b$, then the sequences $y_{2 k m+2 s}, s \in\{0,1, \ldots, k-1\}$ are convergent.
(h) If $|a \alpha|<1$ and $\alpha b+\beta=-(a \beta+b)$, then the sequences $y_{4 k m+2 s}$ and $y_{4 k m+2 k+2 s}$, $s \in\{0,1, \ldots, k-1\}$ are convergent.
(i) If $a \alpha=-1$, then

$$
y_{2 k m+2 s}=g^{-1}\left(g\left(y_{2 s}\right) \prod_{j=1}^{m}\left(\frac{a \beta+b+(-1)^{k j+s}\left(2 u_{-1}-a \beta-b\right)}{\alpha b+\beta+(-1)^{k j+s}\left(2 v_{0}-\alpha b-\beta\right)}\right)^{m}\right)
$$

Theorem 5. Assume that $a \alpha \neq 1, f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous, odd, increasing functions satisfying the conditions in (3), and that $\left(x_{n}, y_{n}\right)_{n \geq-2 k}$ is a well-defined solution of system (13) such that $x_{-i} \neq 0 \neq y_{-i}, i=1, \ldots, 2 \bar{k}$. Then the following statements are true.
(a) If $|a \alpha|>1,|a \alpha|\left|v_{-1}(1-a \alpha)-\alpha b-\beta\right|>\left|u_{0}(1-a \alpha)-a \beta-b\right|$, then $y_{2 k m+2 s+1} \rightarrow$ $0, s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(b) If $|a \alpha|>1,|a \alpha|\left|v_{-1}(1-a \alpha)-\alpha b-\beta\right|<\left|u_{0}(1-a \alpha)-a \beta-b\right|$, then $\left|y_{2 k m+2 s+1}\right| \rightarrow$ $g^{-1}(+\infty), s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(c) If $|a \alpha|>1$, $a \alpha\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)=u_{0}(1-a \alpha)-a \beta-b \neq 0$, then the sequences $y_{2 k m+2 s+1}, s \in\{0,1, \ldots, k-1\}$ are convergent.
(d) If $|a \alpha|>1, a \alpha\left(v_{-1}(1-a \alpha)-\alpha b-\beta\right)=-\left(u_{0}(1-a \alpha)-a \beta-b\right) \neq 0$, then the sequences $y_{4 k m+2 s+1}$ and $y_{4 k m+2 k+2 s+1}, s \in\{0,1, \ldots, k-1\}$ are convergent.
(e) If $|a \alpha|<1$ and $|\alpha b+\beta|>|a \beta+b|$, then $y_{2 k m+2 s+1} \rightarrow 0, s \in\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(f) If $|a \alpha|<1$ and $|\alpha b+\beta|<|a \beta+b|$, then $\left|y_{2 k m+2 s+1}\right| \rightarrow g^{-1}(+\infty)$, $s \in$ $\{0,1, \ldots, k-1\}$ as $m \rightarrow \infty$.
(g) If $|a \alpha|<1$ and $\alpha b+\beta=a \beta+b$, then the sequences $y_{2 k m+2 s+1}, s \in\{0,1, \ldots, k-$ 1\} are convergent.
(h) If $|a \alpha|<1$ and $\alpha b+\beta=-(a \beta+b)$, then the sequences $y_{4 k m+2 s+1}$ and $y_{4 k m+2 k+2 s+1}, s \in\{0,1, \ldots, k-1\}$ are convergent.
(i) If $a \alpha=-1$, then
$y_{2 k m+2 s+1}=g^{-1}\left(g\left(y_{2 s+1}\right) \prod_{j=1}^{m}\left(\frac{a \beta+b+(-1)^{k j+s}\left(2 u_{0}-a \beta-b\right)}{\alpha b+\beta+(-1)^{k j+s+1}\left(2 v_{-1}-\alpha b-\beta\right)}\right)^{m}\right)$.
EJQTDE, 2013 No. 47, p. 15

Theorems 2-5 and Lemma 1 yield the next corollary.
Corollary 1. Assume that $|a \alpha|<1, f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous, odd, increasing functions satisfying the conditions in (3), and $\left(x_{n}, y_{n}\right)_{n \geq-2 k}$ is a well-defined solution of system (13) such that $x_{-i} \neq 0 \neq y_{-i}, i=1, \ldots, 2 k$. Then the following statements are true.
(a) If $\alpha b+\beta=a \beta+b$, then the solution $\left(x_{n}, y_{n}\right)_{n \geq-2 k}$ converges to a, not necessarily prime, $2 k$-periodic solution of system (13).
(b) If $\alpha b+\beta=-(a \beta+b)$, then the solution $\left(x_{n}, y_{n}\right)_{n \geq-2 k}$ converges to a, not necessarily prime, $4 k$-periodic solution of system (13).

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under grant No. (11-130/1433 HiCi). The authors, therefore, acknowledge technical and financial support of KAU.

References

[1] A. Andruch-Sobilo and M. Migda, On the rational recursive sequence $x_{n+1}=a x_{n-1} /(b+$ $c x_{n} x_{n-1}$), Tatra Mt. Math. Publ. 43 (2009), 1-9.
[2] I. Bajo and E. Liz, Global behaviour of a second-order nonlinear difference equation, J. Differ. Equations Appl. 17 (10) (2011), 1471-1486.
[3] K. Berenhaut, J. Foley and S. Stević, The global attractivity of the rational difference equation $y_{n}=1+\left(y_{n-k} / y_{n-m}\right)$, Proc. Amer. Math. Soc. 135 (1) (2007), 1133-1140.
[4] K. Berenhaut and S. Stević, The behaviour of the positive solutions of the difference equation $x_{n}=A+\left(x_{n-2} / x_{n-1}\right)^{p}$, J. Differ. Equations Appl. 12 (9) (2006), 909-918.
[5] L. Berg and S. Stević, Periodicity of some classes of holomorphic difference equations, J. Difference Equ. Appl. 12 (8) (2006), 827-835.
[6] L. Berg and S. Stević, On difference equations with powers as solutions and their connection with invariant curves, Appl. Math. Comput. 217 (2011), 7191-7196.
[7] L. Berg and S. Stević, On some systems of difference equations, Appl. Math. Comput. 218 (2011), 1713-1718.
[8] L. Berg and S. Stević, On the asymptotics of the difference equation $y_{n}\left(1+y_{n-1} \cdots y_{n-k+1}\right)=$ y_{n-k}, J. Differ. Equations Appl. 17 (4) (2011), 577-586.
[9] N. Fotiades and G. Papaschinopoulos, Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential form, Appl. Math. Comput. 218 (2012), 11648-11653.
[10] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman \& Hall, CRC Press, Boca Raton, 2005.
[11] B. Iričanin and S. Stević, Some systems of nonlinear difference equations of higher order with periodic solutions, Dynam. Contin. Discrete Impuls. Systems 13 a (3-4) (2006), 499-508.
[12] B. Iričanin and S. Stević, Eventually constant solutions of a rational difference equation, Appl. Math. Comput. 215 (2009), 854-856.
[13] R. Kurshan and B. Gopinath, Recursively generated periodic sequences, Canad. J. Math. 24 (6) (1974), 1356-1371.
[14] H. Levy and F. Lessman, Finite Difference Equations, The Macmillan Company, New York, NY, USA, 1961.
[15] G. Papaschinopoulos, M. Radin and C. J. Schinas, Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form, Appl. Math. Comput. 218 (2012), 5310-5318.
[16] G. Papaschinopoulos and C. J. Schinas, On the behavior of the solutions of a system of two nonlinear difference equations, Comm. Appl. Nonlinear Anal. 5 (2) (1998), 47-59.

EJQTDE, 2013 No. 47, p. 16
[17] G. Papaschinopoulos and C. J. Schinas, Invariants for systems of two nonlinear difference equations, Differential Equations Dynam. Systems 7 (2) (1999), 181-196.
[18] G. Papaschinopoulos and C. J. Schinas, Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear Anal. TMA 46 (7) (2001), 967-978.
[19] G. Papaschinopoulos and C. J. Schinas, On the system of two difference equations $x_{n+1}=$ $\sum_{i=0}^{k} A_{i} / y_{n-i}^{p_{i}}, y_{n+1}=\sum_{i=0}^{k} B_{i} / x_{n-i}^{q_{i}}$, J. Math. Anal. Appl. 273 (2) (2002), 294-309.
[20] G. Papaschinopoulos, C. J. Schinas and G. Stefanidou, On the nonautonomous difference equation $x_{n+1}=A_{n}+\left(x_{n-1}^{p} / x_{n}^{q}\right)$, Appl. Math. Comput. 217 (2011), 5573-5580.
[21] G. Papaschinopoulos and G. Stefanidou, Trichotomy of a system of two difference equations, J. Math. Anal. Appl. 289 (2004), 216-230.
[22] G. Papaschinopoulos and G. Stefanidou, Asymptotic behavior of the solutions of a class of rational difference equations, Inter. J. Difference Equations 5 (2) (2010), 233-249.
[23] S. Stević, A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math. 33 (1) (2002), 45-53.
[24] S. Stević, On the recursive sequence $x_{n+1}=g\left(x_{n}, x_{n-1}\right) /\left(A+x_{n}\right)$, Appl. Math. Lett. 15 (2002), 305-308.
[25] S. Stević, Asymptotic behaviour of a nonlinear difference equation, Indian J. Pure Appl. Math. 34 (12) (2003), 1681-1687.
[26] S. Stević, On the recursive sequence $x_{n+1}=A / \prod_{i=0}^{k} x_{n-i}+1 / \prod_{j=k+2}^{2(k+1)} x_{n-j}$, Taiwanese J. Math. 7 (2) (2003), 249-259.
[27] S. Stević, On the recursive sequence $x_{n+1}=\alpha_{n}+\left(x_{n-1} / x_{n}\right)$ II, Dynam. Contin. Discrete Impuls. Systems 10a (6) (2003), 911-917.
[28] S. Stević, More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004), 80-85.
[29] S. Stević, A short proof of the Cushing-Henson conjecture, Discrete Dyn. Nat. Soc. Vol. 2006, Article ID 37264, (2006), 5 pages.
[30] S. Stević, On monotone solutions of some classes of difference equations, Discrete Dyn. Nat. Soc. Vol. 2006, Article ID 53890 (2006), 9 pages.
[31] S. Stević, Boundedness character of a class of difference equations, Nonlinear Anal. TMA 70 (2009), 839-848.
[32] S. Stević, Global stability of a difference equation with maximum, Appl. Math. Comput. 210 (2009), 525-529.
[33] S. Stević, Global stability of a max-type equation, Appl. Math. Comput. 216 (2010), 354-356.
[34] S. Stević, Periodicity of max difference equations, Util. Math. 83 (2010), 69-71.
[35] S. Stević, On a system of difference equations, Appl. Math. Comput. 218 (2011), 3372-3378.
[36] S. Stević, On a system of difference equations with period two coefficients, Appl. Math. Comput. 218 (2011), 4317-4324.
[37] S. Stević, On the difference equation $x_{n}=x_{n-2} /\left(b_{n}+c_{n} x_{n-1} x_{n-2}\right)$, Appl. Math. Comput. 218 (2011), 4507-4513.
[38] S. Stević, Periodicity of a class of nonautonomous max-type difference equations, Appl. Math. Comput. 217 (2011), 9562-9566.
[39] S. Stević, Solutions of a max-type system of difference equations, Appl. Math. Comput. 218 (2012), 9825-9830.
[40] S. Stević, On a third-order system of difference equations, Appl. Math. Comput. 218 (2012), 7649-7654.
[41] S. Stević, On some periodic systems of max-type difference equations, Appl. Math. Comput. 218 (2012), 11483-11487.
[42] S. Stević, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2012), 5010-5018.
[43] S. Stević, On the difference equation $x_{n}=x_{n-k} /\left(b+c x_{n-1} \cdots x_{n-k}\right)$, Appl. Math. Comput. 218 (2012), 6291-6296.
[44] S. Stević, On a solvable system of difference equations of fourth order, Appl. Math. Comput. 219 (2013), 5706-5716.
[45] S. Stević, On the system $x_{n+1}=y_{n} x_{n-k} /\left(y_{n-k+1}\left(a_{n}+b_{n} y_{n} x_{n-k}\right)\right), y_{n+1}=$ $x_{n} y_{n-k} /\left(x_{n-k+1}\left(c_{n}+d_{n} x_{n} y_{n-k}\right)\right)$, Appl. Math. Comput. 219 (2013), 4526-4534.
[46] S. Stević, On the system of difference equations $x_{n}=c_{n} y_{n-3} /\left(a_{n}+b_{n} y_{n-1} x_{n-2} y_{n-3}\right)$, $y_{n}=\gamma_{n} x_{n-3} /\left(\alpha_{n}+\beta_{n} x_{n-1} y_{n-2} x_{n-3}\right)$, Appl. Math. Comput. 219 (2013), 4755-4764.
[47] S. Stević, J. Diblik, B. Iričanin and Z. Šmarda, On some solvable difference equations and systems of difference equations, Abstr. Appl. Anal. Vol. 2012, Article ID 541761, (2012), 11 pages.
[48] S. Stević, J. Diblik, B. Iričanin and Z. Šmarda, On the difference equation $x_{n}=a_{n} x_{n-k} /\left(b_{n}+\right.$ $c_{n} x_{n-1} \cdots x_{n-k}$), Abstr. Appl. Anal. Vol. 2012, Article ID 409237, (2012), 20 pages.
[49] T. Sun, H. Xi and C. Hong, On boundedness of the difference equation $x_{n+1}=p_{n}+$ ($x_{n-3 s+1} / x_{n-s+1}$) with period- k coefficients, Appl. Math. Comput 217 (2011), 5994-5997.
(Received March 6, 2013)
Stevo Stević, Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia; King Abdulaziz University, Department of Mathematics, Jeddah 21589, Saudi Arabia

E-mail address: sstevic@ptt.rs
Mohammed A. Alghamdi, King Abdulaziz University, Department of Mathematics, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: proff-malghamdi@hotmail.com
Abdullah Alotaibi, King Abdulaziz University, Department of Mathematics, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: aalotaibi@kau.edu.sa
Naseer Shahzad, King Abdulaziz University, Department of Mathematics, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: nshahzad@kau.edu.sa

[^0]: 2010 Mathematics Subject Classification. Primary 39A10.
 Key words and phrases. Solvable system, system of difference equations, asymptotic behavior.

 * Corresponding author.

