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ON A HIGHER-ORDER SYSTEM OF DIFFERENCE EQUATIONS

STEVO STEVIĆ∗, MOHAMMED A. ALGHAMDI, ABDULLAH ALOTAIBI,

AND NASEER SHAHZAD

Abstract. Here we study the following system of difference equations

xn = f−1

(
cnf(xn−2k)

an + bn
∏k

i=1 g(yn−(2i−1))f(xn−2i)

)
,

yn = g−1

(
γng(yn−2k)

αn + βn
∏k

i=1 f(xn−(2i−1))g(yn−2i)

)
,

n ∈ N0, where f and g are increasing real functions such that f(0) = g(0) = 0,

and coefficients an, bn, cn, αn, βn, γn, n ∈ N0, and initial values x−i, y−i,

i ∈ {1, 2, . . . , 2k} are real numbers. We show that the system is solvable in
closed form, and study asymptotic behavior of its solutions.

1. Introduction

Difference equations and systems of difference equations attract lots of attention
(see, e.g. [1]–[49] and references therein). Among numerous topics in this area
of mathematics, studying systems of difference equations is one of some recent
interest [7, 9, 11, 15, 16, 17, 18, 19, 21, 23, 35, 36, 39, 40, 41, 42, 44, 45, 46, 47, 48],
while solving difference equations and applying them in other areas of sciences re-
attracted some attention quite recently (see, for example, [1, 2, 6, 7, 22, 28, 29, 32,
33, 35, 36, 37, 39, 40, 42, 43, 44, 45, 46, 47, 48]). Among others, the attention was
trigged off by note [28] where an equation is solved in an elegant way. Some old
methods for solving difference equations can be found, e.g., in [14].

In [44], S. Stević studied the following system of difference equations

xn =
cnxn−4

an + bnyn−1xn−2yn−3xn−4
, yn =

γnyn−4
αn + βnxn−1yn−2xn−3yn−4

, n ∈ N0, (1)

with real coefficients an, bn, cn, αn, βn, γn, n ∈ N0, and initial values x−i, y−i, i ∈
{1, 2, 3, 4}, such that cn 6= 0, γn 6= 0, n ∈ N0. He showed that system (1) is solvable
in closed form, and described behavior of all well-defined solutions of the system for
constant coefficients an, bn, cn, αn, βn and γn. Paper [44] is a natural continuation
of his previous investigations in [7, 28, 35, 36, 37, 39, 40, 43, 45, 46, 47, 48], where
related difference equations and systems of difference equations were considered.
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Motivated by this line of investigations, here we study the following system of
difference equations

xn =f−1

(
cnf(xn−2k)

an + bn
∏k
i=1 g(yn−(2i−1))f(xn−2i)

)
,

yn =g−1

(
γng(yn−2k)

αn + βn
∏k
i=1 f(xn−(2i−1))g(yn−2i)

)
, n ∈ N0,

(2)

where f and g are increasing real functions, such that

f(0) = g(0) = 0, (3)

and coefficients an, bn, cn, αn, βn, γn, n ∈ N0, and initial values x−i, y−i, i ∈
{1, 2, . . . , 2k} are real numbers.

We show that system (2) is also solvable in closed form, and study the behavior
of well-defined solutions of the system when the sequences an, bn, cn, αn, βn and
γn are constant.

Recall that solution (xn, yn)n≥−2k, of system (2) is periodic with period p, if

xn+p = xn and yn+p = yn, n ≥ −2k.

For some results on the periodicity or asymptotic periodicity see, e.g., [4, 5, 10, 11,
12, 13, 14, 23, 24, 26, 27, 31, 34, 38, 41, 49].

2. Solvability of system (2) in closed form

Assume that x−i 6= 0, y−i 6= 0, i ∈ {1, 2, . . . , 2k}. Then (2), the monotonicity
of f and g and conditions f(0) = g(0) = 0, imply that xn 6= 0 and yn 6= 0, for
every n ∈ N0. Then in this case the following change of variables along with the
invertibility of functions f and g

un =
1∏k−1

i=0 f(xn−2i)g(yn−2i−1)
, vn =

1∏k−1
i=0 g(yn−2i)f(xn−2i−1)

, n ≥ −1, (4)

transforms system (2) into the next system of linear difference equations

un =
an
cn
vn−1 +

bn
cn
, vn =

αn
γn
un−1 +

βn
γn
, n ∈ N0. (5)

From (5) we have that

un =
anαn−1
cnγn−1

un−2 +
anβn−1
cnγn−1

+
bn
cn
,

vn =
αnan−1
γncn−1

vn−2 +
αnbn−1
γncn−1

+
βn
γn
, n ∈ N,
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from which we get (for details see [44])

u2n = u0

n∏
j=1

a2jα2j−1

c2jγ2j−1
+

n∑
i=1

(
a2iβ2i−1
c2iγ2i−1

+
b2i
c2i

) n∏
s=i+1

a2sα2s−1

c2sγ2s−1
, (6)

u2n−1 = u−1

n∏
j=1

a2j−1α2j−2

c2j−1γ2j−2
+

n∑
i=1

(
a2i−1β2i−2
c2i−1γ2i−2

+
b2i−1
c2i−1

) n∏
s=i+1

a2s−1α2s−2

c2s−1γ2s−2
, (7)

v2n = v0

n∏
j=1

α2ja2j−1
γ2jc2j−1

+

n∑
i=1

(
α2ib2i−1
γ2ic2i−1

+
β2i
γ2i

) n∏
s=i+1

α2sa2s−1
γ2sc2s−1

, (8)

v2n−1 = v−1

n∏
j=1

α2j−1a2j−2
γ2j−1c2j−2

+

n∑
i=1

(
α2i−1b2i−2
γ2i−1c2i−2

+
β2i−1
γ2i−1

) n∏
s=i+1

α2s−1a2s−2
γ2s−1c2s−2

. (9)

From (4) we have that

f(x2km+i) =
v2km+i−1

u2km+i
f(x2k(m−1)+i), i ∈ {0, . . . , 2k − 1},

m ∈ N0, and

g(y2km+i) =
u2km+i−1

v2km+i
g(y2k(m−1)+i), i ∈ {0, . . . , 2k − 1},

for 2km + i ≥ 0, from which along with the invertibility of functions f and g it
follows that for every m ∈ N0 and each i ∈ {0, . . . , 2k − 1}

x2km+i = f−1

f(xi)

m∏
j=1

v2kj+i−1
u2kj+i

 , (10)

y2km+i = g−1

g(yi)

m∏
j=1

u2kj+i−1
v2kj+i

 . (11)

Using (6)–(9) in (10) and (11) we get solutions of system (2) in closed form.

3. System (2) with constant coefficients

Let

an = â, bn = b̂, cn = ĉ, αn = α̂, βn = β̂ and γn = γ̂, n ∈ N0,

then we have

xn =f−1

(
ĉf(xn−2k)

â+ b̂
∏k
i=1 g(yn−(2i−1))f(xn−2i)

)
,

yn =g−1

(
γ̂g(yn−2k)

α̂+ β̂
∏k
i=1 f(xn−(2i−1))g(yn−2i)

)
, n ∈ N0.

(12)

If ĉ = 0, then since f(0) = f−1(0) = 0 we have that xn = 0, n ∈ N0, so that

g(yn) = γ̂
α̂g(yn−2k) for n ∈ N and consequently

y2km−i = g−1
((

γ̂

α̂

)m
g(y−i)

)
,
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for every m ∈ N0 and i ∈ {0, 1, . . . , 2k − 1}.
If γ̂ = 0, then since g(0) = g−1(0) = 0 we have that yn = 0, n ∈ N0, implying

f(xn) = ĉ
âf(xn−2k) for n ∈ N and consequently

x2km−i = f−1
((

ĉ

â

)m
f(x−i)

)
,

for every m ∈ N0 and i ∈ {0, 1, . . . , 2k − 1}.
From now on we will assume that ĉ 6= 0 and γ̂ 6= 0. Note that in this case,

system (12) can be written in the following form

xn =f−1

(
f(xn−2k)

a+ b
∏k
i=1 g(yn−(2i−1))f(xn−2i)

)
,

yn =g−1

(
g(yn−2k)

α+ β
∏k
i=1 f(xn−(2i−1))g(yn−2i)

)
, n ∈ N0,

(13)

where a = â/ĉ, b = b̂/ĉ, α = α̂/γ̂ and β = β̂/γ̂. Therefore we will study system
(13) instead of system (12).

Assume x−i 6= 0 and y−i 6= 0 for every i ∈ {1, 2, . . . , 2k}. System (5) becomes

un = avn−1 + b, vn = αun−1 + β, n ∈ N0, (14)

which implies that

un = aαun−2 + aβ + b, (15)

vn = aαvn−2 + αb+ β, n ∈ N. (16)

From (15) and (16) (or (6)–(9)) we obtain

u2n−l = u−l(aα)n + (aβ + b)
1− (aα)n

1− aα

=
aβ + b+ (aα)n(u−l(1− aα)− aβ − b)

1− aα
, (17)

n ∈ N0, l ∈ {0, 1}, if aα 6= 1, or

u2n−l = u−l + (aβ + b)n, n ∈ N0, l ∈ {0, 1}, (18)

if aα = 1, and

v2n−l = v−l(aα)n + (αb+ β)
1− (aα)n

1− aα

=
αb+ β + (aα)n(v−l(1− aα)− αb− β)

1− aα
, (19)

n ∈ N0, l ∈ {0, 1}, if aα 6= 1, or

v2n−l = v−l + (αb+ β)n, n ∈ N0, l ∈ {0, 1}, (20)

if aα = 1.
From relations (17)–(20) we easily obtain the following formulae for solutions of

system (13).
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Case aα = 1. In this case we have that

x2km+2s = f−1

f(x2s)

m∏
j=1

v2kj+2s−1

u2kj+2s


= f−1

f(x2s)

m∏
j=1

v−1 + (αb+ β)(kj + s)

u0 + (aβ + b)(kj + s)

 , (21)

x2km+2s+1 = f−1

f(x2s+1)

m∏
j=1

v2kj+2s

u2kj+2s+1


= f−1

f(x2s+1)

m∏
j=1

v0 + (αb+ β)(kj + s)

u−1 + (aβ + b)(kj + s+ 1)

 , (22)

y2km+2s = g−1

g(y2s)

m∏
j=1

u2kj+2s−1

v2kj+2s


= g−1

g(y2s)

m∏
j=1

u−1 + (aβ + b)(kj + s)

v0 + (αb+ β)(kj + s)

 , (23)

y2km+2s+1 = g−1

g(y2s+1)

m∏
j=1

u2kj+2s

v2kj+2s+1


= g−1

g(y2s+1)

m∏
j=1

u0 + (aβ + b)(kj + s)

v−1 + (αb+ β)(kj + s+ 1)

 , (24)

for every m ∈ N0 and s ∈ {0, 1, . . . , k − 1}.
Case aα 6= 1. We have

x2km+2s = f−1

f(x2s)

m∏
j=1

v2kj+2s−1

u2kj+2s


= f−1

f(x2s)

m∏
j=1

(αb+ β + (aα)kj+s(v−1(1− aα)− αb− β))

(aβ + b+ (aα)kj+s(u0(1− aα)− aβ − b))

 ,

(25)

x2km+2s+1 = f−1

f(x2s+1)

m∏
j=1

v2kj+2s

u2kj+2s+1


= f−1

f(x2s+1)

m∏
j=1

(αb+ β + (aα)kj+s(v0(1− aα)− αb− β))

(aβ + b+ (aα)kj+s+1(u−1(1− aα)− aβ − b))

 ,

(26)
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y2km+2s = g−1

g(y2s)

m∏
j=1

u2kj+2s−1

v2kj+2s


= g−1

g(y2s)

m∏
j=1

(aβ + b+ (aα)kj+s(u−1(1− aα)− aβ − b))
(αb+ β + (aα)kj+s(v0(1− aα)− αb− β))

 , (27)

y2km+2s+1 = g−1

g(y2s+1)

m∏
j=1

u2kj+2s

v2kj+2s+1


= g−1

g(y2s+1)

m∏
j=1

(aβ + b+ (aα)kj+s(u0(1− aα)− aβ − b))
(αb+ β + (aα)kj+s+1(v−1(1− aα)− αb− β))

 ,

(28)

for every m ∈ N0 and s ∈ {0, 1, . . . , k − 1}.

4. Behavior of solutions of system (13)

Prior to proving the main results on behavior of solutions of system (13) we
present the following extension of Lemma 1 in [44] which guarantees the existence
of 2k and 4k periodic solutions of system (13).

Lemma 1. Assume that aα 6= 1, f, g : R → R are increasing functions satisfying
the conditions in (3). Then the following statements are true.

(a) If αb+ β = aβ + b, then system (13) has 2k-periodic solutions.
(b) If αb+ β = −(aβ + b), and f and g are odd, then system (13) has 4k-periodic

solutions.

Proof. It is easy to see that system (14) has a unique equilibrium solution

un = ū =
aβ + b

1− aα
6= 0, vn = v̄ =

αb+ β

1− aα
6= 0, n ≥ −1.

This along with (4) implies that

f(xn) =
1− aα

(aβ + b)g(yn−2k+1)
∏k−1
j=1 g(yn−2j+1)f(xn−2j)

=
1− aα
aβ + b

vn−1f(xn−2k) =
αb+ β

aβ + b
f(xn−2k), n ∈ N0, (29)

and

g(yn) =
1− aα

(αb+ β)f(xn−2k+1)
∏k−1
j=1 f(xn−2j+1)g(yn−2j)

=
1− aα
αb+ β

un−1g(yn−2k) =
aβ + b

αb+ β
g(yn−2k), n ∈ N0. (30)

(a) Since αb + β = aβ + b, from (29) and (30) we get f(xn) = f(xn−2k) and
g(yn) = g(yn−2k), from which it follows that xn = xn−2k and yn = yn−2k that is,
there is a 2k-periodic solution of system (13).

(b) Since αb+β = −(aβ+b), from (29), (30), and since f and g are odd functions,
we get f(xn) = −f(xn−2k) = f(−xn−2k) and g(yn) = −g(yn−2k) = g(−yn−2k)
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which implies that xn = −xn−2k and yn = −yn−2k, and consequently xn = xn−4k
and yn = yn−4k, that is, there is a 4k-periodic solution of system (13). �

Theorem 1. Assume that aα = 1, f, g : R → R are continuous, odd, increasing
functions satisfying the conditions in (3), and (xn, yn)n≥−2k is a well-defined so-
lution of system (13) such that x−i 6= 0 6= y−i, i = 1, . . . , 2k. Then the following
statements are true.

(a) If |αb+ β| < |aβ + b|, then xn → 0 and |yn| → g−1(+∞), as n→∞.
(b) If |αb+ β| > |aβ + b|, then yn → 0 and |xn| → f−1(+∞), as n→∞.

(c) If αb + β = aβ + b 6= 0 and v−1−u0

αb+β > 0, then |x2km+2s| → f−1(+∞), s ∈
{0, 1, . . . , k − 1}, as m→∞.

(d) If αb+β = aβ+b 6= 0 and v−1−u0

αb+β < 0, then |x2km+2s| → 0, s ∈ {0, 1, . . . , k−1},
as m→∞.

(e) If αb + β = aβ + b 6= 0 and v−1 = u0, then the sequences x2km+2s, s ∈
{0, 1, . . . , k − 1}, are convergent.

(f) If αb + β = aβ + b 6= 0 and v0−u−1

αb+β > 1, then |x2km+2s+1| → f−1(+∞),

s ∈ {0, 1, . . . , k − 1}, as m→∞.

(g) If αb+β = aβ+b 6= 0 and v0−u−1

αb+β < 1, then |x2km+2s+1| → 0, s ∈ {0, 1, . . . , k−
1}, as m→∞.

(h) If αb+ β = aβ + b 6= 0 and v0 = u−1 + αb+ β, then the sequences x2km+2s+1,
s ∈ {0, 1, . . . , k − 1}, are convergent.

(i) If αb + β = aβ + b 6= 0 and u−1−v0
αb+β > 0, then |y2km+2s| → g−1(+∞), s ∈

{0, 1, . . . , k − 1}, as m→∞.

(j) If αb+β = aβ+b 6= 0 and u−1−v0
αb+β < 0, then y2km+2s → 0, s ∈ {0, 1, . . . , k−1},

as m→∞.
(k) If αb + β = aβ + b 6= 0 and u−1 = v0, then the sequences y2km+2s, s ∈
{0, 1, . . . , k − 1}, are convergent.

(l) If αb + β = aβ + b 6= 0 and u0−v−1

αb+β > 1, then |y2km+2s+1| → g−1(+∞),

s ∈ {0, 1, . . . , k − 1}, as m→∞.

(m) If αb+β = aβ+ b 6= 0 and u0−v−1

αb+β < 1, then y2km+2s+1 → 0, s ∈ {0, 1, . . . , k−
1}, as m→∞.

(n) If αb+ β = aβ + b 6= 0 and u0 = v−1 + αb+ β, then the sequences y2km+2s+1,
s ∈ {0, 1, . . . , k − 1}, are convergent.

(o) If αb + β = −(aβ + b) 6= 0 and v−1+u0

αb+β > 0, then |x2km+2s| → f−1(+∞),

s ∈ {0, 1, . . . , k − 1}, as m→∞.

(p) If αb+β = −(aβ+b) 6= 0 and v−1+u0

αb+β < 0, then |x2km+2s| → 0, s ∈ {0, 1, . . . , k−
1}, as m→∞.

(q) If αb + β = −(aβ + b) 6= 0 and v−1 = −u0, then the sequences x4km+2s and
x4km+2k+2s, s ∈ {0, 1, . . . , k − 1}, are convergent.

(r) If αb + β = −(aβ + b) 6= 0 and v0+u−1

αb+β > 1, then |x2km+2s+1| → f−1(+∞),

s ∈ {0, 1, . . . , k − 1}, as m→∞.

(s) If αb + β = −(aβ + b) 6= 0 and v0+u−1

αb+β < 1, then |x2km+2s+1| → 0, s ∈
{0, 1, . . . , k − 1}, as m→∞.
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(t) If αb+β = −(aβ+b) 6= 0 and v0 +u−1 = αb+β, then the sequences x4km+2s+1

and x4km+2k+2s+1, s ∈ {0, 1, . . . , k − 1}, are convergent.

(u) If αb + β = −(aβ + b) 6= 0 and u−1+v0
αb+β < 0, then |y2km+2s| → g−1(+∞),

s ∈ {0, 1, . . . , k − 1}, as m→∞.

(v) If αb+β = −(aβ+b) 6= 0 and u−1+v0
αb+β > 0, then y2km+2s → 0, s ∈ {0, 1, . . . , k−

1}, as m→∞.
(w) If αb + β = −(aβ + b) 6= 0 and u−1 = −v0, then the sequences y4km+2s and

y4km+2k+2s, s ∈ {0, 1, . . . , k − 1}, are convergent.

(x) If αb+β = −(aβ+b) 6= 0 and u0+v−1+αb+β
αb+β < 0, then |y2km+2s+1| → g−1(+∞),

s ∈ {0, 1, . . . , k − 1}, as m→∞.

(y) If αb + β = −(aβ + b) 6= 0 and u0+v−1+αb+β
αb+β > 0, then y2km+2s+1 → 0,

s ∈ {0, 1, . . . , k − 1}, as m→∞.
(z) If αb + β = −(aβ + b) 6= 0 and u0 + v−1 + αb + β = 0, then the sequences

y4km+2s+1 and y4km+2k+2s+1, s ∈ {0, 1, . . . , k − 1}, are convergent.

Proof. (a), (b) We have

lim
m→∞

v−1 + (αb+ β)(km+ s)

u0 + (aβ + b)(km+ s)
= lim
m→∞

v0 + (αb+ β)(km+ s)

u−1 + (aβ + b)(km+ s+ 1)
=
αb+ β

aβ + b
,

lim
m→∞

u−1 + (aβ + b)(km+ s)

v0 + (αb+ β)(km+ s)
= lim
m→∞

u0 + (aβ + b)(km+ s)

v−1 + (αb+ β)(km+ s+ 1)
=
aβ + b

αb+ β
.

From these limits, formulae (21)–(24) and the continuity of functions f and g these
two statements follow.

(c)–(n) By some calculations, and using the next known formulas

ln(1 + x) = x− x2/2 +O(x3) and (1 + x)−1 = 1− x+O(x2), x→ 0 (31)

(which we may assume that hold for all the terms in products (21)–(24)), we get

x2km+2s = f−1

f(x2s)

m∏
j=1

(
1 + (αb+β)s+v−1

kj(αb+β)

)
(

1 + u0+(aβ+b)s
kj(aβ+b)

)


= f−1

f(x2s)

m∏
j=1

(
1 +

v−1 − u0
kj(αb+ β)

+O

(
1

j2

))
= f−1

f(x2s) exp

 m∑
j=1

(
v−1 − u0
kj(αb+ β)

+O

(
1

j2

)) , (32)
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f(x2km+2s+1) = f−1

f(x2s+1)

m∏
j=1

(
1 + v0+(αb+β)s

kj(αb+β)

)
(

1 + u−1+(aβ+b)(s+1)
kj(aβ+b)

)


= f−1

f(x2s+1)

m∏
j=1

(
1 +

v0 − u−1 − (αb+ β)

kj(αb+ β)
+O

(
1

j2

))
= f−1

f(x2s+1) exp

m∑
j=1

(
v0 − u−1 − (αb+ β)

kj(αb+ β)
+O

(
1

j2

)) ,

(33)

y2km+2s = g−1

g(y2s)

m∏
j=1

(
1 + u−1+(aβ+b)s

kj(aβ+b)

)
(

1 + v0+(αb+β)s
kj(αb+β)

)


= g−1

g(y2s)

m∏
j=1

(
1 +

u−1 − v0
kj(αb+ β)

+O

(
1

j2

))
= g−1

g(y2s) exp

 m∑
j=1

(
u−1 − v0
kj(αb+ β)

+O

(
1

j2

)) , (34)

y2km+2s+1 = g−1

g(y2s+1)

m∏
j=1

(
1 + u0+(aβ+b)s

kj(aβ+b)

)
(

1 + v−1+(αb+β)(s+1)
kj(αb+β)

)


= g−1

g(y2s+1)

m∏
j=1

(
1 +

u0 − v−1 − (αb+ β)

kj(αb+ β)
+O

(
1

j2

))
= g−1

g(y2s+1) exp

 m∑
j=1

(
u0 − v−1 − (αb+ β)

kj(αb+ β)
+O

(
1

j2

)) ,

(35)

for every s ∈ {0, 1, 2, . . . , k − 1}.
Using (32)–(35), the relations

∞∑
j=1

1

j
= +∞ and

+∞∑
j=1

∣∣∣∣O( 1

j2

)∣∣∣∣ < +∞, (36)

and the continuity of the functions f and g, these results easily follow.
(o)–(z) By some calculations and (31) (which we may also assume that hold for

all the terms in products (21)–(24)), we get
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x2km+2s = f−1

f(x2s)(−1)m
m∏
j=1

(
1 + (αb+β)s+v−1

kj(αb+β)

)
(

1 + (αb+β)s−u0

kj(aβ+b)

)


= f−1

f(x2s)(−1)m
m∏
j=1

(
1 +

v−1 + u0
kj(αb+ β)

+O

(
1

j2

))
= (−1)mf−1

f(x2s) exp

 m∑
j=1

(
v−1 + u0
kj(αb+ β)

+O

(
1

j2

)) , (37)

x2km+2s+1 = f−1

f(x2s+1)(−1)m
m∏
j=1

(
1 + v0+(αb+β)s

kj(αb+β)

)
(

1 + (αb+β)(s+1)−u−1

kj(αb+β)

)


= f−1

f(x2s+1)(−1)m
m∏
j=1

(
1 +

v0 + u−1 − (αb+ β)

kj(αb+ β)
+O

(
1

j2

))
= (−1)mf−1

f(x2s+1) exp

 m∑
j=1

(
v0 + u−1 − (αb+ β)

kj(αb+ β)
+O

(
1

j2

)) ,

(38)

y2km+2s = g−1

g(y2s)(−1)m
m∏
j=1

(
1 + (αb+β)s−u−1

kj(αb+β)

)
(

1 + v0+(αb+β)s
kj(αb+β)

)


= g−1

g(y2s)(−1)m
m∏
j=1

(
1− u−1 + v0

kj(αb+ β)
+O

(
1

j2

))
= (−1)mg−1

g(y2s) exp

− m∑
j=1

(
u−1 + v0
kj(αb+ β)

+O

(
1

j2

)) , (39)

y2km+2s+1 = g−1

g(y2s+1)(−1)m
m∏
j=1

(
1 + (αb+β)s−u0

kj(αb+β)

)
(

1 + v−1+(αb+β)(s+1)
kj(αb+β)

)


= g−1

g(y2s+1)(−1)m
m∏
j=1

(
1− u0 + v−1 + αb+ β

kj(αb+ β)
+O

(
1

j2

))
= (−1)mg−1

g(y2s+1) exp

− m∑
j=1

(
u0 + v−1 + αb+ β

kj(αb+ β)
+O

(
1

j2

)) ,

(40)

for every s ∈ {0, 1, 2, . . . , k − 1}.
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Using (37)–(40), relations (36) and the continuity of the functions f and g, the
results easily follow. �

Theorem 2. Assume that aα 6= 1, f, g : R → R are continuous, odd, increasing
functions satisfying the conditions in (3), and (xn, yn)n≥−2k is a well-defined so-
lution of system (13) such that x−i 6= 0 6= y−i, i = 1, . . . , 2k. Then the following
statements are true.

(a) If |aα| > 1, |v−1(1− aα)− αb− β| < |u0(1− aα)− aβ − b|, then x2km+2s → 0,
s ∈ {0, 1, . . . , k − 1} as m→∞.

(b) If |aα| > 1, |v−1(1− aα)− αb− β| > |u0(1− aα)− aβ − b|, then |x2km+2s| →
f−1(+∞), s ∈ {0, 1, . . . , k − 1} as m→∞.

(c) If |aα| > 1, v−1(1−aα)−αb−β = u0(1−aα)−aβ− b 6= 0, then the sequences
x2km+2s, s ∈ {0, 1, . . . , k − 1} are convergent.

(d) If |aα| > 1, v−1(1 − aα) − αb − β = −(u0(1 − aα) − aβ − b) 6= 0, then the
sequences x4km+2s and x4km+2k+2s, s ∈ {0, 1, . . . , k − 1} are convergent.

(e) If |aα| < 1 and |αb+ β| < |aβ + b|, then x2km+2s → 0, s ∈ {0, 1, . . . , k − 1} as
m→∞.

(f) If |aα| < 1 and |αb+β| > |aβ+b|, then |x2km+2s| → f−1(+∞), s ∈ {0, 1, . . . , k−
1} as m→∞.

(g) If |aα| < 1 and αb+β = aβ+b, then the sequences x2km+2s, s ∈ {0, 1, . . . , k−1}
are convergent.

(h) If |aα| < 1 and αb+β = −(aβ+b), then the sequences x4km+2s and x4km+2k+2s,
s ∈ {0, 1, . . . , k − 1} are convergent.

(i) If aα = −1, then

x2km+2s = f−1

f(x2s)

m∏
j=1

(
αb+ β + (−1)kj+s(2v−1 − αb− β)

aβ + b+ (−1)kj+s(2u0 − aβ − b)

) . (41)

Proof. Let

psm :=
αb+ β + (aα)km+s(v−1(1− aα)− αb− β)

aβ + b+ (aα)km+s(u0(1− aα)− aβ − b)
, m ∈ N0, s ∈ {0, 1, . . . , k − 1}.

(a) Note that in this case

lim
m→∞

|psm| =
|v−1(1− aα)− αb− β|
|u0(1− aα)− aβ − b|

< 1,

which along with formula (25), and the continuity of function f , easily implies the
result.

(b) In this case

lim
m→∞

|psm| =
|v−1(1− aα)− αb− β|
|u0(1− aα)− aβ − b|

> 1,

from which, (25) and the continuity of function f , the result easily follows.
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(c) Using (31) we have that for sufficiently large m

psm =
1 + αb+β

(aα)km+s(v−1(1−aα)−αb−β))

1 + aβ+b
(aα)km+s(v−1(1−aα)−αb−β))

= 1 +
αb+ β − aβ − b

(aα)km+s(v−1(1− aα)− αb− β))
+

(
1

(aα)km

)
. (42)

Employing (42) in (25), then using (31), the condition |aα| > 1, and the continuity
of function f , the statement easily follows.

(d) Using (31) we have that for sufficiently large m

psm = −
1 + αb+β

(aα)km+s(v−1(1−aα)−αb−β))

1− aβ+b
(aα)km+s(v−1(1−aα)−αb−β))

= −
(

1 +
αb+ β + aβ + b

(aα)km+s(v−1(1− aα)− αb− β)
+

(
1

(aα)km

))
. (43)

Using (43) in (25), then (31), the condition |aα| > 1, and the continuity of function
f , the statement easily follows.

(e) In this case

lim
m→∞

|psm| =
|αb+ β|
|aβ + b|

< 1,

which along with (25) and the continuity of function f , the result follows.
(f) In this case

lim
m→∞

|psm| =
|αb+ β|
|aβ + b|

> 1,

which along with (25) and the continuity of function f , the result follows.
(g) Using (31) we have that for sufficiently large m

psm =

(
1 + (aα)km+s(v−1(1−aα)−αb−β))

αb+β

)
(

1 + (aα)km+s(u0(1−aα)−αb−β)
αb+β

)
= 1 +

(aα)km+s(v−1 − u0)(1− aα)

αb+ β
+ ((aα)km). (44)

Employing (44) in (25), then using (31), the condition |aα| < 1 and the continuity
of function f , the statement follows.

(h) Using (31) we have that for sufficiently large m

psm = −

(
1 + (aα)km+s(v−1(1−aα)−αb−β))

αb+β

)
(

1− (aα)km+s(u0(1−aα)+αb+β)
αb+β

)
= −

(
1 +

(aα)km+s(v−1 + u0)(1− aα)

αb+ β
+ ((aα)km)

)
. (45)

Employing (45) in (25), then using (31), the condition |aα| < 1, the continuity and
oddness of function f , the statement follows.

(i) By using the condition aα = −1 in (25), formula (41) directly follows. �
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Theorem 3. Assume that aα 6= 1, f, g : R → R are continuous, odd, increasing
functions satisfying the conditions in (3), and that (xn, yn)n≥−2k is a well-defined
solution of system (13) such that x−i 6= 0 6= y−i, i = 1, . . . , 2k. Then the following
statements are true.

(a) If |aα| > 1, |v0(1−aα)−αb−β| < |aα||u−1(1−aα)−aβ−b|, then x2km+2s+1 →
0, s ∈ {0, 1, . . . , k − 1} as m→∞.

(b) If |aα| > 1, |v0(1−aα)−αb−β| > |aα||u−1(1−aα)−aβ−b|, then |x2km+2s+1| →
f−1(+∞), s ∈ {0, 1, . . . , k − 1} as m→∞.

(c) If |aα| > 1, v0(1−aα)−αb−β = aα(u−1(1−aα)−aβ− b), then the sequences
x2km+2s+1, s ∈ {0, 1, . . . , k − 1} converge.

(d) If |aα| > 1, v0(1−aα)−αb−β = −aα(u−1(1−aα)−aβ−b), then the sequences
x4km+2s+1 and x4km+2k+2s+1, s ∈ {0, 1, . . . , k − 1} converge.

(e) If |aα| < 1 and |αb+ β| < |aβ + b|, then x2km+2s+1 → 0, s ∈ {0, 1, . . . , k − 1}
as m→∞.

(f) If |aα| < 1 and |αb + β| > |aβ + b|, then |x2km+2s+1| → f−1(+∞), s ∈
{0, 1, . . . , k − 1} as m→∞.

(g) If |aα| < 1 and αb+β = aβ+b, then the sequences x2km+2s+1, s ∈ {0, 1, . . . , k−
1} are convergent.

(h) If |aα| < 1 and αb + β = −(aβ + b), then the sequences x4km+2s+1 and
x4km+2k+2s+1, s ∈ {0, 1, . . . , k − 1} are convergent.

(i) If aα = −1, then

x2km+2s+1 = f−1

f(x2s+1)

m∏
j=1

(
αb+ β + (−1)kj+s(2v0 − αb− β)

aβ + b+ (−1)kj+s+1(2u−1 − aβ − b)

) . (46)

Proof. Let

rsm :=
αb+ β + (aα)km+s(v0(1− aα)− αb− β)

aβ + b+ (aα)km+s+1(u−1(1− aα)− aβ − b)
, m ∈ N0, s ∈ {0, 1, . . . , k−1}.

(a) Note that in this case

lim
m→∞

|rsm| =
|v0(1− aα)− αb− β|

|u−1(1− aα)− aβ − b||aα|
< 1,

which along with formula (26) and the continuity of function f , easily implies the
result.

(b) In this case

lim
m→∞

|rsm| =
|v0(1− aα)− αb− β|

|u−1(1− aα)− aβ − b||aα|
> 1,

from which along with (26) and the continuity of function f , the result follows.
(c) Using (31) we have that for sufficiently large m

rsm =
1 + αb+β

(aα)km+s(v0(1−aα)−αb−β)

1 + aβ+b
(aα)km+s+1(u−1(1−aα)−aβ−b)

= 1 +
αb+ β − aβ − b

(aα)km+s(v0(1− aα)− αb− β))
+

(
1

(aα)km

)
. (47)
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Employing (47) in (26), then using (31), the condition |aα| > 1 and the continuity
of function f , the statement easily follows.

(d) Using (31) we have that for sufficiently large m

rsm = −
1 + αb+β

(aα)km+s(v0(1−aα)−αb−β)

1− aβ+b
(aα)km+s(v0(1−aα)−αb−β)

= −
(

1 +
αb+ β + aβ + b

(aα)km+s(v0(1− aα)− αb− β))
+

(
1

(aα)km

))
. (48)

Employing (48) in (26), then using (31), the condition |aα| > 1 and the continuity
of function f , the statement easily follows.

(e) In this case

lim
m→∞

|rsm| =
|αb+ β|
|aβ + b|

< 1,

from which along with (26) and the continuity of function f , the result follows.
(f) In this case

lim
m→∞

|rsm| =
|αb+ β|
|aβ + b|

> 1,

from which along with (26) and the continuity of function f , the result follows.
(g) Using (31) we have that for sufficiently large m

rsm =
1 + (aα)km+s(v0(1−aα)−αb−β)

αb+β

1 + (aα)km+s+1(u−1(1−aα)−αb−β)
αb+β

= 1 +
(aα)km+s(v0 − aαu−1 − αb− β)(1− aα)

αb+ β
+ ((aα)km). (49)

Employing (49) in (26), then using (31), the condition |aα| < 1 and the continuity
of function f , the statement follows.

(h) Using (31) we have that for sufficiently large m

rsm = −
1 + (aα)km+s(v0(1−aα)−αb−β)

αb+β

1− (aα)km+s+1(u−1(1−aα)+αb+β)
αb+β

= −
(

1 +
(aα)km+s(v0 + αau−1 − αb− β)(1− aα)

αb+ β
+ ((aα)km)

)
. (50)

Employing (50) in (26), then using (31), the condition |aα| < 1, the continuity and
oddness of function f , the statement follows.

(i) By using the condition aα = −1 in (26) formula (46) easily follows. �

The proofs of the next two theorems use formulas (27) and (28), and are similar
to those ones of Theorems 2 and 3, so they are omitted.

Theorem 4. Assume that aα 6= 1, f, g : R → R are continuous, odd, increasing
functions satisfying the conditions in (3), and that (xn, yn)n≥−2k is a well-defined
solution of system (13) such that x−i 6= 0 6= y−i, i = 1, . . . , 2k. Then the following
statements are true.
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(a) If |aα| > 1, |v0(1− aα)− αb− β| > |u−1(1− aα)− aβ − b|, then y2km+2s → 0,
s ∈ {0, 1, . . . , k − 1} as m→∞.

(b) If |aα| > 1, |v0(1− aα)− αb− β| < |u−1(1− aα)− aβ − b|, then |y2km+2s| →
g−1(+∞), s ∈ {0, 1, . . . , k − 1} as m→∞.

(c) If |aα| > 1, v0(1 − aα) − αb − β = u−1(1 − aα) − aβ − b, then the sequences
y2km+2s, s ∈ {0, 1, . . . , k − 1} converge.

(d) If |aα| > 1, v0(1− aα)−αb− β = −(u−1(1− aα)− aβ− b), then the sequences
y4km+2s and y4km+2k+2s, s ∈ {0, 1, . . . , k − 1} converge.

(e) If |aα| < 1 and |αb+ β| > |aβ + b|, then y2km+2s → 0, s ∈ {0, 1, . . . , k − 1} as
m→∞.

(f) If |aα| < 1 and |αb+β| < |aβ+b|, then |y2km+2s| → g−1(+∞), s ∈ {0, 1, . . . , k−
1} as m→∞.

(g) If |aα| < 1 and αb+β = aβ+b, then the sequences y2km+2s, s ∈ {0, 1, . . . , k−1}
are convergent.

(h) If |aα| < 1 and αb+β = −(aβ+b), then the sequences y4km+2s and y4km+2k+2s,
s ∈ {0, 1, . . . , k − 1} are convergent.

(i) If aα = −1, then

y2km+2s = g−1

g(y2s)

m∏
j=1

(
aβ + b+ (−1)kj+s(2u−1 − aβ − b)
αb+ β + (−1)kj+s(2v0 − αb− β)

)m .

Theorem 5. Assume that aα 6= 1, f, g : R → R are continuous, odd, increasing
functions satisfying the conditions in (3), and that (xn, yn)n≥−2k is a well-defined
solution of system (13) such that x−i 6= 0 6= y−i, i = 1, . . . , 2k. Then the following
statements are true.

(a) If |aα| > 1, |aα||v−1(1−aα)−αb−β| > |u0(1−aα)−aβ−b|, then y2km+2s+1 →
0, s ∈ {0, 1, . . . , k − 1} as m→∞.

(b) If |aα| > 1, |aα||v−1(1−aα)−αb−β| < |u0(1−aα)−aβ−b|, then |y2km+2s+1| →
g−1(+∞), s ∈ {0, 1, . . . , k − 1} as m→∞.

(c) If |aα| > 1, aα(v−1(1 − aα) − αb − β) = u0(1 − aα) − aβ − b 6= 0, then the
sequences y2km+2s+1, s ∈ {0, 1, . . . , k − 1} are convergent.

(d) If |aα| > 1, aα(v−1(1− aα)− αb− β) = −(u0(1− aα)− aβ − b) 6= 0, then the
sequences y4km+2s+1 and y4km+2k+2s+1, s ∈ {0, 1, . . . , k − 1} are convergent.

(e) If |aα| < 1 and |αb + β| > |aβ + b|, then y2km+2s+1 → 0, s ∈ {0, 1, . . . , k − 1}
as m→∞.

(f) If |aα| < 1 and |αb + β| < |aβ + b|, then |y2km+2s+1| → g−1(+∞), s ∈
{0, 1, . . . , k − 1} as m→∞.

(g) If |aα| < 1 and αb+β = aβ+b, then the sequences y2km+2s+1, s ∈ {0, 1, . . . , k−
1} are convergent.

(h) If |aα| < 1 and αb + β = −(aβ + b), then the sequences y4km+2s+1 and
y4km+2k+2s+1, s ∈ {0, 1, . . . , k − 1} are convergent.

(i) If aα = −1, then

y2km+2s+1 = g−1

g(y2s+1)

m∏
j=1

(
aβ + b+ (−1)kj+s(2u0 − aβ − b)

αb+ β + (−1)kj+s+1(2v−1 − αb− β)

)m .
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Theorems 2–5 and Lemma 1 yield the next corollary.

Corollary 1. Assume that |aα| < 1, f, g : R→ R are continuous, odd, increasing
functions satisfying the conditions in (3), and (xn, yn)n≥−2k is a well-defined so-
lution of system (13) such that x−i 6= 0 6= y−i, i = 1, . . . , 2k. Then the following
statements are true.

(a) If αb+β = aβ+b, then the solution (xn, yn)n≥−2k converges to a, not necessarily
prime, 2k-periodic solution of system (13).

(b) If αb + β = −(aβ + b), then the solution (xn, yn)n≥−2k converges to a, not
necessarily prime, 4k-periodic solution of system (13).
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[8] L. Berg and S. Stević, On the asymptotics of the difference equation yn(1+yn−1 · · · yn−k+1) =

yn−k, J. Differ. Equations Appl. 17 (4) (2011), 577-586.
[9] N. Fotiades and G. Papaschinopoulos, Existence, uniqueness and attractivity of prime period

two solution for a difference equation of exponential form, Appl. Math. Comput. 218 (2012),

11648-11653.
[10] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall,

CRC Press, Boca Raton, 2005.
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[25] S. Stević, Asymptotic behaviour of a nonlinear difference equation, Indian J. Pure Appl.

Math. 34 (12) (2003), 1681-1687.
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[41] S. Stević, On some periodic systems of max-type difference equations, Appl. Math. Comput.

218 (2012), 11483-11487.
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[46] S. Stević, On the system of difference equations xn = cnyn−3/(an + bnyn−1xn−2yn−3),

yn = γnxn−3/(αn + βnxn−1yn−2xn−3), Appl. Math. Comput. 219 (2013), 4755-4764.
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Stevo Stević, Mathematical Institute of the Serbian Academy of Sciences, Knez

Mihailova 36/III, 11000 Beograd, Serbia; King Abdulaziz University, Department of

Mathematics, Jeddah 21589, Saudi Arabia
E-mail address: sstevic@ptt.rs

Mohammed A. Alghamdi, King Abdulaziz University, Department of Mathematics,
P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: proff-malghamdi@hotmail.com

Abdullah Alotaibi, King Abdulaziz University, Department of Mathematics, P.O.

Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: aalotaibi@kau.edu.sa

Naseer Shahzad, King Abdulaziz University, Department of Mathematics, P.O. Box

80203, Jeddah 21589, Saudi Arabia
E-mail address: nshahzad@kau.edu.sa

EJQTDE, 2013 No. 47, p. 18


