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GLOBAL EXISTENCE OF ε−REGULAR SOLUTIONS FOR THE

STRONGLY DAMPED WAVE EQUATION

QINGHUA ZHANG

Abstract. In this paper, we deal with the semilinear wave equation with strong

damping. By choosing a suitable state space, we characterize the interpolation

and extrapolation spaces of the operator matrix Aθ, analysis the criticality of

the ε-regular nonlinearity with critical growth. Finally, we investigate the global

existence of the ε-regular solutions which have bounded X1/2 ×X norms on their

existence intervals.

1. Introduction and preliminaries

We consider the strongly damped wave equation

(1.1)


utt + η(−∆)θut + (−∆)u = f(u), t > 0, x ∈ Ω,

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω,

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω.

Here, Ω ⊆ Rn (n ≥ 3) is a bounded domain with C2 boundary, η > 0 is the damping

coefficient, and (−∆)θ denotes the fractional power of the negative Laplacian, θ ∈
[1/2, 1]. If we set X = L2(Ω) and A = −∆, then under the homogeneous Dirichlet

boundary condition, A is a sectorial operator defined in X for which D(A) = H2(Ω)∩
H1

0 (Ω), Re(σ(A)) ≥ 0 and A−1 is compact. For each α ∈ R, denote by Xα = D(Aα)

the fractional power space of A endowed with the graph norm. Recall that in this

setting, X0 = X, X1/2 = H1
0 (Ω), X−1/2 = H−1(Ω) and X−α = (Xα)∗ for all α > 0.

Recently, Pr. (1.1) has been received much more attention by many authors,

many works appeared with different themes and methods involved. Using the theory

of operator semigroups and interpolation, extrapolation spaces, Carvalho–Cholewa

in [1, 2], and lately Carvalho–Cholewa–Dlotko in [3] studied the local existence and

regularity of the ε-regular solutions. By employing Galerkin’s approximation and the
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theory of potential well, Gazzola–Squassina in [4] focused on the global solutions and

finite time blow up. Furthermore, in [5, 6, 7, 8, 9, 10], the authors paid attention to

the asymptotic behaviors, including existence and regularity of the global solutions

and universal attractors, using the theory of dynamical systems.

In this paper, we restrict ourselves in global existence of the ε-regular solutions,

and the tools we used here are sectorial operators and analytic semigroups. Recall

that (cf. [1, 3]), if we select Y = X1/2 ×X as the work space, and set

D(Aθ) =
{[u
v

]
∈ Y : X3/2−θ ×X1/2, A3/2−θu+ ηv ∈ Xθ

}
,

Aθ

[u
v

]
=

[
−v

Aθ(A1−θu+ ηv)

]
, ∀

[u
v

]
∈ D(Aθ),

then Pr.(1.1) can be abstracted as an abstract parabolic problem, i.e.

d

dt

[u
v

]
+ Aθ

[u
v

]
= F

([u
v

])
, t > 0,(1.2) [u

v

]
t=0

=

[
u0

v0

]
.(1.3)

Here

F
([u
v

])
=

[
0

f(u)

]
.

In this setting, Aθ is a sectorial operator whose interpolation and extrapolation

spaces derived from the space pair (Y, Y 1
θ ) (Y 1

θ = D(Aθ) endowed with the graph

norm) can be characterized as follows :

Y α
θ = X1/2+α(1−θ) ×Xαθ,

and

(Y −1
θ )α ←↩ X−1/2−(1−α)(1−θ) ×X−1/2+α(1−θ)

for all α ∈ [0, 1/2]. Based on these characterizations, if the nonlinearity f is locally

Lipschitz and satisfies a nonlinear growth:

|f(u)− f(u′)| ≤ C|u− u′|(1 + |u|ρ−1 + |u′|ρ−1), ∀u, u′ ∈ R(1.4)

(1 ≤ ρ ≤ (n+ 2)/(n− 2)),

then for each initial value
[
u0
v0

]
∈ Y , there is a unique mild solution

[
u(·)
v(·)

]
∈

C([0, T ], Y ) ∩ C((0, T ], Y ε
θ ) for some T > 0. This solution, called the ε-regular

solution, carries a higher regularity than ε. Furthermore, if the growth exponent ρ

is subcritical, i.e. ρ < (n+ 2)/(n− 2), then boundedness of
[
u(t)
v(t)

]
in the work space

Y on its existence interval infers the global existence. All the results mentioned

above can be found in [1, 3, 7], with the references therein.
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Here, we focus on the critical case: ρ = (n+ 2)/(n− 2). We will show that, if we

select another state space weaker than Y , then the ε-regular operator F induced by

f is not critical anymore. Firstly, we give briefly some notions and results related

to Pr. (1.1), and provide some references from the literature.

Let X be a Banach space, on which there is a closed linear operator A with a dense

domain. We say that A is a sectorial operator of type U (θ,M,X), if ρ(A) ⊇ Σϑ,

and

‖(λI −A)−1‖ ≤ M

1 + |λ|
, ∀ λ ∈ Σϑ,

where, M > 0, Σϑ = {λ ∈ C : | arg λ| < ϑ} ∪ {0} and 0 < ϑ < π/2 (see §3.3,

[5]). In this case, −A generates an analytic semigroup denoted by exp{−tA}. Let

X1 = D(A) endowed with the graph norm, Aγ (γ ∈ R) be the fractional power of

A (§2.6, [11]), and Xα (0 < α < 1) be the domain of Aα with ‖ · ‖Xα = ‖Aα · ‖X .

Recall that (refer to §1.3, [12]), if the pure imaginary powers Ait are uniformly

bounded on [−ε, ε] for any ε > 0, then Xα = [X,X1]α and [Xα, Xβ]s = X(1−s)α+sβ

for α, β > 0, and 0 < s < 1 (here [X,X1]α denotes the complex interpolation of

the space couple (X,X1)). If X is a Hilbert space, then the above properties are

automatically satisfied. For the negative indicator −α (0 < α < 1), we can also

define the extrapolation space X−α as the completion of (X, ‖A−α · ‖X). There are

some properties about the fractional powers, interpolation and extrapolation spaces

(cf. [13, 14] and Ch. V, [15]):

Proposition 1.1.

(1) For each α ∈ (0, π/ϑ), Aα ∈ U (αϑ,Mα, X
α); and

(2) Ãα, the extension of Aα from X to X−α, also lies in U (αθ,M−α, X
−α), with

D(Ãα) = X, and the restriction Ãα|X : X → X−α being an isomorphism;

(3) (X−α)γ = X−α+γ for all γ ∈ [0, 1].

Consider the abstract parabolic problem

(1.5)

 x′ +Ax = F (x), t > 0,

x(0) = x0 ∈ X,

where F ∈ C((X−1)1+ε, X−1) for some 0 < ε < 1. A mild solution x ∈ C([0, T ], X)

is called an ε-regular one of (1.5) on the interval [0, T ], if x ∈ C((0, T ], (X−1)1+ε) ∩
C1((0, T ], X−1) and satisfies the equation in (1.5) in the space X−1. Related to a

triple (ρ, ε, γ) with ρ ≥ 1, ε ∈ [0, 1/ρ) and ρε ≤ γ < 1, the nonlinear map F is called
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ε-regular, if it takes values in (X−1)γ satisfying:

‖F (x)− F (y)‖(X−1)γ ≤ C‖x− y‖(X−1)1+ε(1 + ‖x‖ρ−1
(X−1)1+ε

+ ‖y‖ρ−1
(X−1)1+ε

),

∀ x, y ∈ (X−1)1+ε.(1.6)

Proposition 1.2. For any ε-regular map F and x̃0 ∈ X, there is a ball BX(x̃0, r)

and a constant T > 0 depending on A, x̃0, ρ, ε and γ, s.t. corresponding to each

initial value x0 ∈ BX(x̃0, r), there is a unique ε-regular solution x of (1.5) defined

on the interval [0, T ] satisfying x ∈ C((0, T ], (X−1)1+γ) ∩ C1((0, T ], (X−1)1+γ−).

Moreover, if γ > ρε (correspondingly, F is said to be subcritical), then the radius r

can be taken arbitrary. Under this situation, an ε-regular solution x exists globally,

whenever the norm ‖x(t)‖X is bounded on its existence interval.

For other properties and detailed discussions about the ε-regular solutions of (1.5),

please refer to [16, 17].

Remark 1.3. There is an open problem about the global existence of x in Prop.

1.2 in case that γ = ρε (i.e. F is critical) and the boundedness of x(t) could

not be obtained in X1+s for any s > 0 but s = 0. This problem seems to be

much sophisticated, since the domain of F is not X but its subspace X1+ε. In [8],

the authors gave a sufficient and necessary condition for this problem. As to the

strongly damped wave equations (1.1), the authors in [1, 3, 7] showed that, if the

growth indicator ρ of the nonlinearity f is critical, i.e. ρ = (N + 2)/(N − 2), then

the corresponding map F is also critical associated with the pair (Y, Y −1
θ ) provided

1/2 ≤ θ < 1. We will say that this is not absolutely. By choosing another state

space Wθ (see the next section) little weaker than the energy space Y in this paper,

we find that despite that the index ρ is critical, the nonlinear perturbation F is not

critical any more, consequently, boundedness of
[
u(t)
v(t)

]
in Y also leads to its global

existence.

2. Main results and proofs

Before our discussion, let us introduce a lemma for later use (refer to §5.2, [11]

and [3]).

Lemma 2.1. Suppose X and Y are two Banach spaces on which there are respec-

tively two densely defined linear operators, saying A and B. If A ∈ U (ϑ,M,X) and

there exists an isomorphism Q between X and Y s.t. QA = BQ, then B also lies in

the family U (ϑ, ‖Q‖‖Q−1‖M,Y ) satisfying
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(1) σ(A) = σ(B),

(2) e−tB = Qe−tAQ−1, and

(3) QAα = BαQ for all α ∈ [0, 1].

Let Zθ = Xθ ×X0, D(Cθ) = X1 ×Xθ, and

Cθ =

[
0 − I
A ηAθ

]
.

Remark 2.2. The sectorial property of Cθ was treated in [1, 3] for θ = 1/2, and

in [5] for θ = 1. It is worth to point out that, in [3], the basic space X is only

an abstract Banach space and A ∈ U (ϑ,M,X) with the extra restriction π/2 >

ϑ/2 + arg(η/2 +
√
η2/4− 1). For other cases (including θ = 1/2, 1) in Hilbert

spaces, please refer to [18], where Aθ is replaced by another operator B satisfying

A1/2 ≤ B ≤ A. Motivated by [3], here we give a proof for the sectorial property of

Cθ in general Banach spaces for 1/2 < θ ≤ 1.

Let X be a Banach space, and A ∈ U (β,M,X) for some M > 0 and β ∈ (0, π/2).

Obviously, the operator matrix Cθ defined above is closed in Zθ. Fixing θ ∈ (1/2, 1],

and introduce two other closed operators associated with Cθ:

Bθ =

[
0 − I
A ηAθ + η−1A1−θ

]
, D(Bθ) = X1 ×Xθ,

Dθ =

[
η−1A1−θ − I

0 ηAθ

]
, D(Dθ) = X1 ×Xθ.

It is easy to check that PθBθ = DθPθ, where

Pθ =

[
I 0

η−1A1−θ I

]
∈ L (Zθ)

is an isomorphism with Pθ(X
1 ×Xθ) = X1 ×Xθ.

Lemma 2.3. The operator Dθ is sectorial in Zθ with Re(σ(Dθ)) > 0.

Proof. For each λ ∈ C with Reλ ≤ 0, consider λI−Dθ. For each
[
ϕ
ψ

]
∈ Zθ, by the

sectorial properties of Aθ and A1−θ, we can find a pair
[
u
v

]
∈ X1 × Xθ satisfying

(λI − ηAθ)v = ψ in X and (λI − η−1A1−θ)u = ϕ− v in Xθ. Thus
[
u
v

]
∈ D(Dθ) and

(λI−Dθ)
[
u
v

]
=
[
ϕ
ψ

]
. Furthermore,

‖v‖X = ‖(λI − ηAθ)−1ψ‖X ≤
M

η + |λ|
‖ψ‖X ,
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and

‖u‖Xθ = ‖(λI − η−1A1−θ)−1(ϕ− v)‖Xθ ≤
M

η−1 + |λ|
(‖ϕ‖Xθ + ‖v‖Xθ).

Since ‖Aθ(λI − Aθ)−1‖L (X,X) ≤ 1 + M , we have ‖v‖Xθ ≤ η−1(1 + M)‖ψ‖X . Con-

sequently

‖u‖Xθ ≤
Mη

1 + |λ|
(‖ϕ‖Xθ + ‖ψ‖X)

with the constant

Mη = M max

{
1,

1 +M

η

}
· sup

{
1 + |λ|
η−1 + |λ|

: Reλ ≤ 0

}
.

Therefore, λ ∈ ρ(Dθ) and ‖(λI −Dθ)
−1‖L (Zθ ≤ Mη/(1 + |λ|), which leads to the

desired results. �

Taking the same procedure as in [3], using 2.1, we can prove

Lemma 2.4. Bθ is a sectorial operator in Zθ, it has the same spectrum as Dθ has,

and for all α ∈ [0, 1], the equality PθB
α
θ = Dα

θPθ holds.

Since the perturbation
[

0 0
0 −η−1A1−θ

]
of Bθ satisfies∥∥∥∥[ 0 0

0 − η−1A1−θ

] [
ϕ

ψ

]∥∥∥∥
Zθ

= η−1‖A1−θψ‖X

= η−1‖(Aθ)θ−1−1ψ‖X
≤ C‖Aθψ‖θ−1−1

X ‖ψ‖2−θ−1

X

≤ C

∥∥∥∥Bθ

[
ϕ

ψ

]∥∥∥∥θ−1−1

Zθ

∥∥∥∥[ϕψ
]∥∥∥∥2−θ−1

Zθ

for all
[
ϕ
ψ

]
∈ D(Bθ), then according to p.80, [11], we have

Lemma 2.5. Cθ is a sectorial operator in Zθ with Re(σ(Cθ)) > 0.

Let us return to Pr. (1.1). Take Wθ = X1/2 ×X1/2−θ as a new work space, and

define

Aθ =

[
0 − I

Ãθ−1/2A3/2−θ ηÃθ−1/2A1/2

]
, D(Aθ) = X3/2−θ ×X1/2.

Evidently, Aθ is closed in Wθ with a dense domain. As to its sectorial property, let

us introduce the operator Qθ : Zθ →Wθ by

Qθ =

Ãθ−1/2 0

0 Ãθ−1/2

 .
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This is an isomorphic operator with

Q−1
θ =

[
A1/2−θ 0

0 A1/2−θ

]
and Qθ(X

1 ×Xθ) = X3/2−θ ×X1/2. Furthermore, for all
[
u
v

]
∈ X1 ×Xθ, we have

QθCθ

[u
v

]
=

[
−Aθ−1/2v

Ãθ−1/2Au+ ηÃθ−1/2Aθv

]
= AθQθ

[u
v

]
.

Thus, from the sectorial property of Cθ in Zθ, and Lemma 2.1, we can conclude that

Theorem 2.6. Aθ is a sectorial operator in Wθ having the same spectrum as Cθ

has, and Aα
θQθ = QθC

α
θ .

Remark 2.7. From this theorem, we can also derive the interpolation and extrap-

olation spaces of Aθ using the corresponding spaces of Cθ, but here we do not do

so, since the domain D(Aθ) itself is a Cartesian product of two spaces.

Let W 1
θ = D(Aθ) be endowed with the graph norm. A simple calculation shows

that, W 1
θ = X3/2−θ ×X1/2 in the sense of isomorphism. Then for any ε, γ ∈ (0, 1),

the interpolation and extrapolation spaces of Aθ can be characterized as follows:

W ε
θ = X1/2+ε(1−θ) ×X1/2−θ+εθ,

(W−1
θ )γ = W−1+γ

θ = (W 1−γ
θ )∗,

W 1−γ
θ = X1/2+(1−γ)(1−θ) ×X1/2−θ+(1−γ)θ = (X1/2)(1−γ)(1−θ) × (X1/2−θ)(1−γ)θ,

(W−1
θ )γ = (X1/2)−(1−γ)(1−θ) × (X1/2−θ)−(1−γ)θ(2.1)

= X1/2−(1−γ)(1−θ) ×X1/2−θ−(1−γ)θ

= X1/2−(1−γ)(1−θ) ×X1/2−(2−γ)θ.

Remark 2.8. In the new phase space, Aθ can be represented as an operator matrix,

and consequently all the interpolation and extrapolation spaces can be described as

the Cartesian products.

Theorem 2.9. Under condition (1.4) upon f with ρ ≤ (N + 2)/(N − 2), the ε-

regular map F is subcritical associated with the space pair (W−1
θ ,Wθ) in the case

1/2 < θ ≤ 1. That is, we can find constants ε ∈ [0, 1), γ ∈ (0, 1], with ρε < γ s.t.

hypothesis (1.6) holds for F , (W−1
θ )γ and W ε

θ (i.e. (W−1
θ )1+ε) as well.

Proof. We consider the embedding properties for space X1/2−(2−γ) appearing in

the decomposition (2.1) firstly. Observe that X1/2−(2−γ)θ = (X−1/2+(2−γ)θ)∗, and

X−1/2+(2−γ)θ ↪→ H−1+2(2−γ)θ(Ω), from which we can deduce that
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(i) if (N + 2)/4 ≤ θ ≤ 1 (N ≥ 4), then for any γ ∈ (0, 1), X−1/2+(2−γ)θ ↪→ C(Ω̄),

and then X1/2−(2−γ)θ ←↩ Lr(Ω), ∀ r ≥ 1;

(ii) if (N + 2)/8 < θ < (N + 2)/4, then 0 < 2− (N + 2)/4θ < 1, thus for each γ ∈
(2− (N + 2)/4θ, 1], we have X−1/2+(2−γ)θ ↪→ Lr

′
(Ω) for all 1 ≤ r′ ≤ 2N/(N +

2− 4(2− γ)θ), hence X1/2−(2−γ)θ ←↩ Lr(Ω) for all r ≥ 2N/(N − 2 + 4(2− γ)θ).

(iii) if 1/2 < θ ≤ (N + 2)/8 then for any γ ∈ (0, 1], we have the same imbedding

for X1/2−(2−γ)θ as in (ii).

In addition, for the number ε ∈ [0, ε0) with

ε0 =

 1, if θ = 1,

min{1, (N − 2)/4(1− θ)}, if 1/2 ≤ θ < 1,

we have X1/2+ε(1−θ) ↪→ Ls(Ω) for all 1 ≤ s ≤ 2N/(N − 2− 4ε(1− θ)).

Consequently, in case (i), we can take γ ∈ (0, 1) and ε ∈ [0, ε0), s.t. ρε < γ, and

‖f(u1)− f(u2)‖X1/2−(2−γ)(2.2)

≤ C‖u1 − u2‖X1/2+ε(1−θ)(1 + ‖u1‖ρ−1

X1/2+ε(1−θ) + ‖u2‖ρ−1

X1/2+ε(1−θ)),

∀ ui ∈ X1/2+ε(1−θ), i = 1, 2,

which leads to (1.6) for F , (W−1
θ )γ and W ε

θ immediately.

And in case (ii), for each γ ∈ (2− (N + 2)/4θ, 1] and ε ∈ [0, ε0), we have

(2.3) ‖f(u1)− f(u2)‖Lr(Ω) ≤ C‖u1 − u2‖Lρr(1 + ‖u1‖ρ−1
Lρr + ‖u2‖ρ−1

Lρr ),

with ρr ≤ 2N/(N − 2− 4ε(1− θ)) and r ≥ 2N/(N − 2 + 4(2− γ)θ), and then

ρ ≤ (N − 2 + 4(2− γ)θ)/(N − 2− 4ε(1− θ)).(2.4)

Consider the difference

d =
N − 2 + 4(2− γ)θ

N − 2− 4ε(1− θ)
− N + 2

N − 2

=
4

N − 2− 4ε(1− θ)
· (2θ − 1− γθ + ε(1− θ)N + 2

N − 2
)

It is easy to show that, if θ = 1 (N ≥ 6), then d = 4(1 − γ)/(N − 2) > 0 for all

2− (N + 2)/4θ < γ < 1. If 1/2 < θ < 1, then the sufficient and necessary condition

for d > 0 is that ρε > (θγ − (2θ − 1))/(1− θ). Notice also the number on the right

hand of the above inequality is smaller than γ for all 0 < γ < 1, therefore we can

select ε ∈ (ε1,min{ε0, ρ
−1γ}) in (2.4) with ε1 = ρ−1(θγ − (2θ − 1))/(1− θ) to make

d > 0 for all ρ ≤ (N + 2)/(N − 2). Putting all the numbers ε, γ and r obtained
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above into (2.3), using the corresponding embeddings, we obtain (2.2), and hence

(1.6) for F , (W−1
θ )γ and W ε

θ simultaneously.

In case (iii), we have the same results as in case (ii) only with 2− (N + 2)/4θ <

γ < 1 instead of γ ∈ (0, 1).

Summing up all the facts, we conclude that, for each θ ∈ (1/2,≤ 1], F is always

an ε-regular map of subcritical type. �

Remark 2.10. By replacing the work space Y by Wθ, for the same critical number

ρ = (N+2)/(N−2), the criticality of F has been changed (please compare to [1, 3]).

The following theorem is a natural consequence of Prop. 1.2 and Thm. 2.9.

Theorem 2.11. Under hypothesis (1.4) upon f , for each pair of initial values
[
u0
v0

]
∈

Wθ, there is a time interval [0, T ] on which, the wave equation with strong damping

1.1 (or equivalently Pr. (1.2)+(1.3)) has a unique ε-regular solution
[
u
v

]
satisfying[

u
v

]
∈ C((0, T ],W γ

θ ) ∩ C1((0, T ],W γ−

θ ). Moreover, if
[
u(t)
v(t)

]
is bounded in Wθ on its

existence interval, then
[
u
v

]
survives for ever.

Remark 2.12. By reviewing the proof of Thm. 2.9, we can find that the indicator

γ can be can taken much close to 1. So, every ε-regular solution
[
u
v

]
arising in

Wθ drops in C((0, T ],W 1−
θ ) ∩ C1((0, T ],W 1−

θ ) definitely. Notice also W γ
θ contains

X1/2 × X if γ is sufficiently close to 1, then the inclusion
[
u
v

]
∈ C((0,∞),W γ

θ )

assures another one
[
u
v

]
∈ C((0,∞), Y ). As a direct result, we can conclude that

any ε-regular solution
[
u
v

]
starting in Y exists globally, whenever the norm

∥∥∥[u(t)
v(t)

]∥∥∥
is bounded all the time. Moreover, if we lay the dissipative condition on f (see

[7, 9]), namely

(2.5) lim sup
|s|→∞

f(s)

s
≤ 0,

we then obtain the uniform bounds of
∥∥∥[u(t)

v(t)

]∥∥∥
Y

on the existence interval of
[
u
v

]
by

the energy estimate. Under this situation,
[
u
v

]
is a global solution for Pr. (1.2)+(1.3).

Remark 2.13. We must admit that, if θ = 1/2, then the ε-regular map F remains

critical in our setting. But this does not change the fact that boundedness of
[
u
v

]
in Y leads to its universal existence. In fact, in this case, F can also be defined on

Y and is weakly continuous from Y to Y −1
θ , which is a sufficient condition for the

global existence of
[
u
v

]
. For the detailed discussions, please refer to [19].
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